RADEMACHER FUNCTIONS IN WEIGHTED SYMMETRIC SPACES

BY

SERGEY ASTASHKIN^{*}

Department of Mathematics and Mechanics, Samara State University, Acad. Pavlova 1, 443011, Samara, Russian Federation

and

Samara State Aerospace University (SSAU), Moskovskoye shosse 34, 443086, Samara, Russian Federation e-mail: astash@samsu.ru

ABSTRACT

The closed span of Rademacher functions is investigated in the weighted spaces $X(w)$, where X is a symmetric space on [0, 1] and w is a positive measurable function on [0*,* 1]. By using the notion and properties of the Rademacher multiplicator space of a symmetric space, we give a description of the weights *w* for which the Rademacher orthogonal projection is bounded in $X(w)$.

1. Introduction

We recall that the Rademacher functions on [0,1] are defined by $r_k(t) = \text{sign}(\sin 2^k \pi t)$ for every $t \in [0,1]$ and each $k \in \mathbb{N}$. It is well known that ${r_k}$ is an incomplete orthogonal system of independent random variables. This system plays a prominent role in the modern theory of Banach spaces and operators (see, e.g., [11], [12], [17] and [19]).

Received August 5, 2015 and in revised form February 29, 2016

[∗] This work was supported by the Ministry of Education and Science of the Russian Federation.

372 S. ASTASHKIN Isr. J. Math.

A classical result of Rodin and Semenov [20] states that the sequence ${r_k}$ is equivalent in a symmetric space X to the unit vector basis in ℓ_2 , i.e.,

(1)
$$
\Big\| \sum_{k=1}^{\infty} a_k r_k \Big\|_X \asymp \Big(\sum_{k=1}^{\infty} |a_k|^2 \Big)^{1/2}, \quad (a_k) \in \ell_2,
$$

if and only if $G \subset X$, where G is the closure of $L_{\infty}[0,1]$ in the Zygmund space Exp $L^2[0, 1]$. When this condition is satisfied, the span $[r_k]$ of Rademacher functions is complemented in X if and only if $X \subset G'$, where the Köthe dual space G' to G coincides (with equivalence of norms) with another well-known Zygmund space $L \log^{1/2} L[0, 1]$. This was proved independently by Rodin and Semenov [21] and Lindenstrauss and Tzafriri [15, Theorem 2.b.4, pp. 134–138]. Moreover, the condition $G \subset X \subset G'$ (equivalently, complementability of $[r_k]$) in X) is equivalent to the boundedness in X of the orthogonal projection

(2)
$$
Pf(t) := \sum_{k=1}^{\infty} c_k(f)r_k(t),
$$

where $c_k(f) := \int_0^1 f(u) r_k(u) du$, $k = 1, 2, \ldots$. The main purpose of this paper is to investigate the behaviour of Rademacher functions and of the respective projection P in the *weighted spaces* $X(w)$ consisting of all measurable functions f such that $fw \in X$ with the norm $||f||_{X(w)} := ||fw||_X$. Here, X is a symmetric space on $[0, 1]$ and w is a positive measurable function on $[0, 1]$. We make use of the notion of the Rademacher multiplicator space $\mathcal{M}(X)$ of a symmetric space X , which originally arose from the study of vector measures and scalar functions integrable with respect to them (see [8] and [10]). For the first time a connection between the space $\mathcal{M}(X)$ and the behavior of Rademacher functions in the weighted spaces $X(w)$ was observed in [6] when proving a weighted version of inequality (1) (under more restrictive conditions in the case of L_p -spaces it was proved in [23]).

To ensure that the operator P is well defined, we have to guarantee that the Rademacher functions belong both to $X(w)$ and to its Köthe dual space $(X(w))' = X'(1/w)$. For this reason, in what follows we assume that

$$
(3) \tL_{\infty} \subset X(w) \subset L_1.
$$

This assumption allows us to find necessary and sufficient conditions on the weight w under which the orthogonal projection P is bounded in the weighted space $X(w)$. Moreover, extending the above mentioned result of Rodin and

Semenov from [20] to the *weighted* symmetric spaces, we show that, in contrast to the symmetric spaces, the embedding $X(w) \supset G$ is a stronger condition, in general, than equivalence of the sequence of Rademacher functions in $X(w)$ to the unit vector basis in ℓ_2 . In the final part of the paper, answering a question from [10], we present a concrete example of a function $f \in \mathcal{M}(L_1)$, which does not belong to the symmetric kernel of the latter space.

2. Preliminaries

Let E be a Banach function lattice on $[0, 1]$, i.e., if x and y are measurable a.e. finite functions on [0, 1] such that $x \in E$ and $|y| \leq |x|$, then $y \in E$ and $||y||_E \le ||x||_E$. The *Köthe dual* of E is the Banach function lattice E' of all functions y such that $\int_0^1 |x(t)y(t)| dt < \infty$, for every $x \in E$, with the norm

$$
||y||_{E'} := \sup \Big\{ \int_0^1 x(t)y(t) dt : x \in E, ||x||_E \le 1 \Big\};
$$

E' is a subspace of the topological dual E^* . If E is separable we have $E' = E^*$. A Banach function lattice E has the *Fatou property*, if from $0 \leq x_n \nearrow x$ a.e. on [0, 1] and $\sup_{n\in\mathbb{N}}||x_n||_E<\infty$ it follows that $x\in E$ and $||x_n||_E\nearrow ||x||_E$.

Suppose that a Banach function lattice E satisfies $E \supset L_{\infty}$. By E_{\circ} we will denote the closure of L_{∞} in E. Clearly, E_{\circ} contains the *absolutely continuous part* of E, that is, the set of all functions $x \in E$ such that $\lim_{m(A) \to 0} ||x \cdot \chi_A||_E = 0$. Here and subsequently, m is the Lebesgue measure on [0, 1] and χ_A is the characteristic function of a set $A \subset [0,1]$.

Throughout the paper a *symmetric (or rearrangement invariant) space* X is a Banach space of classes of measurable functions on [0,1] such that from the conditions $y^* \leq x^*$ and $x \in X$ it follows that $y \in X$ and $||y||_X \leq ||x||_X$. Here, x^* is the decreasing rearrangement of x, that is, the right continuous inverse of its distribution function: $n_x(\tau) = m\{t \in [0,1] : |x(t)| > \tau\}$. Functions x and y are said to be *equimeasurable* if $n_x(\tau) = n_y(\tau)$, for all $\tau > 0$. The *Köthe dual* X' is a symmetric space whenever X is symmetric. In what follows we assume that X is isometric to a subspace of its second Köthe dual $X'' := (X')'$. In particular, this holds if X is separable or it has the Fatou property. For every symmetric space X the following continuous embeddings hold: $L_{\infty} \subset X \subset L_1$. If X is a symmetric space, $X \neq L_{\infty}$, then X_{\circ} is a separable symmetric space.

374 S. ASTASHKIN Isr. J. Math.

Important examples of symmetric spaces are Marcinkiewicz, Lorentz and Orlicz spaces. Let $\varphi: [0, 1] \to [0, +\infty)$ be a *quasi-concave function*, that is, φ increases, $\varphi(t)/t$ decreases and $\varphi(0) = 0$. The *Marcinkiewicz space* $M(\varphi)$ is the space of all measurable functions x on [0,1] satisfying the condition

$$
||x||_{M(\varphi)} = \sup_{0 < t \le 1} \frac{\varphi(t)}{t} \int_0^t x^*(s) \, ds < \infty.
$$

If $\varphi: [0,1] \to [0,+\infty)$ is an increasing concave function, $\varphi(0) = 0$, then the *Lorentz space* $\Lambda(\varphi)$ consists of all measurable functions x on [0,1] such that

$$
||x||_{\Lambda(\varphi)} = \int_0^1 x^*(s) \, d\varphi(s) < \infty.
$$

For an arbitrary increasing concave function φ we have $\Lambda(\varphi)' = M(\tilde{\varphi})$ and $M(\varphi)' = \Lambda(\tilde{\varphi})$, where $\tilde{\varphi}(t) := t/\varphi(t)$ [14, Theorems II.5.2 and II.5.4].

Let M be an *Orlicz function*, that is, an increasing convex function on $[0, \infty)$ with $M(0) = 0$. The norm of the *Orlicz space* L_M is defined as

$$
||x||_{L_M} = \inf \left\{ \lambda > 0 : \int_0^1 M\left(\frac{|x(s)|}{\lambda}\right) ds \le 1 \right\}.
$$

In particular, if $M(u) = u^p$, $1 \le p < \infty$, we have $L_M = L_p$ isometrically. Next, by $||f||_p$ we denote the norm $||f||_{L_p}$.

The *fundamental function* of a symmetric space X is the function $\phi_X(t) := \|\chi_{[0,t]}\|_X$. In particular, we have $\phi_{M(\varphi)}(t) = \phi_{\Lambda(\varphi)}(t) = \varphi(t)$, and $\phi_{LM}(t)=1/M^{-1}(1/t)$, respectively. The Marcinkiewicz $M(\varphi)$ and Lorentz $\Lambda(\varphi)$ spaces are, respectively, the largest and the smallest symmetric spaces with the fundamental function φ , that is, if the fundamental function of a symmetric space X is equal to φ , then $\Lambda(\varphi) \subset X \subset M(\varphi)$.

If ψ is a positive function defined on [0,1], then its lower and upper dilation indices are

$$
\gamma_{\psi} := \lim_{t \to 0^+} \frac{\log\left(\sup_{0 < s \le 1} \frac{\psi(st)}{\psi(s)}\right)}{\log t} \quad \text{and} \quad \delta_{\psi} := \lim_{t \to +\infty} \frac{\log\left(\sup_{0 < s \le 1/t} \frac{\psi(st)}{\psi(s)}\right)}{\log t},
$$

respectively. We always have $0 \leq \gamma_{\psi} \leq \delta_{\psi} \leq 1$.

In the case when $\delta_{\varphi} < 1$, the norm in the Marcinkiewicz space $M(\varphi)$ satisfies the equivalence

$$
||x||_{M(\varphi)} \asymp \sup_{0 < t \le 1} \varphi(t)x^*(t)
$$

[14, Theorem II.5.3]. Here, and throughout the paper, the notation $A \simeq B$ means that there exist constants $C > 0$ and $c > 0$ independent of all or of a part of arguments of functions (quasi-norms) A and B such that $c \cdot A \leq B \leq C \cdot A$.

The Orlicz spaces L_{N_p} , $p > 0$, where N_p is an Orlicz function equivalent to the function $\exp(t^p)-1$, will be of major importance in our study. Usually these are referred to as Zygmund spaces and denoted by $Exp L^p$. The fundamental function of Exp L^p is equivalent to the function $\varphi_p(t) = \log^{-1/p}(e/t)$. Since $N_p(u)$ increases at infinity very rapidly, Exp L^p coincides with the Marcinkiewicz space $M(\varphi_p)$ [16]. This, together with the equality $\delta_{\varphi_p} = 0 < 1$, gives

$$
||x||_{\text{Exp }L^p} \asymp \sup_{0 < t \le 1} x^*(t) \log^{-1/p}(e/t).
$$

In particular, for every $x \in \text{Exp } L^p$ and $0 < t \leq 1$ we have

(4)
$$
x^*(t) \leq C \|x\|_{\exp L^p} \log^{1/p}(e/t).
$$

Hence, for a symmetric space X, the embedding $Exp L^p \subset X$ is equivalent to the condition $\log^{1/p}(e/t) \in X$.

Recall that the Rademacher functions are $r_k(t) := \text{sign} \sin(2^k \pi t), t \in [0, 1],$ $k \geq 1$. The famous Khintchine inequality [13] states that, for every $1 \leq p < \infty$, the sequence $\{r_k\}$ is equivalent in L_p to the unit vector basis in ℓ_2 . As was mentioned in the introduction, Rodin and Semenov [20] extended this result to the class of symmetric spaces showing that equivalence (1) holds in a symmetric space X if and only if $G \subset X$, where $G = (\text{Exp } L^2)_{\text{o}}$. Next, we will repeatedly use the Khintchine L_1 -inequality from [22] with optimal constants:

(5)
$$
\frac{1}{\sqrt{2}} \|(a_k)\|_{\ell_2} \le \Big\| \sum_{k=1}^{\infty} a_k r_k \Big\|_1 \le \|(a_k)\|_{\ell_2},
$$

where $\|(a_k)\|_{\ell_2} := (\sum_{k=1}^{\infty} a_k^2)^{1/2}$ (next, we consider real scalars; however, all results of the paper are valid also in the complex case).

The *Rademacher multiplicator space* of a symmetric space X is the space $\mathcal{M}(X)$ of all measurable functions $f: [0,1] \to \mathbb{R}$ such that $f \cdot \sum_{k=1}^{\infty} a_k r_k \in X$, for every Rademacher sum $\sum_{k=1}^{\infty} a_k r_k \in X$. It is a Banach function lattice on [0, 1] when endowed with the norm

$$
||f||_{\mathcal{M}(X)} = \sup \{ ||f \cdot \sum_{k=1}^{\infty} a_k r_k ||_X : || \sum_{k=1}^{\infty} a_k r_k ||_X \le 1 \}.
$$

Here, $\mathcal{M}(X)$ can be viewed as the space of operators given by multiplication by a measurable function, which are bounded from the subspace $[r_k]$ in X into the whole space X .

The Rademacher multiplicator space $\mathcal{M}(X)$ was first considered in [9], where it was shown that for a broad class of classical symmetric spaces X the space $\mathcal{M}(X)$ is not symmetric. This result was extended in [3] to include all symmetric spaces such that the lower dilation index γ_{φ_X} of their fundamental function φ_X is positive. This result motivated the study of the symmetric kernel $Sym(X)$ of the space $\mathcal{M}(X)$. The space Sym (X) consists of all functions $f \in \mathcal{M}(X)$ such that an arbitrary function g, equimeasurable with f, belongs to $\mathcal{M}(X)$ as well. The norm in $Sym(X)$ is defined as

$$
||f||_{\text{Sym}(X)} = \sup ||g||_{\mathcal{M}(X)},
$$

where the supremum is taken over all g equimeasurable with f . From the definition it follows that $Sym(X)$ is the largest symmetric space embedded into $\mathcal{M}(X)$. Moreover, if X is a symmetric space such that $X'' \supseteq E \times L^2$, then

$$
||f||_{\text{Sym}(X)} \asymp ||f^*(t)\log^{1/2}(e/t)||_{X''}
$$

(see [5, Proposition 3.1 and Corollary 3.2]). The opposite situation is when the Rademacher multiplicator space $\mathcal{M}(X)$ is symmetric. The simplest case of this situation is when $\mathcal{M}(X) = L_{\infty}$. It was shown in [4] that $\mathcal{M}(X) = L_{\infty}$ if and only if $\log^{1/2}(e/t) \notin X_{\circ}$. Regarding the case when $\mathcal{M}(X)$ is a symmetric space different from L_{∞} , see the paper [5].

We will denote by Δ_n^k the dyadic intervals of [0,1], that is, $\Delta_n^k = [(k-1)2^{-n}, k2^{-n}]$, where $n = 0, 1, ..., k = 1, ..., 2^n$; we say that Δ_n^k has *rank* n. For any undefined notions we refer the reader to the monographs [7], [14], [15].

3. Rademacher sums in weighted spaces

First, we find necessary and sufficient conditions on the symmetric space X , under which there is a weight w such that the sequence of Rademacher functions spans ℓ_2 in $X(w)$. We prove the following refinement of the nontrivial part of the above mentioned Rodin–Semenov Theorem.

Proposition 3.1: *For every symmetric space* X *the following conditions are equivalent:*

(i) there exists a set $D \subset [0,1]$ of positive measure such that

(6)
$$
\Big\|\sum_{k=1}^{\infty}a_kr_k\cdot\chi_D\Big\|_X\leq M\|(a_k)\|_{\ell_2},
$$

for some $M > 0$ *and arbitrary* $(a_k) \in \ell_2$; (ii) $X \supset G$.

Proof. Since the implication (ii) \Rightarrow (i) is an immediate consequence of the fact that the sequence $\{r_k\}$ spans ℓ_2 in the space G (see [18] or [24, Theorem V.8.16]), we need to prove only that (i) implies (ii).

Assume that (6) holds. By Lebesgue's density theorem, for sufficiently large $m \in \mathbb{N}$, we can find a dyadic interval $\Delta := \Delta_m^{k_0} = [(k_0 - 1)2^{-m}, k_0 2^{-m}]$ such that

$$
2^{-m} = m(\Delta) \ge m(\Delta \cap D) > 2^{-m-1}.
$$

Let us consider the set $E = \bigcup_{k=1}^{2^m} E_m^k$, where E_m^k is obtained by translating the set $\Delta \cap D$ to the interval Δ_m^k , $k = 1, 2, ..., 2^m$ (in particular, $E_m^{k_0} = \Delta \cap D$). Denote $f_i = r_i \cdot \chi_E$, $i \in \mathbb{N}$. It follows easily that $|f_i(t)| \leq 1$, $t \in [0, 1]$, $||f_i||_2 \geq 1/\sqrt{2}$, and $f_i \to 0$ weakly in $L_2[0,1]$ when $i \to \infty$. Therefore, by [1, Theorem 5], the sequence $\{f_i\}_{i=1}^{\infty}$ contains a subsequence $\{f_{i_j}\}\$, which is equivalent in distribution to the Rademacher system. This means that there exists a constant $C > 0$ such that

$$
C^{-1}m\bigg\{t\in[0,1]:\Big|\sum_{j=1}^{l}a_jr_j(t)\Big|>Cz\bigg\}\leq m\bigg\{t\in[0,1]:\Big|\sum_{j=1}^{l}a_jf_{i_j}(t)\Big|>z\bigg\}
$$

$$
\leq Cm\bigg\{t\in[0,1]:\Big|\sum_{j=1}^{l}a_jr_j(t)\Big|>C^{-1}z\bigg\}
$$

for all $l \in \mathbb{N}$, $a_j \in \mathbb{R}$, and $z > 0$. Hence, by the definition of r_j and f_j , for every $n \in \mathbb{N}$ we have

$$
C^{-1}m\bigg\{t\in[0,1]:\Big|\sum_{j=m+1}^{m+n}r_j(t)\chi_{[0,2^{-m}]}(t)\Big|>Cz\bigg\}
$$

$$
\leq m\bigg\{t\in[0,1]:\Big|\sum_{j=m+1}^{m+n}f_{i_j}(t)\chi_{\Delta}(t)\Big|>z\bigg\}
$$

$$
\leq Cm\bigg\{t\in[0,1]:\Big|\sum_{j=m+1}^{m+n}r_j(t)\chi_{[0,2^{-m}]}(t)\Big|>C^{-1}z\bigg\},\bigg\}
$$

whence

(7)
$$
\Big\| \sum_{j=m+1}^{m+n} r_{i_j} \chi_{\Delta \cap D} \Big\|_X \ge \alpha \Big\| \sum_{j=m+1}^{m+n} r_j \chi_{[0,2^{-m}]} \Big\|_X,
$$

where $\alpha > 0$ depends only on the constant C and on the space X.

Now, assume that (ii) fails, i.e., $X \not\supset G$. Then, by [4, inequality (2) in the proof of Theorem 1, there exists a constant $\beta > 0$, depending only on X, such that for every $m \geq 0$ there exists $n_0 \geq 1$ such that, if $n \geq n_0$ and Δ' is an arbitrary dyadic interval of rank m, we have

$$
\left\|\chi_{\Delta'}\sum_{i=m+1}^{m+n} r_i\right\|_X \geq \beta \left\|\sum_{i=1}^n r_i\right\|_X.
$$

From this inequality with $\Delta' = [0, 2^{-m}]$ and inequality (7) it follows that, for n large enough,

$$
\Big\| \sum_{j=m+1}^{m+n} r_{i_j} \chi_D \Big\|_X \ge \Big\| \sum_{j=m+1}^{m+n} r_{i_j} \chi_{\Delta \cap D} \Big\|_X \ge \alpha \beta \Big\| \sum_{j=1}^n r_j \Big\|_X.
$$

Combining the latter inequality together with (6) we deduce

$$
\frac{1}{\sqrt{n}} \Big\| \sum_{j=1}^{n} r_j \Big\|_X \le \frac{M}{\alpha \beta}
$$

for all $n \in \mathbb{N}$ large enough. At the same time, as follows from the proof of the Rodin–Semenov Theorem in [20], the last condition is equivalent to the embedding $X \supset G$. This contradiction concludes the proof.

COROLLARY 3.1: *Suppose* X *is a symmetric space. Then,* $X \supset G$ *if and only if there exists a weight* w *such that the sequence* $\{r_k\}$ *spans* ℓ_2 *in* $X(w)$ *.*

Proof. If $\{r_k\}$ spans ℓ_2 in $X(w)$ for some weight w, we have

$$
\Big\|\sum_{k=1}^{\infty}a_kr_k\cdot w\Big\|_X\leq C\|(a_k)\|_{\ell_2}.
$$

Since $w(t) > 0$ a.e. on [0, 1], there is a set $D \subset [0, 1]$ of positive measure such that inequality (6) holds for some $M > 0$ and arbitrary $(a_k) \in \ell_2$. Applying Proposition 3.1, we obtain that $X \supset G$. The converse is obvious, and so the proof is completed.

Corollary 3.1 shows the necessity of the condition $X \supset G$ in the following main result of this part of the paper.

THEOREM 3.1: Let X be a symmetric space such that $X \supset G$ and let a positive *measurable function* w *on* [0, 1] *satisfy condition* (3)*. Then we have:*

- (i) the sequence $\{r_k\}$ spans ℓ_2 in $X(w)$ if and only if $w \in \mathcal{M}(X)$, where $\mathcal{M}(X)$ is the Rademacher multiplicator space of X;
- (ii) $X(w) \supset G$ *if and only if* $w \in \text{Sym}(X)$, where $\text{Sym}(X)$ *is the symmetric kernel of* $\mathcal{M}(X)$ *.*

Part (i) of this theorem was actually obtained in [6, p. 240]. However, for the reader's convenience we provide here its proof. But we begin with the following technical result, which will be needed to prove part (ii).

Lemma 3.1: *Let* Y *be a symmetric space and let* w *be a positive measurable function on* [0, 1]. *Suppose the weighted function lattice* $Y(w^*)$ *contains an unbounded decreasing positive function* a *on* $(0, 1]$ *. Then* $(Y(w))_0 = Y_0(w)$ *.*

Proof. Since $(wa)^*(t) \leq w^*(t/2)a(t/2), 0 < t \leq 1$, [14, § II.2] and, by assumption, $w^*a \in Y$, we have $wa \in Y$. Equivalently, $a \in Y(w)$.

Let $y \in (Y(w))_0$. By definition, there is a sequence $\{y_k\} \subset L_\infty$ such that

(8)
$$
\lim_{k \to \infty} ||y_k w - yw||_Y = 0.
$$

Since a decreases, for arbitrary $A \subset [0,1]$ and every (fixed) $k \in \mathbb{N}$ we have

$$
||y_k w \chi_A||_Y \le ||y_k||_{\infty} ||w^* \chi_{(0,m(A))}||_Y \le \frac{||y_k||_{\infty}}{a(m(A))} ||w^* a||_Y.
$$

Noting that the right hand side of this inequality tends to 0 as $m(A) \to \infty$, we get

$$
\lim_{m(A)\to 0} \|y_k w \chi_A\|_Y = 0,
$$

whence $y_k w \in Y_\circ$, $k \in \mathbb{N}$. Combining this with (8) , we infer that $yw \in Y_\circ$ or, equivalently, $y \in Y_0(w)$.

To prove the opposite embedding, assume that $y \in Y_0(w)$. Then

(9)
$$
\lim_{k \to \infty} ||y_k - yw||_Y = 0
$$

for some sequence $\{y_k\} \subset L_\infty$. From the hypothesis of the lemma it follows that $Y \neq L_{\infty}$. Therefore, for arbitrary $A \subset [0,1]$ and each $k \in \mathbb{N}$

$$
||y_k/w \cdot \chi_A||_{Y(w)} = ||y_k \chi_A||_Y \to 0 \text{ as } m(A) \to 0.
$$

Hence, $y_k/w \in (Y(w))_0, k \in \mathbb{N}$. Since $||y_k/w - y||_{Y(w)} = ||y_k - yw||_Y$, from (9) it follows that $y \in (Y(w))_o$.

Proof of Theorem 3.1. (i) Since $X \supset G$, equivalence (1) holds. At first, assume that $w \in \mathcal{M}(X)$. Then, by definition of the norm in $\mathcal{M}(X)$, we have

(10)
$$
||w||_{\mathcal{M}(X)} \approx \sup \{ ||w \cdot \sum_{k=1}^{\infty} a_k r_k ||_X : ||(a_k)||_{\ell_2} \le 1 \}.
$$

Therefore,

$$
\Big\| \sum_{k=1}^{\infty} a_k r_k \Big\|_{X(w)} = \Big\| w \cdot \sum_{k=1}^{\infty} a_k r_k \Big\|_{X} \leq C \|w\|_{\mathcal{M}(X)} \| (a_k) \|_{\ell_2}
$$

for every $(a_k) \in \ell_2$. On the other hand, from embeddings (3) and inequality (5) it follows that

$$
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{X(w)} \ge c \left\| \sum_{k=1}^{\infty} a_k r_k \right\|_1 \ge \frac{c}{\sqrt{2}} \| (a_k) \|_{\ell_2}.
$$

As a result we deduce that $\{r_k\}$ spans ℓ_2 in $X(w)$.

Conversely, if

$$
\Big\|\sum_{k=1}^{\infty}a_kr_k\Big\|_{X(w)}\asymp \|(a_k)\|_{\ell_2},
$$

from (10) we obtain that $||w||_{\mathcal{M}(X)} < \infty$, i.e., $w \in \mathcal{M}(X)$.

(ii) Assume that $w \in \text{Sym}(X)$. Then, taking into account the properties of the symmetric kernel $Sym(X)$ (see Preliminaries or [5, Corollary 3.2]) we have $w^*(t) \log^{1/2}(e/t) \in X''$. Let us prove that

$$
(11) \t\t\t Exp L_2 \subset X''(w).
$$

Given $x \in \text{Exp } L_2$, by [7, Theorem 2.7.5] there exists a measure-preserving transformation σ of $(0, 1]$ such that $|x(t)| = x^*(\sigma(t))$. Applying inequality (4) and a well-known property of the rearrangement of a measurable function (see, e.g., [14, § II.2]), we have

$$
(wx)^*(t) = (wx^*(\sigma))^*(t) \le C \left(w \log^{1/2}(e/\sigma(\cdot)) \right)^*(t)
$$

$$
\le Cw^*(t/2) \log^{1/2}(2e/t), \qquad 0 < t \le 1.
$$

Therefore, $wx \in X''$ or, equivalently, $x \in X''(w)$, and (11) is proved. Hence, $G = (\text{Exp } L_2)$ ° $\subset (X''(w))$ °. Since $\log^{1/2}(e/t) \in X''(w^*)$, we can apply

Lemma 3.1, and so, by $[2, \text{Lemma } 3.3],$

 $G \subset (X'')_{\circ}(w) = X_{\circ}(w) \subset X(w).$

Now, let $X(w) \supset G$. We show that $X(w^*) \supset G$. In fact, let τ be a measurepreserving transformation of $(0, 1]$ such that $w(t) = w^*(\tau(t))$ [7, Theorem 2.7.5]. Suppose $x \in G$. Since $x(\tau)$ and x are equimeasurable functions, we have $x(\tau) \in G$ and $||x(\tau)||_G = ||x||_G$. Therefore,

$$
||x(\tau)w^*(\tau)||_X = ||x(\tau)w||_X \le C||x||_G.
$$

Then, $||x(\tau)w^*(\tau)||_X = ||xw^*||_X$, because X is a symmetric space, and from the preceding inequality we infer that $||x w^*||_X \leq C ||x||_G$. Thus, $x \in X(w^*)$, and the embedding $X(w^*) \supset G$ is proved. Passing to the second Köthe dual spaces, we obtain $X''(w^*) \supset G'' = \operatorname{Exp} L^2$. Hence, $\log^{1/2}(e/t) \in X''(w^*)$ or, equivalently, $w \in \text{Sym}(X)$ (as above, see Preliminaries or [5, Corollary 3.2]), and the proof is complete.

By the Rodin–Semenov Theorem [20], the sequence $\{r_k\}$ is equivalent in a symmetric space X to the unit vector basis in ℓ_2 if and only if $X \supset G$. In contrast to that from Theorem 3.1 we immediately deduce the following result.

COROLLARY 3.2: Suppose X is a symmetric space such that $Sym(X) \neq \mathcal{M}(X)$. *Then, for every* $w \in \mathcal{M}(X) \$ ym (X) *the Rademacher functions span* ℓ_2 *in* $X(w)$ but $X(w) \not\supset G$.

By [3, Theorem 2.1], $Sym(X) \neq \mathcal{M}(X)$ (and therefore there is $w \in \mathcal{M}(X) \setminus \text{Sym}(X)$ whenever the lower dilation index of the fundamental function ϕ_X is positive. In particular, it is fulfilled for L_p -spaces, $1 \leq p < \infty$. The condition $\gamma_{\phi_X} > 0$ means that the space X is situated "far" from the minimal symmetric space L_{∞} . Now, consider the opposite case when a symmetric space is "close" to L_{∞} . Then the Rademacher multiplicator space $\mathcal{M}(X)$ may be symmetric (equivalently, it coincides with its symmetric kernel). Since the space $Sym(X)$ has an explicit description (see Preliminaries), in this case we are able to state a sharper result. For simplicity, let us consider only Lorentz and Marcinkiewicz spaces (for more general results of such a sort, see [5]).

Recall [5] that a function $\varphi(t)$ defined on [0, 1] satisfies the Δ^2 -condition (briefly, $\varphi \in \Delta^2$) if it is nonnegative, increasing, concave, and there exists $C > 0$ such that $\varphi(t) \leq C \cdot \varphi(t^2)$ for all $0 < t \leq 1$. By [5, Corollary 3.5], if $\varphi \in \Delta^2$, then $\mathcal{M}(\Lambda(\varphi)) = \text{Sym}(\Lambda(\varphi))$ and $\mathcal{M}(M(\varphi)) = \text{Sym}(M(\varphi))$. Moreover, it is known [3, Example 2.15 and Theorem 4.1] that $\text{Sym}(\Lambda(\varphi)) = \Lambda(\psi)$ (resp. $\text{Sym}(M(\varphi)) = M(\psi)$, where $\psi'(t) = \varphi'(t) \log^{1/2}(e/t)$, whenever $\log^{1/2}(e/t) \in$ $\Lambda(\varphi)$ (resp. $\log^{1/2}(e/t) \in M(\varphi)$). Therefore, we get

COROLLARY 3.3: Let $\varphi \in \Delta^2$ and $\log^{1/2}(e/t) \in \Lambda(\varphi)$ (resp. $\log^{1/2}(e/t) \in$ $M(\varphi)$ *).* If w is a positive measurable function on [0, 1] satisfying condition (3), *then the sequence* $\{r_k\}$ *is equivalent in the space* $\Lambda(\varphi)(w)$ *(resp.* $M(\varphi)(w)$ *) to the unit vector basis in* ℓ_2 *if and only if* $w \in \Lambda(\psi)$ *(resp.* $w \in M(\psi)$ *), where* $\psi'(t) = \varphi'(t) \log^{1/2}(e/t)$.

In particular, if $0 < p \leq 2$, the sequence $\{r_k\}$ is equivalent in the Zygmund space $\text{Exp}\,L^p(w)$ to the unit vector basis in ℓ_2 if and only if $w \in \text{Exp}\,L^q$, where $q = 2p/(2 - p)$ (here, we set $Exp L^{\infty} = L_{\infty}$).

4. Rademacher orthogonal projection in weighted spaces

Here, we present necessary and sufficient conditions, under which the orthogonal projection P defined by (2) is bounded in a weighted symmetric space $X(w)$ satisfying condition (3).

Proposition 4.1: *Let* E *be a Banach function lattice on* [0, 1] *that is isometrically embedded into* E'' , $L_{\infty} \subset E \subset L_1$. Then the projection P defined by (2) *is bounded in* E *if and only if there are constants* C_1 *and* C_2 *such that for all* $a = (a_k) \in \ell_2$

(12)
$$
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_E \leq C_1 \|a\|_{\ell_2}
$$

and

(13)
$$
\left\| \sum_{k=1}^{\infty} a_k r_k \right\|_{E'} \leq C_2 \|a\|_{\ell_2}.
$$

Proof. Firstly, assume that inequalities (12) and (13) hold. Then, denoting, as above, $c_k(f) := \int_0^1 f(u)r_k(u) du$, $k = 1, 2, ...,$ for every $n \in \mathbb{N}$, by (13), we have

$$
\sum_{k=1}^{n} c_k(f)^2 = \int_0^1 f(u) \sum_{k=1}^{n} c_k(f) r_k(u) du
$$

$$
\leq ||f||_E \Big\| \sum_{k=1}^{n} c_k(f) r_k \Big\|_{E'} \leq C_2 ||f||_E \Big(\sum_{k=1}^{n} c_k(f)^2 \Big)^{1/2},
$$

whence

$$
\left(\sum_{k=1}^{\infty} c_k(f)^2\right)^{1/2} \le C_2 \|f\|_E, \ \ f \in E.
$$

Therefore, by (12), we obtain

$$
||Pf||_E \le C_1 \left(\sum_{k=1}^{\infty} c_k(f)^2\right)^{1/2} \le C_1 C_2 ||f||_E
$$

for all $f \in E$.

Conversely, suppose that the projection P is bounded in E . Let us consider the following sequence of finite-dimensional operators:

$$
P_n f(t) := \sum_{k=1}^n c_k(f) r_k(t), \ \ n \in \mathbb{N}.
$$

Clearly, P_n is bounded in E for every $n \in \mathbb{N}$. Furthermore, by assumption, the series $\sum_{k=1}^{\infty} c_k(f)r_k$ converges in E for each $f \in E$. Therefore, by the Uniform Boundedness Principle,

(14)
$$
||P_n||_{E\to E} \leq B, \quad n \in \mathbb{N}.
$$

Moreover, since $L_{\infty} \subset E \subset L_1$, then $L_{\infty} \subset E' \subset L_1$ as well, and hence, by the L_1 -Khintchine inequality (5),

$$
\Big\|\sum_{k=1}^{\infty} a_k r_k\Big\|_E \ge c \|a\|_{\ell_2}
$$
 and $\Big\|\sum_{k=1}^{\infty} a_k r_k\Big\|_{E'} \ge c \|a\|_{\ell_2}.$

Therefore, for all $f \in E$, $n \in \mathbb{N}$ and $a_k \in \mathbb{R}$, $k = 1, 2, ..., n$, we have

$$
\int_0^1 f(t) \cdot \sum_{k=1}^n a_k r_k(t) dt = \sum_{k=1}^n a_k c_k(f) \le ||a||_{\ell_2} \left(\sum_{k=1}^n c_k(f)^2\right)^{1/2}
$$

$$
\le c^{-1} ||a||_{\ell_2} \cdot ||P_n f||_E \le Bc^{-1} ||a||_{\ell_2} \cdot ||f||_E.
$$

Taking the supremum over all $f \in E$, $||f||_E \leq 1$, we get

$$
\Big\|\sum_{k=1}^n a_k r_k\Big\|_{E'} \le Bc^{-1} \|a\|_{\ell_2}, \ \ n \in \mathbb{N}.
$$

Applying the latter inequality to Rademacher sums $\sum_{k=n}^{m} a_k r_k$, $1 \leq n < m$, with $a = (a_k)_{k=1}^{\infty} \in \ell_2$, we deduce that the series $\sum_{k=1}^{\infty} a_k r_k$ converges in the space E' and

$$
\Big\|\sum_{k=1}^{\infty} a_k r_k\Big\|_{E'} \leq B c^{-1} \|a\|_{\ell_2}.
$$

384 S. ASTASHKIN Isr. J. Math.

Thus, (13) is proved. Let us prove the corresponding inequality for E.

