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ABSTRACT

We show that if L is a line in the plane containing a badly approximable

vector, then almost every point in L does not admit an improvement in

Dirichlet’s theorem. Our proof relies on a measure classification result for

certain measures invariant under a nonabelian two-dimensional group on

the homogeneous space SL3(R)/ SL3(Z). Using the measure classification

theorem, we reprove a result of Shah about planar nondegenerate curves

(which are not necessarily analytic), and prove analogous results for the

framework of Diophantine approximation with weights. We also show that

there are line segments in R3 which do contain badly approximable points,

and for which all points do admit an improvement in Dirichlet’s theorem.
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1. Introduction

A classical result in Diophantine approximation is Dirichlet’s theorem which

asserts that for any v∈Rn and any Q≥1 there are q∈N and p∈Zn such that

‖qv − p‖ < 1

Q1/n
and q ≤ Q.

The norm used here and throughout this paper is the sup-norm on Rn. Let

σ ∈ (0, 1). Following Davenport and Schmidt [5], we say that v admits a

σ-improvement in Dirichlet’s theorem, and write v ∈ DI(σ), if for all

sufficiently large Q, there are q ∈ N and p ∈ Zn such that

‖qv− p‖ < σ

Q1/n
and q < σQ.

Finally we say that v admits no improvement in Dirichlet’s theorem if

v /∈ ⋃
σ<1 DI(σ). It is known that almost every v ∈ Rn (with respect to

Lebesgue measure) admits no improvement in Dirichlet’s theorem. It is an

interesting problem to decide, given a measure μ on Rn, whether μ-a.e. v admits

no improvement in Dirichlet’s theorem. See [5, 9] for some results and questions

in this direction.

In a recent breakthrough, Shah [14] showed that if μ is the length measure

on an analytic curve in Rn, which is not contained in any affine hyperplane,

then μ-a.e. v admits no improvement in Dirichlet’s theorem. For certain fractal

measures μ in R2, the same conclusion is obtained in [16] and [17]. These works

leave open the question of measures which are length measures on lines. In

this direction, Kleinbock [7] showed that for any line L which is not contained

in DI(σ0) for some σ0 > 0, for almost every v ∈ L (w.r.t. length measure on

L), there is σ = σ(v) such that v /∈ DI(σ). Our first result strengthens this

conclusion under a stronger hypothesis, for planar lines. Recall that v is called

badly approximable if there is c > 0 such that for any q ∈ N and p ∈ Zn,

‖qv−p‖ ≥ c
q1/n

. It was shown by Davenport and Schmidt [5] that if v is badly

approximable then it admits an improvement in Dirichlet’s theorem.

Theorem 1.1: Suppose that a line L in R2 contains a badly approximable

vector. Then almost every element of L (w.r.t. length measure) admits an

improvement in Dirichlet’s theorem.

Another question raised by Shah’s work is to what extent one can relax the

hypothesis of the analyticity of the curve. A map ϕ : [0, 1] → Rn is called
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nondegenerate if it is n times continuously differentiable, and for almost ev-

ery s, the Wronskian determinant of ϕ′(s) does not vanish (i.e., the vectors

ϕ′(s), ϕ′′(s), . . . , ϕ(n)(s) are linearly independent in Rn); in the case of planar

curves, this simply means that the curvature of ϕ does not vanish at s. It is

clear that analytic curves not contained in affine hyperplanes are nondegener-

ate, and one may expect that the conclusion of Shah’s theorem holds under this

weaker hypothesis. This was proved by Shah in the case n = 2 (unpublished)

by adapting the method of [14]. We obtain a simpler proof. That is we show:

Theorem 1.2: Let ϕ : [0, 1] → R2 be a nondegenerate curve. Then for almost

every s ∈ [0, 1] (with respect to Lebesgue measure), ϕ(s) admits no improvement

in Dirichlet’s theorem.

A similar proof of Theorem 1.2 was obtained independently by Manfred Ein-

siedler (also unpublished).

Our proofs rely on results in homogeneous dynamics. Before stating them we

introduce some notation, to be used in §1–§4. Let G := SL3(R), Γ := SL3(Z),

X := G/Γ, so that X is the space of unimodular lattices in R3. This is a

space on which any subgroup of G acts by left-translations preserving the G-

invariant Borel probability measure m induced by Haar measure on G. For

v = (v1, v2)
tr ∈ R2, t ∈ R and r = (r1, r2) ∈ R2

>0 with r1 + r2 = 1, we set

(1.1) f
(r)
t :=

⎛⎜⎝er1t 0 0

0 er2t 0

0 0 e−t

⎞⎟⎠ u(v1, v2) := u(v) :=

⎛⎜⎝1 0 v1

0 1 v2

0 0 1

⎞⎟⎠
and let ū = π ◦ u, where π : G → G/Γ is the natural quotient map. Theorem

1.1 follows from:

Theorem 1.3: Let x0 ∈ X , a, b ∈ R and let I, J ⊂ R be bounded intervals,

and suppose there is a compact K ⊂ X such that

(1.2) for all t ≥ 0 there is st ∈ J with f
(r)
t u(st, ast + b)x0 ∈ K.

Let ν be a probability measure on I which is absolutely continuous with respect

to Lebesgue measure. Then for any ψ ∈ Cc(X) one has

1

T

∫ T

0

∫
I

ψ(f
(r)
t u(s, as+ b)x0) dν(s) dt →T→∞

∫
X

ψ dm;
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that is, 1
T

∫ T

0
(f

(r)
t )∗ν̄ dt →T→∞ m in the weak-* topology on Borel probability

measures on X , where ν̄ is the image of ν under the map s 	→ u(s, as+ b)x0.

Similarly, Theorem 1.2 follows from:

Theorem 1.4: Let ϕ : [0, 1] → R2 be a nondegenerate curve. Then for any

ψ ∈ Cc(X) and any probability measure ν on [0, 1] which is absolutely contin-

uous with respect to Lebesgue measure, one has

1

T

∫ T

0

∫ 1

0

ψ(f
(r)
t ū(ϕ(s))) dν(s) dt →T→∞

∫
X

ψ dm.

Theorems 1.3 and 1.4 in turn follow from the following measure classification

result:

Theorem 1.5: Let U (resp. F ) be a one-parameter unipotent (resp. diagonal-

izable) subgroup of G. Suppose that U is normalized by F , FU is nonabelian

and F does not fix any nonzero vector of R3. Then the action of FU on X is

uniquely ergodic, i.e., m is the only FU -invariant probability measure on X .

Our method of proof allows a generalization to ‘Diophantine approximation

with weights’, which we now describe. Let r = (r1, r2)
tr be as above. Following

[6] we say that v ∈ R2 is badly approximable w.r.t. weights r if there is

c > 0 such that for all q ∈ N, all p ∈ Z2, we have

max
i=1,2

|qvi − pi|1/ri ≥ c

q
.

