RADEMACHER FUNCTIONS IN WEIGHTED SYMMETRIC SPACES

ΒY

SERGEY ASTASHKIN*

Department of Mathematics and Mechanics, Samara State University, Acad. Pavlova 1, 443011, