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ABSTRACT

We prove new upper bounds of the form O(n/ log(n)2−ε) for the length

of laws that hold for all groups of size at most n — improving on previous

results of Bou-Rabee and Kassabov–Matucci. The methods make use of

the classification of finite simple groups. Stronger bounds are proved in

case the groups are assumed to be nilpotent or solvable.

1. Introduction

We denote the free group on two generators a, b by F2 = 〈a, b〉. For every group

G, a word w ∈ F2 determines a word map w : G×G → G by evaluation. We say

that w is a law for G if the image of the corresponding word map on G consists

only of the neutral element — that is, w(g, h) = 1 for all g, h ∈ G. Every finite

group admits laws, for example an ∈ F2 is a law for G for n := |G|. Recently,

there has been some interest in finding short laws for specific groups or families

of groups. This was first done systematically by Hadad for finite simple groups

of Lie type in [9]. Bou-Rabee [1] started a program to determine the so-called

residual finiteness growth of various infinite groups, which also involved the

study of laws for symmetric groups Sym(n) (see [2] and independently [6]) and

the family of all groups (resp. all nilpotent or all solvable groups) of size at most

n. The best upper bounds for length of laws of Sym(n) are currently due to

Kozma and the author [14], where the proof makes use of consequences of the

Classification of Finite Simple Groups (CFSG).
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The aim of this note is to provide a construction of a non-trivial word wn ∈ F2

of length O(n/ log(n)2−ε) which is a law for every finite group of size at most

n. We will first do this separately for solvable groups and semi-simple groups

(in the sense of Fitting) and then combine the two results to obtain a result for

general finite groups. This partially answers a question from Kassabov–Matucci

[13, Question 18]. Our main result is stated as Theorem 5.1 at the end of the

paper. Its proof is spread over the entire paper, combining results on nilpotent

and solvable groups with the case of semi-simple groups and results of Fitting.

In the course of the proof, we also provide new upper bounds for the length of

laws that hold for all nilpotent resp. all solvable groups of size at most n.

Previously, upper bounds on the length of laws that hold for all groups of

size at most n have been obtained by Bou-Rabee [1] who constructed such a

law of length O(n3). Later, Kassabov and Matucci [13] improved the bound to

O(n3/2) using an elementary but technical result of Lucchini on permutation

groups from [15]. Our methods rely on the CFSG and thus use a machinery

which is considerably heavier than the methods used before.

The only known lower bound comes from the observation that PSL2(p) does

not satisfy any law shorter than p; see [5]. Since the size of PSL2(p) is roughly

p3, this implies that no law of length o(n1/3) can hold for all groups of size at

most n. We conjecture that the bound n/ log(n)2 proved in this paper is sharp

up to negligible factors — see also the discussion after Theorem 5.1.

2. Preliminaries

Let G be a group. For a word w ∈ F2 we set

Z(G,w) := {(g, h) ∈ G×G | w(g, h) = 1}

and call it the vanishing set of w. Clearly, w is a law for G if and only if

Z(G,w) = G×G. We denote the minimal word length of a word w ∈ F2 when

written in terms of the generators {a, a−1, b, b−1} by |w|.
The following lemma is the key in many steps of the argument. It allows to

combine finite sets of words and increase the vanishing set. We called it the

commutator lemma, and it has appeared in different forms in the work of Hadad

[9, Lemma 3.3] and Kassabov–Matucci [13, Lemma 10]. In the following form,

it was proved as [14, Lemma 2.2].
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Lemma 2.1: Let w1, . . . , wm be non-trivial words in F2. Then there exists a

non-trivial word w ∈ Fk such that for all groups G we have:

Z(G,w) ⊃ Z(G,w1) ∪ · · · ∪ Z(G,wm).

Moreover, the length of w is bounded by 16 ·m2 max |wi|.
Lemma 2.1 can be used to construct laws for a single group but also laws for

families of groups. Indeed, applying it to laws for G and H yields a law that

holds for both G and H . We will apply the lemma in both ways.