By the Fubini theorem and (14), for arbitrary $f \in E$, $g \in E'$ and every $n \in \mathbb{N}$ we have

$$
\int_0^1 f(u) \cdot \sum_{k=1}^n c_k(g) r_k(u) du = \int_0^1 g(t) \cdot \sum_{k=1}^n c_k(f) r_k(t) dt
$$

$$
\leq ||P_n f||_E ||g||_{E'} \leq B ||f||_E ||g||_{E'},
$$

whence

$$
\Big\|\sum_{k=1}^n c_k(g)r_k\Big\|_{E'}\leq B\|g\|_{E'},\ \ n\in\mathbb{N}.
$$

Applying this inequality instead of (14), as above, we get

$$
\Big\|\sum_{k=1}^n a_k r_k\Big\|_{E''}\leq Bc^{-1} \|a\|_{\ell_2}.
$$

Since $L_{\infty} \subset E$ and E is isometrically embedded into E'', from the last inequality it follows that

$$
\Big\| \sum_{k=1}^{n} a_k r_k \Big\|_E \le B c^{-1} \|a\|_{\ell_2}
$$

for all $n \in \mathbb{N}$. Hence, if $a = (a_k)_{k=1}^{\infty} \in \ell_2$, the series $\sum_{k=1}^{\infty} a_k r_k$ converges in E and

$$
\Big\| \sum_{k=1}^{\infty} a_k r_k \Big\|_E \leq B c^{-1} \|a\|_{\ell_2}.
$$

Thus, inequality (12) holds, and the proof is complete.

From Proposition 4.1, Corollary 3.1 and Theorem 3.1 we obtain the following results.

Theorem 4.1: *Let a symmetric space* X *and a positive measurable function* w *on* [0, 1] *satisfy condition* (3)*. Then, the projection* P *defined by* (2) *is bounded in* $X(w)$ *if and only if* $G \subset X \subset G'$, $w \in \mathcal{M}(X)$ *and* $1/w \in \mathcal{M}(X')$ *.*

In particular, P is bounded in $X(w)$ *whenever* $w^*(t) \log^{1/2}(e/t) \in X''$ *and* $(1/w)^*(t) \log^{1/2}(e/t) \in X'.$

As above, the result can be somewhat refined for Lorentz and Marcinkiewicz spaces whose fundamental function satisfies the Δ^2 -condition.

COROLLARY 4.1: Let $\varphi \in \Delta^2$ and let w be a positive measurable function on [0,1] *satisfying condition* (3) *for* $X = \Lambda(\varphi)$ (resp. $X = M(\varphi)$). Then the *projection* P defined by (2) *is bounded in* $\Lambda(\varphi)(w)$ *(resp.* $M(\varphi)(w)$ *) if and only if* $G \subset \Lambda(\varphi) \subset G'$, $w \in \Lambda(\psi)$ and $1/w \in \mathcal{M}(M(\tilde{\varphi}))$ *(resp.* $G \subset M(\varphi) \subset G'$, $w \in$ $M(\psi)$ and $1/w \in \mathcal{M}(\Lambda(\tilde{\varphi}))$, where $\psi'(t) = \varphi'(t) \log^{1/2}(e/t)$ and $\tilde{\varphi}(t) = t/\varphi(t)$.

REMARK 4.1: It is easy to see that the orthogonal projection P is bounded in the space $X(w)$ if and only if the projection

$$
P_w f(t) := \sum_{k=1}^{\infty} \int_0^1 f(s) r_k(s) \, \frac{ds}{w(s)} \cdot r_k(t) w(t), \ \ 0 \le t \le 1
$$

(on the subspace $[r_kw]$), is bounded in X.

5. Example of a function from $\mathcal{M}(L_1) \setminus \text{Sym}(L_1)$

Answering a question from [10], we present here a concrete example of a function $f \in \mathcal{M}(L_1)$, which does not belong to the symmetric kernel Sym (L_1) , that is,

$$
\int_0^1 f^*(t) \log^{1/2}(e/t) dt = \infty.
$$

Since the latter space is symmetric, it is sufficient to find a function $f \in \mathcal{M}(L_1)$, for which there exists a function $g \notin \mathcal{M}(L_1)$ equimeasurable with f. We will look for f and g in the form

(15)
$$
f = \sum_{k=1}^{\infty} \alpha_k \chi_{B_k}, \quad g = \sum_{k=1}^{\infty} \alpha_k \chi_{D_k},
$$

where ${B_k}$ and ${D_k}$ are sequences of pairwise disjoint subsets of [0, 1], $m(B_k)$ = $m(D_k)$, $\alpha_k \in \mathbb{R}$, $k = 1, 2, \ldots$. Next, we will make use of some ideas of the paper [9].

Let $n = 2^m$ with $m \in \mathbb{N}$ and let J be a subset of $\{1, 2, ..., 2^n\}$ with cardinality *n*. We define the set $A = \bigcup_{j \in J} \Delta_n^j$ associated with J (as above, Δ_n^j are the dyadic intervals of [0, 1]). Clearly, $m(A) = n2^{-n}$.

For arbitrary sequence $(b_i) \in \ell_2$ we have

(16)
$$
\left\| \chi_A \sum_{i=1}^{\infty} b_i r_i \right\|_1 \le \left\| \chi_A \sum_{i=1}^n b_i r_i \right\|_1 + \left\| \chi_A \sum_{i=n+1}^{\infty} b_i r_i \right\|_1.
$$

Firstly, we estimate the tail term from the right hand side of this inequality. It is easy to see that the functions

$$
\chi_A(t) \cdot \sum_{i=n+1}^{\infty} b_i r_i(t)
$$
 and $\chi_{[0,n2^{-n}]}(t) \cdot \sum_{i=n+1}^{\infty} b_i r_i(t)$

are equimeasurable on [0, 1] and

$$
\chi_{[0,n2^{-n}]}(t) \sum_{i=n+1}^{\infty} b_i r_i(t) = \sum_{i=n+1}^{\infty} b_i r_{i+m-n} (n^{-1}2^n t), \ \ 0 < t \le 1
$$