Also, following [9] we say that v admits no improvement in Dirichlet’s

theorem w.r.t. weights r if there does not exist σ ∈ (0, 1) such that for all

sufficiently large Q, there is a solution q ∈ N, p ∈ Z2 to the inequalities

max
i=1,2

|qvi − pi| < σ

Qri
, q < σQ.

We show:

Theorem 1.6: For any r as above, the following hold:

(i) Suppose L is a line in R2 which contains one point which is badly

approximable w.r.t. weights r. Then almost every v ∈ L (w.r.t. the

length measure on L) admits no improvement in Dirichlet’s theorem

w.r.t. weights r.
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(ii) Let ϕ : [0, 1] → R2 be a nondegenerate curve. Then for almost every

s ∈ [0, 1] (w.r.t. Lebesgue measure), ϕ(s) admits no improvement in

Dirichlet’s theorem w.r.t. weights r.

Theorem 1.6(ii) was proved for nondegenerate analytic curves in Rn, in [15].

The hypothesis of Theorem 1.1 and 1.6(i) can be verified in many cases. In

light of recent work of Badziahin–Velani [2] and An–Beresnevich–Velani [1], we

obtain:

Corollary 1.7: Suppose that L is a line in R2 given by the equation y = ax+b

where a 
= 0. If

(1.3) lim inf
q→∞ |q| 1r−ε min

p∈Z2
‖q(a, b)− p‖ > 0 where r = min{r1, r2}

for some ε > 0, then almost every v ∈ L admits no improvement in Dirichlet’s

theorem w.r.t. weights r. Moreover, the same conclusion holds if a ∈ Q and

(1.3) holds for ε = 0.

Indeed, [2, 1] showed that under the hypotheses of Corollary 1.7, L contains

a badly approximable vector, so Theorem 1.6 applies.

In §5 we give several examples showing the necessity of the hypotheses in our

theorems. In particular, we show in Theorem 5.1 that the analog of Theorem

1.1 fails in dimension n = 3.

Acknowledgements. We are grateful to Jinpeng An, Manfred Einsiedler,

Dmitry Kleinbock and Elon Lindenstrauss for helpful discussions.

2. Invariant measure for solvable groups

In this section we prove Theorem 1.5. As we will show in §5, it is not possible
to relax the hypotheses of the theorem.

Let the notation be as in the statement of Theorem 1.5, and let F ={ft : t ∈ R}
where t 	→ ft is a group homomorphism from R→ F . Let μ be an FU -invariant

Borel probability measure on X . Our goal is to show that μ = m, and we can

assume with no loss of generality that μ is ergodic for the action of FU .

We can decompose μ into its U -ergodic components. That is we write

μ =

∫
X

mx dμ(x)
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where each mx is U -invariant and ergodic. According to Ratner’s measure

classification theorem [13], for every x there is a closed connected subgroup

H = Hx such that Ux = Hx and mx is the unique H-invariant measure on

Hx induced by the Haar measure on H . Also, since μ is F -invariant, by the

Poincaré recurrence theorem, for almost every x and mx-a.e. y, the orbit Fy

is recurrent in both positive and negative times, i.e., there are tn → +∞ and

t′n → −∞ such that

(2.1) ftny → y and ft′ny → y.

We will need the following result:

Theorem 2.1 (Mozes): There exists a closed subgroup H of G generated by

one-parameter unipotent subgroups and containing U such that the following

hold:

(i) For μ-almost every x ∈ X we have Hx = H .

(ii) The group H is normalized by F and conjugation by F preserves the

Haar measure of H .

Theorem 2.1 was proved in [12] but not stated explicitly; it is stated as [11,

Main Theorem] and reproved in a more general context.

Let {ht : t ∈ R} be a one-parameter subgroup of G. We say that {htx : t ≥ 0}
(respectively {htx : t ≤ 0}) is divergent if for any compact K ⊂ X there is t0

such that for all t > t0 (resp. all t < t0), htx /∈ K. We will need the following

well-known fact:

Proposition 2.2: If ρ : G → GL(V ) is a representation defined over Q, and

v ∈ V (Q)� {0} such that ρ(htg)v →t→+∞ 0, then {htπ(g) : t ≥ 0} is divergent.

The analogous statement replacing +∞ with −∞ and t ≥ 0 with t ≤ 0 also

holds.

Proof. This follows from a standard bounded denominators argument; see, e.g.,

[18, Prop. 3.1].

We let Eij be the matrix whose matrix coefficient in the ith row and jth

column is 1, and 0 elsewhere. Set

(2.2) Uij := {exp(sEij) : s ∈ R}.
Let U+ := 〈U12, U13, U23〉 be the upper triangular unipotent group. We will

need the following:
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Proposition 2.3: Let x ∈ X such that U+x is closed. Then for any one-

parameter subgroup {ht} of the diagonal group, at least one of the two trajec-

tories {htx : t ≥ 0}, {htx : t ≤ 0} is divergent.

Proof. First suppose that x is the point corresponding to the identity coset Γ,

that is, x = π(e) where e is the identity element of G. There is a natural action

of G on R3 by linear transformations and a corresponding induced action on

the second exterior power
∧2
R3. Let e1, e2, e3 be the standard basis of R3

and let v12 := e1 ∧ e2 ∈ ∧2
R3. The vectors e1,v12 are eigenvectors for the

diagonal group, and we let χ1, χ2 be the corresponding characters. That is, if

a = diag(es, et, e−(s+t)), then

ae1 = χ1(a)e1, where χ1(a) = es

and

av12 = χ2(a)v12, where χ2(a) = es+t.

For any one-parameter diagonal subgroup {ht}, at least one of the two restric-

tions χi|ht , i = 1, 2 is not trivial. This implies that hte1 → 0 or htv12 → 0 as

t tends to either +∞ or −∞, and we apply Proposition 2.2.

Now suppose that x = π(g) for some g ∈ G. For definiteness, assume that

hte1 →t→+∞ 0 (if not, replace e1 by v12 or +∞ by −∞). Since closed orbits for

unipotent groups are of finite volume, g−1U+g∩Γ is a lattice in U+. Therefore

the group g−1U+g is defined overQ. So both the normalizers of U+ and g−1U+g

are minimal Q-parabolic subgroups of G, and hence are conjugate over Q. This

implies that there exists g0 ∈ SL3(Q) such that

g−1U+g = g−1
0 U+g0.

It follows that ng0 = g where n ∈ NG(U
+). Note that both e1 and v12 are

eigenvectors for the upper triangular group NG(U
+), so we write ne1 = ce1 for

some c ∈ R. Therefore we have

htgg
−1
0 e1 = htne1 = chte1 → 0.