The preceding lemma is enough to prove the upper bound of Bou-Rabee on

laws that hold for all finite groups of size at most n. Indeed, every element of a

group of order at most n has order at most n. Hence, G×G =
⋃n

k=1 Z(G, ak).

The lemma provides a law of length 16n3. The result of Kassabov–Matucci

starts with this observation and treats groups with an element of order exceeding

n1/2 separately in order to obtain the improved bound O(n3/2); see [13].

The following lemma allows us to deal with extensions of groups.

Lemma 2.2: Let 1 → H → G → G/H → 1 be an extension of groups. Let

w′ ∈ F2 be a non-trivial law for H and w′′ ∈ F2 be a non-trivial law for G/H .

There exists a non-trivial law w ∈ F2 for G of length bounded by |w′|(|w′′|+2).

Proof. We set w(a, b) := w′(w′′(a, b), xw′′(a, b)x−1), where we choose

x ∈ {a, a−1, b, b−1} so that w′′(a, b) and xw′′(a, b)x−1 are free in F2. This

proves the claim.

The preceding lemma will allow us to decompose a group into its solvable

radical and the corresponding semi-simple quotient. But we will also apply it

to study automorphism groups of finite simple groups and reduce the case of

semi-simple groups to that of simple groups.

3. Nilpotent and solvable groups

Let G be a group. We define the lower central series of G by setting γ1(G) = G

and defining γk+1(G) = [G, γk(G)] for all k ≥ 1. Similarly, the derived series is

defined by G(0) := G and G(k+1) := [G(k), G(k)] for all k ≥ 0. A group is called

nilpotent if γk+1(G) = 1 for some k ∈ N and the smallest such k is called the

nilpotency class of G. A group is called solvable if G(k) = 1 for some k ∈ N and
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the smallest such k is called the solvability class of G. It is a classical result of

Hall that G(k) ⊂ γ2k(G) for all k ≥ 0.

It is well-known that the nilpotency class of a nilpotent group can be esti-

mated by the size. More precisely, we have that γk(G) = 1 whenever

k > log2(n), for a finite group G of order n. Indeed, this is obvious since

|γm(G)/γm+1(G)| ≥ 2, whenever γm(G) 
= 1. By a result of Elkasapy and

the author [3, Theorem 2.2], there exists a non-trivial word vk ∈ F2 of length

at most O(k3/2) which lies in γk(F2). This implies the following proposition

(compare [3, Theorem 5.1] for a slightly sharper bound):

Proposition 3.1: Let n ∈ N. There exists a word vn ∈ F2 of length bounded

by O(log(n)3/2) which is a law for all nilpotent groups of size at most n.

In order to treat solvable groups, we need to recall a few more notions. Let

G be a solvable group of size at most n. By a result of Fitting, there exists a

unique maximal, normal, and nilpotent subgroup of G. This group is called the

Fitting subgroup and we denote it by N �G. See [10] for general background

on this and related concepts that will come up. It is a classical fact that the

canonical map G → Aut(N), given by the conjugation action, has kernel equal

to the center of N .

Since N is nilpotent, N is a product of p-groups N =
∏

p N(p), and we obtain

also Aut(N) =
∏

p Aut(N(p)). For the p-group N(p), the Frattini subgroup

Φ(N(p)) is equal to N(p)p[N(p), N(p)] and we denote the Frattini quotient by

V (p) = N(p)/Φ(N(p)). The quotient group V (p) is a vector space over the finite

field Z/pZ. Since |V (p)| ≤ |N(p)| ≤ n, the dimension m(p) := dimZ/pZ V (p) of

V (p) over Z/pZ is bounded by log2(n).

We consider the natural homomorphism αp : Aut(N(p)) → Aut(V (p)) =

GLm(p)(p) with m(p) ≤ log2(n). Clearly, the image ofG in GLm(p)(p) is solvable

since G is assumed to be solvable. By a result of Zassenhaus [18, Satz 7], the

solvability class of a linear group is logarithmic in the dimension of the vector

space on which it acts. Later, Huppert [11] proved that the solvability class of

a solvable subgroup of GLm(p)(p) cannot exceed 1+7 log2(m(p)). Newman [16,

Theorem AS ] determined the optimal bound to be 5 log9(m(p)) +O(1). Thus,

we obtain that the solvability class of the image of G in
∏

p GLm(p)(p) cannot

exceed 5 log9(2) · log2(log2(n)) +O(1).

Using the results from [3, Theorem 2.2] again, we know that there exists a

non-trivial word vk ∈ F(k) of length bounded from above by roughly 211k/6.
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Applying this with k = �5 log9(2) · log2(log2(n))+C for some suitable constant

C, we obtain a word of length bounded by 2C · log2(n)5 log9(2)·11/6 that is a law

for the image α(G) of the homomorphism α : G → ∏
p GLm(p)(p). Note that

5 log9(2) · 11/6 ≤ 3.

Burnside showed (see for example [8, Chapter 5, Theorem 1.4]) that the

kernel of the map from Aut(N(p)) to GLm(p)(p) is a p-group and thus the group

ker
(
α : G → ∏

p GLm(p)(p)
)
is nilpotent, being an extension of (a subgroup of)

a product of p-groups by the center of N . Clearly, the size of the kernel is

also bounded by n. Thus, we apply Proposition 3.1 to obtain a law of length

bounded by O(log(n)3/2) for the kernel. Altogether, we can now use Lemma 2.2

to obtain a word of length bounded by O(log(n)9/2) that works for all solvable

groups of size at most n.

In other words, we have proved the following proposition:

Proposition 3.2: For every n ∈ N there exists a word vn ∈ F2 of length

bounded by O(log(n)9/2) which is a law for all solvable groups of size at most

n.

We note that the analysis from above showed that any solvable group of

size n has solvability class bounded by O(log log(n)). This was known from

work of Glasby [7]. However, Glasby’s estimates are not sufficient to establish

Proposition 3.2 in this form. It is easy to see that this double-logarithmic

bound is actually sharp. Indeed, the 2-Sylow subgroup of Sym(2n) is the n-fold

iterated wreath product of Z/2Z. Its cardinality is 22
n−1 and its solvability

class is equal to n.

4. Semi-simple groups

Let us first discuss finite non-abelian simple groups before we get to semi-simple

groups.

Proposition 4.1: Let n ∈ N. There exists a non-trivial word wn ∈ F2 of

length bounded by O(n/ log(n)2) that is a law for all finite non-abelian simple

groups of size at most n.

Proof. This uses the CFSG. The worst case in terms of length of laws is the

family PSL2(q) with q = pk some prime power. It is well-known that the

group PSL2(p
k) admits a law of length O(pk); see [9]. Indeed, it is easy to see
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that every element of PSL2(p
k) has order dividing either pk − 1, p or pk + 1,

corresponding to the diagonalizable, the unipotent, and the irreducible case.

Thus, combining ap
k−1, ap and ap

k+1 using Lemma 2.1 yields a law for PSL2(p
k)

of length O(pk), where the implied constant depends on neither p nor k. At the

same time the group PSL2(p
k) has size roughly p3k. Combining all such laws

for pairs (p, k) with p3k ≤ n using Lemma 2.1, we obtain a law with the desired

bound on the length. Indeed, it is an easy consequence of the prime number

theorem that there are at most O(n1/3/ log(n)) prime powers less than n1/3.

Thus, we obtain a law of length O((n1/3/ log(n))2n1/3). This proves the claim

for finite simple groups of the form PSL2(q).

