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ABSTRACT

Let F be a finite extension of Qp. We associate, to certain smooth p-

modular representations π of GL2(F ), a module S(π) on the mod-p Iwa-

sawa algebra of the standard Iwahori subgroup I of GL2(F ). When F is

unramified, we obtain a module on a suitable formally smooth Fq-algebra,

endowed with an action of O×
F (the units in the ring of integers of F ) and

an O×
F equivariant, Frobenius semilinear endomorphism which turns out

to be p-étale. We study the torsion properties of such a module, as well

as its Iwahori-radical filtration.
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1. Introduction

The p-modular Langlands program. Let F be a p-adic field, OF its ring

of integers and kF its residue field. The p-adic Langlands program has the

ambition to establish a dictionary between n-dimensional p-adic Galois repre-

sentations of Gal(Qp/F ) and certain p-adic Banach space representations of

GLn(F ). Such correspondence is expected to be compatible with mod-p re-

duction of coefficients, to be realized in appropriate cohomologies of Shimura

curves and to be compatible with deformation-theoretic techniques.

This correspondence is well understood in the special case of GL2(Qp). The

first breakthrough was Breuil’s classification of p-modular supercuspidal rep-

resentations of GL2(Qp) (cf. [Bre03a]), yielding a natural parametrization of

their isomorphism classes by means of irreducible 2-dimensional Galois represen-

tations. The second breakthrough was the realization, by Colmez, of a functor

from smooth, finite length admissible p-modular representations of GL2(Qp) to

Fontaine’s (ϕ,Γ)-modules ([Col], §IV).
The last years have experienced extensive research for a p-modular correspon-

dence for GL2 over finite extensions ofQp. The most striking phenomenon is the

proliferation of supercuspidal representations (as showed by the work of Breuil

and Paskunas [BP] and Hu [Hu]), which does not seem to find any justification

on the Galois side (the mod-p, absolutely irreducible Galois representations of

Gal(Qp/F ) are finitely many up to isomorphism).

Although many problems in the category of smooth p-modular representa-

tions of GL2(F ) are extremely delicate, investigations in the last years showed

that their approach by Iwasawa theoretical methods can be fruitful (cf. [HMS],

[Sch]).

The aim of this paper is to develop this approach, describing a way to as-

sociate to a universal p-modular representation of GL2 a module over a power

series ring of characteristic p (the Iwasawa algebra of the integral points of a

unipotent radical of GL2) endowed with commuting semilinear actions of O×F
and a Frobenius morphism F , and study some of its properties when F is

unramified.

It turns out that such a module is torsion free, the Frobenius action is p-étale

and its quotients by certain non-zero submodules have dense torsion.



Vol. 219, 2017 IWASAWA MODULE 3

1.1. Description of the main results. All representations are smooth, over

k-linear spaces, where k is a (sufficiently large) finite extension of kF . By clas-

sical results of Barthel and Livné [BL94] a supersingular representation π of

GL2(F ) is (up to twist) an admissible quotient of an explicit universal repre-

sentation π(σ, 0). The latter is defined to be the cokernel of a certain GL2(F )-

equivariant endomorphism (or Hecke operator) on the compact induction

ind
GL2(F )
GL2(OF )F×σ where σ is an irreducible smooth representation of GL2(OF )F

×

with trivial action of the uniformizer � ∈ F× (i.e. σ is a Serre weight).

More precisely (cf. [Mo1], Theorems 1.1 and 1.2) we have a GL2(OF )-

equivariant decomposition π(σ, 0)|GL2(OF )
∼= R∞,0⊕R∞,1 and the smooth rep-

resentations R∞,0R∞,1 fit into an exact sequence:

0→ V• → ind
GL2(OF )
I

(
R−∞,•

)→ R∞,• → 0

where V•, is an explicit subquotient of the smooth induction ind
GL2(OF )
I χ•, the

smooth character χ• depending in a simple way on the highest weight of σ (cf.

§2 for more details).

Therefore a first step to understand the irreducible quotients of π(σ, 0) con-

sists in a precise control of the representations R−∞,i.

The universal Iwasawa module and its torsion properties. Let S0∞, S1∞
be the Pontryagin duals of R−∞,0, R

−
∞,1 respectively. They are profinite modules

over the Iwasawa algebra k[[I]] of I. By restriction, they can equivalently be

seen as modules for the Iwasawa algebra A associated to the p-adic analytic

group U−(�)
def
=
[

1 0

�OF 1

]
, endowed with continuous actions of the groups

Γ
def
=

[
1 0

0 1 +�OF

]
, U+ def

=

[
1 OF

0 1

]
,

and

T(kF )
def
=

{[
a 0

0 d

]
, a, d ∈ k×F

}
(where we considerT(kF ) as a subgroup ofGL2(OF ) via the Teichmüller section

of the natural reduction morphism T(OF )→ T(kF )).

The actions of Γ, T(kF ) on S0∞, S1∞ are semilinear, as the former groups

normalize U−(�). On the other hand, the group U+ only acts by continuous

k-linear endomorphisms and its action is extremely subtle. Its (partial) control

is one of the technical heart of the paper (cf. Corollary 4.9, Proposition 6.1).
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The first result of this paper is a precise description of S•∞ (for • ∈ {0, 1}),
as a projective limit of finite-dimensional A-modules endowed with continuous

actions of Γ, T(kF ), U
+ (i.e. finite dimensional k[[I]]-modules). From now on,

we assume F to be unramified over Qp and we write r ∈ {0, . . . , p− 1}f for the

f -tuple which parametrizes the isomorphism class of σ|SL2(kF ) (cf. (4) for such

parametrization).

Moreover, we assume the Serre weight σ to be regular, i.e. that r ∈
{1, . . . , p− 2}f . We remark that some of the results of this paper can be mod-

ified to obtain similar statements in non-regular cases, but the technicality of

the arguments in their proofs have convinced the author not to include them in

this paper.

Theorem 1.1 ((Proposition 3.7)): Let • ∈ {0, 1}. The k[[I]]-module S•∞ is

obtained as the limit of a projective system of finite length k[[I]]-modules{
S•n+1

}
n∈2N+1+• where, for all n ∈ 2N + 1 + •, n ≥ 2, the transition mor-

phisms S•n+1 � S•n−1 fit into the following commutative diagram:

S•n−1
� � �� A/

〈
X

pn−2(ri+n−2+1)

i , i
〉

� �

��

1�

��
A/

〈
X

pn−1(ri+n−1+1)

i , i
〉 ∏f−1

i=0 X
pn−2(p(ri+n−1+1)−(ri+n−2+1))

i

S•n+1

����

� � �� A/
〈
X

pn(ri+n+1)

i , i
〉

projn+1

����

ker(projn+1)
��

��

ker(projn+1)
��

��

(1)

where the left vertical complex is exact and projn+1 denotes the natural pro-

jection.

We make precise the content of Theorem 1.1. The Iwasawa algebra A can

be seen, by the Iwahori decomposition, as a k[[I]]-module. We recall that A

is a complete local regular k algebra and we determine (Lemma 3.2) a regular

system of parameters X0, . . . , Xf−1 ∈ A, which give rise to a system of eigen-

vectors for the action of T(kF ) on the tangent space of A. All the morphisms

in the diagram (1) are k[[I]]-equivariant and it is shown (§3) that the ideals
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〈
X

pn(ri+n+1)
i , i = 0, . . . , f − 1

〉
A

are stable under the actions of Γ, T(kF ), U
+

(where the indices i + n appearing in ri+n are understood to be elements in

Z/fZ).

Moreover, we can describe precisely the monomorphisms

S•n+1 ↪→ A/
〈
X

pn(ri+n+1)
i , i = 0, . . . , f − 1

〉
,

deducing an explicit family of A-generators G •n+1 for S•n+1.

The families G •n+1 are compatible with the transition maps, yielding a set

G •∞ of topological A-generators for S•∞ which is finite if and only if F = Qp

(in which case it is a one-point set). In other words, we have an A-linear (and

T(kF )-equivariant) continuous morphism with dense image∏
e∈G •∞

A · e� S•∞(2)

and the next step is to investigate the torsion properties of S•∞:

Theorem 1.2 ((Propositions 7.5, 7.6, 7.7)): For • ∈ {0, 1} the module S•∞ is

torsion free over A and contains a dense A-submodule of rank one over Frac(A).

Finally, if x ∈ S•∞ \ {0} is in the image of
⊕

e∈G •∞
A · e → S•∞ the torsion

submodule of S•∞/〈x〉A is dense in S•∞/〈x〉A.
Even if S•∞ is not of finite type over A (unless F = Qp) it is possible to

determine a k[[I]]-submodule of finite co-length, which is finitely generated over

an appropriate skew power series ring. More precisely, A is endowed with a

Frobenius endomorphism F : A → A, which is k-linear, Γ, T(kF )-equivariant

and characterized by the condition F (Xi) = Xp
i−1.

We set S≥1∞
def
= ker

(
S0∞ � S0

0

)
and, similarly, S≥2∞

def
= ker

(
S1∞ � S1

1

)
; the

result is then the following:

Theorem 1.3 ((Proposition 5.11, 5.12)): The module S≥1∞ ⊕S≥2∞ is a submod-

ule of S0
∞ ⊕S1

∞ of finite co-length endowed with an F -semilinear, Γ, T(kF )-

equivariant endomorphism F∞.

The topological A-linearization of F∞

A⊗F ,A

(
S≥1∞ ⊕S≥2∞

) id⊗F∞−→ S≥1∞ ⊕S≥2∞

has an image of finite co-length.
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Finally, S≥1∞ ⊕S≥2∞ (resp. S≥•+1
∞ ) admits a finite family of generators as a

module over the skew power series ring A[[F ]] (resp. A[[F 2]]), consisting of

[F : Qp] distinct eigencharacters for the T(kF )-action.

We refer the reader to the paper [Ven], §2 for the definitions and basic prop-

erties of the skew power series ring A[[F ]].

The case F = Qp. If F = Qp we have a precise Galois theoretic description

of the Iwasawa module S≥1∞ ⊕S≥2∞ in terms of Wach modules.

Fix an embedding k ↪→ Fp and let ω2 : GQp2
→ k be a choice for the

Serre fundamental character of niveau 2, where GQp2
is the absolute Galois

group of the quadratic unramified extension Qp2 of Qp. For 0 ≤ r ≤ p − 1

we write ind(ωr+1
2 ) for the unique (absolutely) irreducible GQp -representation

whose restriction to the inertia IQp is described by ωr+1
2 ⊕ ωp(r+1)

2 and whose

determinant is ωr+1 (where ω is the mod-p cyclotomic character). Under the

p-modular Langlands correspondence for GL2(Qp) ([Bre03a], Definition 4.2.4),

the Galois representation ind(ωr+1
2 ) is associated to the supersingular represen-

tation π(σr , 0).

In section 7.3 we verify that the F∞-module S≥1∞ ⊕S≥2∞ associated to π(σr , 0)

is compatible with the p-modular Langlands correspondence for GL2(Qp). In-

deed, the explicit description of the elements in G •∞ lets us control the F∞-

action on S≥1∞ ⊕S≥2∞ and one can compare the F∞-action with the Frobenius

action on the Wach modules associated to crystalline Galois representations.

Proposition 1.4 ((Proposition 7.9)): Let 0 ≤ r ≤ p − 1, and write χ(0,1)

for the crystalline character of GQp2
such that χ(0,1)(p) = 1 and with labelled

Hodge–Tate weights −(0, 1) (for a choice of an embedding Qp2 ↪→ Qp). Define

the crystalline representation Vr+1
def
= ind

GQp

GQ
p2
χr+1
(0,1).

Then we have an isomorphism of ϕ-modules

S≥1∞ ⊕S≥2∞
∼−→ N

(
V r+1

)
where N(V r+1) is the mod-p reduction of the Wach module associated to Vr+1

and S≥1∞ ⊕S≥2∞ is the Iwasawa module of Theorem 1.3.

We recall that the mod-p reduction of Vr+1 is the dual of ind(ωr+1
2 ), in

particular the statement of Proposition 1.4 is consistent with the p-modular

Langlands correspondence for GL2(Qp).
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Radical filtration on the universal Iwasawa module. We focus on the

radical filtration for the k[[I]]-module S•∞. Indeed, provided the surjection (2),

we point out that none of the composite morphisms A ↪→ S•∞ are equivariant

for the extra actions of Γ, U+.

If [F : Qp](p− 1) ≤ p(p− 2) our results give a new, much simplified proof of

the main theorems of [Mo2] describing the socle filtration for the representations

R−∞,•, avoiding almost completely manipulations on Witt vectors.

The first result in this direction is the proof that the A-radical filtration on

A is stable by the actions of Γ, U+.

Proposition 1.5 ((Corollary 4.8)): For any k ∈ N the k-th power mk of the

maximal ideal m of A is endowed with a continuous action of Γ, U+, which is

trivial on the quotient

mk/mk+(p−2).

In particular, the k[[I]]-radical filtration on A coincides with the m-adic fil-

tration.

Since S•∞|A is free of rank one if F = Qp, Proposition 1.5 (together with

[Mo1], Theorem 1.2) gives another proof of [Bre03a], Théorème 3.2.4 :

Theorem 1.6 (([Bre03a], Théorème 3.2.4, Corollaire 4.1.4)): Assume F = Qp

and write I(1) for the pro-p Sylow subgroup of the Iwahori I. For any r ∈
{0, . . . , p− 1} we have

dim
(
π(r, 0)I(1)

)
= 2.

The action of Γ being by k-algebra endomorphisms, the main difficulty to

deduce Proposition 1.5 consists in the control of the U+-action; this is done by a

delicate induction argument (Proposition 4.7). The statement of Proposition 1.5

is expected to be false as soon as F ramifies over Qp (the integral torus T(OF )

does not act semisimply on the tangent space of A).

Similarly as we did in the paper [Mo2], the next step is to control the action

of k[[I]] on the graded pieces Kern+1
def
= ker

(
S•n+1 � S•n−1

)
. The result is the

following:

Proposition 1.7 ((Proposition 6.1)): Let n ≥ 2. For any k ≥ 0 the A-

submodule mkKern+1 is endowed with a discrete action of Γ, U+, which is
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trivial on the quotient

mkKern+1/m
k+(p−2)Kern+1.

In particular, the k[[I]]-radical filtration on Kern+1 coincides with its A-

radical filtration.

As for Proposition 1.5, the main difficulty in Proposition 1.7 is the control

of the action of U+ and we use in a crucial way some of the properties of the

Frobenius F on A.

The last step in order to recover the k[[I]]-radical filtration on S•∞ consists

in an appropriate “gluing” of the filtrations obtained by Proposition 1.7 on

the subquotients
{Kern+1

}
n∈2N+1+•. The argument is now mainly formal (as

happened for the representation theoretic approach in [Mo2]).

Theorem 1.8 ((Proposition 7.1)): Let • ∈ {0, 1} and, for k ∈ N, write Ik for

the closure of mkS•∞ in S•∞.

Then the A-linear filtration
{
Ik

}
k∈N coincides with the k[[I]]-radical filtra-

tion on S•∞.

We remark that we can find an explicit submodule S≥3∞
def
= ker

(
S0
∞ � S0

2

)
of finite colength on which the Γ and U+ actions are trivial on the quotients

Ik/Ik+(p−2).
We finally describe the isotypical components of cosock[[I]]

(
S•∞

)
, the k[[I]]-

cosocle of S•∞. If χ is an irreducible k[[I]]-module, we write V (χ) to denote

the χ-isotypical component of the k[[I]]-cosocle of S•∞ and the result is the

following:

Corollary 1.9 ((Corollary 7.3)): Assume that σ is a regular Serre weight.

Then

cosock[[I]]
(
S0
∞
)
= V (χ−r)⊕

f−1⊕
i=0

V (χrdet
−ra−p

i(ri+1)),

cosock[[I]]
(
S1
∞
)
= V (χrdet

−r)⊕
f−1⊕
i=0

V (χrdet
−ra−p

i(ri+1)),
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where

dim(V (χ−r)) = dim(V (χrdet
−r)) = 1,

dim(V (χrdet
−ra−p

i(ri+1))) =

⎧⎨⎩∞ for all i ∈ {0, . . . , f − 1} if F �= Qp,

0 for all i ∈ {0, . . . , f − 1} if F = Qp.

Here, χr, a are the smooth characters of I characterized by

χr

([
[a] 0

0 [d]

])
= a

∑f−1
i=0 piri , a

([
[a] 0

0 [d]

])
= ad−1.

Organization of the paper. In section 2 we recall the structure theorems for

the universal p-modular representations of GL2 (Theorem 2.1), describing the

construction of the representations R−∞,0, R
−
∞,1 as it appears in [Mo1], §3.

We subsequently dualize these constructions in §3. After recalling the main

formal properties of Pontryagin duality for compact p-adic analytic groups, we

determine the dual of a Serre weight (§3.2), thanks to an appropriate choice

of a regular system of parameters for the Iwasawa algebra A. The description

of the universal modules S•∞ follows finally from the construction of the Hecke

operator T (3.3). The main result is Proposition 3.7, where we give a precise

account of S•∞ as a k[[I]]-module.

Section 4 is devoted to the investigation of the A-radical filtration on A with

respect to the extra action of the groups Γ, U+ and the main result is Corollary

4.8.