(here, we set $r_j(t) = 0$ if $t \notin [0, 1]$). Therefore,

(17)
$$
\left\| \chi_A \sum_{i=n+1}^{\infty} b_i r_i \right\|_1 = \left\| \chi_{[0,n2^{-n}]} \sum_{i=n+1}^{\infty} b_i r_i \right\|_1 = n2^{-n} \left\| \sum_{i=n+1}^{\infty} b_i r_{i+m-n} \right\|_1
$$

$$
\leq n2^{-n} \left(\sum_{i=n+1}^{\infty} b_i^2 \right)^{1/2}.
$$

Now, choosing a set A in a special way, estimate the first term from the right hand side of (16) . Denote by ε_{ii}^n the value of the function r_i , $i = 1, 2, \ldots, n$, on the interval Δ_n^j , $1 \leq j \leq 2^n$. Since $n = 2^m$, we can find a set $J_1(n) \subset \{1, 2, ..., 2^n\}$, card $J_1(n) = n$, such that the $n \times n$ matrix $n^{-1/2} \cdot (\varepsilon_{ij}^n)_{1 \leq i \leq n, j \in J_1(n)}$ is orthogonal. Then, if $c_j := n^{-1/2} \sum_{i=1}^n \varepsilon_{ij}^n b_i$, $j \in J_1(n)$, we have $||(c_j)_{j \in J_1(n)}||_{\ell_2} = ||(b_i)_{i=1}^n||_{\ell_2}$. Therefore, setting $B(n) :=$ $\bigcup_{j\in J_1(n)} \Delta_n^j$, we obtain

$$
\left\| \chi_{B(n)} \sum_{i=1}^{n} b_i r_i \right\|_1 = \left\| \sum_{j \in J_1(n)} \left(\sum_{i=1}^{n} b_i r_i \right) \chi_{\Delta_n^j} \right\|_1 = \left\| \sum_{j \in J_1(n)} \sum_{i=1}^{n} \varepsilon_{ij}^n b_i \cdot \chi_{\Delta_n^j} \right\|_1
$$

= $n^{1/2} \left\| \sum_{j \in J_1(n)} c_j \chi_{\Delta_n^j} \right\|_1$
= $n^{1/2} 2^{-n} \sum_{j \in J_1(n)} |c_j| \le n 2^{-n} \| (b_i)_{i=1}^n \|_{\ell_2}.$

Combining this inequality with (16), (17) for $A = B(n)$ and (5), by definition of the norm in the space $\mathcal{M}(L_1)$, we have

(18)
$$
\|\chi_{B(n)}\|_{\mathcal{M}(L_1)} \leq 2\sqrt{2n}2^{-n}.
$$

Let ${n_k}_{k=1}^{\infty}$ be an increasing sequence of positive integers, $n_k = 2^{m_k}, m_k \in \mathbb{N}$, satisfying the condition

(19)
$$
n_k^{1/8} \ge 2^{n_1 + \dots + n_{k-1}}, \quad k = 2, 3, \dots
$$

At first, we construct a sequence of sets ${B_k}$. Setting $J_1^1 := J_1(n_1)$ and $B_1 := B(n_1)$, in view of (18) we have

$$
\|\chi_{B_1}\|_{\mathcal{M}(L_1)} \le 2\sqrt{2n_1 2^{-n_1}}.
$$

.

To define B_2 , we take for I_1 any interval $\Delta_{n_1}^j$ such that $j \notin J_1^1$. Now, we can choose a set $J_1^2 \subset \{1, 2, ..., 2^{n_1+n_2}\}\$ satisfying the conditions: card $J_1^2 = n_2$, $\Delta_{n_1+n_2}^j \subset I_1$ for every $j \in J_1^2$ and the $n_2 \times n_2$ matrix $n_2^{-1/2} \cdot (\varepsilon_{ij}^{n_1+n_2})_{n_1 < i \le n_1+n_2, j \in J_1^2}$ is orthogonal. We set $B_2 := \bigcup_{j \in J_1^2} \Delta_{n_1+n_2}^j$. Clearly, $m(B_2) = n_2 2^{-(n_1+n_2)}$ and $B_1 \cap B_2 = \emptyset$, because of $B_2 \subset I_1$. As in the case of $B(n)$ we have

$$
\left\| \chi_{B_2} \sum_{i=1}^{n_1+n_2} b_i r_i \right\|_1 = \left\| \sum_{j \in J_1^2} {\sum_{i=1}^{n_1+n_2} b_i r_i} \right) \chi_{\Delta_{n_1+n_2}^j} \right\|_1
$$

\n
$$
\leq \left\| \sum_{j \in J_1^2} {\sum_{i=1}^{n_1} b_i r_i} \right) \chi_{\Delta_{n_1+n_2}^j} \right\|_1 + \left\| \sum_{j \in J_1^2} {\sum_{i=n_1+1}^{n_2} b_i r_i} \right) \chi_{\Delta_{n_1+n_2}^j} \right\|_1
$$

\n
$$
\leq \sum_{i=1}^{n_1} |b_i| \|\chi_{B_2}\|_1 + \left\| \sum_{j \in J_1^2} \sum_{i=n_1+1}^{n_1+n_2} \varepsilon_{ij}^{n_1+n_2} b_i \cdot \chi_{\Delta_{n_1+n_2}^j} \right\|_1
$$

\n
$$
\leq (n_1^{1/2} + 1) n_2 2^{-(n_1+n_2)} \| (b_i)_{i=1}^{n_1+n_2} \|_{\ell_2}
$$

\n
$$
\leq n_2 2^{-n_2} \| (b_i)_{i=1}^{n_1+n_2} \|_{\ell_2}.
$$

Therefore, from (16) , (17) and (5) it follows that

$$
\|\chi_{B_2}\|_{\mathcal{M}(L_1)} \leq \sqrt{2}\left((n_1+n_2)2^{-(n_1+n_2)} + n_22^{-n_2}\right) \leq 2\sqrt{2}n_22^{-n_2}.
$$

Proceeding in the same way, we get a sequence ${B_k}$ of pairwise disjoint subsets of [0, 1] such that $m(B_k) = n_k 2^{-(n_1 + \dots + n_k)}$ and

(20)
$$
\|\chi_{B_k}\|_{\mathcal{M}(L_1)} \le 2\sqrt{2}n_k 2^{-n_k}, \quad k = 1, 2, \dots
$$

Now we define the sets D_k , $k = 1, 2, \ldots$. Select a set $J_2^1 \subset \{1, 2, \ldots, 2^{n_1}\},$ card $J_2^1 = n_1$, such that each column of the $n_1 \times n_1$ matrix $(\varepsilon_{ij}^{n_1})_{1 \le i \le n_1, j \in J_2^1}$ has exactly one entry equal to -1 and the rest are equal to 1. Setting $D_1 :=$ $\bigcup_{j\in J_2^1} \Delta_{n_1}^j$, we have $m(D_1) = n_1 2^{-n_1}$. Furthermore, from the inequality $||n_1^{-1/2} \sum_{i=1}^{n_1} r_i||_1 \leq 1$ (see (5)) and the definition of D_1 it follows that

$$
\|\chi_{D_1}\|_{\mathcal{M}(L_1)} \geq \|\sum_{j\in J_2^1} \left(n_1^{-1/2} \sum_{i=1}^{n_1} r_i\right) \chi_{\Delta_{n_1}^j} \|_1
$$

$$
= \|\sum_{j\in J_2^1} \left(n_1^{-1/2} \sum_{i=1}^{n_1} \varepsilon_{ij}^{n_1}\right) \chi_{\Delta_{n_1}^j} \|_1
$$

$$
= (n_1^{1/2} - 2n_1^{-1/2})n_1 2^{-n_1} \geq \frac{1}{2} n_1^{3/2} 2^{-n_1}
$$

if $n_1 \geq 4$.