For all other families the maximal element order (m.e.o.) of the group is

bounded by O(n1/4) by results summarized in work of Kantor–Seress [12]. In-

deed, this is well-known for Alt(n) — by a classical result of Landau, the max-

imal order of an element in Alt(n) is bounded by exp(c(n log(n))1/2), for some

small and explicit constant. The following table summarizes the situation for

families of classical Chevalley groups of unbounded rank (twisted or untwisted).

The first row contains a lower bound for the size of the group, up to a universal

multiplicative factor. The second row contains an upper bound for the maximal

element order, again up to some universal multiplicative factor. All information

about the maximal element order is taken from the exposition in [12].

Ad(q)
2Ad(q

2) Bd(q) Cd(q) Dd(q)
2Dd(q

2)

size qd
2+2d/d qd

2+2d/d q2d
2+d q2d

2+d q2d
2−d q2d

2−d

m.e.o. qd qd qd qd qd qd

We now come to the families of bounded rank. These contain twisted forms of

classical Chevalley groups that only exist in small rank, exceptional Chevalley

groups (twisted and untwisted) and Suzuki–Ree groups. Our material stems

again from [12].

2B2(q)
3D4(q

3) F4(q)
2F4(q)

size q5 q28 q52 q26

m.e.o. q q4 q4 q2

E6(q)
2E6(q

2) E7(q) E8(q) G2(q)
2G2(q)

size q78 q78 q133 q248 q14 q7

m.e.o. q6 q6 q7 q8 q2 q
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We easily see that the only case for which the maximal element order cannot

be bounded by O(n1/4) is A1(q) = PSL2(q). Since we are only interested in

asymptotic bounds, we can ignore sporadic groups and Tits’ group.

Thus, we can apply Lemma 2.1 to the list a, a2, . . . , aCn1/4

for some suitable

constant C in order to obtain a law of length O(n3/4) that applies to all simple

groups of size at most n and different from PSL2(q). Combining now the law

for the PSL2(q)’s and the law for the remaining families using Lemma 2.1 again,

we can finish the proof.

The study of semi-simple groups goes back to the work of Fitting; see [4] for

the original reference. Recall that an isotypical semi-simple group (in the sense

of Fitting) is a group G which fits into a chain of inclusions

Hk ⊂ G ⊂ Aut(H) � Sym(k),

where k is a positive integer, the group Sym(k) acts on k points, and H is some

finite non-abelian simple group. Let G be an isotypical semi-simple group of

size at most n. Denote by m the size of H . It is clear that mk ≤ n and hence

k ≤ log(n). Note that the group Aut(H) � Sym(k) fits into an extension

1 → Aut(H)k → Aut(H) � Sym(k) → Sym(k) → 1.

By a result of Kozma and the author [14] there exists a group law for Sym(k)

of length bounded by exp(C log(k)4 log log(k)). This result also relies on the

CFSG. For the purpose of this proof, we can work with an explicit law of length

bounded by exp(C(k log(k))1/2); see [2] or [14] for a discussion. Moreover, the

automorphism group Aut(H) of a non-abelian finite simple group H fits into

an exact sequence

1 → H → Aut(H) → Out(H) → 1,

where the group Out(H) is solvable of class 3. This assertion is usually called

Schreier’s Conjecture and was only proved as a consequence of the CFSG. Thus,

if H admits a law of length bounded by O(m/ log(m)2) by Proposition 4.1, then

Lemma 2.2 allows to construct a law of length bounded by O(m/ log(m)2) also

for Aut(H). Note that this will also be a law for Aut(H)k. Using Lemma 2.2

again, we can combine this with the law for Sym(k) and obtain a law for G.

The length will be bounded by

O(m log(m)−2 exp(C(k log(k))1/2),
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where the construction only depended on m and k. We treat the case k =

1,m = n and k = log(n),m = n1/2 separately and combine the results using

Lemma 2.1. Note that each isotypical semi-simple group of cardinality less

than or equal to n will be covered by one of the two cases, since k ≥ 2 implies

m ≤ n1/2. Thus, the resulting word will be a law for all isotypical semi-simple

groups of size at most n. It is easy to see that the dominating contribution

comes from k = 1,m = n. This proves Proposition 4.1 for isotypical semi-

simple groups.