In §5 we study the Frobenius F on A and its relations with the universal

modules S•∞. After its formal definition and its first properties, we recall the

constructions of [Ven] on the skew power series ring A[[F ]] (§5.1.1). We sub-

sequently deduce, in §5.2, the behavior of F with respect to certain modules

(associated to the projective system defining S•∞) and we conclude (section 5.3)

with the construction of a Frobenius, with a p-étale action, on an appropriate

submodule of S•∞ of finite co-length. Moreover, we show that such submodule

is of finite type over the skew power series ring A[[F ]].

Section 6 is concerned with the k[[I]]-radical filtration for certain subquotients

Kern+1 of S•∞. The techniques are similar to those of §4 and the new ingredient

(in order to control the action of U+) is the crucial use of the properties of the

Frobenius. We remark that the behavior of Kern+1 is different for n = 1 and

n ≥ 2. The main result is Proposition 6.1.
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Finally, the results of §6 and §4 are used in section 7.1 in order to recover the

k[[I]]-radical filtration on S•∞ (7.1). In section 7.2 we conclude describing the

torsion properties of the universal module S•∞.

The paper ends (§8) with a brief comment on the parallel constructions for

the principal and special series representations forGL2(F ), where all the results

are much simplified.

1.2. Notation. Let p be an odd prime. We consider a p-adic field F , with

ring of integers OF , uniformizer � and residue field kF . We assume that

[kF : Fp] = f is finite. We write val : F → Z for the valuation on F , nor-

malized by val(�) = 1, x → x for the reduction morphism OF → kF and

x → [x] for the Teichmüller lift k×F → O×F (we set [0]
def
= 0).

Consider the general linear group GL2. We fix the maximal torus T of

diagonal matrices and the unipotent radical U of upper unipotent matrices,

so that B
def
= T � U is the Borel subgroup of upper triangular matrices. We

similarly write U for the opposite unipotent radical and B
def
= T � U for the

opposite Borel.

Let T denote the Bruhat–Tits tree associated to GL2(F ) (cf. [Ser77]) and

consider the hyperspecial maximal compact subgroup K
def
= GL2(OF ). The

following subgroups of K will play an important role in this article:

U−(�j)
def
= U(�jOF ) (where j ∈ N), Γ

def
=

[
1 0

0 1 +�OF

]
, U+ def

= U(OF ).

The natural reduction map T(OF ) � T(kF ) has a section (induced by the

Teichmüller lift) and we identify T(kF ) as a subgroup of T(OF ). Concretely,

T(kF ) ∼=
{ [

[a] 0

0 [d]

]
∈ K, a, d,∈ k×F

}
.

For notational convenience, we introduce the following objects:

s
def
=

[
0 1

1 0

]
∈ GL2(F ), α

def
=

[
0 1

� 0

]
∈ GL2(F ), K0(�)

def
= red−1

(
B(kF )

)
(where red : K → GL2(kF ) is the reduction morphism).

Let E be a p-adic field, with ring of integers O and finite residue field

k (the “coefficient field”). Up to enlarging E, we can assume that

Card
(
HomFp(kF , k)

)
= [kF : Fp].

A representation σ of a subgroup H1 of GL2(Qp) is always understood to be

smooth with coefficients in k. If h ∈ H1, we sometimes write σ(h) to denote

the k-linear automorphism induced by the action of h on the underlying vector
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space of σ. We denote by (σ)H1 the space of H1 invariant vectors of σ and by

(σ)H1 the space of H1 co-invariant vectors.

Let H2 ≤ H1 be compact open subgroups of K. For a smooth representation

σ of H2 we write indH1

H2
σ to denote the (compact) induction of σ from H2 to H1.

If v ∈ σ and h ∈ H1 we write
[
h, v
]
for the unique element of indH1

H2
σ supported

in H2h
−1 and sending h to v. We deduce in particular the following equalities:

h′ · [h, v] = [h′h, v], [
hk, v

]
=
[
h, σ(k)v

]
(3)

for any h′ ∈ H1, k ∈ H2.

If Z ∼= F× is the center of GL2(F ) and σ is a representation of KZ, we

similarly write ind
GL2(F )
KZ σ for the subspace of the full induction Ind

GL2(F )
KZ σ

consisting of functions which are compactly supported modulo the center Z (cf.

[Bre03a], §2.3). For g ∈ GL2(F ), v ∈ σ we use the same notation
[
g, v
]
for

the element of ind
GL2(F )
KZ σ having support in KZg−1 and sending g to v; the

element
[
g, v
]
verifies similar compatibility relations as in (3).

A Serre weight is an absolutely irreducible representation of K. Up to

isomorphism they are of the form⊗
τ∈Gal(kF /Fp)

(
dettτ ⊗kF Symrτk2F

)⊗kF ,τ k

where rτ , tτ ∈ {0, . . . , p− 1} for all τ ∈ Gal(kF /Fp) and tτ < p− 1 for at least

one τ . This gives a bijective parametrization of the isomorphism classes of Serre

weights by 2f -tuples of integers rτ , tτ ∈ {0, . . . , p− 1} such that tτ < p− 1 for

at least one τ . The Serre weight characterized by tτ = 0, rτ = p − 1 for all

τ ∈ Gal(kF /Fp) will be referred as the Steinberg weight and denoted by St.

Recall that the K representations Symrτk2F can be identified with the homo-

geneous component of degree rτ of the polynomial algebra kF [X,Y ]. In this

case, the action of K is described by[
a b

c d

]
·Xrτ−iY i def

= (aX + cY )rτ−i(bX + dY )i

for any 0 ≤ i ≤ rτ .
We fix once and for all a field homomorphism kF ↪→ k. The results of this

paper do not depend on this choice. Up to twist, a Serre weight has now the
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more concrete expression

σr ∼=
f−1⊗
i=0

(
Symrik2

)Frobi

(4)

where r = (r0, . . . , rf−1) ∈ {0, . . . , p − 1}f and
(
Symrik2

)Frobi

is the K-repre-

sentation obtained from Symrik2 via the homomorphism GL2(kF )→ GL2(kF )

induced by the i-th Frobenius x → xp
i

on kF . We usually extend the action of

K to the group KZ, by imposing the scalar matrix � ∈ Z to act trivially.

Let G be a compact p-adic analytic group (cf. [DDSMS], §8.4). It is a

profinite topological group, with an open pro-p subgroup of finite rank.

The Iwasawa algebra k[[G]] associated to G is the limit of the group algebras

associated to the finite quotients of G:

ΩG
def
= lim←−

U

k[G/U ]

where the limit is taken over the open normal subgroups U of G (cf. [AB] for

the main properties of Iwasawa algebras). If G is pro-p, the associated Iwasawa

algebra is a local noetherian regular domain, whose maximal ideal m is the

augmentation ideal:

m = ker(ΩG � k) = 〈x− 1, x ∈ G〉ΩG

(note that the abstract ideal on the RHS is automatically closed since ΩG is

noetherian and compact). In this case the Krull dimension of the associated

graded ring gr
(
ΩG

)
equals the dimension of the group G. If moreover G is a

finitely generated free abelian pro-p-group, then dim(G) is the Krull dimension

of ΩG.

A module M over the Iwasawa algebra ΩG is always understood to be a

profinite left ΩG-module (i.e. an inverse limit of finite left ΩG-modules). If M ,

N are profinite right and left ΩG modules respectively, their completed tensor

product is the profinite k-module defined by

M⊗ΩGN
def
= lim←−

M′,N′
M/M ′ ⊗ΩG N/N

′

where the projective limit is taken over the open ΩG-submodules M ′, N ′ of M ,

N respectively. We refer the reader to [RZ], §5.5 or [Wil], §7.7 for the basic

properties of the completed tensor product of profinite modules.
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A k-valued character χ of the torus T(kF ) will be considered, by inflation,

as a smooth character of any subgroup of K0(�). We write χs to denote the

conjugate character of χ, defined by

χs(t)
def
= χ(sts−1)

for t ∈ T(kF ). Similarly, if τ is any representation of K0(�), we write τs to

denote the conjugate representation, defined by

τs(h) = τ(αhα)

for any h ∈ K0(�).

If r = (r0, . . . , rf−1) ∈ {0, . . . , p− 1}f is an f -tuple we define the characters

of T(kF ):

χr

([
a 0

0 d

])
def
= a

∑f−1
i=0 piri , a

([
a 0

0 d

])
def
= ad−1.

If τ is a semisimple representation of K0(�) we write Vτ (χ) (or simply V (χ)

if the representation τ is clear from the context) for the χ-isotypical component

of τ ; thus

τ =
⊕

χ∈X∗(T(kF ))

Vτ (χ).

Let C be an abelian category and write C ss for the full subcategory consisting

of semisimple objects; if X ∈ C we can consider the functor

C ss −→ S ets

Y −→ HomC (X,Y ).

If the functor is representable, by a couple X → Q, we define the radical

Rad(X) of X to be the kernel

Rad(X)
def
= ker(X → Q).

If R is a ring which is semisimple modulo its Jacobson ideal J and C is a full

subcategory of the category of left-R modules, then the radical of an object in

C always exists and we have

Rad(M) = J ·M
for anyM ∈ C . In particular, for any objectM ∈ C we can define, by induction,

the radical filtration
{
Radn(M)

}
n∈N by Rad0(M)

def
= M and Radn(M)

def
=

J ·Radn−1(M) for n ≥ 1.
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The dual notion of the radical filtration is the socle filtration.

We recall some conventions on the multi-index notations. We write α
def
=

(α0, . . . , αf−1) to denote an f -tuple α ∈ Nf and if α, β are f -tuples we define

i) α ≥ β if and only if αs ≥ βs for all s ∈ {0, . . . , f − 1};
ii) α±β def

= (α0±β0, . . . , αf−1±βf−1) (where the difference α−β is defined

only if α ≥ β).
The length of an f -tuple α is defined as |α| def= ∑f−1

s=0 αs and, for s ∈ {0, . . . , f−
1}, we define the element es

def
= (0, . . . , 0, 1, 0, . . . , 0) where the only non-zero

coordinate appears in position s.

If A = k[[X0, . . . , Xf−1]], λ ∈ kF and α ∈ Nf is an f -tuple we write

Xα def
=

f−1∏
s=0

Xαs
s , λα

def
= λ

∑f−1
s=0 psαs

with the usual convention 00
def
= 1.

Finally, we recall that if S is any set, and s1, s2 ∈ S, the Kronecker delta

δ(s1,s2) is defined by

δ(s1,s2)
def
=

⎧⎨⎩0 ifs1 �= s2,

1 ifs1 = s2.

2. Reminders on the universal representation for GL2

We recall here the definition of the universal representation for GL2, and we

specialize its construction by means of certain amalgamated sums of finite in-

ductions. The main upshot is Theorem 2.1, which shows that in order to control

the universal representation it is sufficient to consider a suitable subrepresenta-

tion of the Iwahori subgroup of K. The reader is invited to refer to [Mo1], §2.1
and §3.1 for the omitted details.

We fix an f -tuple r ∈ {0, . . . , p−1}f and write σ = σr for the associated Serre

weight described in (4). In particular, the highest weight space of σ affords the

character χr. We recall ([BL94], [Her1]) that the Hecke algebra HKZ(σ) is

commutative and isomorphic to a polynomial algebra:

HKZ(σ)
∼→ k[T ].

The Hecke operator T is supported on the double cosetKαKZ and is completely

determined as a suitable linear projection on σ (cf. [Her1], Theorem 1.2); it
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admits an explicit description in terms of the Bruhat–Tits tree of GL2(F )

(cf. [Bre03a], §2.5).
The universal representation π(σ, 0) for GL2 is then defined1 by the exact

sequence

0→ indGKZσ
T→ indG

KZσ → π(σ, 0)→ 0.

Using the Mackey decomposition for the KZ-restriction, we are able to de-

scribe π(σ, 0)|KZ as a compact induction from an explicitK0(�)-representation,

as we outline in the following lines.

Let n ∈ N. We consider the anti-dominant co-weight λn ∈ X(T)∗ character-
ized by

λn(�) =

[
1 0

0 �n

]
and we introduce the subgroups

K0(�
n)

def
=
(
λn(�)Kλn(�)−1

) ∩K =

{[
a b

�nc d

]
∈ K

}
.

The element λn(�)s =
[

0 1

�n 0

]
normalizes K0(�

n) and we define the

K0(�
n)-representation σ(n) as the K0(�

n)-restriction of σ endowed with the

K0(�
n)-action twisted by the element

[
0 1

�n 0

]
. Explicitly,

σ(n)

([
a b

�nc d

])
·Xr−jY j def

= σ

([
d c

�nb a

])
Xr−jY j .

Finally, for n ≥ 1 we write

R−n (σ)
def
= ind

K0(�)
K0(�n)

(
σ(n)

)
, R−0

def
= cosocK0(�)(σ

(1)) ∼= socK0(�)(σ
(0)).

For notational convenience, we write Y r for a basis of R−0 . If the Serre weight

σ is clear from the context, we write R−n instead of R−n (σ).
The interest of the representations R−n is that they realize the Mackey de-

composition for indG
KZσ:(

indG
KZσ

)|KZ
∼−→ σ(0) ⊕

⊕
n≥1

indKK0(�)

(
R−n
)
.

The interpretation in terms of the tree of GL2 is clear: the k[K0(�)]-module

R−n maps isomorphically onto the space of elements of indGKZσ having support

1 In the current literature the universal representation is written π(σ, 0, 1). We decided to

write π(σ, 0) in order to lighten the notations.
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on the double coset K0(�)λn(�)KZ. In particular, if σ is the trivial weight,

a basis for R−n is parametrized by the vertices of T , belonging to the negative

part of the tree and lying at distance n from the central vertex.

The Hecke morphism T induces, by transport of structure, a family ofK0(�)-

equivariant morphisms
{
(Tn)

neg
}
n≥1 defined on the k[K0(�)]-modules R−n : for

n ≥ 2 we have (Tn)
neg def

= T |R−
n
and, for n = 1, we define

(T1)
neg : R−1

T |
R

−
1−→ R−2 ⊕R−0 ;

this is possible since the image of T |R−
1
lies in R−2 ⊕ socK0(�)(σ

(0)), cf. [Mo2],

Lemma 2.7.

More expressively, one shows (cf. [Mo2], §2.1) that for any n ≥ 1 the Hecke

operator (Tn)
neg admits a decomposition (Tn)

neg = T+
n ⊕ T−n where2 the mor-

phisms T±n : R−n → R−n±1 are obtained by compact induction (from K0(�
n) to

K0(�)) from the following morphisms:

t+n : σ(n) ↪→ ind
K0(�

n)

K0(�n+1)σ
(n+1)(5)

Xr−jY j →
∑

λn∈kF

(−λn)j
[

1 0

�n[λn] 1

] [
1, Xr

]
;

and

t−n+1 : ind
K0(�

n)
K0(�n+1)σ

(n+1) � σ(n)(6) [
1, Xr−jY j

] → δj,rY
r

and, for n = 0, we have the natural epimorphism

T−1 : R−1 � R−0
Xr−jY j → δj,rY

r

(this shows that T+
n are monomorphisms and T−n epimorphisms for all n ≥ 1).

2 According to [Mo1], the morphisms T±
n should be written as (T±

n )neg. We decided to

use here the lighter notation T±
n .
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The Hecke operators T±n can be used to construct a family of amalgamated

sums, in the following way. We define R−0 ⊕R−
1
R−2 as the push out:

R−1

−T−
1 ����

� � T+
1 �� R−2

pr2
����

R−0
� � �� R−0 ⊕R−

1
R−2

and, assuming we have inductively constructed prn−1 : R−n−1 � R−0 ⊕R−
1

· · · ⊕R−
n−2

R−n−1 (where n ≥ 3 is odd), we define the amalgamated sum R−0 ⊕R−
1

· · · ⊕R−
n
R−n+1 by the following co-cartesian diagram:

R−n

−prn−1◦T−
n

����

� � T+
n �� R−n+1

prn+1

����
R−0 ⊕R−

1
R−2 ⊕R−

3
· · · ⊕R−

n−2
R−n−1

� � �� R−0 ⊕R−
1
R−2 ⊕R−

3
· · · ⊕R−

n
R−n+1.

The amalgamated sums R−0 ⊕R−
1
· · · ⊕R−

n
R−n+1 (where n is odd) form, in an

evident manner, an inductive system and we define

R−∞,0
def
= lim−→

n∈2N+1

R−0 ⊕R−
1
· · · ⊕R−

n
R−n+1.

We can repeat the previous construction for n even, defining an inductive system

of K0(�)-representations R−1 ⊕R−
2
· · · ⊕R−

n
R−n+1 and we write

R−∞,1
def
= lim−→

n∈2N+2

R−1 ⊕R−
2
· · · ⊕R−

n
R−n+1.