Similarly, we can define the set D_2 . Let I_2 be any interval $\Delta_{n_1}^j$ with $j \notin J_2^1$. Choose the set $J_2^2 \subset \{1, 2, \ldots, 2^{n_1+n_2}\}\$ such that card $J_2^2 = n_2$, $\Delta_{n_1+n_2}^j \subset I_2$ for every $j \in J_2^2$ and each column of the $n_2 \times n_2$ matrix $(\varepsilon_{ij}^{n_1+n_2})_{n_1 \le i \le n_1+n_2, j \in J_2^2}$ has exactly one entry equal to -1 and the rest are equal to 1. Then, if $D_2 :=$ $\bigcup_{j\in J_2^2} \Delta_{n_1+n_2}^j$, then $m(D_2) = n_2 2^{-(n_1+n_2)}$ and $D_1 \cap D_2 = \emptyset$. Moreover, we have

$$
\|\chi_{D_2}\|_{\mathcal{M}(L_1)} \geq \|\sum_{j\in J_2^2} \left(n_2^{-1/2} \sum_{i=n_1+1}^{n_1+n_2} r_i\right) \chi_{\Delta_{n_1+n_2}^j}\|_1
$$

$$
= \|\sum_{j\in J_2^2} \left(n_2^{-1/2} \sum_{i=n_1+1}^{n_1+n_2} \varepsilon_{ij}^{n_1+n_2}\right) \chi_{\Delta_{n_1+n_2}^j}\|_1
$$

$$
= (n_2^{1/2} - 2n_2^{-1/2})n_2 2^{-(n_1+n_2)} \geq \frac{1}{2}n_2^{3/2} 2^{-(n_1+n_2)}.
$$

Arguing in the same way, we construct a sequence $\{D_k\}$ of pairwise disjoint subsets of [0, 1] such that $m(D_k) = n_k 2^{-(n_1+\cdots+n_k)}$ and

(21)
$$
\|\chi_{D_k}\|_{\mathcal{M}(L_1)} \geq \frac{1}{2} n_k^{3/2} 2^{-(n_1 + \dots + n_k)}, k = 1, 2, \dots
$$

Since $m(B_k) = m(D_k)$, $k = 1, 2, \ldots$, the functions f and g defined by (15) are equimeasurable for arbitrary $\alpha_k \in \mathbb{R}$, $k = 1, 2, \ldots$. Setting $\alpha_k = 2^{n_k} n_k^{-5/4}$, by (20), we obtain

$$
||f||_{\mathcal{M}(L_1)} \leq \sum_{k=1}^{\infty} \alpha_k ||\chi_{B_k}||_{\mathcal{M}(L_1)} \leq 2\sqrt{2} \sum_{k=1}^{\infty} n_k^{-1/4} < \infty,
$$

because of $n_k = 2^{m_k}$, $m_1 < m_2 < \cdots$. Thus, $f \in \mathcal{M}(L_1)$.

On the other hand, for every $k = 1, 2, \ldots$, from (21) and (19) it follows that

$$
\sup\left\{ \left\| g \cdot \sum_{i=1}^{\infty} a_i r_i \right\|_1 : \left\| \sum_{i=1}^{\infty} a_i r_i \right\|_1 \le 1 \right\} \ge \alpha_k \| \chi_{D_k} \|_{\mathcal{M}(L_1)}
$$

$$
\ge \frac{1}{2} n_k^{1/4} 2^{-(n_1 + \dots + n_{k-1})} \ge \frac{1}{2} n_k^{1/8}.
$$

Hence, this supremum is infinite, and so $g \notin \mathcal{M}(L_1)$.

ACKNOWLEDGMENT. The author thanks the referee whose remarks and suggestions helped to improve the paper.

References

- [1] S. V. Astashkin, *Systems of random variables equivalent in distribution to the Rademacher system and* K*-closed representability of Banach pairs*, Matem. sb. **191** (2000), 3–30 (Russian); English transl.: Sb. Math. **191** (2000), 779–807.
- [2] S. V. Astashkin, *Rademacher functions in symmetric spaces*, Sovrem. Mat. Fundam. Napravl., **32** (2009), 3–161 (Russian); English transl.: J. Math. Sci. (N.Y.) (6), **169** (2010), 725–886.
- [3] S. V. Astashkin and G. P. Curbera, *Symmetric kernel of Rademacher multiplicator spaces*, J. Funct. Anal. **226** (2005), 173–192.
- [4] S. V. Astashkin and G. P. Curbera, *Rademacher multiplicator spaces equal to L*∞, Proc. Amer. Math. Soc. **136** (2008), 3493–3501.
- [5] S. V. Astashkin and G. P. Curbera, *Rearrangement invariance of Rademacher multiplicator spaces*, J. Funct. Anal. **256** (2009), 4071–4094.
- [6] S. V. Astashkin and G. P. Curbera, *A weighted Khintchine inequality*, Revista Mat. Iberoam. **30** (2014), 237–246.
- [7] C. Bennett and R. Sharpley, *Interpolation of Operators*, Pure and Applied Mathematics, Vol. 119, Academic Press, Boston, 1988.
- [8] G. P. Curbera, *Operators into* L^1 *of a vector measure and applications to Banach lattices*, Math. Ann. **293** (1992), 317–330.
- [9] G. P. Curbera, *A note on function spaces generated by Rademacher series*, Proc. Edinburgh. Math. Soc. **40** (1997), 119–126.
- [10] G. P. Curbera, *How summable are Rademacher series?* Operator Theory: Adv. and Appl. **201** (2009), 135–148.
- [11] J. Diestel, H. Jarchow and A. Tonge, *Absolutely Summing Operators*, Cambridge University Press, Cambridge, 1995.
- [12] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, *Symmetric structures in Banach spaces*, Mem. Amer. Math. Soc. No. 217, 1979.
- [13] A. Khintchine, *Über dyadische Brüche*, Math. Zeit. **18** (1923), 109–116.
- [14] S. G. Krein, Ju. I. Petunin and E. M. Semenov, *Interpolation of Linear Operators*, AMS Translations of Math. Monog., 54, American Mathematical Society, Providence, RI, 1982.
- [15] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces II*, Springer-Verlag, Berlin, 1979.
- [16] G. G. Lorentz, *Relations between function spaces*, Proc. Amer. Math. Soc. **12** (1961), 127–132.
- [17] V. D. Milman and G. Schechtman, *Asymptotic Theory of Finite Dimensional Normed Spaces*, Lecture Notes in Mathematics, Vol. 1200, Springer-Verlag, Berlin, 1986.
- [18] R. E. A. C. Paley and A. Zygmund, *On some series of functions. I, II*, Proc. Camb. Phil. Soc. **26** (1930), 337–357, 458–474.
- [19] G. Pisier, *Factorization of Linear Operators and Geometry of Banach Spaces*, CBMS 60, Amer. Math. Soc., Providence, RI, 1986.
- [20] V. A. Rodin and E. M. Semenov, *Rademacher series in symmetric spaces*, Anal. Math. **1** (1975), 207–222.
- [21] V. A. Rodin and E. M. Semenov, *The complementability of a subspace that is generated by the Rademacher system in a symmetric space*, Funktsional. Anal. i Prilozhen. (2) **13** (1979), 91–92 (Russian); English transl.: Functional Anal. Appl. **13** (1979), 150–151.
- [22] S. J. Szarek, *On the best constants in the Khinchin inequality*, Studia Math. **58** (1976), 197–208.
- [23] M. Veraar, *On Khintchine inequalities with a weight*, Proc. Amer. Math. Soc. **138** (2011), 4119–4121.
- [24] A. Zygmund, *Trigonometric Series, Vol. I*, 2nd ed., Cambridge University Press, New York, 1959.