Since g0 ∈ SL3(Q), g
−1
0 e1 is a Q-vector. Applying again Proposition 2.2 (with

g−1
0 e1 instead of e1) we see that the trajectory {htx} is divergent.

We remark that Proposition 2.3 can be generalized to X = SLn(R)/ SLn(Z),

for any n ≥ 3, with a similar argument.
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Let H0
∼= SL2(R) denote the subgroup of G generated by U12 and U21. We

will need a similar fact for H0.

Proposition 2.4: Let x ∈ X such that H0x is closed, and let {ht} be a one-

parameter subgroup of the group of diagonal matrices which is not contained

in H0. Then {htx : t ≥ 0} and {htx : t ≤ 0} are both divergent.

Proof. First suppose that x=π(e) and consider the vector v12=e1 ∧ e2 ∈ ∧2
R3

of the previous proof, along with the vector e3. For any one-parameter group

{ht} not contained in H0, possibly after switching the roles of +∞ and −∞,

we have hte3 →t→+∞ 0 and htv12 →t→−∞ 0. Therefore the claim follows from

Proposition 2.2.

Now assume that x = π(g) for some g ∈ G. The group H0 is the intersection

of the stabilizers of the vectors v12, e3 in the two representations W1 :=
∧2
R3,

W2 := R3. Moreover, the pair (v12, e3) represents the unique splitting of R3

into a direct sum decomposition of a 2-dimensional and 1-dimensional space

which is left invariant by H0. Consider the group H ′ := g−1H0g and the pair

of vectors

w1 := g−1v12 ∈W1, w2 := g−1e3 ∈ W2.

This pair represents the unique splitting into a direct sum decomposition as

above, which is H ′ invariant. Also, since H0x is closed, it is of finite volume

and H ′ ∩ Γ is a lattice in H ′. This implies that H ′ is defined over Q.

Now let ι : C → C be any field automorphism. The map ι acts on G (by its

action on matrix entries) and on W1, W2 (by its action on vector coefficients)

in a compatible way, and ι(H ′) = H ′ since H ′ is defined over Q. This implies

that the pair (ι(w1), ι(w2)) also represents the unique splitting ι(H ′)-invariant
decomposition of R3 into a 2- and 1-dimensional subspace. Since the dimen-

sions of these two subspaces are different, ι also preserves each subspace in

this splitting, that is, ι preserves w1,w2 up to multiplication by scalars. Since

this is true for any field automorphism ι, the subspaces represented by w1,w2

are Q-subspaces of R3, and hence w1, w2 are scalar multiples of Q-vectors in

W1,W2 respectively. We have

htgw2 = hte3 →t→+∞ 0, htgw1 = htw1 →t→−∞ 0.

Thus the claim follows using Proposition 2.2 with scalar multiples of w1,w2.
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Proof of Theorem 1.5. Let F and U be as in the statement of the theorem, and

for an FU -invariant ergodic measure μ, let H be as in Theorem 2.1. We will

prove Theorem 1.5 by showing H = G, and to this end we will assume by

contradiction that H 
= G, consider various possibilities for the triple (F,U,H),

and derive a contradiction in each case.

Let h, u denote respectively the Lie algebras of H and U . The key observation

is the following. Since conjugation by f1 preserves the volume of H and the

adjoint action of f1 on u ⊂ h is nontrivial, h must contain eigenvectors of Ad(f1)

with both positive and negative eigenvalues.

The group of automorphisms of G is generated by inner automorphisms (con-

jugation) and the automorphism g 	→ (g−1)tr. With no loss of generality we can

apply an automorphism ofG and a reparametrization of F to the triple (F,U,H)

to assume:

(1) The conjugation of f1 expands U . (Since U is one-dimensional and is

acted on nontrivially by ft, this can be ensured by re-parameterizing ft

if necessary.)

(2) f1 has two positive eigenvalues. (Since ft does not preserve a vector

in R3, this can be ensured by applying an outer automorphism of G if

necessary.)

(3) ft = diag(et, eat, ebt) w here 1 ≥ a > 0 > b, a + b = −1. (This can

be ensured by applying an inner automorphism of G preserving the

diagonal group, and reparameterizing ft 	→ fct for some c > 0.) It

follows that U is contained in the upper triangular group U+.

(4) The subgroup H ∩U−, where U− is the lower triangular unipotent sub-

group 〈U21, U31, U32〉, contains a nontrivial group N (whose Lie algebra

is denoted by n) such that F normalizesN and acts on its Lie algebra by

a strict contraction (since the action of F on H preserves Haar measure

on H so there must be a subgroup which is contracted).

Suppose first that a = 1, so that b = −2. In this case the centralizer Z of F

is a copy of GL2(R) embedded as

(2.3) Z =

⎛⎜⎝∗ ∗ 0

∗ ∗ 0

0 0 ∗

⎞⎟⎠ ,
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and we can further simplify our problem by conjugating by elements of Z. We

decompose g into eigenspaces for Ad(f1), writing g = V + ⊕ V − ⊕ V 0, where

V + := span(E13, E23), V − := span(E31, E32), V 0 := z

(where z is the Lie algebra of Z, and this is the decomposition into eigenspaces

of Ad(f1) with eigenvalues e3, e−3, 1 respectively). Since conjugation by F pre-

serves Haar measure on H , if h contains V + it also contains V −. Since V + and

V − generate g as a Lie algebra, this is impossible, so

(2.4) h ∩ V + = u, h ∩ V − = n.

A direct computation in the adjoint representation Ad : G → GL(g) shows

that Z acts transitively on nonzero elements of V + and also acts transitively on

nonzero elements of V −. Moreover, when acting on g⊕ g via Ad⊕Ad, there is

an element of Z which maps u to span(E13) and maps n to either span(E31) or

span(E32). With no loss of generality we apply such a conjugation, and treat

first the case that

(2.5) u = span(E13), n = span(E32).

Then H contains the group U0 generated by U13, U32, which is 3-dimensional

with Lie algebra u0 := span(E13, E32, E12). There is no proper Lie subalgebra

of g which is Ad(f1)-invariant, satisfies (2.4), and properly contains u0. This

implies that H = U0. But U0 is a conjugate of U+, by a conjugation which

leaves F inside the group of diagonal matrices. By applying such a conjugation

we obtain a contradiction to Proposition 2.3 and (2.1).

We now continue with the assumption a = 1 and assume that (2.5) does not

hold, so that (after conjugating by an element of Z)

(2.6) u = span(E13), n = span(E31).

Then H contains the group H0
∼= SL2(R) whose Lie algebra is generated by u

and n, and F 
⊂ H0. By Proposition 2.4 and (2.1) we cannot have H = H0. So

H0 � H and, since the group generated by F and H0 contains the full diagonal

group, H is invariant under conjugation by all elements of the diagonal group.

Therefore H must contain at least one other eigenspace Uij not contained in

H0. By (2.4), H contains one of U12, U21. However, H0 and any one of these

two groups generate a group which contains one of U23, U32 and (2.4) cannot

hold.
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Finally, suppose a < 1 so that the three eigenvalues of f1 are distinct. In

this case E12, E13 and E23 belong to different eigenspaces of Ad(f1), with cor-

responding eigenvalues e1−a, e1−b, ea−b. The equations a + b = −1, 0 < a < 1

imply that these eigenvalues are distinct:

e1−b > ea−b > e1−a.

Moreover, the product of the eigenvalues that correspond to eigenspaces belong-

ing to h is 1, since conjugation by elements of F preserves the Haar measure

on H . We consider the possibilities for H . If dimH = 3, then H is either

generated by a pair Uij , Uji, or is conjugate to U+. In the former case, up

to a conjugation by a matrix preserving the diagonal group, H coincides with

the group H0 considered above. But this leads to a contradiction via (2.1) and

Proposition 2.4. In the latter case, we also get a contradiction by combining

(2.1) and Proposition 2.3. If dimH ≥ 4, then H contains at least two expanding

or two contracting eigenvalues. It is easy to check that (up to re-indexing) H

contains U13, U21, U32, and these groups generate G, which is impossible.

3. Equidistribution of a line segment

The aim of this section is to prove Theorems 1.3, 1.1 and 1.6 (i). We first

assume the notation and assumptions in Theorem 1.3, in particular f
(r)
t and u

are as in (1.1), and ν̄ is the image of ν under s 	→ u(s, as+ b)x0. That is,

(3.1)

∫
X

ψ dν̄ =

∫
R

ψ(u(s, as+ b)x0) dν(s)

for every ψ ∈ Cc(X). Sometimes we need to treat the cases where r1 = r2 and

r1 
= r2 separately, so we let ft := f
(1/2,1/2)
t to emphasize that we are in the

former case. First we show that there is no escape of mass.

Lemma 3.1: Let μ be a weak-* accumulation point of

(3.2)
1

T

∫ T

0

(f
(r)
t )∗ν̄ dt as T → ∞.

Then μ(X) = 1.

Proof. It suffices to show that for each ε > 0 there is a compact K0 ⊂ X such

that for all large enough t,

(3.3) ν({s ∈ I : f
(r)
t u(s, as+ b)x0 /∈ K0}) < ε.
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Since ν is absolutely continuous with respect to Lebesgue measure on R, we can

write dν(s) = h(s)ds where h is a non-negative measurable function on I with∫
I h(s)ds = 1. Given ε > 0, let R be large enough so that

(3.4)

∫
IR

h(s) ds <
ε

2
, where IR := {s ∈ I : h(s) ≥ R}.

We will show below that we can find a compact K0 ⊂ X such that for all

sufficiently large t,

(3.5)
|{s ∈ I : f

(r)
t u(s, as+ b)x0 /∈ K0}|

|I| <
ε

2R

(where |A| denotes the Lebesgue measure of A ⊂ R). Given such a set K0,

we can establish (3.3) by noting that the subset contained in IR contributes at

most ε
2 by (3.4), and the subset contained in I � IR contributes at most ε

2 since

on I � IR, h is bounded above by R. So it remains to prove (3.5).

Using (1.2), let K ⊂ X be a compact subset such that for each t, there is

st ∈ J with f
(r)
t u(st, ast + b)x0 ∈ K. We choose c > 0 so that I ∪ J ⊂ [−c, c].

Multiplying matrices, one sees that

(3.6)
f
(r)
t u(s, as+ b)x0

=u(e(r1+1)t(s− st), ae
(r2+1)t(s− st))f

(r)
t u(st, ast + b)x0.

By assumption (1.2), f
(r)
t u(st, ast + b)x0 ∈ K where K ⊂ X is a compact set.

It follows from [4, Theorem 6.1] that, given ε > 0, there exists a compact subset

K0 of X such that for every x ∈ K and every t ≥ 0 one has

(3.7) |{s ∈ [−c, c] : u(e(r1+1)t(s− st), ae
(r2+1)t(s− st))x /∈ K0}| <

( ε|I|
4cR

)
2c.

Combining (3.6) with (3.7) gives (3.5).

Next we show unipotent invariance.

Lemma 3.2: Any weak-* limit of (3.2) is invariant under some one-dimensional

unipotent subgroup U of G normalized by {f (r)
t : t ∈ R}.

Proof. To simplify the notation we let

� : R→ R2, �(s) := (s, as+ b)tr.
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We first prove that in the case r1 = r2, any limit measure of (3.2) is invariant

under U = {u(s, as) : s ∈ R}. It suffices to show that for any s̃ ∈ R,
(3.8) lim

t→∞(ft)∗ν̄ − (u(s̃, as̃)ft)∗ν̄ = 0.

Let h ∈ L1(R) be a nonnegative function such that dν(s) = h(s)ds, and let

ψ ∈ Cc(X). We have∫
X

ψ d[(ft)∗ν̄−(u(s̃, as̃)ft)∗ν̄]

=

∫
R

[ψ(ftu(�(s))x0)− ψ(u(s̃, as̃)ftu(�(s))x0)]h(s) ds

=

∫
R

[ψ(ftu(�(s))x0)− ψ(ftu(�(s+ e−3t/2s̃))x0)]h(s) ds.

By continuity of ψ, the integrand converges pointwise to 0 as t → ∞. Since

h ∈ L1(R) and ψ is bounded, using the dominated convergence theorem we see

that the limit is zero. This implies (3.8).

If r1 > r2 we show that any limit measure is invariant under

U13 := {u(s, 0) : s ∈ R}.
It suffices to show that for any s̃ ∈ R,
(3.9) lim

t→∞(f
(r)
t )∗ν̄ − (u(s̃, 0)f

(r)
t )∗ν̄ = 0.

Let ψ, h be as above; set s′ := s+ e−(1+r1)ts̃ and compute as follows:∫
X

ψ d[(f
(r)
t )∗ν̄ − (u(s̃, 0)f

(r)
t )∗ν̄]

=

∫
R

[ψ(f
(r)
t u(�(s))x0)− ψ(u(s̃, 0)f

(r)
t u(�(s))x0)] dν(s)

=

∫
R

[ψ(f
(r)
t u(�(s))x0)− ψ(f

(r)
t u(e−(1+r1)ts̃, 0)u(�(s))x0)] dν(s)

=

∫
R

[ψ(f
(r)
t u(�(s))x0)− ψ(f

(r)
t u(�(s′))x0)] dν(s)

+

∫
R

[ψ(f
(r)
t u(�(s′))x0)− ψ(f

(r)
t u(0,−ae−(1+r1)t)u(�(s′))x0)]dν(s).