The relation between the representations R−∞,• and the universal representa-

tion π(σ, 0) is described by the following

Theorem 2.1 (([Mo1], Theorem 1.1)): Let σ = σr be a Serre weight. The KZ-

restriction of the universal representation π(σ, 0) decomposes as π(σ, 0)|KZ =

R∞,0 ⊕R∞,1 and we have short exact sequences of K-representations

0→ Rad(χr)→ indKK0(�)

(
R−∞,0

)→ R∞,0 → 0

0→ Soc(χs
r)→ indKK0(�)

(
R−∞,1

)→ R∞,1 → 0
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where Rad(χr), Soc(χ
s
r) are defined by

Rad(χr)
def
= St, Soc(χs

r)
def
= 1 if r = 0

Rad(χr)
def
= 1, Soc(χs

r)
def
= St if r = p− 1

Rad(χr)
def
= Rad

(
indK

K0(�)χr

)
, Soc(χs

r)
def
= Soc

(
indKK0(�)χ

s
r

)
otherwise.

Proof. This is Corollary 3.4 in [Mo1].

We shall remark that the representations R−∞,0 R−∞,1 can also be used to

control the action of the normalizer of the Iwahori subgroup, cf. [Mo1], Propo-

sition 3.8.

3. Dual translation

The first step in order to control the representations R−∞,0, R
−
∞,1 consists in a

precise knowledge of their Pontryagin duals S0
∞, S1

∞. We start by recalling

some well-known results about the duality between smooth representations of

compact p-adic analytic groups and profinite modules (§3.1) and we specialize

the construction to the group U−(�). In particular, we determine a family

of T(kF )-eigenvectors for the tangent space of k[[U−(�)]], which lets us easily

deduce the dual of a Serre weight (3.2). The description of S0
∞, S1

∞ follows

then by a formal construction, which is detailed in section 3.3.

We fix throughout this section a Serre weight σ = σr. In particular, the

highest weight space of σ affords the K0(�)-character χr.

3.1. Review of Pontryagin duality. The aim of this section is to give a

precise survey of the main formal properties of Pontryagin duality for compact

p-adic analytic groups. The subject is classical and we invite the reader to

refer to the work of Emerton [Eme], §2.2 or Ribes-Zalesskii [RZ], §5.1 for more

details.

Let A be a complete, Noetherian local OF -algebra with finite residue field

and let G be a compact p-adic analytic group (cf. [DDSMS], §8.4).
The category ModsmG (A) of smooth, A-linear G-representations is defined as

the category of locally Artinian A-modules endowed with the discrete topol-

ogy and a continuous action of G. On the other hand, we have the category

ModproG (A) of profinite A[[G]]-modules.

We recall the following result
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Theorem 3.1 ((Pontryagin Duality)): For any compact-open subgroup K of

G we have an involutive anti-equivalence of categories

ModsmK (A)
∼←→ ModproK (A)

V −→ V ∨.

Moreover, the equivalence is compatible with restriction and induction: if K1 ≤
K2 are two compact open subgroups of G and V ∈ModsmK1

(A) then(
indK2

K1
V
)∨

= A[[K2]]⊗A[[K1]](V )∨

and the functor indK2

K1
is right adjoint to the restriction to K1 (Frobenius reci-

procity).

We content ourselves to recall that the dual of V ∈ ModsmK (A) is defined as

V ∨ def
= HomOF (V, F/OF ), the latter endowed with the compact-open topology

(hence the topology of the simple convergence as the OF -modules V, F/OF are

endowed with the discrete topology) and the action of K given by (g · f)(v) def
=

f(g−1v) for any g ∈ K, v ∈ V , f ∈ V ∨.
Conversely, if M ∈ ModproK (A) one considers the topological dual M∨ def

=

Homcont
OF

(M,F/OF ), endowed with the discrete topology and the (continuous)

contragradient action of G.

Let H � G be compact open, and V ∈Modsm
G/H(A) (which will be considered

as an element of ModsmG (A) by inflation). Let {Kn}n∈N be a family of compact

open subgroups of G such that K∞ =
⋂

n∈NKn is closed and such that, for

any compact open subgroup U ≤ G one has H ·U ⊇ Kn(U) for some n(U) ∈ N.

Then any continuous function f : G → V which is left K∞-equivariant is

automatically left Kn-equivariant for some n (depending on f), and we have

indG
K∞V |K∞ = lim−→

n

indGKn
V |Kn . Hence

(
indGK∞V |K∞

)∨
= lim←−

n

(
indG

Kn
V |Kn

)∨
= lim←−

n

A[[G]]⊗A[[Kn]](V |Kn)
∨

= A[[G]]⊗A[[K∞]](V |K∞)∨

(the last equality clearly holds if G is discrete, and one passes to the inverse

limit over the open compact normal subgroups of G, cf. [RZ], Theorem 6.10.8).

We deduce, using the continuity of the restriction functor and the Mackey

decomposition, that for a closed subgroup U of G we have an isomorphism of
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profinite A[[U ]]-modules

(7)

(
A[[G]]⊗A[[K∞]]

(
V |K∞

)∨)|A[[U ]]

∼=
∏

e∈U\G/K∞

A[[U ]]⊗A[[eK∞e−1∩U ]]

(
e(V |K∞)∨

)|A[[eK∞e−1∩U ]]

We can now specialize the previous construction to our situation. For n ≥
m ≥ 1 let us define:

Am,n
def
= k[U−(�m)/U−(�n+1)], Am

def
= k[[U−(�m)]].

They are regular noetherian local k-algebras and we write A
def
= A1 to ease

notations.

By the Iwasawa decomposition, the Verma modules

k[[K0(�
m)]]⊗k[[K0(�n+1)]] 1, k[[K0(�

m)]]⊗k[[K0(�∞)]] 1

are free of rank one as Am,n, Am-modules respectively (where K0(�
∞)

def
=⋂

n∈NK0(�
n)).

Hence Am,n, Am are naturally endowed with a continuous action of

Γ, U+, T(kF ), and we would like to describe such actions in terms of regular

parameters for Am,n, Am.

Note that the objects

Sm
n+1(σ)

def
= k[[K0(�

m)]]⊗k[[K0(�n+1)]]

(
σ(n+1)

)∨
are pseudo-compact modules of finite length over k[[U−(�)]] admitting an ex-

plicit description in terms of k[[K0(�)]]-stable ideals of A (cf. Proposition 3.3).

To ease notations, we omit the Serre weight σ if this is clear from the context.

The universal module S∞
def
= (I−(π(σ, 0))∨ (where I−(π(σ, 0)) is the I-

subrepresentation of the universal module π(σ, 0) defined in the work of Hu

[Hu1]) is then obtained as an appropriate gluing of the “Verma” modules

Sn+1(σ) along the Hecke operators (T±n )∨ (cf. Proposition 3.7). Therefore,

in order to obtain any pertinent information of the I-quotients of π(σ, 0) (or,

rather, of I−(π(σ, 0))) it is important to understand the I-action on the Iwasawa

modules Sn+1(σ).

Note that the natural action of Γ,U+,T(kF ) on Am is induced by conjugation

on the elements of U−(�m) ⊂ A× (and similarly happens for Am,n, Sn+1,

Sm
n+1). Therefore, as T normalizes U it is easy to see that Γ,T(kF ) act by local

k-algebra automorphisms on Am,n, Am (and semilinearly on Sn+1, S
m
n+1).
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The finite torus T(kF ) acts semi-simply on the tangent space of A and we

are able to determine, in the unramified case, a regular system of parameters

for the maximal ideal m of A, formed by T(kF )-eigenvectors.

Lemma 3.2: Assume that F/Qp is unramified. Define, for i ∈ {0, . . . , f − 1},
the following elements of A:

Xi
def
=
∑
λ∈k×

F

λ−p
i

[
1 0

p[λ] 1

]
∈ A.

The family {X0, . . . , Xf−1} is a regular system of parameters for the maximal

ideal m in A and T(kF ) acts on Xi by the character a−p
i

Proof. We have to show that the elements Xi form a basis for the tangent space

of A. This is equivalent to asking that the discrete A module

k[U−(p)/U−(p2)] ∼= k[U−(p)]⊗k[U−(p2)] 1

admits the images of the elements Xi as a basis for the first graded piece in its

radical filtration.

We can now apply [Mo2], Proposition 4.4 (with m = n = 1), noticing that

Xi is nothing but the element F
(1)
p−1−ei in the notation of loc. cit.

The statement about the action of T(kF ) is an easy check.

For n ≥ 1 consider the natural injection K0(p
n+1) ↪→ K0(p). It induces a

monomorphism of Iwasawa algebras, hence a morphism of Verma modules

k[[K0(p
n+1)]]⊗k[[K0(p∞)]]1→ k[[K0(p)]]⊗k[[K0(p∞)]]1.(8)

This provides, by restriction to k[[U−(p)]], a monomorphism of Iwasawa algebras

An+1 ↪→ A

and it is immediate to see that the elements

Xpn

i−n =
∑
λ∈k×

F

λ−p
i

[
1 0

pn+1[λ] 1

]
∈ k[[U−(pn+1)]]

form a regular system of parameters for the maximal ideal of An+1, and X
pn

i−n
is an T(kF )-eigenvector, of associated eigencharacter a−p

i

.



22 S. MORRA Isr. J. Math.

3.2. The dual of a Serre weight. We describe here the dual of the Serre

weight σ = σr as an explicit k[[K0(p)]]-quotient of A. We use in a crucial

way the T(kF )-eigenvectors decomposition of the tangent space of A given in

Lemma 3.2. Thus, from now until the end of the paper, we assume that F is

unramified.

Proposition 3.3: Let σ = σr be a Serre weight and fix isomorohisms ι : χr
∼→

(σ)K0(p), ιs : (σ)K0(p)
∼→ χs

r. Let n ≥ 1.

If dimk(σ) �= q then the following Hom spaces are 1-dimensional,

HomK0(pn)(σ
(n), ind

K0(p
n)

K0(pn+1)χ
s
r) = 〈φn〉k;

HomK0(pn)(ind
K0(p

n)
K0(pn+1)χr, σ

(n)) = 〈ψn〉k
and φn (resp. ψn) is a monomorphism (resp. epimorphism) which, as a k-linear

map, depends only on ι (resp. ιs). If dimk(σ) = q the following Hom spaces are

2-dimensional:

HomK0(pn)(σ
(n), ind

K0(p
n)

K0(pn+1)χ
s
r) = 〈φn, φ̃n〉k;

HomK0(pn)(ind
K0(p

n)
K0(pn+1)χr, σ

(n)) = 〈ψn, ψ̃n〉k
and φn, ψn are isomorphisms (depending only on ι, ιs as k-linear maps) while

φ̃n, ψ̃n have one dimensional image.

Finally, we have exact sequences of k[[K0(p
n)]]-modules:

(9)

0→ 〈Xpn−1(ri+1)
i−n+1 , i = 0, . . . , f − 1

〉→ k[[K0(p
n)]]⊗k[[K0(pn+1)]] (χrdet

−r)

→ (σ(n)
)∨ → 0

(10)

0→ (σ(n)
)∨ → k[[K0(p

n)]]⊗k[[K0(pn+1)]] (χ
s
rdet

−r)

→ (k[[K0(p
n)]]⊗k[[K0(pn+1)]] (χ

s
rdet

−r)
)
/
〈 f−1∏

i=0

X
pn−1(p−1−ri)
i−n+1

〉→ 0.

Note that, in the hypotheses of Proposition 3.3, one has

k[[K0(p
n)]]⊗k[[K0(pn+1)]] (χrdet

−r) = k[U−(pn)/U−(pn+1)]⊗k (χrdet
−r)

as An,n, T(kF )-modules.

Proof. We start from the exact sequence (9).
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We see that the K0(p
n+1)-restriction of σ(n) is described by

σ(n)|K0(pn+1) =
⊕

0≤j≤r
χs
ra

j.

Note now that the isomorphism ι induces, by conjugation by the element λn(p)s,

an isomorphism ι(n) :
(
σ(n)

)K0(p
n) ∼→ χs

r. In particular, we have
(
σ(n)

)K0(p
n)

=

(σ)K0(p) as k-linear spaces, and therefore if we define φn to be the image of ι(n)

by the Frobenius reciprocity isomorphism

HomK0(pn+1)(σ
(n), χs

r)
∼= HomK0(pn)(σ

(n), ind
K0(p

n)

K0(pn+1)χ
s
r)(11)

we see that φn does not depend on n as a k-linear morphism.

If dim(σ) �= q, the T(kF )-characters of σ are all distinct, so that, by (11), the

Hom space HomK0(pn)(σ
(n), ind

K0(p
n)

K0(pn+1)χ
s
r) is one-dimensional.

Moreover, φn is an injective morphism: by construction,
(
φn(vr)

)
(1) is a

linear generator of χs
r if vr ∈ (σ)K1(p) is non-zero. Thus

(
ker(φn)

)U−(pn)
= 0,

and the claim follows as U−(pn) is a pro-p group.

If dim(σ) = q then the lowest weight vector v(r) and the highest weight vector

vr in σ are the only T(kF )-eigenvectors of σ
(n) affording the character χs

r. We

deduce two linearly independent morphisms

φn, φ̃n ∈ HomK0(pn)(σ
(n), ind

K0(p
n)

K0(pn+1)χ
s
r)

characterized by
(
φn(vr)

)
(1) = e and

(
φ̃n(v

(r))
)
(1) = e for a linear generator e

of χs
r. As above, we see that φn is a monomorphism (independent from n as a

k-linear map) and hence an isomorphism for dimension reasons; and moreover

that soc(σ(n)) is a subspace of ker(φ̃n).

As the characters of the socle filtration for ind
K0(p

n)
K0(pn+1)χ

s
r are all distinct except

for those appearing in the socle and the cosocle we deduce that φ̃n has to factor

via cosoc(σ(n)) into a non-zero morphism.

Passing to duals we deduce an epimorphism of k[[K0(p)]]-modules:

φ∨n : k[U−(pn)/U−(pn+1)]⊗k (χrdet
−r) �

(
σ(n)

)∨
which is an isomorphism if dim(σ) = q.

Assume dim(σ) �= q. By counting dimensions, the equality

ker(φ∨n) =
〈
X

pn−1(ri+1)
i−n+1 , i = 0, . . . , f − 1

〉
is established once we show that X

pn−1(ri+1)
i−n+1 ∈ ker(φ∨) for any i = 0, . . . , f − 1.
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This is immediate, since the T(kF ) eigencharacters of
(
σ(n)

)∨
(which are all

distinct) are described by(
σ(n)

)∨|T(kF ) =
⊕

0≤j≤r
(χrdet

−r)a−j

while T(kF ) acts on X
pn−1(ri+1)
i−n+1 by

(
χrdet

−r)a−(ri+1)ei .

The proof of the existence of the natural exact sequence (10) is similar and

left to the reader, noticing that cosoc
(
(σ(n))∨

) ∼= (
soc(σ(n))

)∨
= (χs

r)
∨ and

that the T(kF )-eigencharacter of
∏f−1

i=0 X
pn−1(p−1−ri)
i−n+1 is (χs

r)
∨.

3.3. The dual of the universal module. In this section we complete the

dictionary between the representations R−∞,• and the corresponding Pontryagin

dual S•∞.

We first describe the dual of the Hecke morphisms T±n in terms of k[[K0(p)]]-

modules. For each finite level of the dual operators (T±n )∨ let us glue the

modules Sn+1, obtaining certain k[[K0(p)]]-subquotients S
•
n+1 of A, i.e. K0(p)-

stable ideals generated by an explicit family of monomials in A. The universal

modules S•∞ are obtained as a limit of the modules S•n+1 via appropriate tran-

sition maps; they are not of finite type over A (except if F = Qp).

Let n ≥ 2. Recall (§2) that the Hecke morphism T+
n−1 is obtained as the

induction, from K0(p
n−1) to K0(p), of the K0(p

n−1)-equivariant morphism

t+n−1 : σ(n−1) → ind
K0(p

n−1)
K0(pn) σ(n).

Let K1(p
n) be the maximal pro-p subgroup of K0(p

n) and fix an isomorphism

ι : (σ)K0(p) ∼→ χr as in the statement of Proposition 3.3.

Since K1(p
n) is normal in K0(p

n−1) and it acts trivially on σ(n−1) we deduce
a factorization

σ(n−1) ��� �

����
���

���
���

� ind
K0(p

n−1)
K0(pn) σ(n)

ind
K0(p

n−1)
K0(pn) χs

r

��

��
(12)

where the vertical arrow is induced from the λn(p
n)s-twist of ι.

Note that t+n does not depend on n as a k-linear map and, thanks to its explicit

definition given in (5), we may and do assume that the isomorphism ι is such
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that the diagonal arrow in the diagram (12) is precisely φn−1, independently
from n.

Dualizing (12) and using Lemma 3.3 we obtain

(
σ(n−1))∨ (

χs
r

)∨ ⊗k k[[U
−(pn−1)]]⊗ k[[U−(pn)]]/〈Xpn−1(ri+1)

i−n+1 , i
〉

����

����

k[[U−(pn−1)]]⊗ (χs
r

)∨
��������������������������

where the vertical arrow is induced by base change from the projection(
σ(n)

)∨ � (χs
r)
∨ and the tensor product is over k[[U−(pn)]] (otherwise stated).

We conclude that (T+
n−1)

∨ is the natural projection for any n ≥ 2.

We turn our attention to (T−n )∨. As above, we fix an isomorphism

ιs : (σ)K0(p)
∼→ χs

r and recall that the Hecke morphism T−n is obtained as

the induction, from K0(p
n) to K0(p), of the K0(p

n)-equivariant morphism

t−n : ind
K0(p

n)
K0(pn+1)σ

(n+1) → σ(n).