A group is called semi-simple (in the sense of Fitting) if it does not contain

any non-trivial abelian normal subgroups; see for example [17, p. 89] for a

modern reference. (Note that the term semi-simple is ambiguously used in

group theory.) By a result of Fitting, a general semi-simple group G is contained

in a product of isotypical semi-simple groups G(H,k), where Hk ⊂ G(H,k) ⊂
Aut(H) � Sym(k) and also Hk ⊂ G. Since all bounds depended only on the fact

that |Hk| ≤ |G|, the proof of Proposition 4.1 for isotypical semi-simple groups

extends verbatim to the case of general semi-simple groups.

Thus, we can summarize our analysis as follows.

Proposition 4.2: Let n ∈ N. There exists a non-trivial word wn ∈ F2 of

length bounded by O(n/ log(n)2) that is a law for all finite semi-simple groups

of size at most n.

This finishes the discussion of the case of semi-simple groups.

5. General case

We are now ready to prove our main result. The general case is done by com-

bining our results for solvable and for semi-simple groups. By a result of Fitting

[4], every finite group has a solvable normal subgroup such that the quotient is

semi-simple.

Let G be a finite group of size at most n with solvable normal subgroup S

and semi-simple quotient L := G/S. Clearly, either |S| ≤ log(n)9/2 or |L| ≤
n/ log(n)9/2. We apply Lemma 2.2 in both situations and combine the laws

that we obtain from Proposition 3.2 and Proposition 4.2. In the first case, a

word of length bounded by O(log(log(n)9/2)9/2 · n log(n)−2) exists that serves

as a law. In the second case, we obtain a word of length bounded by

O(log(n)9/2 · n/ log(n)9/2 log(n/ log(n)9/2)−2) = O(n log(n/ log(n)9/2)−2).
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Combining the two cases using Lemma 2.1, we obtain a word of length

O(n log log(n)9/2/ log(n)2) and claim that it is a law for all groups of size at

most n. Indeed, any finite group of size at most n will satisfy one of the two

conditions — finally, this proves our main theorem.

Theorem 5.1: For every n ∈ N there exists a non-trivial word wn ∈ F2 of

length

O

(
n log log(n)9/2

log(n)2

)

that is a law for all finite groups of size at most n. In particular, the length of

wn is sublinear in n.

Note that the law that is constructed in the proof of the previous theorem is a

completely explicit combination of powers and commutators — the construction

itself does not depend on the CFSG. Note also that the proof depends on the

CFSG only in using the following two facts:

(i) The order of elements in a non-abelian simple group G different from

PSL2(p
k) is bounded from above by O(|G|1/4).

(ii) The outer automorphism group of a non-abelian finite simple group is

solvable of class at most 3.

In Theorem 5.1, there is room for improvement in the factor log log(n)9/2

(even though we were not able to remove it completely, an additional argument

shows that one can replace it with log∗(n)2, where log∗ denotes the iterated

logarithm, i.e., log∗(n) is the smallest number k such that the k-fold iteration

of the logarithm yields a number less than or equal to 1) and we believe that

n/ log(n)2 is close to the truth, i.e., that the result in Theorem 5.1 is almost

sharp. However, it seems notoriously difficult to prove non-trivial lower bounds

for the length of laws. This problem also arises in the study of the symmetric

group (see [14]), where the best known lower bounds for the length of a law for

Sym(n) are still linear in n. In that direction it would also be very interesting

to determine if the bounds in the proof of Proposition 4.1 are sharp. This is

of interest since Sym(n) contains PSL2(p
k) for all pk < n and hence a result in

this direction would provide a non-trivial lower bound for the length of laws of

Sym(n). However, any of this seems currently out of reach.
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