By a change of variables, the absolute value of the first summand in this integral

is bounded above by 2 sup |ψ| ∫
R
|h(s)−h(s′)|ds, which tends to zero as t→ +∞

since s′ → s and the regular representation of R on L1 is continuous.
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To bound the second summand we argue as follows:∫
R

[ψ(f
(r)
t u(�(s′))x0)− ψ(f

(r)
t u(0, ae−(1+r1)t)u(�(s′))x0)] dν(s)

=

∫
R

[ψ(f
(r)
t u(�(s′))x0)− ψ(u(0, as0e

(r2−r1)t)f
(r)
t u(�(s′))x0)] dν(s),

and this tends to zero by the uniform continuity of ψ and the dominated con-

vergence theorem. Hence (f
(r)
t )∗ν̄ − (exp(s0E13)f

(r)
t )∗ν̄ →t→∞ 0. Since μ is a

sequential limit as T → ∞, we see that μ is U13-invariant, as required.

Finally, we consider the case where r1 < r2. If a 
= 0, then a similar argument

as for the case where r1 > r2 implies the invariance for U23. If a = 0, then the

argument for the case where r1 = r2 goes through and shows that the limit

measure is invariant under U13.

Proposition 3.3: Let λ be a probability measure on R2. Suppose that

(3.10)
1

T

∫ T

0

(f
(r)
t ū)∗λdt→T→∞ m.

Then for λ-almost every v ∈ R2, {f (r)
t ū(v) : t ≥ 0} is dense in X , and in

particular, v admits no improvement in Dirichlet’s theorem w.r.t. weights r.

Proof. According to [9, Prop. 2.1], if {f (r)
t ū(v) : t ≥ 0} is dense in X , then v

admits no improvement in Dirichlet’s theorem w.r.t. weights r, so it suffices to

prove the first assertion. Suppose by contradiction that

λ({v : {f (r)
t ū(v) : t ≥ 0} is not dense}) > 0.

Let {U1, U2, . . .} be a countable collection of open subsets of X which form a

basis for the topology of X . Then for some i,

λ(A) > 0, where A := {v : ∀t ≥ 0, f
(r)
t ū(v) /∈ Ui}.

Let λ0 be the (normalized) restriction of λ to A, let λ1 be the (normalized)

restriction of λ to the complement of A, and choose a sequence {Tn} with

Tn → ∞ such that

μ0 := lim
n→∞

1

Tn

∫ Tn

0

(f
(r)
t ū)∗λ0 dt

exists. Then μ0 gives zero mass to Ui. In view of (3.10), the limit

μ1 = lim
n→∞

1

Tn

∫ Tn

0

(f
(r)
t ū)∗λ1 dt
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also exists, and m is a convex combination of μ0 and μ1 with weights λ(A),

1 − λ(A). Both measures μ0, μ1 are invariant under {f (r)
t }, and since m is

ergodic, m = μ0 = μ1. This contradicts the fact that μ0(Ui) = 0.

Proof of Theorem 1.3. Let μ be a weak-* limit of (3.2). Then μ is invariant

under the one-parameter diagonal subgroup F := {f (r)
t : t ∈ R}. It follows

from Lemma 3.2 that μ is also invariant under some one-parameter unipotent

group U normalized by F . Lemma 3.1 implies that μ is a probability measure.

Therefore μ = m according to Theorem 1.5. Since μ is an arbitrary weak-*

limit as T → ∞, the conclusion follows.

Proof of Theorem 1.1 and 1.6(i). We only prove the latter since the former is

a special case. By switching the roles of x and y there is no loss of generality

in assuming that L is not vertical, i.e., it is given by an equation of the form

s 	→ �(s) := (s, as + b) for some a, b ∈ R. Let s̃ ∈ R such that �(s̃) is badly

approximable w.r.t. weights r. According to Dani’s correspondence [3], and its

generalization to the framework of approximation with weights [6], there is a

compact K ⊂ X such that f
(r)
t ū(�(s̃)) ∈ K for all t ≥ 0. That is, (1.2) is

satisfied. Now the conclusion is immediate from Theorem 1.3 and Proposition

3.3.

4. Equidistribution of a nondegenerate curve

The goal of this section is to prove Theorems 1.2, 1.4 and 1.6(ii). Our argument

uses many ideas of Shah [14, 15] but is made significantly simpler by the extra

averaging with respect to t, appearing in Proposition 3.3.

Let the notation be as in Theorem 1.4. We write ft=f
(1/2,1/2)
t and ϕ=(ϕ1, ϕ2)

where each ϕi is a C
2 function on [0, 1]. Without loss of generality we further

assume that r1 ≥ r2. We claim that ϕ′
1(s) 
= 0 for a.e. s; indeed, set

A := {s ∈ [0, 1] : ϕ′
1(s) = 0}

and let A′ denote the set of Lebesgue density points of A. Then A and A′ have
the same Lebesgue measure, and by Rolle’s theorem, for s ∈ A′,

ϕ′
1(s) = ϕ′′

1 (s) = 0.

Thus the Wronskian determinant of ϕ′ vanishes on A′, so by nondegeneracy A

and A′ must have measure zero.
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It follows that there exists a countable collection I of closed intervals such

that

• ∪II has full measure in [0, 1] and I1 ∩ I2 contains at most one point for

distinct I1, I2 ∈ I.
• ϕ′

1(s) 
= 0 for every s ∈ ⋃I∈I I
◦ (where I◦ is the interior of I).

Therefore it suffices to prove Theorem 1.4 for each closed interval properly

contained in some I ∈ I, replacing ν with the restriction of ν to this closed

interval. So we assume without loss of generality that ϕ′
1(s) 
= 0 for every

s ∈ [0, 1].

There exists a continuously differentiable function M : [0, 1] → SL2(R) such

that M(s)ϕ′(s) = e1. We define the map

z : [0, 1] → SL3(R) by z(s) =

(
M(s) 0

0 1

)
.

Let νϕ be the probability measure on X defined by

(4.1)

∫
X

ψ dνϕ =

∫
ψ(z(s)ū(ϕ(s))) dν(s)

for every ψ ∈ Cc(X). We set

νr :=

⎧⎨⎩νϕ if r1 = r2,

(ū)∗ν if r1 > r2.

Lemma 4.1: Any weak-* limit of

(4.2)
1

T

∫ T

0

(f
(r)
t )∗νr dt as T → ∞

is invariant under the group U13 = {u(s, 0) : s ∈ R}.
Proof. In the case where r1 = r2 it suffices to prove that for any ψ ∈ Cc(X),

any ε > 0, and any s̃ ∈ R,

(4.3)

∣∣∣∣ ∫ 1

0

[ψ(ftz(s)ū(ϕ(s))) − ψ(u(s̃, 0)ftz(s)ū(ϕ(s)))] dν(s)

∣∣∣∣ < ε

provided that t is sufficiently large.