Since K1(p
n+1) (the maximal pro-p subgroup ofK0(p

n+1)) acts trivially on σ(n)

and is normal in K0(p
n), we deduce a factorization

ind
K0(p

n)
K0(pn+1)σ

(n+1) �� ��

����

σ(n)

ind
K0(p

n)
K0(pn+1)χr

�� ��������������

(13)

where the vertical arrow is induced from the λn+1(p)s-twist of ι
s.

As before we may and do fix the isomorphism ιs in such a way that the

diagonal arrow in the diagram (13) is precisely ψn for any n ≥ 1.

Dualizing (13) and using Lemma 3.3 we obtain

(χr)
∨ ⊗k k[[U−(pn)]] ⊗ k[[U−(pn+1)]]/

〈
X

pn(ri+1)
i−n ,i

〉
(χr)

∨⊗k k[[U−(pn)]]/
〈
X

pn−1(ri+1)
i−n+1 ,i

〉

� 	

		�����
�����

�����
�����

��
� ���

k[[U−(pn)]]⊗ (χr)
∨��

��

where the vertical arrow is induced by base change from the injection
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(
χr

)∨
↪→ (χr)

∨ ⊗k k[[U
−(pn+1)]]/

〈
X

pn(ri+1)
i−n , i

〉
1 →

f−1∏
l=0

Xpnri
i−n ,

the diagonal arrow is deduced from Lemma 3.3 and the tensor product in the

RHS is over k[[U−(pn+1)]] (otherwise stated).

We obtain

Proposition 3.4: Let n ≥ 1.

The dual of the partial Hecke operator T+
n : R−n ⊗ χs

−r → R−n+1 ⊗ χs
−r is the

natural surjection:

A/
〈
X

pn(ri+n+1)
i , i = 0, . . . , f − 1

〉
� A/

〈
X

pn−1(ri+n−1+1)
i , i = 0, . . . , f − 1

〉
.

The dual of the partial Hecke operator T−n+1 : R−n+1 ⊗ χs
−r → R−n ⊗ χs

−r is

the monomorphism:

A/
〈
X

pn−1(ri+n−1+1)
i , i = 0, . . . , f − 1

〉
↪→ A/

〈
X

pn(ri+n+1)
i , i = 0, . . . , f − 1

〉
1 →

f−1∏
i=0

X
pn−1(p(ri+n+1)−(ri+n−1+1))
i .

Finally T−1 : R1 → R0 is dualized to:(
χr

)∨
↪→ A⊗k

(
χs
r

)∨
/
〈
X

(ri+1)
i , i = 0, . . . , f − 1

〉
1 →

f−1∏
i=0

Xri
i .

Proof. This is deduced from the previous discussion for n ≥ 2. The case n = 1

is immediate.

We can now describe the Pontryagin dual S•∞ of R−∞,• as a projective limit

of certain k[[K0(p)]]-modules of finite length, which are explicit K0(p)-stable

ideals of A.

Indeed, we can introduce a system of k[[K0(p)]]-modules obtained by a recur-

sive fibered product along the dual Hecke morphisms: if we assume the injection

S•×S•+1 . . .Sn−2 Sn−1 ↪→ Sn−1 being constructed, we define S•×S•+1 · · ·×SnSn+1
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through the following cartesian diagram

S• ×S•+1 · · · ×Sn Sn+1
�� ��

� �

��

S• ×S•+1 · · · ×Sn−1 Sn−1� �

��
Sn−1� �

(T−
n )∨

��
Sn+1

(T+
n )∨

�� �� Sn

where the upper (resp. left) dotted arrow is an epimorphism (resp. monomor-

phism) by base change.

Definition 3.5: For • ∈ {0, 1} let m,n ∈ 2N + 1 + • be such that n ≥ m. We

define the k[[K0(p)]]-modules

S•n+1
def
= S• ×S•+1 · · · ×Sn Sn+1, S≥mn+1

def
= ker

(
S•n+1 � S•m−1

)
.

For n ≥ 1 define the integer

mk,l,n(σ)
def
=

n−1∑
s=k

ps(rl+s + 1)(−1)s+k+1

and we write mk,l if n, σ are clear from the context. Note that for all j ≥ 1 one

has

Kerj+1
def
= ker

(
S•j+1→Sj−1

)
=
〈
X

pj−1(ri+j−1+1)
i , i = 0, . . . , f − 1

〉
and therefore by the description of the Hecke operators given in Proposition 3.4,

one obtains:

Proposition 3.6: For • ∈ {0, 1} let m,n ∈ 2N + 1 + • be such that n ≥ m.

The elements

e2(j+1)+•, i
def
= X

p2j+•(ri+2j+•+1)
i

f−1∏
l=0

X
m2j+1+•,l
l

for i = 0, . . . , f − 1, j = 0, . . . , n−1−•2 and

a) the element e0
def
=
∏f−1

l=0 X
−1−m0,l(σ)
l if • = 0,

b) the element e1
def
=
∏f−1

l=0 X
m0,l(σ)
l if • = 1,
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form a family G •n+1 of A-generators for the k[[K0(p)]]-stable idealSn+1�A1,n+1.

Similarly, the set

G≥mn+1
def
=
{
e2(j+1)+•,i, for

m− 1− •
2

≤ j ≤ n− 1− •
2

, i ∈ {0, . . . , f − 1}}
is a family of A-generators for the k[[K0(p)]]-stable ideal S≥mn+1 � A1,n+1.

Note that, a priori, it is not at all obvious that the submodule of Sn+1 gen-

erated by the elements listed in G≥mn+1 is stable under the action of Γ, U+.

We can summarize the preceding discussion in the following:

Proposition 3.7: Let σ = σr be a Serre weight. For • ∈ {0, 1} there is an

inductive system of k[[K0(p)]]-modules

· · ·� Sn+1 � Sn−1 � · · ·� S•

such that, for all n ≥ 1, the transition morphisms fit into a commutative dia-

gram with exact rows:

0 �� Kern+1
�� Sn+1� �

��

�� Sn−1� �

��

�� 0

Sn−1� �
(T−

n )∨

��
0 �� Kern+1

�� Sn+1

(T+
n )∨ �� Sn

�� 0

(14)

and where Kern+1 =
〈
X

pn−1(ri+1)
i−n+1 , i = 0, . . . , f − 1

〉 ≤ Sn+1.

By letting

S•∞
def
= lim←−

n∈2N+1+•
S•n+1,

(
resp S≥m∞

def
= ker

(
S•∞ � S•m−1

)
if m ∈ 2N+ 1 + • )

we have a family G •∞ (resp. G≥m∞ ) of topological A-generators for S•∞ (resp.

G≥m∞ )

G •∞ =
{
e2(j+1)+•,i, e•, for j ∈ N, i ∈ {0, . . . , f − 1}}(

resp. G≥m∞
def
=
{
e2(j+1)+•,i, for j ≥ m− 1− •

2
, i ∈ {0, . . . , f − 1}})

which is compatible at each finite level with the families G •n+1, G≥mn+1, i.e. for

any n ∈ 2N+ 1 + •, i ∈ {0, . . . , f − 1}, 0 ≤ j ≤ n−1−•
2 we have e2(j+1)+•,i →

e2(j+1)+•,i, e• → e• via S•∞ � S•n+1.
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Proof. Everything is clear from the previous discussion, the only non-trivial as-

sertion being the compatibility of the elements in G •n+1, G •n−1 via the transition

morphisms S•n+1 � S•n−1.
However, this is an elementary check using the explicit definition of the ele-

ments e2(j+1)+•,i and of the morphism (T−n )∨.
For instance, in the particular case where • = 0 (i.e. n odd) and j = 0 one

has

Xri+1
i

∏
l

X
m1,l,n

l =
(
Xri+1

i

∏
l

X
m1,l,n−2

l

)
,
∏
l

X
pn−2(p(rl+n−1+1)−(rl+n−2+1))
l

in other words (T+
n )∨(e2,i) = (T−n )∨(e2,i) (where e2,i ∈ G •n+1 in the LHS and

e2,i ∈ G •n−1 in the RHS), which is precisely the required compatibility.

Remark 3.8: The bare definition of the elements in G •n+1 may look complicated,

but it becomes very natural if one visualizes the transition morphisms (T±n )∨

in terms of monomials in A: see the example in Figure 1.

Remark 3.9: Note that if in the statement of Proposition 3.6 we moreover as-

sume that ri < p − 1 for all i, then the elements in G •n+1 are all non-zero in

S•n+1.

S
id
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p
n
(r

1
+
1)

S
id
e:

p
n
(r

0
+

1
)

S
id
e:

p
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−
1
(r

0
+
1)

X
p
n
−

1
(r

1
+
1
)

0
=

e n
+
1
;0

X
p
n
−

1
(r

0
+
1
)

1
=

e n
+
1
;1

X
p
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(
r
1
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1
)

0
X

m
n
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2
;0
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X

m
n
−

2
;1
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}
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2
;0
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−

3
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1
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n
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;1

1
X
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{
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}

e
n
−

2
;1

X
0

X
1

Figure 1. The figure represents the fibered product Kern+1×Sn

Kern−1 when f = 2, r0 > r1, n ∈ 2N+ 1.
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4. A filtration on monogenic Iwasawa modules

The aim of this section is to give a first partial control of the Γ-and U+-action

on the m-adic filtration on A. Even though the Γ-action is comparatively sim-

ple to control (as the action is through k-algebra homomorphisms), the U+ is

extremely subtle and its partial control (Corollary 4.9) is one of the technical

hearts of this paper.

Recall that A has a structure of a k[[K0(p)]]-module via the isomorphism

(
k[[K0(p)]]⊗k[[K0(p∞)]]1

)|A ∼−→ A

and it is endowed with the m-adic valuation:

A
ord−→ N ∪ {∞}∑

j

κjX
j −→ min

{|j|, j s.t. κj �= 0
}
.

We are going to show that ord is compatible with the action of Γ, U+ and,

even more precisely,

Proposition 4.1: Let g ∈ Γ, U+ and P (X) ∈ A. Then

ord
(
(g − 1) · P (X)

) ≥ ord
(
P (X)

)
+ (p− 2).

The proof occupies the rest of this section.

Recall that A is endowed with a Frobenius homomorphism φ defined by

φ(Xi) = Xp
i . For k ∈ N we write

(
φk(m)

)
for the ideal of A generated by

the image of m via the k-th composite of the Frobenius φk. Note that in par-

ticular any element P (X) in
(
φk(m)

)
verifies

ord
(
P (X)

) ≥ pk.
The following observation will be used constantly:

Lemma 4.2: Let n ∈ N and z ∈ OF . In the Iwasawa algebra A we have[
1 0

pz 1

]
∈ 1 + φval(z)(m).
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Proof. Writing z = pval(z)z0 we have[
1 0

pz 1

]
=

([
1 0

pz0 1

])pval(z)

=

([
1 0

pz0 1

]
− 1

)pval(z)

+ 1

and the result follows since the maximal ideal of A is the augmentation

ideal.

We start with the action of Γ:

Lemma 4.3: Let γ ∈ 1 + pOF
∼= Γ. Then, for any i = 0, . . . , f − 1 we have

γ ·Xi ∈ Xi +
(
φval(x)+1(m)

)
.

In particular, if j ∈ Nf we have

γ ·Xj ∈ Xj +
∑
i�0

Xj−i(φval(x)+1(m)
)|i|
.

Proof. Let us write γ = 1+ px and z
def
= p[λ]x for an element x ∈ OF . We have

γ ·Xi =
∑
λ∈k×

F

λ−p
i

[
1 0

p[λ] + p2[λ]x 1

]

=
∑
λ∈k×

F

λ−p
i

[
1 0

p[λ] 1

] [
1 0

pz 1

]

∈
∑
λ∈k×

F

λ−p
i

[
1 0

p[λ] 1

] (
1 + φval(z)(m)

)
,

where the last equality follows from Lemma 4.2.

The second statement is then clear, as the elements of Γ act by k-algebra

endomorphisms.

4.1. Digression on some regular elements and Fourier sums. The ac-

tion of U+ on A is more subtle: it is only k-linear and difficult to explicitly

describe in terms of monomials in A. Nevertheless, we are able to approximate

the monomials in A by means of certain discrete Fourier series in C∞
(
U−(p), k

)
and this is enough to get a first estimate on the U+-action.
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Let n ≥ m ≥ 1. For i ∈ {m, . . . , n} let li ∈ {0, . . . , p − 1}Hom(kF ,k) be an

f -tuple, say li = {li,τ}τ∈Hom(kF ,k). We introduce the following elements of

Am,n:

F
(m,n)
lm,...,ln

def
=
∑

λm∈Fq

∏
τ

τ(λm)lm,τ

[
1 0

pm[ϕ−m+1(λm)] 1

]

. . .
∑

λn∈Fq

∏
τ

τ(λn)
ln,τ

[
1 0

pn[ϕ−n+1(λn)] 1

]
,

Xm,τ
def
=
∑

λm∈Fq

τ(λm)−1
[

1 0

pm[ϕ−m+1(λm)] 1

]
,

where ϕ is the absolute Frobenius on kF and the products appearing in the

definition of F (m,n) are taken over all the embeddings τ : kF ↪→ k (with the

usual convention that 00
def
= 1).

We fix an embedding τ0 : kF ↪→ k and write more expressively li,j
def
= li,τ0◦ϕj

so that ∏
τ

τ(λi)
li,τ = λ

∑f−1
j=0 pj li,j

i
def
=: λ

li
i .

If the level m is clear, we just write Xi instead of Xm,τ0◦ϕi to ease the

notations.

Recall from [Mo1], §4.1.1 that F
(m,n)
lm,...,ln

(and X l as well) can be identified by

an element in Nf :

F
(m,n)
lm,...,ln

←→
( n∑

i=m

pi−mli,τ

)
τ

.

Define the quantity

κ−1l
def
= (κlm,...,ln

)−1 def
=

n∏
i=m

(
(−1)f−1

f−1∏
j=0

(p− 1− li,j)!
)
∈ F×p .

The following proposition provides us with a dictionary between the Fourier

sums defined above and the monomial elements in A:

Proposition 4.4: Let n ≥ m ≥ 0 and let l = (lm, . . . , ln) ∈
{{0, . . . , p −

1}f}(n−m)
be an (n−m)-tuple of f -tuples.

Then one has the following equality in Am,n:

Xl ≡ κlF (m,n)
p−1−lm,...,p−1−ln modm|l|+(p−1)
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where

Xl =

f−1∏
j=0

X
∑n

i=m pi−mli,j
j

and

p− 1− li def
= (p− 1− li,j)f−1j=0

for all i = m, . . . , n.

We invite the reader to compare the statement of Proposition 4.4 with [Bre],

Théorème 7.1, where we have a similar statement for the image of the elements

Xi in k[[X ]] via the morphism OF → Zp induced by the trace (and m|j|+(p−1)

is replaced by m|j|+1 in loc. cit.).

Proof. The proof is divided into two steps: the residual case (n −m = 1) and

a dévissage. Note that for n −m = 1 the statement is clear up to the explicit

multiplicative constant, by looking at the action of the finite torus.

Lemma 4.5: Keep the setting of Proposition 4.4 and assume that n−m = 1.

For any f -tuple l ∈ {0, . . . , p− 1}f we have the following equality in Am,m+1:

Xl =

⎧⎨⎩κlFp−1−l if |l| > 0,

κ0Fp−1 + (−1)f−1Xp−1 else.

Proof. Note first that

κl+ei = (p− 1− li)κl(15)

and that κei = 1 for all i ∈ {0, . . . , f − 1}. The statement is therefore an

immediate induction using Lemma 4.6 below.

Lemma 4.6: Keep the hypotheses of Lemma 4.5. Assume moreover that l+ei ≤
p− 1. Then:

Fp−1−eiFp−1−l = (p− 1− li)Fp−1−(l+ei).

Proof. By the very definition of the elements Fp−1−ei , Fp−1−l we have

Fp−1−eiFp−1−l =
∑

λ,μ∈kF

λp−1−ei(μ− λ)p−1−l
[

1 0

pm[ϕ−m+1(λ)] 1

]

=
∑

j≤p−1−l

(
p− 1− l

j

)
(−1)j

∑
λ∈kF

λp−1−ei+jFp−1−l−j
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and the result follows since ∑
λ∈kF

λp−1−ei+j = −δj,ei .

We consider now the dévissage. Recall that the inclusion pm+1OF /p
nOF ↪→

pmOF /p
nOF induces an injective k-algebra homomorphism:

ι : Am+1,n ↪→ Am,n

Xm+1,i → Xp
m,i.

In order to emphasize the inductive argument, we write m, m1 to denote the

maximal ideal of A, A1 respectively (so that, in particular, ι(m1) = mp).

Given a monomial Xl ∈ Am,n, we can write

Xl = Xl(1)ι
(
Xl(2)

)
for l(1) ∈ {0, . . . , p− 1}f , l(2) ∈ Nf verifying l = l(1) + pl(2).

By the inductive hypothesis on Am+1,n we have

ι
(
Xl(2)

) ∈ κl(2)F (m+1,n)

p−1−l(2) + ι(m
|l(2)|+(p−1)
1 ) = κl(2)F

(m+1,n)

p−1−l(2) +mp|l(2)|+p(p−1)(16)

and we claim that

Claim: In the situation above, we have

Xl(1) ∈ κl(1)F (m)

p−1−l(1) modm|l
(1)|+(p−1).(17)

This will imply the statement of Proposition 4.4, since from (16) and (17) we

easily get

Xl ≡ κlF (m,n)
p−1−lm,...,p−1−ln +m|l|+(p−1).

Proof of the Claim By Lemma 4.5 we have, in Am,n,

X l(1) ∈ κl(1)F (m)

p−1−l(1) +
f−1∑
i=0

Xp
i · Am,n.(18)

Let us consider a monomial Xp
i X

t appearing with a non-zero coefficient in

the sum
∑f−1

i=0 X
p
i Am,n in the RHS of (18). As the finite torus T(kF ) acts



Vol. 219, 2017 IWASAWA MODULE 35

semisimply on Am,n and Xl(1) , Xp
i are eigenvectors, we deduce that the f -tuple

t ∈ N verifies

f−1∑
j=0

pjrj ≡
f−1∑
j=0

pj l
(1)
j − pi+1 mod q − 1.

This implies |t| ≡ |l(1)| − 1 mod p− 1, hence the Claim.

We are now ready to analyze the U+-action on the monomials in A. Note

that for x ∈ OF the action of
[

1 x

0 1

]
on the Iwasawa algebra k[[U−(p)]] is

obtained, by linearity, from the following continuous maps

OF
δx,j−→OF

z −→ z

1 + pzx

via

(19)

[
1 x

0 1

][
1 0

pjz 1

]

=

[
1 0

pjδx,j(z) 1

][
1 + pjxz 0

0 1− pjxδx,j(z)

][
1 x(1 + pjxz)−1

0 1

]
.

Proposition 4.7: For any x ∈ OF and Xj ∈ A we have

[
1 x

0 1

]
·Xj ∈ Xj +m|j|+(p−2).

Proof. It is enough to prove the statement in k[K0(p)]⊗k[K0(pn)] 1 for any finite

level n ∈ N.

In the latter case, the statement is exactly the statement of [Mo2], Propo-

sition 4.7 (with m = 1), provided by the dictionary given by Proposition 4.4,

which lets us identify the Fourier series used in [Mo2] with monomials in A.

If f verifies f(p − 1) ≤ p(p − 2) we can nevertheless avoid the reference to

[Mo2] and use instead an inductive argument via the embeddings

An−1,n
ι
↪→ · · · ι

↪→ A2,n
ι
↪→ A.

Let us write

Xj = Xj(1) ι(Xj(2))
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where j = j(1) + pj(2), j(1) ∈ {0, . . . , p − 1}. Assume the statement holds for

A2,n.

As |j|+ (p− 1) ≤ p|j(2)|+ p(p− 1), we deduce from Proposition 4.4 and (19)

that:

(κ−1j κj(2))

[
1 [μ]

0 1

]
·Xj

≡
∑
λ∈kF

λj
(1)

[
1 0

p[λ] 1

][
1 0

p2[−λ2μ] 1

]
·

· ι
([

1 + p[λμ] + p2∗ [μ]

p3∗ 1− p[λμ] + p2∗

]
·Xj(2)

)
modulo m|j|+(p−1). Using Lemmas 4.2, 4.3 and the inductive hypothesis on

A2,n, we have[
1 + p[λμ] + p2∗ [μ]

p3∗ 1− p[λμ] + p2∗

]
·Xj(2) ∈ Xj(2) +m

|j(2)|+(p−2)
2(20)

(again, m2 denotes the maximal ideal in A2,n) and since we assume f(p− 1) ≤
p(p− 2) we obtain

ι

([
1 + p[λμ] [μ]

p3∗ 1− p[λμ]

]
·Xj(2)

)
≡ ι(Xj(2)

)
modulo m|j|+(p−2).

Moreover,

ι

([
1 0

p2[−λ2μ] 1

]
·Xj(2)

)
≡ ι
(∑

i≥0
(λ2μ)piεiX

j(2)+i

)
modulo ι

(
m
|j(2)|+(p−1)
2

)
where the scalars εi ∈ Fp depend on i, j(2).

As in our situation we have p(|j(2)|+(p−1)) ≥ |j|+(p−2), we finally obtain[
1 [μ]

0 1

]
·Xj ≡

∑
i≥0

νiμ
piXpj(2)+pi

∑
λ∈kF

λj
(1)+2pi

[
1 0

p[λ] 1

]
modulo m|j|+(p−2)

for some scalars νi ∈ Fp and we conclude using Proposition 4.4.

As a corollary, we get
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Corollary 4.8: For any k ≥ 0 the ideal mk � A is a k[[K0(p)]]-submodule of

A.

Moreover, the action of T(1 + pOF )� U+ is trivial on the quotients

mk/mk+(p−2).

Proof. It follows from Lemma 4.3 and Proposition 4.7.

Since for all n ≥ 1 we have an epimorphism of k[[K0(p)]]-modules A �
Sn+1(σ), we immediately deduce

Corollary 4.9: Let n, k ≥ 1. Let σ be a Serre weight and write mk for the

image of mk via the projection A� Sn+1(σ). The filtration {mk}k is stable by

the action of Γ, U+ and T(kF ). Moreover, the action of Γ, U+ is trivial on the

quotient

mk/mk+(p−2).

5. The twisted Frobenius

In this section we construct a “twisted” Frobenius morphism between the graded

pieces Kern+1 of the natural filtration on S•∞. This morphism is Γ, T(kF )-

equivariant and it is obtained from the twisted Frobenius F on A (the latter

induced from conjugation by the element αs).

The main properties of the twisted Frobenius are listed in Propositions 5.4

and 5.7: roughly speaking, this morphism lets us translate information from

S2(σ), where computations are still accessible, to higher-dimensional quotients

Sn+1(σ), where things get considerably more complicated.

In section 5.3 we determine an explicit k[[K0(p)]]-submodule of S0
∞ ⊕ S1

∞
of finite colength, endowed with an F -semilinear, Γ, T(kF )-equivariant endo-

morphism, which turns out to be p-étale. The main result is summarized in

Proposition 5.11. As a corollary, we deduce that such a submodule is of finite

type over the skew polynomial ring A[[F ]] (Corollary 5.12).

We remark that some of the statements of §5.1, 5.2, which refer to the

k[[K0(p
n+1)]]-modules

(
σ(n+1)

)∨
, hold in greater generality for any

k[[K0(p
n+1)]]-module. Nevertheless, we believe that the specialized statements

of Lemmas 5.1 and 5.6 are more expressive for the subsequent applications to

the universal module S•∞.
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5.1. Analysis for the trivial weight. Let l ≥ j ≥ 1 and consider the

k[[K0(p
j)]]-module

S
(j)
l

def
=
(
ind

K0(p
j)

K0(pl)
1
)∨

;

recall that, as a k[[U−(pj)]]-algebra, S(j)
l is nothing but Aj,l−1.

Define B−(pj) def
= B(OF ) ∩ K0(p

j) so that restriction to k[[B−(pj)]] pro-

vides, by the Iwahori decomposition, the following isomorphism of k[[B−(pj)]]-
modules:

S
(j)
l |k[[B−(pj)]]

∼= k[[[B−(pj)]]⊗k[[B−(pl)]] 1;

we can thus define a Frobenius morphism

Fj,l : S
(j)
l ↪→ S

(j)
l+1

induced by conjugation by
[

1 0

0 p

]
(we omit the indexes j, l in Fj,l to ease

notations). The following lemma is then immediate:

Lemma 5.1: The morphism F respects the natural k-algebra structures on

S
(j)
l , S

(j)
l+1. It is injective, with image S

(j+1)
l+1 and it is described explicitly by

F : S
(j)
l −→ S

(j)
l+1

Xpj−1

i −→ Xpj

i−1.

Moreover it is T(kF ) and Γ-equivariant.

Proof. This is clear.

We can give a very rough estimate on the compatibility between the Frobenius

and the U+ action on S
(j)
l . Indeed, we have

Lemma 5.2: The action of U+ on S
(j)
l is trivial if and only if l ≤ 2j.

Proof. Recall that for z ∈ OF the elements[
1 0

pjz 1

]
⊗ 1

give a family of generators for the module k[[K0(p
j)]]⊗k[[K0(pl)]]1. If x ∈ OF we

have

pjδx,j(z) = pjz + p2jz′

for a suitable z′ ∈ OF with val(z′) = val(xz2) and the statement is then clear

from the equality (19).
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We therefore deduce

Corollary 5.3: Let m ≥ l ≥ j ≥ 1. The (m− l)-composite of F ,

S
(j)
l

Fm−l−→ S(j)
m ,

factors through the U+ invariants of S
(j)
m if and only if 0 ≤ 2(j − l) +m.

Proof. It suffices to remark that Fm−l induces an isomorphism of S
(j)
l onto the

subalgebra S
(j+m−l)
m of S

(j)
m and use Lemma 5.2.

5.1.1. The skew power series ring A[[F ]]. The evident, similar constructions

of the previous section, with K0(p
l) replaced by K0(p

∞), give us a Frobenius

endomorphism on A:

Proposition 5.4: We have a Γ, T(kF )-equivariant monomorphism of local

k-algebras F : A→ A described by

F : A −→ A

Xi −→ Xp
i−1.

In particular, we have a decomposition

A ∼=
⊕

0≤i≤p−1
F (A)X i,

and F is a flat endomorphism of A.

Proof. The relation F (Xi) = Xp
i−1 comes from a direct computation on the

definition of Xi and F . Moreover, one has

A ∼=
⊕

g∈U−(p)/U−(p2)

k[[U−(p2)]] · g

which shows that F is an injective and flat endomorphism on A.

We recall (cf. [Ven], §2) the skew power series ring A[[F ]], whose elements

are formal power series
∑∞

i=0 aiF
i with ai ∈ A and multiplication law induced

by

F · a def
= F (a)F

for any a ∈ A. It is a local ring, endowed with a structure of a complete,

separated topological ring, a basis of open neighborhoods of 0 being described
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by
k−1∏
i=0

mkF i ×
∞∏
i=k

AF i

for k ∈ N. In particular, the skew polynomial ring A[F ] is a dense subring of

A[[F ]].

We introduce the following notion (cf. [Fon], §B 1.3):

Definition 5.5: An F -semilinear morphism ϕ of profinite A-modules D1
ϕ→ D2

is p-étale if the image of the natural map

A⊗A,FD1
id⊗ ϕ−→ D2

has finite colength.

5.2. Analysis for a general Serre weight. The aim of this section is

to endow the modules Sn(σ) with a Frobenius morphism Fn and collect some

basic properties which are useful to obtain a Frobenius on subobjects of the

universal module S∞ (the universal module itself does not have a Frobenius

action).

As usual, we let σ be a Serre weight whose highest weight space affords the

trivial character of K0(p). Recall that we have defined, for l ≥ j ≥ 1, the

modules

S
(j)
l (σ)

def
= k[[K0(p

j)]]⊗k[[K0(pl)]] (σ)
∨.

We have

Lemma 5.6: Let l ≥ j ≥ 1. There exists a unique morphism Fσ : S
(j)
l (σ) →

S
(j)
l+1(σ) of k-algebras making the following diagram commute

S
(j)
l+1

� � F ��

����

S
(j)
l+2

����

S
(j)
l (σ) �

� Fσ �� S(j)
l+1(σ)

(21)

where the vertical arrows are induced by the morphisms (φl)
∨ and (φl+1)

∨ of

Proposition 3.3.

Proof. It suffices to use the explicit definition of F and to recall that the kernel

of the vertical arrow on the RHS (resp. on the LHS) is the ideal generated by

the elements X
pl(ri+1)
i−l (resp. X

pl−1(ri+1)
i−l+1 ) for i = 0, . . . , f − 1.
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As S
(j)
l+1 � S

(j)
l (σ) is a morphism of k[[K0(p

j)]]-modules we get

Proposition 5.7: Let l ≥ j ≥ 1. We have a monomorphism of k-algebras

Fσ : S
(j)
l (σ) −→ S

(j)
l+1(σ)

Xpj−1

i −→ Xpj

i−1

verifying the following properties:

i) The morphism Fσ is Γ and T(kF )-equivariant.

ii) The morphism Fσ admits the factorization

S
(j)
l (σ)

� � Fσ ��

∼=


�

��
��

��
��

S
(j)
l+1(σ)

S
(j+1)
l+1 (σ)

��

��

with the vertical arrow being the natural inclusion.

iii) Let m ≥ l. If 0 ≤ 2(j − l) +m− 1, then the composite morphism

S
(j)
l (σ)

Fm−l

−→ S(j)
m (σ)

factors through the U+-invariants of S
(j)
m (σ).

Proof. Parts i) and ii) follow from the properties of the morphism F (Lem-

ma 5.1) and from Lemma 5.6, recalling that the vertical arrows in the diagram

(21) are morphisms of k[[K0(p
j+1)]]-modules.

Property iii) follows from Corollary 5.3 using the epimorphism Sj
m+1 �

S
(j)
m (σ) (which is U+-equivariant).

5.3. The twisted Frobenius on the universal Iwasawa module. The

aim of this section is to construct, from the twisted Frobenii Fσ of Proposi-

tion 5.7, a Frobenius morphism F on a suitable k[[K0(p)]]-submodule S≥1∞ ⊕
S≥2∞ ⊆ S0

∞⊕S1
∞. Such a submodule is of finite co-length and the action of F

is p-étale. Moreover, S≥1∞ ⊕S≥2∞ is of finite rank on the skew power series ring

A[[F ]]. Throughout this section σ = σr is a fixed Serre weight.

We start from the following
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Lemma 5.8: For n ≥ 3 we have commutative diagrams of k-linear spaces:

Sn−1
� � Fσ �� Sn Sn−1

����

� � Fσ �� Sn

����
Sn−2
��

��

� � Fσ �� Sn−1
��

��

Sn−2
� � Fσ �� Sn−1

where the horizontal arrows are the monomorphisms of k-algebras of Proposi-

tion 5.7 (with j = 1) and the vertical arrows are the morphisms of k[[K0(p)]]-

modules defined in Proposition 3.4.

Proof. The commutativity of the diagrams can be checked directly, using the

definition of the morphisms in terms of the regular parametersXi (noticing that

Fσ is a morphism of k-algebras). The details are left to the reader.

Since the k[[K0(p)]]-modules S•n+1 admit an explicit family of A-generators,

we easily see that Fσ : Sn+1 → Sn+2 induces a morphism between appropriate

submodules of Sn+1 and Sn+2.

Proposition 5.9: Let n ∈ 2N + 1 and e2(j+1),i ∈ G≥1n+1 (cf. Definition 3.5).

The morphism Fσ : Sn+1 ↪→ Sn+2 verifies

Fσ(e2(j+1),i) = e2(j+1)+1,i−1 ∈ G≥2n+2.

Similarly, for m ∈ 2N+ 2 one has

Fσ(e2(j+1)+1,i) = e2(j+2),i−1 ∈ G≥1m+2.

In particular, we have the following commutative diagrams:

Sn+1
� � Fσ �� Sn+2 Sm+1

� � Fσ �� Sm+2

S≥1n+1

��

��

� � F �� S≥2n+2

��

��

S≥2m+1

��

��

� � F �� S≥1m+2

��

��

and the morphisms

S≥1n+1

F
↪→ S≥2n+2, S≥2m+1

F
↪→ S≥1m+2

are Γ, T(kF ) equivariant, F -semilinear and p-étale over A.

Proof. The first part of the statement follows from an elementary computation

on the elements e2(j+1),i ∈ G≥1n+1 (resp. e2(j+1)+1,i ∈ G≥2m+1).
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We deduce the factorization of the morphism Sn+1
Fσ
↪→ Sn+2 (resp. Sm+1 ↪→

Sm+2), as the module S≥2n+2 (resp. S≥1m+2) is generated, over A, by the elements

e2(j+1)+1,i ∈ G≥2n+2 (resp. by the elements e2(j+1),i ∈ G≥1m+2).

The induced morphisms on the k[[K0(p)]]-modules are clearly F -semilinear

and Γ, T(kF ) equivariant. Their p-étale nature follows again by noticing that

the A-generators of S≥2n+2 (resp. S≥3m+2) are the elements e2(j+1)+1,i ∈ G≥2n+2

(resp. the elements e2(j+1),i ∈ G≥3m+2) and the cokernel of S≥3m+2 ↪→ S≥1m+2 is the

finite A-module Ker2.

We are now left to prove that the morphisms of Proposition 5.9 are compatible

with the transition maps of the projective system defining the universal modules

S≥1∞ , S≥2∞ .