We fix a C2 extension of ϕ on [−1, 2]. On the one hand, a change of variables,

the boundedness of ψ, and the continuity of the regular representation imply
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that ∫ 1

0

|ψ(ftz(s)ū(ϕ(s))) − ψ(ftz(s)ū(ϕ(s + s̃e−3t/2)))| dν(s) →t→∞ 0.

On the other hand, since ϕ is a C2-function on a compact interval,

ϕ(s+ s̃e−3t/2) = ϕ(s) + s̃e−3t/2ϕ′(s) +O(e−3t) as t→ +∞,

where the implicit constant in the error term is independent of s. Therefore

(4.4)

ftz(s)ū(ϕ(s+ s̃e−3t/2))

=ftz(s)u[ϕ(s) + s̃e−3t/2ϕ′(s) +O(e−3t)]π(e)

=[ftz(s)u(s̃e
−3t/2ϕ′(s) +O(e−3t))(ftz(s))

−1][f(t)z(s)ū(ϕ(s))]

=u(s̃E13 +O(e−3t/2))ftz(s)ū(ϕ(s))

=u(O(e−3t/2))u(s̃, 0)ftz(s)ū(ϕ(s)).

By uniform continuity of ψ, this implies that∫ 1

0

ψ(ftz(s)ū(ϕ(s+ s̃e−3t/2))) dν(s)

→
∫ 1

0

ψ(u(s̃, 0)ftz(s)ū(ϕ(s))) dν(s)

as t→ +∞. Now (4.3) follows for all large enough t.

In the case where r1 > r2 it suffices to show that for any ψ ∈ Cc(X), any

ε > 0, and any s̃ ∈ R,

(4.5)

∣∣∣∣ ∫ 1

0

[ψ(f
(r)
t ū(ϕ(s))) − ψ(u(s̃, 0)f

(r)
t ū(ϕ(s)))] dν(s)

∣∣∣∣ < ε

provided that t is sufficiently large.

We first prove (4.5) for dν = ds. Let Nt = [δe(1+r1)t] ∈ N where

(4.6) δ = ε(16‖ψ‖sup‖1/ϕ′
1‖sup)−1.

Here

‖ψ‖sup := sup
x∈X

|ψ(x)| and ‖1/ϕ′
1‖sup = sup

s∈[0,1]

|1/ϕ′
1(s)|.

In what follows we always assume t is large so that Nt > 1. We partition

I =
⋃Nt

k=1 Ik where Ik = [sk, sk+1] and sk+1 − sk = 1/Nt. Let

�k(s) = ϕ(sk) + (s− sk)ϕ
′(sk).
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Then for all s ∈ Ik we have

ϕ(s) = �k(s) +O(N−2
t )

and, arguing as in (4.4),

f
(r)
t ū(�k(s)) = u(O(N−1

t ))f
(r)
t ū(ϕ(s)).

Therefore for t sufficiently large we have∣∣∣∣ ∫ 1

0

ψ(f
(r)
t ū(ϕ(s))) ds −

Nt∑
k=1

∫
Ik

ψ(f
(r)
t ū(�k(s)))ds

∣∣∣∣ ≤ ε

4
.

The same holds for ψ(u(s̃)·) in place of ψ. Therefore to prove (4.5) it suffices

to show that for t sufficiently large

(4.7)

Nt∑
k=1

∫
Ik

|ψ(f (r)
t ū(�k(s))) − ψ(u(s̃, 0)f

(r)
t ū(�k(s)))| ds < ε

2
.

For 1 ≤ k ≤ Nt let s̃k = s̃e−(1+r1)t)ϕ′
1(sk)

−1. We have

(4.8)
u(s̃, 0)f

(r)
t ū(�k(s)) =f

(r)
t u(0,−s̃kϕ′

2(sk))ū(�k(s+ s̃k))

=u(0,−s̃ke(1+r2)t)f
(r)
t ū(�k(s+ s̃k)).

By the dominated convergence theorem and (4.8), to prove (4.7) it suffices to

show that for t sufficiently large

(4.9)

Nt∑
k=1

∫
Ik

|ψ(f (r)
t ū(�k(s)))− ψ(f

(r)
t ū(�k(s) + s̃k))| ds < ε

4
.

The left-hand side of (4.9) is

≤ Nt(2‖ψ‖sups̃e−(1+r1)t‖1/ϕ′
1‖sup) ≤ ε/4

by (4.6) as required.

Now we turn to the proof of (4.5) for general ν. We write ν = h(s) ds for some

nonnegative function h on [0, 1]. The case for ν = ds implies the case where h

is a characteristic function of open subsets. By approximating functions in L1

norm we get the results for characteristic functions and finally for any h.

Lemma 4.2: Any weak-* limit of (4.2) is a probability measure.

Proof. Since z([0, 1]) is relatively compact, it suffices to prove no escape of mass

replacing νr by (ū)∗ν. As in the proof of Lemma 3.1, we can reduce the problem

to the case that ν is the measure ds; then one uses [8, Proposition 2.3].
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Lemma 4.3: We have

1

T

∫ T

0

(f
(r)
t )∗νr dt→T→∞ m.

Proof. Let μ be a weak-* limit of (4.2). It is easy to see that μ is invariant

under F := {f (r)
t : t ∈ R}. It follows from Lemma 4.1 that μ is invariant under

the group U13. In view of Lemma 4.2 the measure μ is a probability measure.

Therefore Theorem 1.5 implies that μ = m. Since μ is an arbitrary weak-*

limit, the conclusion follows.

Proof of Theorem 1.4. If r1 
= r2, then the conclusion is contained in Lemma

4.3. Now we prove the case where r1 = r2 = 1/2. It suffices to show that given

ψ ∈ Cc(X) and ε > 0 one has

(4.10)

∣∣∣∣ 1T
∫ T

0

∫ 1

0

ψ(ftū(ϕ(s))) dν(s)dt −
∫
X

ψ dm

∣∣∣∣ < ε

for T sufficiently large. We first divide [0, 1] into finitely many closed intervals

{Ik : 1 ≤ k ≤ N} such that for any points s, s̃ ∈ Ik and any x ∈ X one has

(4.11) |ψ(z(s̃)−1z(s)x)− ψ(x)| < ε

2
.

Let sk be the left endpoint of the interval Ik. Since the matrices z(s) commute

with ft, we have

(4.12)

1

T

∫ T

0

∫ 1

0

ψ(ftū(ϕ(s))) dν(s)dt

=

N∑
k=1

1

T

∫ T

0

∫
Ik

ψ(z(s)−1z(sk)z(sk)
−1ftz(s)ū(ϕ(s))) dν(s)dt.

In view of (4.11) and (4.12), to prove (4.10) it suffices to show that for T

sufficiently large∣∣∣∣ 1T
∫ T

0

∫
Ik

ψ(z(sk)
−1ftz(s)ū(ϕ(s))) dν(s)dt − |Ik|

∫
X

ψ(z(sk)
−1x) dm

∣∣∣∣ < ε

2
.

This follows from Lemma 4.3 applied to the function x 	→ ψ(z(sk)x).

Proof of Theorem 1.2 and 1.6(ii). Follows from Theorem 1.4 and Proposition

3.3.
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5. Some examples

In this section we give some examples which explain the necessity of conditions

which appear in our theorems.

5.1. Examples for Theorem 1.5. All of the conditions of Theorem 1.5 are

necessary for its validity. The following examples illustrate two of them which

are not obvious to see.

First we show that the assumption that F has no nonzero invariant vectors

in R3 is necessary. We can embed SL2(R) � R
2 into G so that it induces an

embedding of

Y = (SL2(R)�R
2)/(SL2(Z)� Z

2)

into X . An example of such an embedding is the map τ which sends (g,v)

to ( g v
0 1 ) where g ∈ SL2(R) and v ∈ R2. Let μ1 be the standard probability

measure on Y induced by the haar measure on SL2(R) � R
2 and let μ be its

image under the map above. Then μ is clearly invariant under the group

F ′ := τ(F )

and also under

U ′ := τ({(I2, (s, 0)tr) : s ∈ R}),
where I2 is the identity in SL2(R). Then F

′ normalizes U ′, F ′U ′ is not abelian,
and the conclusion of Theorem 1.5 does not hold, as the existence of μ shows.

In fact there are F ′U ′-invariant ergodic measures on X which are not even

homogeneous. Indeed, it is well known that there are uncountably many F ′ in-
variant and ergodic nonhomogeneous probability measures on SL2(R)/ SL2(Z).

For each such measure ν, integrating along the fiber of Y → SL2(R)/ SL2(Z)

constructs a measure ν′ on Y which is not homogeneous. The image of any

such measure under τ will be a measure on X which is F ′U ′-invariant and not

homogeneous.

Next we show that the theorem is not true for X4 := SL4(R)/ SL4(Z). We

are grateful to Elon Lindenstrauss for pointing out this example, which relies

on some results of [10]. Let

(5.1) H ′ :=

⎛⎜⎜⎜⎝
∗ ∗ 0 0

∗ ∗ 0 0

0 0 ∗ ∗
0 0 ∗ ∗

⎞⎟⎟⎟⎠ ⊂ SL4(R).
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In [10] it was shown, using number fields of degree 4 containing subfields of

degree 2, how to find x ∈ X4 such that H ′x is closed and admits a finite H ′-
invariant measure m′. Let

F := {diag(e3t, et, e−t, e−3t)} and U := U12.

Then clearly F,U satisfy the conditions of Theorem 1.5, and m′ is FU -invariant

but not SL4(R)-invariant.

5.2. Example for Theorem 1.1. The goal of this subsection is to show that

Theorem 1.1 does not extend to n = 3. In fact, we prove:

Theorem 5.1: There is a line segment L ⊂ R3 which contains a badly approx-

imable vector, such that every point in L admits an improvement in Dirichlet’s

theorem.

The proof is an elaboration on the construction in §5.1, and also uses a result

of Hajós, which we now state. For a permutation σ of {1, . . . , n}, let U+
σ denote

the group generated by {Uσ(i)σ(j) : i < j}; that is, the conjugate of the upper

triangular group by the permutation matrix corresponding to σ.

Theorem 5.2 (Hajós): Let Xn be the space of unimodular lattices in Rn and

let Λ ∈ X such that Λ contains no nonzero points in the interior of the unit

cube. Then there is σ such that Λ ∈ U+
σ Z

n.

Note that each of the orbits U+
σ Z

n is compact; thus, recalling that ‖·‖ denotes

the sup-norm, if we set

Kε := {Λ ∈ Xn : ∀v ∈ Λ� {0}, ‖v‖ ≥ ε}
then Theorem 5.2 says that K1 is a finite union of compact orbits of the groups

U+
σ .

We will also need [9, Prop. 2.1]. We extend the notation (1.1) and (2.2) to

arbitrary dimension n ≥ 2 in the obvious way.

Proposition 5.3: The vector v ∈ Rn admits no improvement in Dirichlet’s

theorem if and only if there is tn → ∞ such that limn→∞ ftn ū(v) exists and

belongs to K1.

Let G = SL4(R), X = X4, H = H ′ as in (5.1) and π : G→ X be the natural

quotient map. In [10] it was shown that there are x ∈ X for whichHx is a closed

orbit of finite volume. We will need the following well-known strengthening:
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Proposition 5.4: There is a dense set of x ∈ X such that Hx is closed of

finite volume, and {ftx : t ≥ 0} is bounded.

Proof. As shown in [10], there are x0 ∈ X for which Hx0 is closed and Ax0

is compact, where A is the group of diagonal matrices in G. Thus x0 clearly

satisfies the required conclusions. Now write x0 = π(g0) and let g ∈ G(Q),

x := π(g0g). The set of such x is dense since G(Q) is dense in G, and we claim

that x also satisfies the required conclusions; equivalently, if we set Γ = SL4(Z),

Γ′ := gΓg−1, that Hg0Γ
′ and {ftg0Γ′ : t ≥ 0} are bounded in G/Γ′. Since g is

in the commensurator of Γ, there is a finite-index subgroup Γ0 of Γ such that

the maps τ1 : G/Γ0 → G/Γ, τ2 : G/Γ0 → G/Γ′ are G-equivariant and proper.

Since x ∈ τ2(τ
−1
1 (x0)), the conclusion follows.

Proof of Theorem 5.1. Let

P :=

⎛⎜⎜⎜⎝
∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ ∗

⎞⎟⎟⎟⎠ ⊂ G.

Then

(5.2) P = {p ∈ G : {ftpf−t : t ≥ 0} is bounded in G}.
This implies that if p ∈ P and x ∈ X then, for t ≥ 0, the distance between ftpx

and ftx is bounded (independently of t). Also let

Q :=

⎛⎜⎜⎜⎝
∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

0 0 0 ∗

⎞⎟⎟⎟⎠ ∼= GL3(R) ⊂ G.

There is a projection q : P → Q obtained by identifying Q with the quotient of

P by its unipotent radical, or more concretely, by replacing the (41), (42), (43)

matrix entries by 0. A simple calculation in matrix conjugation shows that for

all p ∈ P ,

(5.3) q(p) = lim
t→+∞ ftpf−t.