Proposition 5.10: Let n ∈ 2N+ 3. We have a commutative diagram

S≥1n+1

����

� � ��

 �

���
��

��
��

��
S≥2n+2 
 �

���
��

��
��

��

����

Sn+1
� � ��

����

Sn+2

����
Sn

� � �� Sn+1

S≥1n−1
� � ��

 �

���
��

��
��

��
S≥2n 
 �

���
��

��
��

��

Sn−1
� � ����

��

Sn

��

��

where the horizontal arrows are the previously defined Frobenii morphisms.
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We have a similar result for m ∈ 2N+ 4 and the diagram

S≥2m+1

����

� � ��

 �

��	
		

		
		

		
S≥1m+2
 �

��	
		

		
		

		

����

Sm+1
� � ��

����

Sm+2

����
Sm

� � �� Sm+1

S≥2m−1
� � ��

 �

��	
		

		
		

		
S≥1m 
 �

��	
		

		
		

		

Sm−1
� � ����

��

Sm

��

��

Proof. The top and bottom squares of the diagram are commutative, by Prop-

osition 5.9; the squares on the left and right sides are commutative by the

construction of the fibered products S≥1n+1, S
≥2
m+1. Finally, the front square is

commutative by Lemma 5.8.

The commutativity of the back square follows by an easy diagram chase,

noticing that the composite morphism S≥2n → Sn+1 (resp. S≥1m → Sm+1) is a

monomorphism.

We therefore deduce

Proposition 5.11: We have a Γ, T(kF )-equivariant, F -semilinear morphism

F : S≥1∞ ↪→ S≥2∞ ,

which is p-étale and verifies

F (e2(j+1),i) = e2(j+1)+1,i−1 ∈ G≥2∞

for all e2(j+1),i ∈ G≥1∞
Similarly, we have a Γ, T(kF )-equivariant, F -semilinear morphism

F : S≥2∞ ↪→ S≥1∞ ,

which is p-étale and verifies

F (e2(j+1)+1,i) = e2(j+2)+1,i−1 ∈ G≥1∞
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for all e2(j+1),i ∈ G≥2∞ .

Proof. The assertions follow from Proposition 5.9 and the compatibility with

the transition morphisms given by Proposition 5.10. For the p-étale property

of the second morphism we just remark that, from the proof of Proposition 5.9,

we have an exact sequence

A⊗F ,AS
≥2
m+1 → S≥1m+2 → Ker2 → 0

for all m ∈ 2N+ 2, and by passing to the limit we get a complex

A⊗F ,AS
≥2
∞ → S≥1∞ → Ker2 → 0

which is again exact (the transition morphisms in the projective system are all

epi).

In particular, we deduce a finiteness property for the modules S≥1∞ , S≥2∞ on

the twisted polynomial algebra A[[F 2]]:

Corollary 5.12: For • ∈ {0, 1} we have a A[[F 2]]-equivariant surjection

f−1⊕
i=0

A[[F 2]]e2+•,i −→ S≥•+1
∞

e2+•,i → e2+•,i.

Proof. To ease notation, we consider the case where • = 0. It is clear by

Proposition 5.11 that for all l ∈ N we have a semilinear morphism

F 2l : S≥1∞ ↪→ S≥1∞

which verifies

F 2l(e2(j+1)+1,i) = e2(j+l+1),i−2l

for all j ∈ N, i ∈ {0, . . . , f − 1}. We deduce that the natural morphism

f−1⊕
i=0

A[F 2]e2+•,i −→ S≥1∞

e2+•,i → e2+•,i

is A[F 2]-linear, continuous and with dense image. Since the completion A[[F 2]]

is compact and S≥•+1
∞ is separated, the statement follows.
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A speculation. One can verify that the universal module S0
∞ ⊕ S1

∞ con-

tains many A-submodules of finite rank which are F -stables. The theory of

Wach modules suggests that such (A,F )-submodules may be related to finite

dimensional G∞-representation, where G∞ is the absolute Galois group of the

Kummer extension F∞
def
=
⋃

n∈N F (πi) for a compatible system (πi)i∈N of p-

roots of the uniformizer p ∈ F (i.e. πp
i = πi−1 if i ≥ 1, π0

def
= p). Indeed, there

are many non-canonical morphisms of k-algebras A → k ⊗Fp kF [[X ]] and one

could try to (arbitrarily) construct some (ϕ, k ⊗Fp kF [[X ]])-modules of finite

rank from (A,F )-submodules in S0
∞ ⊕S1

∞.

For instance, let us define

f1
def
= e2,0

∏
i�=0

X
(ri+1)
i = e2,j

∏
i�=j

X
(ri+1)
i ∈ S0

∞

(the equalities can be verified at any finite level S0
n+1).

We have f1 ∈ S≥1∞ and an easy computation (which can be performed at any

finite level) gives

F 2(f1) = f1 ·
f−1∏
l=0

X
p(rl+1+1)−(rl+1)
l .

Hence the module Af1⊕AF (f1) is an F -stable, rank 2 A-submodule of S0
∞⊕

S1
∞, with an explicit action of F on the A-generators (f1,F (f1)).

One should expect to find a huge number of other finite rank, F -stable sub-

modules in S0∞ ⊕ S1∞; the meaning of this phenomenon in Galois theoretical

terms remains, at present, mysterious.

6. A filtration on the ideals Kern+1

We recall that, for • ∈ {0, 1}, the universal module S•∞ is a pseudo-compact

module over A, with a separated filtration consisting of open neighborhoods of

0 whose graded pieces are isomorphic to Kern+1 for n ∈ 2N+ 1+ •. For n ≥ 1

the description of the graded pieces Kern+1 in terms of the regular parameters

Xi is deduced by Proposition 3.3:

Kern+1 = 〈en+1, i, i ∈ {0, . . . , f − 1}〉A

where en+1, i = Fn−1(Xri+n−1+1
i+n−1 ) and X

ri+n−1+1
i+n−1 = e2,i+n−1 ∈ S2(σ).
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As we did for the monogenic modules Sn+1(σ), we endow the module Kern+1

with a natural A-linear filtration {Ik,n+1}k∈N, which turns out to be k[[K0(p)]]-

stable.

The T(kF ), Γ-stability of Ik,n+1 follows easily, as these groups act by algebra

homomorphisms on Sn+1(σ). The action of U+ is, again, more delicate and we

need to use in a crucial way that the A-generators en+1,i of Kern+1 lie in the

image of the twisted Frobenius Fn−1, in particular that they are fixed under

the U+-action if n ≥ 2 (cf. Proposition 5.7, iii)).

When n = 1 the situation is slightly more complicated and we need some

extra arguments (cf. Lemma 6.5).

We fix a Serre weight σ = σr; for the rest of this section we further assume

that σ is weakly regular, i.e. 0 ≤ ri ≤ p− 2 for all i = 0, . . . , f − 1 (cf. [Gee]

Definition 2.1.5). Up to twist we may and do further assume that the highest

weight space of σ affords the trivial character.

For any n ≥ 1 we have an epimorphism of A-modules

f−1⊕
i=0

A · en+1, i −→ Kern+1(22)

en+1, i −→ Fn−1(Xri+n−1+1
i+n−1 )

which is T(kF )-equivariant if we make T(kF ) act by the character a−p
i(ri+1)

on en+1, i−n+1.

The k[[K0(p)]]-module
⊕f−1

i=0 A ·en+1, i is endowed with the valuation ordn+1

of the infimum

ordn+1

( f−1∑
i=0

Pi(X)en+1, i

) def
= min{ord(Pi(X)), i = 0, . . . , f − 1}

hence with an A-linear filtration {I0k,n+1}k. Let {Ik,n+1}k be the filtration on

Kern+1 induced from {I0k,n+1}k via the morphism (22). Concretely, one has

Ik,n+1 =
∑f−1

i=0 mken+1,i. As the morphism (22) is not Γ, U+-equivariant, there

is no reason for which {Ik,n+1}k should be a filtration of k[[K0(p)]]-modules on

Kern+1.

We define

h
def
= h(σ)

def
= max

{|ri1 − ri2 |, for i1, i2 ∈ {0, . . . , f − 1}}.
The result is the following:
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Proposition 6.1: Assume that σ is a weakly regular Serre weight. Let n ≥ 1

and consider the induced A-linear filtration
{
Ik,n+1

}
k∈N on Kern+1.

For each k ∈ N the A-submodule Ik,n+1 is stable under the K0(p)-action

and, moreover, the Γ, U+-actions are trivial on the quotients

Ik,2/Ik+(p−2−h),2, Ik,n+1/Ik+(p−2),n+1 if n ≥ 2.

In particular, for all n ≥ 2 the filtration
{
Ik,n+1

}
k∈N defines the k[[K0(p)]]-

radical filtration on Kern+1 and the same result holds true for n = 1 if h �= p−2.
As the morphism (22) is A-linear and T(kF )-equivariant, it is clear that the

filtration
{
Ik,n+1

}
k∈N is T(kF )-stable and defines the A-radical filtration on

Kern+1.

With some additional work, using that Γ acts semilinearly and commutes with

the T(kF )-action, one could indeed state a more precise result concerning the

Γ-action on S2(σ). Moreover, the statement of Proposition 6.1 can be proved

to hold true even in some non-regular situations. As the proofs of such results

are very technical and do not add any substantial improvements to the main

results of this paper, we decided to omit them.

The rest of this section is devoted to the proof of the Γ and U+-stability

of
{
Ik,n+1

}
k∈N; the techniques are similar to those introduced in section 4,

using now in a crucial way the properties of the twisted Frobenius F . Indeed,

as the A-generators of Kern+1 lie in the image of the twisted Frobenius, it

suffices to investigate the Γ, U+
0 action on the Iwasawa module S2(σ) (where the

computations are still accessible) to get the control of the filtration
{
Ik,n+1

}
k∈N

for a general n.

6.1. On the Γ-action. We start our analysis with a careful study of the Γ-

action on the filtration {Ik,n+1}k∈N, when n = 1. By the properties of the

twisted Frobenius F (cf. Proposition 5.7), this lets us detect the behavior of

{Ik,n+1}k∈N for arbitrary n ∈ N.

We start with the following:

Lemma 6.2: Let i ∈ {0, . . . , f − 1} and μ ∈ kF .
We have the following equality in A1,3

∼= A/〈Xp2

i , i = 0, . . . , f − 1〉:([
1 0

0 1 + p[μ]

]
− 1

)
·Xi = μXp

i−1 +
∑

0<s≤p−1
Ps(μ)X

ps+�(s)
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where

i) �(s) ∈ {0, . . . , p − 1}f is the unique non-zero f -tuple such that

Xps+�(s) affords the eigencharacter a−ei ;
ii) Ps(μ) is a “polynomial” in μ of total degree |s|:

Ps(μ) =
∑

0≤α≤p−1
νs,αμ

α

for some νs,α ∈ k such that νs,α = 0 as soon as |α| > |s|.
Proof. We compute[

1 0

0 1 + p[μ]

]
·Xi =

[
1 0

0 1 + p[μ]

]
·
∑
λ∈kF

λp−1−ei
[

1 0

p[λ] 1

]

=
∑
λ∈kF

λp−1−ei
[

1 0

p[λ] 1

][
1 0

p2[λμ] 1

]
.

We note that, for any x ∈ k×F , we have the following equality in A1,2:[
1 0

p[x] 1

]
=

[
1 0

0 [x]

][
1 0

p 1

]
= 1 +

[
1 0

0 [x]

] ∑
0<s≤p−1

νsX
s

= 1 +
∑

0<s≤p−1
xsνsX

s

for some νs ∈ k. Therefore[
1 0

0 1 + p[μ]

]
·Xi = Xi +

∑
0<s≤p−1

μs[1]νsX
ps
∑
λ∈kF

λp−1−ei+s[1]

[
1 0

p[λ] 1

]

where s[1] denotes the shifted f -tuple associated to s, defined by (s[1])i = (s)i−1.
Define [−s[1] + ei] ∈ {0, . . . , p − 1}f as the unique non-zero f -tuple such

that λ[−s[1]+ei] = λ−s[1]+ei for all λ ∈ kF . Since
[

1 0

0 1 + p[μ]

]
·Xi is an a−ei -

eigenvector for T(kF ), we can use Proposition 4.4 to deduce

∑
λ∈kF

λp−1−ei+s[1]

[
1 0

p[λ] 1

]
≡ X [−s[1]+ei]κ−1[−s[1]+ei]

modulo
(
m(p−1)+|s|−pi)

a−ei+s[1] (the a−ei+s[1]-isotypical component of

m(p−1)+|s|−pi

).
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The conclusion follows, as for any s �= ei−1, there is precisely one non-zero

f -tuple �(s) ∈ {0, . . . , p − 1}f such that Xps+�(s) affords the T(kF )-character

a−ei .

As a corollary, we obtain a precise description of the Γ-action on the A-

generators for Ker2:
Corollary 6.3: Let i ∈ {0, . . . , f−1}, μ ∈ kF . We have the following equality

in S2(σ):([
1 0

0 1 + p[μ]

]
− 1

)
·Xri+1

i = μri+1X
p(ri+1)
i−1 +

∑
0<s≤p−1

Ps(μ)X
ps+�(s)

where

i) �(s) ∈ {0, . . . , p− 1}f is the unique non-zero f -tuple such that Xps+�(s)

affords the eigencharacter a−ei(ri+1);

ii) Ps(μ) is a “polynomial” in μ of degree |s|:

Ps(μ) =
∑

0≤α≤p−1
νs,αμ

α

for some νs,α ∈ k such that νs,α = 0 as soon as |α| > |s|.
Proof. We recall that Γ acts by k-algebra endomorphism on A; the result follows

from a direct computation on binomial developments via Lemma 6.2.

We can now use the properties of the twisted Frobenius to deduce, from

Corollary 6.3, the behavior of the filtration {Ik,n+1}k with respect to the Γ-

action.

Lemma 6.4: Let Xj ∈ mk and let γ ∈ Γ.

For any i ∈ {0, . . . , f − 1} we have the following relation in Sn+1(σ):

γ · (Xj en+1, i) ∈
(
γ ·Xj

)(
en+1, i +

∑
s

en+1,s Fn−1(mp−1−h)
)
.(23)

In particular, the Γ-action is trivial on the quotients

Ik,2/Ik+(p−1−h),2; Ik,n+1/Ik+(p−1),n+1 for n ≥ 2.

Proof. Recall that en+1, i = Fn−1(Xri+n−1+1
i+n−1 ) with X

ri+n−1+1
i+n−1 ∈ S2(σ).
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As Γ acts by conjugation on A (recall the isomorphism k[[K0(p)]]⊗k[[K0(p∞)]]

1 ∼= A) and F is Γ-equivariant, we deduce

γ · (Xj en+1, i) ∈
(
γ ·Xj

)(
F (γ · e2,i+n−1)

)
.

We claim that

Claim: Let γ ∈ Γ. We have the following relation in S2(σ):

(γ − 1) ·Xri+1
i ∈

∑
s

Xrs+1
s m(p−1)−h.

Provided the Claim, the statement of Lemma 6.4 follows.

Proof of the Claim. By Lemma 4.3 we have

(γ − 1) ·Xri+1
i ∈ mp−1+ri+1.(24)

We moreover recall that Ker2 is a k[[K0(p)]]-submodule in S2(σ), with A

generators given by Xrs+1
s for s = 0, . . . , f − 1.

As Xri+1
i ∈ Ker2 we deduce that the left-hand side in (24) is indeed in

mp−1+ri+1 ∩ Ker2 and the result follows by the definition of h.

6.2. On the U+
-action. We turn our attention to the action of the upper

unipotent radical U+. Once again, the statements are much more delicate to

prove and we now need the precise description of the Γ-action provided by

Corollary 6.3. It is at this point that we require σ to be weakly regular. It

is actually possible to treat the non-regular case, but the proofs become much

more technical and we decided not to include them here.

The following Lemma is analogous to the Claim in the proof of Lemma 6.4,

using Corollary 4.9 instead of Lemma 4.3:

Lemma 6.5: Let x ∈ OF , i ∈ {0, . . . , f − 1} and let j ∈ Nf be an f -uplet. We

have the following relation in S2(σ):([
1 x

0 1

]
− 1

)
·XjXri+1

i ∈
∑
s

Xrs+1
s m|j|+(p−2)−h.

Proof. By Corollary 4.9 we have:([
1 x

0 1

]
− 1

)
·XjXri+1

i ∈ mp−2+ri+1+|j|.(25)

We moreover recall that Ker2 is a k[[K0(p)]]-submodule in S2(σ), with A

generators given by Xrs+1
s for s = 0, . . . , f − 1.
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As XjXri+1
i ∈ Ker2, we deduce that the left-hand side in (25) is indeed in

mp−2+ri+1+|j| ∩ Ker2 and the result follows by the definition of h.

Lemma 6.6: Let n ≥ 2 and x ∈ OF . For any i ∈ {0, . . . , f − 1} we have the

following relation in Sn+1(σ):([
1 x

0 1

]
− 1

)
· (Xjen+1,i−n+1) ∈

∑
s

en+1,sm
p−2+|j| = Ip−2+|j|,n+1.(26)

In particular, for any k ∈ N, the U+-action of U+ is trivial on the quotients

Ik,n+1/Ik+(p−2),n+1 if n ≥ 2; Ik,2/Ik+p−2−h,2.

Proof. We only need to prove the statement when n ≥ 2. In this case we deduce

by Proposition 5.7 iii) that en+1,i−n+1 = F (Xri+1
i ) = F (e2,i) is fixed by U+.

According to Proposition 4.4 we have

κ−1j Xj ≡
∑
λ

λp−1−j
[

1 0

pz(λ) 1

]
modulo m|j|+(p−1)

where we used the evident compact notations λ = (λ1, . . . , λn) ∈ (kF )
n, pz(λ)

def
=∑n−1

i=1 p
i[ϕ−i+1(λi)] and, if j =

∑n
i=1 p

i−1j(i) with j(i) ∈ {0, . . . , p− 1}f , we de-
fine

λp−1−j def
= λ

p−1−j(1)
1 λ

p−1−j(2)
2 · λp−1−j

(n)

n .

As U+ stabilizes m|j|+(p−1) and fixes en+1,i we can therefore write[
1 x

0 1

]
· (κ−1j Xjen+1,i−n+1)

=
∑
λ

λp−1−j
[

1 0

pδx(z(λ)) 1

] [
1 + pxz 0

0 1− pxδx(z)

]
·Fn−1(e2,i).

modulo Ip−2+|j|,n+1.

As F is Γ-equivariant and Γp acts trivially on S2(σ), we are left to understand

the quantity [
1 + p[xλ1] 0

0 1− p[xλ1]

]
·Xri+1

i ∈ S2(σ).
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We now use the notations and the statement of Corollary 6.3, which provides

us with the equality

(27)

[
1 + pxz 0

0 1− pxδx(z)

]
· en+1,i−n+1

= Fn−1(Xri+1
i +

∑
0<s≤p−1

Ps(λ1x)X
ps+�(s) + (−2λ1x)ri+1X

p(ri+1)
i−1

)
.

Let us fix an f -tuple s appearing in the RHS in (27) and write

Ps(λ1x) =
∑

0≤α≤p−1
να(λ1x)

α

where να = νs,α verify να = 0 as soon as |α| > |s|.
As |s| > 0, there exists an m ∈ {0, . . . , f − 1} (depending on s) such that the

element

Xps+�(s)−(rm+1)e2,m

is well defined and belongs to Ker2.
Therefore we can write

(28)
∑
λ

λp−1−j
[

1 0

pδx(z(λ)) 1

]
Fn−1(Ps(λ1x)X

ps+�(s)
)

= Xpns+pn−1�(s)−pn−1(rm+1)en+1,m+n−1
∑
λ

λp−1−j
[

1 0

pδx(z(λ)) 1

]
Ps(λ1x)

Let us further develop the RHS in (28). In the development of Ps(λ1x) we

fix an α such that |α| ≤ |s| and we obtain

xαναX
pns+pn−1�(s)−pn−1(rm+1)en+1,m+n−1

∑
λ

λp−1−jλα1

[
1 0

pδx(z(λ)) 1

]

and, by Proposition 4.4 and the definition of the U+-action on A, we have

(29)
∑
λ

λp−1−jλα1

[
1 0

pδx(z(λ)) 1

]

∈
[

1 x

0 1

](
Xj≥2+[j(1)−α] +m|j

≥2|+|[j(1)−α]|+(p−1)
)
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where j≥2 def
= pj(2)+ · · ·+pn−1j(n) and [j(1)−α] ∈ {0, . . . , p− 1}f is the unique

non-zero f -tuple such that λ
j(1)−α
1 = λ

[j(1)−α]
1 for all λ1 ∈ kF . In particular,

(29) is in m|j|−|α|+nα(p−1) where nα ∈ N is such that |j(1)|−|nα|+nα(p−1) ≥ 0

(this follows from the definition of |[j(1) − α]|).
If we show that

(30) pn|s|+ pn−1|�(s)| − pn−1(rm + 1)− |α| ≥ p− 2,

we finally obtain by Corollary 4.9 (as s and α were arbitrary)

(31) Fn−1
( ∑

0<s≤p−1
Ps(λ1x)X

ps+�(s)

)
≡ 0

modulo I|j|+(p−2),n+1.

But since |α| ≤ |s| and rm ≤ p − 2 (as σ is weakly regular), the inequality

(30) is obvious.

In the very same manner one shows that

(32)
∑
λ

λp−1−j
[

1 0

pδx(z(λ)) 1

]
Fn−1(λri+1

1 Xri+1
i−1

) ≡ 0

modulo I|j|+(p−2),n+1.

Therefore, by (31) and (32) we obtain[
1 x

0 1

]
· (κ−1j Xjen+1,i−n+1) ≡

∑
λ

λp−1−j
[

1 0

pδx(z(λ)) 1

]
·Fn−1(e2,i),

modulo Ip−2+|j|,n+1.

Again by Proposition 4.4 and the definition of the U+-action on A we have∑
λ

λp−1−j
[

1 0

pδx(z(λ)) 1

]
∈
[

1 x

0 1

](
κ−1j Xj +m|j|+(p−1)

)
and the result finally follows from Corollary 4.9.

7. The universal Iwasawa module

We can finally analyze some properties of the universal Iwasawa module S•∞.

We first focus on the Iwahori radical filtration (§7.1). The main result is Prop-

osition 7.1, where we show that, for a regular Serre weight σ, the A-radical

filtration on S•∞ coincides with the k[[K0(p)]]-radical filtration. In Corollary
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7.3 we deduce the isotypical components of the cosocle of S•∞: we have a

2-dimensional isotypical space, together with some other infinite-dimensional

spaces as soon as F �= Qp.

In section 7.2 we study some torsion properties for the universal module S•∞
proving that it is torsion free over A and it contains a dense submodule of rank

one over Frac(A) (Proposition 7.7).

We fix a Serre weight σ = σr as in section 6; in particular, σ is weakly regular:

0 ≤ ri ≤ p− 2 for all i ∈ {0, . . . , f − 1}. We say that σ is regular if we further

have ri ≥ 1 for all i ∈ {0, . . . , f − 1}; in particular, for a regular Serre weight

we have h(σ) �= 0 (cf. section 6 for the definition of h(σ)). We remark that

our definition of regular Serre weight differs slightly from [Gee] (cf. loc. cit.,

Definition 2.1.5). Once again, some of the results of this section hold true in

greater generality, but the proofs in non-regular cases become more technical

(and we decided not to include them here).

Recall that, by Proposition 3.7, we have an A-linear morphism with dense

image

M•∞ def
=

( ⊕
e2(j+1)+•,i∈G •∞

A · e2(j+1)+•,i

)
⊕A · e• Ψ∞→ S•∞

as well as a family of compatible commutative diagrams

M•∞

����

Ψ∞ �� S•∞

prn+1

����
M•n+1

Ψn+1 �� �� S•n+1

(33)

whereM•n+1
def
=

( ⊕
e2(j+1)+•,i∈G •

+

A · e2(j+1)+•,i

)
⊕A · e•.

We make T(kF ) act by a−p
i+2j+•(ri+2j+•+1)(χs

r)
∨ on e2(j+1)+•,i and by (χr)

∨

on e0 (resp. by (χs
r)
∨ on e1); in this way the morphisms Ψ∞, Ψn+1 become

T(kF )-equivariant.

7.1. Filtration on the fibered products. We endow the k[[K0(p)]]-modu-

le M•∞ with the valuation of the infimum, i.e. with the A-linear filtration
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{
J •

k

}
k
defined by

J •
k

def
=

{∑
i,j

Pi,j(X)e2(j+1)+•,i + P•(X)e•

∈ M•∞, min{ord(Pi,j(X)), ord(P•(X))} ≥ k
}
.

By Proposition 4.8 the filtration
{
J •

k

}
k
is k[[K0(p)]]-stable and realizes the

k[[K0(p)]]-radical filtration on M•∞. We define in the analogous, evident way

the filtration {J •
k,n+1}k on the modulesM•n+1 for n ≥ 1.

We define in the obvious way the A-linear filtration
{
I •k
}
k
on S•∞:

I •k
def
= Ψ∞(J •

k ).

By letting I •k,n+1
def
= Ψn+1(J •

k,n+1), the commutative diagram (33) lets us

write more expressively

(34) I •k =
⋂

n∈2N+1+•
pr−1n+1(I

•
k,n+1).

As the morphisms Ψ∞, Ψn+1 are not Γ, U+-equivariant, there is no reason,

a priori, for the filtration on S•∞, S•n+1 to be k[[K0(p)]]-stable; as we did in

sections 4 and 6 the aim of this section is to prove that this is indeed the case,

i.e. that I •k is a k[[K0(p)]]-submodule in S•∞ for any k ≥ 0.

This follows (almost) directly from Corollary 4.9 and Proposition 6.1, using

a formal argument on the valuation ordn+1 on the modules Sn+1(σ).

A remark for the case • = 0. In order to get a better result for the behavior

of the filtrations I 0
k , I 0

k,n+1 we need to slightly refine their construction. This

is because the k[[K0(p)]]-module S0
2 behaves in a slightly different way than the

modules S≥2m+1
2t (m, t ≥ 1), cf. Lemma 6.5.

Thus, assume that n ≥ 3 is odd.

Write S≥3∗
def
= ker

(
S0
∗ � S0

2

)
for ∗ ∈ {n + 1,∞} and set M≥3∗ for the

stadard complement ofM0
2 inM•∗. The morphism Ψ∞ restricts to an A-linear,

T(kF )-equivariant morphism with dense image Ψ≥3∞ : M≥3∞ → S≥3∞ (resp. an

A-linear, T(kF )-equivariant epimorphism Ψ≥3n+1 :M≥3n+1 → S≥3n+1) and we have

the evident compatibility between Ψ≥3∞ and Ψ≥3n+1 as in (33).
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We define in an analogous way the filtrations {I≥3k }k, {I ≥3k,n+1}k on S≥3∞
and S≥3n+1, having

(35) I ≥3k =
⋂

n∈2N+3

pr−1n+1(I
≥3
k,n+1).

Let I ≤2k be the image of J 0
k,2 in S0

∞ via Ψ∞|M0
2
. It is a closed A-submodule

of S0∞, asM0
2 is finitely generated. Since S0∞ = S≥3∞ ×S3 S

0
2 and I ≥3k , I ≤2k

are closed in S0
∞, we have

I 0
k = I ≥3k + I ≤2k ,

and similarly, I 0
k,n+1 = I ≥3k,n+1+I≤2k,n+1 (with the obvious definition of I ≤2k,n+1).

We are now ready to describe the behavior of I •k with respect to the Γ, U+

actions:

Proposition 7.1: Assume σ is a weakly regular Serre weight.

a) The A-linear filtration {I 1
k }k on S1

∞ (resp. {I ≥3k }k on S≥3∞ ⊆ S0
∞)

is k[[K0(p)]]-stable.

b) For all k ∈ N, the Γ, U+ actions are trivial on the subquotients

I 1
k /I

1
k+(p−2), I ≥3k /I ≥3k+(p−2)

of S1
∞, S≥3∞ respectively.

c) Assume further that σ is regular. Then the A-linear filtration {I 0
k }k

on S0∞ is k[[K0(p)]]-stable and the Γ, U+ actions are trivial on the

subquotients

I 0
k /
(
I ≥3k+(p−2) + I ≤2k+(p−2)−h

)
.

In particular, the filtration {I •k }k defines the k[[K0(p)]]-radical filtration on

S1
∞ and on S≥3∞ ; the same result holds true for S0

∞ if σ is further assumed to

be regular.

As the action of Γ, U+
0 is continuous and the projection maps prn+1 are

k[[K0(p)]]-equivariant we deduce from the expressions (34), (35) above that it

is enough to prove Proposition 7.1 for an arbitrary finite level S•n+1.

We first consider the case n = 1.

Lemma 7.2: Assume that σ is a regular Serre weight. The A-linear filtration

I 0
k,2 on S0

2 is formed by k[[K0(p)]]-modules. Moreover for any k ≥ 0 the Γ,
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U+-action is trivial on the quotients

I 0
k,2/I

0
k+(p−2)−h,2.

Proof. Recall that Ker2 is a k[[K0(p)]]-submodule of S2 and I 0
k,2 = Ik,2 for

k ≥ 1 (where Ik,2 are the k[[K0(p)]]-submodules defining the radical filtration

on Ker2, cf. §6). It is therefore enough, by means of Lemmas 6.4 and 6.6, to

show that for any g ∈ Γ,U+ we have (g − 1)Xr ∈ mp−2−hKer2. Writing

(g − 1)Xr =
∑
s

Xrs+1
s Ps(X)

for some Ps(X) ∈ A, we have ord(Xrs+1
s Ps(X)) ≥ p− 2 + |r| by Corollary 4.9

hence ord(Ps(X)) ≥ p − 3 + |r| − rs . The result follows, recalling that f ≥ 2

and ri ≥ 1 for all i.

Proof of Proposition 7.1 in the finite case. Fix n ≥ 2 and consider the module

S•n+1 ⊆ Sn+1(σ). We note that I •k,n+1 is the image, inside S•n+1, of the A-

module mk ⊗AM•n+1:

I •k,n+1 = 〈e2(j+1)+•,i, e•, j = 0, . . . ,
n− 1− •

2
, i = 0, . . . , f − 1〉mkA.

Fix a couple (j0, i0) ∈ {0, . . . , n−1−•2 } × {0, . . . , f − 1}, an f -tuple l ∈ Nf of

length |l| = k; consider the element

Xl e2(j0+1)+•,i0 (resp.Xl e•).

As ker(S•n+1 � S•2j0+•) is generated (over A) by the elements e2(j+1)+•,i for
j0 ≤ j ≤ n−1−•

2 , i = 0, . . . , f − 1 we can write

(g − 1) ·Xl e2(j0+1)+•,i0 =

f−1∑
i=0

∑
j≥j0

Pj,i(X)e2(j+1)+•,i

(resp. (g−1)·Xl e• =
∑f−1

i=0

∑
j≥0

Pj,i(X)e2(j+1)+•,i+P•(X)e•) and, by Corollary

4.8, we deduce that

ord(Pj,i(X)e2(j+1)+•,i) ≥ k + (p− 2) + ord(e2(j0+1)+•,i0)

for all i and j ≥ j0
(resp. ord(P•(X)e•) ≥ k + (p − 2) + ord(e•) and ord(Pj,i(X)e2(j+1)+•,i) ≥
k + (p− 2) + ord(e•) for all j ≥ 0, i).

Thanks to Lemma 7.2 and Proposition 6.1 it is now enough to prove that

ord(e2(j0+1)+•,i0) ≥ ord(e2(j+1)+•,i)
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for any j > j0 and any i (resp. to prove that ord(e•) ≥ ord(e2(j+1)+•,i) for

any j ≥ 1 − • and any i). Recalling the valuation of the elements e2(j+1)+•,i,
e• (cf. Definition 3.5) we are left to prove the inequality

f−1∑
l=0

n−1∑
s=2j0+1+•

(−1)s+•(rl+s + 1)ps

≥ p2j+•(ri+2j+• + 1) +

f−1∑
l=0

n−1∑
s=2j+1+•

(−1)s+•(rl+s + 1)ps

for all j > j0 and all i = 0, . . . , f − 1 (resp.

f−1∑
l=0

( n−1∑
s=0

(−1)s+•(rl+s + 1)ps − δ•,0
)

≥ p2j+•(ri+2j+• + 1) +

f−1∑
l=0

n−1∑
s=2j+1+•

(−1)s+•(rl+s + 1)ps

for all j ≥ 1 − • and all i = 0, . . . , f − 1). By a simple manipulation we are

reduced to prove that

pm(ri+m + 1) ≤
f−1∑
l=0

pm(rl+m + 1)− pm−1(rl+m−1 + 1)

where m
def
= 2j + • ≥ 1. This is trivially true if f ≥ 3 or f = 2 and σ is weakly

regular.

Thanks to Proposition 7.1 we obtain the isotypical components appearing in

the cosocle of the universal module S•∞:

Corollary 7.3: Assume that σ is a regular Serre weight. Then

cosock[[I]]
(
S0
∞
)
= V (χ−r)⊕

f−1⊕
i=0

V
(
χrdet

−ra−p
i(ri+1)

)
,

cosock[[I]]
(
S1
∞
)
= V

(
χrdet

−r)⊕
f−1⊕
i=0

V (χrdet
−ra−p

i(ri+1)
)
,
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where

dim(V (χ−r)) = dim(V (χrdet
−r)) = 1,

dim
(
V
(
χrdet

−ra−p
i(ri+1)

))
=

⎧⎨⎩∞ for all i ∈ {0, . . . , f − 1} if F �= Qp,

0 for all i ∈ {0, . . . , f − 1} if F = Qp.

Proof. It is an immediate consequence of Proposition 7.1.

7.2. Torsion properties of the universal module. In this section we

prove that S•∞ is A-torsion free and, given any elements e, e′ ∈ G •∞, the natural

morphism A ·e⊕A ·e′→ S•∞ factors through a rank one quotient of A ·e⊕A ·e′.
Recall that σ = σr is a fixed regular Serre weight.

We start from the following elementary observation:

Lemma 7.4: Let • ∈ {0, 1}. Then, for any l ∈ {0, . . . , f − 1} and any j ∈ N,

we have

lim
n→∞

n∈2N+1+•

n∑
s=2(j+1)+1+•

(−1)s+1+•ps(rl+s + 1) = +∞.

Proof. It is an elementary computation.

One first property of the universal module is that, for any choice of generators

e, e′ ∈ G •∞, the natural morphism A · e⊕A · e′ → S•∞ has a nonzero kernel.

Proposition 7.5: Let • ∈ {0, 1} and fix two elements e, e′ ∈ G •∞ with e �= e′.
The natural morphism

A · e⊕A · e′ → S•∞(
P (X), P ′(X)

) → P (X)e+ P ′(X)e′

has a nonzero kernel.