Let

U = {u(v) : v ∈ R3} = 〈U14, U24, U34〉 ∼= R3.
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Then the set PU is open and dense in G. Let

D := {g ∈ PU : Hπ(g) is closed, {ftπ(g) : t ≥ 0} bounded}.
According to Proposition 5.4, D is dense in PU . Let

g = pu(v0) ∈ PU

for some v0 ∈ R3 and p ∈ P . If g ∈ D, then (5.2) implies that {ftπ(g) : t ≥ 0}
and {ftπ(u(v0)) : t ≥ 0} are both bounded and hence v0 is badly approximable.

Now define us = exp(sE34) ∈ H ∩ U and consider the formula

(5.4) usp = p(s)−1ũ(s).

Note that p(s), ũ(s) depend on p and hence on g, but we omit this dependence

to simplify notation.

We will show that there is g ∈ D, and an open interval I containing 0 such

that:

(i) For all s ∈ I, (5.4) has unique solutions p(s) ∈ P , ũ(s) ∈ U .

(ii) There is w ∈ R3 � {0} such that ũ(s) = u(τ(s)w), where τ(s) is a

non-constant rational function of s; that is L0 = {u−1 ◦ ũ(s) : s ∈ I} is

a smooth parameterization of a line segment in R3.

(iii) For any s ∈ I � {0}, K1 ∩ q(s)Hx = ∅, where

q(s) := q(p(s)).

For any s ∈ I such that K1∩q(s)Hx = ∅, there is no tn → ∞ for which

the sequence (ftn ũ(s)ū(v0))n∈N
converges to an element of K1.

First we explain why the theorem follows from (i)–(iv). Consider

L := v0 + L0 = {�(s) : s ∈ I}, where �(s) := v0 + τ(s)w.

According to (i), (ii) this is a nontrivial line segment in R3, and we need to

show that �(s) admits an improvement in Dirichlet’s theorem for every s ∈ I.

For s = 0, this follows from the fact that �(0) = v0 is badly approximable using

[5]. By (iii), for all s ∈ I � {0} we have K1 ∩ q(s)Hx = ∅. Then, according to

(iv), for such points we have

ū(�(s)) = u(τ(s)w)ū(v0) = ũ(s)ū(v0),

and so, according to Proposition 5.3, �(s) admits an improvement in Dirichlet’s

theorem.
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We turn to the proof of (i)–(iv). In view of Proposition 5.4 it suffices to show

that there exists a nonempty open subset of PU such that any element g in the

intersection of D and this open subset satisfies (i)–(iv) for some interval I.

Let pij denote the matrix entries of p. Then we have

usp =

⎛⎜⎜⎜⎝
p11 p12 p13 0

p21 p22 p23 0

p31 + sp41 p32 + sp42 p33 + sp43 sp44

p41 p42 p43 p44

⎞⎟⎟⎟⎠ .

The top left 3× 3 block of a product p(s)−1ũ(s) is the same as that of p(s)−1.

It follows that

q(s) =

(
a(s) 0

0 b(s)

)
with a(s) = b(s)

⎛⎜⎝a11(s) a12(s) a13

a21(s) a22(s) a23

a31(s) a32(s) a33

⎞⎟⎠ ,

where b(s)−1 is the determinant of the top left 3×3 matrix of usp, ai1(s), ai2(s)

are affine functions of s and ai3 are constants. Also

ũ(s) = a(0, 0, sp44)
tr = sb(s)p44(a13, a23, a33)

tr.

It follows that for any element of PU there exists an interval I of R such that

(i) and (ii) hold.

For any σ let u+σ denote the Lie algebra of U+
σ and let h denote the Lie algebra

of H . We claim that the set S of elements g ∈ PU such that

(5.5) for any σ, q′(0)q(0)−1 /∈ u+σ +Ad(q(0))(h)

is a nonempty open subset. Assume the claim; then there exists g ∈ D such

that (5.5) holds. Recall that

K1 =
⋃
σ

U+
σ Z

n,

that is, a finite union of compact 6-dimensional manifolds, each of which is a U+
σ -

orbit. Also the orbit Hπ(g) is a 7-dimensional manifold, and q(s)Hπ(g) is thus

a closed q(s)Hq(s)−1-orbit. If q(0)Hπ(g) intersects K1 at a point x, then (5.5)

implies that the application of q(s) for small nonzero s maps a neighborhood

of x in q(0)Hπ(g) away from K1. Since K1 is compact, q(s)Hπ(g) and K1 are

disjoint, and (iii) follows. By (5.4), ũ(s)ū(v0) = ũ(s)p−1π(g) = p(s)usπ(g).
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If tn → ∞ and the sequence (ftnp(s)usπ(g))n≥1 converges, then by (5.3),

lim
n→∞ ftnp(s)usπ(g) = lim

n→∞ ftnp(s)f−tnftnusπ(g)

= lim
n→∞ q(s)ftnusx ∈ q(s)Hπ(g).

Thus (iv) follows from (iii).

It remains to prove the claim. It is easy to see that the set S is open. So we

only need to show that it is nonempty. We will show that there exists g ∈ S
such that p is equal to ⎛⎜⎜⎜⎝

1 0 1 0

0 1 1 0

0 0 1 0

x y z 1

⎞⎟⎟⎟⎠ ,

for an appropriate choice of x, y, z. Expressing q(s)−1 using (5.4), and taking

the derivative with respect to s in the equation

q(s)q(s)−1 = e,

yields

(5.6) q′(0)q(0)−1 =

⎛⎜⎜⎜⎝
x y z 0

x y z 0

−x −y −z 0

0 0 0 z − x− y

⎞⎟⎟⎟⎠ .

Computing explicitly the adjoint representation for p we obtain

(5.7) Ad(q(0))

⎛⎜⎜⎜⎝
a b 0 0

c d 0 0

0 0 e f

0 0 g h

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
a b −a− b+ e f

c d −c− d+ e f

0 0 e f

0 0 g h

⎞⎟⎟⎟⎠ .

That is, an element of Ad(q(0))(h) can be written as the right-hand side of

(5.6), for an appropriate choice of a, b, c, d, e, f, g, h (with a+ d+ e+ h = 0).

We will show that for each σ, the failure of (5.5) leads to a nontrivial linear

relation among the x, y, z. So taking x, y, z which do not solve these finitely

many linear relations forces (5.5). For instance, if E31 /∈ u+σ , then examining

the (31) entry in (5.6) and (5.7) leads to x = 0. Similarly E32 /∈ u+σ leads to

y = 0. For a more interesting case consider the case when both E12, E13 do

not belong to u+σ . From two of the diagonal entries in (5.6), (5.7) we obtain

a = x, e = −z. From the (12) entry we obtain b = y, and from the (13) entry
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we find −a − b + e = z. We have four linear equations for the three variables

a, b, e, and they only have a solution when 0 = x+y+2z. This is the sought-for

linear relation.

By similar arguments one deals with the case when both E21, E23 are not in

u+σ , and since for each σ one of the two elements E12, E21 is contained in u+σ ,

these cases cover all possibilities. This concludes the proof.
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