Proof. The proof is elementary and we only consider the case • = 0 (the other

is similar).
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By the construction of S0
∞ it is enough to prove that for n ∈ 2N+1, n >> 0,

we have a commutative diagram

A · e⊕A · e′



 





















�� S0
n+3

����

Q

�������������

A · e⊕A · e′



 





















�� S0
n+1

Q

�������������

where Q is an appropriate A-module of rank at most 1.

There exists n ∈ 2N + 1, n >> 0 such that the maps Ae → S0
n+1, Ae

′ →
S0

n+1 are both nonzero. Since S0
n+1 ↪→ Sn+1 and the latter is a quotient of

A, we deduce that there exist two monomials P (X), P ′(X) ∈ A such that

P (X)e �= 0 �= P ′(X)e′ and P (X)e + P ′(X)e′ = 0 in S0
n+1. We can therefore

set Q
def
= (Ae⊕Ae′)/〈P (X)e, P ′(X)e′〉A.

It is now enough to show that we have P (X)e+P ′(X)e′ = 0 in S0
n+3 and this

is clear since (the image of) e, e′ are monomials of Sn+3, hence P (X)e, P ′(X)e′

are monomials of Sn+3 which maps to nonzero elements in Sn+2 via the natural

projection Sn+3 � Sn+2 (and, by construction, their image in Sn+2 belongs to

the image of Sn+1 in Sn+2).

On the other hand, we can prove that S•∞ is A-torsion free:

Proposition 7.6: Let σ be a regular Serre weight. The associated universal

modules S0
∞, S1

∞ are torsion free as A-modules.

Proof. Recall that for n ∈ 2N + 1 + • we write prn+1 : S•∞ � Sn+1 for the

natural projection.

Assume the statement is false. Then there are non-zero elements P (X) ∈ A,
x ∈ S•∞ such that P (X) · x = 0 in S•∞. Since x �= 0 there is n0 ∈ 2N+ 1 + •
such that prn0+1(x) �= 0 in Sn0+1. Write

mi
def
= ordXi(P (X)), m′i

def
= ordXi(prn0+1(x))

where ordXi(∗) denotes the order in the direction Xi of an element ∗ ∈ Sn+1.
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An immediate induction, together with the definition of the transition mor-

phisms S•n+1 � S•n−1, gives

ordXi(prn+1(x)) = m′i +
n−n0−1∑

j=0

pn0+j(−1)j+•(ri+n0+j + 1)

= m′i +
n−1∑
j=n0

pj(−1)j+•(ri+j + 1)

for all n ∈ 2N+ 1 + •, n ≥ n0. Hence, by Lemma 7.4, we deduce that for any

i ∈ {0, . . . , f − 1} there exists ni ∈ 2N+ 1 + •, ni >> 0 such that:

mi +m′i +
ni−1∑
j=n0

pj(−1)j+•(ri+j + 1) < pni(ri+ni + 1);(36)

in particular, there exists N ∈ 2N+ 1 + •, N >> n0 such that (36) holds for

all i ∈ {0, . . . , f − 1} with ni replaced by N .

We can thus find a suitable lift y ∈ A of prN+1(x) via the morphism A �
SN+1 such that

ordXi(P (X)y) < pN (ri+N + 1)

for all i ∈ {0, . . . , f−1} and this means precisely that P (X)y maps to a nonzero

element via A� SN+1, against the hypothesis that P (X)x = 0 in S•∞.

We deduce, from Propositions 7.5 and 7.6, the following result on the torsion

properties of the k[[K0(p)]]-module S•∞:

Proposition 7.7: Let x ∈ S•∞ be a nonzero element, lying in the image of the

natural morphism ⊕
e∈G •∞

A · e→ S•∞.

Then S•∞/〈x〉A has a natural structure of profinite A-module and the tor-

sion submodule Tor
(
S•∞/〈x〉A

)
is dense in S•∞/〈x〉A for the natural profinite

topology.

Proof. Since A is compact it is clear that 〈x〉A is a closed submodule of S•∞.

By Proposition 7.5 we deduce that the image of the natural morphism⊕
e∈G •∞

A · e→ S•∞

is a rank one, dense A-submodule of S•∞. The result follows.
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7.3. The case F = Qp. The aim of this section is to describe explicitly the

k[[K0(p)]]-module S≥1∞ ⊕S≥2∞ in Galois theoretical terms when F = Qp.

Let Qp2 be the quadratic unramified extension of Qp. We fix an embedding

Qp2

ι
↪→ E and, for j ∈ {0, 1}, we write τj

def
= ι ◦ FrobjQp2

where FrobQp2
is the

absolute Frobenius on Qp2 . With this choice, we can define the fundamental

Serre character ω2 of niveau 2 associated to the residual embedding Fp2 ↪→ k.

For n ∈ {1, . . . , p} we write ind(ωn
2 ) for the unique (absolutely) irreducible 2-

dimensional representation of GQp whose restriction to the inertia subgroup

IQp is isomorphic to ωn
2 ⊕ ωpn

2 and whose determinant is ωn (where ω is the

mod-p cyclotomic character).

If 0 ≤ r ≤ p − 1 the Galois representation ind(ωr+1
2 ) corresponds to the

supersingular representation π(σr, 0) and the aim of this section is to show that

the F -moduleS≥1∞ ⊕S≥2∞ is isomorphic to the “mod-pWach module” associated

to the dual of ind(ωr+1
2 ).

Recall that for • ∈ {0, 1} we have defined (cf. Definition 3.5) the elements

e2(j+1)+•,i; as F = Qp we omit the subscript i in what follows. Then S•∞ is

easily seen to be generated over A by the only element e•.
Fix n ∈ 2N+ 1. Using the definition of the elements e0, e2 one verifies that

e2 = X · e0 in S0
n+1. Since n ∈ 2N+ 1 is arbitrary we deduce that S≥1∞ is the

submodule of S0
∞ generated (over A) by the element e2 = X · e0; a completely

analogous argument shows that S≥2∞ is the submodule of S1
∞ generated (over

A) by the element e3 = Xr+1 · e1.
We turn our attention to the action of the Frobenius. By Proposition 5.11

we have

F (e2) = e3,(37)

F (e3) = e4 = X(p−1)(r+1)e2.

As usual, the equality e4 = X(p−1)(r+1)e2 is verified in any quotient S•n+1

(with n ≥ 3) using the explicit description of the elements e4, e2 given in

Proposition 3.7.

We leave to the reader the task to verify that T(kF ) acts on e2, e3 by the

character
(
χra
)∨

so that, by Proposition 7.1 we deduce the Z×p action:

γe2+• ≡ γe2+• + (Xp−1) · e2+• mod Xp−1

for • ∈ {0, 1}.
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Let Vr+1(0) be the irreducible crystalline representation of GQp with Hodge–

Tate weights (0,−(r + 1)) and whose trace of Frobenius equals zero. We claim

that S≥1∞ ⊕S≥2∞ is isomorphic, as a Frobenius module, to the mod-p reduction of

the Wach module associated to Vr+1(0).We decided to include a self contained

argument of this well-known result and we invite the reader to refer to [Ber] for

the general theory of the Wach modules (cf. also [BLZ] or [Dou]).

Let 0 ≤ r ≤ p− 1 and Nr+1(0) be the rank two ϕ-module over O[[X ]] whose

Frobenius action is characterized by

[ϕ(n1), ϕ(n2)] = [n1, n2]

[
0 1

qr+1 0

]
(38)

where (n1, n2) is a O[[X ]]-basis for Nr+1(0) and q
def
= (1+X)p−1

X ∈ O[[X ]].

By the work of [BLZ] (Proposition 3.1.3), there exists a O[[X ]]-semilinear, ϕ-

equivariant Z×p -action on Nr+1(0), which is trivial modulo XNr+1(0); this gives

rise to a well-defined structure of the Wach module on Nr+1(0).

The module Nr+1(0) is endowed with a filtration (cf. [Ber], Théorème III.4.4)

Filj
(
Nr+1(0)

) def
=
{
x ∈ Nr+1(0), φ(x) ∈ qjNr+1(0)

}
and one sees that

Filj
(
Nr+1(0)/XNr+1(0)

)
=

⎧⎪⎪⎨⎪⎪⎩
On1 ⊕ On2 ifj ≤ 0

On1 if1 ≤ j ≤ r + 1

0 ifj ≥ r + 2

(39)

(cf. [BLZ], proof of Proposition 3.2.4).

By [Ber], Proposition III.4.2 and Corollaire III.4.5 we have an isomorphism

of filtered ϕ-modules over E:

E ⊗O

(
Nr+1(0)/XNr+1(0)

) ∼−→ Dcris(Vr+1(0))

for an appropriate crystalline representation Vr+1(0) with Hodge–Tate weights

{0,−(r + 1)}.
Lemma 7.8: In the previous hypotheses, we have an isomorphism of crystalline

representations Vr+1(0) ∼= ind
GQp

GQ
p2
χr+1
(0,1), where χ(0,1) is the crystalline character

of GQp2
with labelled Hodge–Tate weights −(0, 1) and such that χ(0,1)(p) = 1.
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Proof. By equations (38) and (39) we have a complete description of the

filtered ϕ-module E ⊗O

(
Nr+1(0)/XNr+1(0)

)
(note that qr+1n2 ≡

pr+1n2 modXNr+1(0)). The result follows then from Breuil [Bre03b] Proposi-

tions 3.1.2 and 3.1.1.

Alternatively, we can prove the Lemma using the theory of Wach modules,

as we outline in the following lines.

One easily sees by (39) that the filtered module E⊗OE

(
Nr+1(0)/XNr+1(0)

)
has no nonzero, ϕ-admissible proper submodules, and hence Vr+1(0) is irre-

ducible. Let Tr+1(0) be the OE -lattice of Vr+1(0) corresponding to Nr+1(0) via

the equivalence of [Ber] Proposition III.4.2.

By results of [Dou], §2 we can describe the GQp2
-restriction of Tr+1(0) in

terms of Wach modules over Zp2 ⊗Zp OE [[X ]]. Recall the natural isomorphism

of rings

Zp2 ⊗Zp O[[X ]]
∼−→ O[[X ]]⊕ O[[X ]]

x⊗ P (X) −→ (τ0(x)P (X), τ1(x)P (X)).

By [Dou], Propositions 2.5 and 2.6, the Wach module over Zp2 ⊗Zp OE [[X ]]

associated to Tr+1(0)|GQ
p2

is obtained by extension of scalars from Nr+1(0). In

particular, its Frobenius action is defined by

[ϕ(n1), ϕ(n2)] = [n1, n2]

[
(0, 0) (1, 1)

(qr+1, qr+1) (0, 0)

]
,

and the matrix equality[
(1, 0) (0, 1)

(0, 1) (1, 0)

][
(0, 0) (1, 1)

(qr+1, qr+1) (0, 0)

]

=

[
(1, qr+1) (0, 0)

(0, 0) (qr+1, 1)

]
ϕ

([
(1, 0) (0, 1)

(0, 1) (1, 0)

])
shows that we have an isomorphism of Wach modules

N
(
Tr+1(0)|GQ

p2

) ∼−→ N(0,r+1),1 ⊕N(r+1,0),1

where N(0,r+1),1 (resp. N(r+1,0),1) are the rank one Wach modules over Zp2⊗Zp

OE [[X ]] whose Frobenius action is characterized, on appropriate generators η0,

η1, by ϕ(η0) = (1, qr+1)η0 (resp. ϕ(η1) = (qr+1, 1)η1, cf. also [Dou], §3.1).
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By [Dou], Proposition 3.5 et seq., we have

E ⊗O N(0,r+1),1 = Dcris(χ
r+1
(0,1)), E ⊗O N(r+1,0),1 = Dcris(χ

r+1
(1,0))

where χ(1,0) (resp. χ(0,1)) is the crystalline character of labelled Hodge–Tate

weights −(1, 0) (resp. −(0, 1)) such that χ(0,1)(p) = 1 = χ(1,0)(p). It follows

that Vr+1(0)|GQ
p2

∼= χr+1
(1,0) ⊕ χr+1

(0,1) and we deduce

Vr+1(0) ∼= ind
GQp

GQ
p2
χr+1
0,1

as Vr+1(0) is irreducible.

The mod-p reduction of the crystalline character χ(0,1) is deduced from [Dou],

Lemma 6.2:

χ(0,1)
∼= ω−12 ,

hence the mod-p reduction of the crystalline representation Vr+1(0) is given by

V r+1(0) ∼=
(
ind(ωr+1

2 )
)∗

(note that V r+1(0) is irreducible as r ≤ p− 1), and we define the mod-p Wach

module:

N
((
ind(ωr+1

2 )
)∗) def

= Nr+1(0)⊗O k.

Since qn1 ⊗ 1 = Xp−1n1 ⊗ 1 in Nr+1(0) ⊗O k, by comparing equations (38)

and (37) we deduce:

Proposition 7.9: Let F = Qp and σ = σr for r ∈ {0, . . . , p− 1}. We have an

isomorphism of ϕ-modules over A:

S≥1∞ ⊕S≥2∞ ∼= N
((
ind(ω

(r+1)
2 )

)∗)
,

where S≥1∞ ⊕S≥2∞ is the k[[K0(p)]]-module associated to the supersingular rep-

resentation π(σ, 0).

8. A note on principal and special series

We give here a glimpse of the previous constructions when considering tamely

ramified principal series. The arguments are now much simpler; we invite the

reader to refer to [Mo1], §5 for the omitted details.

Recall that the tamely ramified principal series for GL2(F ) are described (up

to a twist by a smooth character) by the parabolic induction

πr,μ
def
= ind

GL2(F )
B(F ) (unμ ⊗ ωr

funμ−1)(40)
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where μ ∈ k×, unμ is the unramified character of F× verifying unμ(�) = μ,

r ∈ {0, . . . , p− 1}f and ωf is a choice of a Serre fundamental character of level

f .

It is known by the work of Barthel and Livné [BL94] that the principal series

(40) is absolutely irreducible if either |r| /∈ {0, q} or |r| ∈ {0, q} and μ /∈ {1,−1}.
On the other hand, if |r| ∈ {0, q} and μ ∈ {1,−1} we have a short exact

sequence

0→ 1→ ind
GL2(F )
B(F ) 1→ St→ 0

where St denotes the Steinberg representation for GL2(F ) (which is absolutely

irreducible).

Since B(F )\GL2(F ) is compact, we have the following K-equivariant iso-

morphism:

(
ind

GL2(F )
B(F ) (unμ ⊗ ωrunμ−1)

)|K ∼= indKK0(�∞)χ
s
r
∼= lim−→

n≥1

(
indKK0(�n+1)χ

s
r

)
(41)

where the transition morphisms for the co-limit in the RHS are obtained induc-

ing the natural monomorphisms of K0(�
n)-representations

χs
r ↪→ ind

K0(�
n)

K0(�n+1)χ
s
r(42)

(which is unique up to a scalar).

To the tamely ramified principal series πr,μ we associate the K0(�)-subrepre-

sentation

R−∞
def
= ind

K0(�)
K0(�∞)χ

s
r.

The representation R−∞ controls the representation theoretic behavior of prin-

cipal and special series representations for GL2(F ):

Proposition 8.1: Let πr,μ be a tamely ramified principal series and let R−∞
be the associated K0(�) submodule. We have a K-equivariant isomorphism

πr,μ|K ∼= indKK0(p)R
−
∞.

If N denotes the normalizer in GL2(F ) of the standard Iwahori subgroup, we

have a N -equivariant isomorphism

πr,μ|N ∼= R−∞ ⊕
(
R−∞
)s
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where the action of α on the RHS is given by the involution

R−∞ −→ (
R−∞
)s

v −→ μv.

In particular, the Steinberg representation fits in the following exact se-

quences:

0→ 1→ indK
K0(�)R

−
∞ → St|K → 0,

0→ 1→ R−∞ ⊕
(
R−∞
)s → St|N → 0.

Proof. The assertions on the K-structure of πr,μ follow from the isomorphism

(41) and the formal properties of the compact induction functor.

The assertions on the N -structure of πr,μ can be checked directly using the

Mackey decomposition

(πr,μ)|K0(�)
∼= (indK0(�)

K0(�∞)χ
s
r

)⊕ (indK0(�)

K0(�)∩B(F )
χr

)
(43)

and noticing that α normalizes K0(�) (hence the K0(�)-equivariant isomor-

phism between the direct summands in the RHS of (43), once we endow one of

them with the conjugate action of K0(�)).

Assume now that F is unramified over Qp.

We define S∞ to be the Pontryagin dual of R−∞. In other words, S∞ is the

Verma module

S∞ = k[[K0(p)]] ⊗k[[K0(p∞)]] (χ
s
r)
∨

so that the Iwahori decomposition and (41) yield

S∞ = lim←−
n≥1

A/
〈
Xpn

i , i = 0, . . . , f − 1
〉

where the morphisms defining the projective system are the natural projections

(and respect the k[[K0(p)]]-module structures).

By Proposition 4.9 we deduce that the A-linear filtration on S∞ induced by

powers of the maximal ideal m � A is k[[K0(p)]]-stable and the Γ, U+-action is

trivial on the quotients

mk/mk+(p−2).
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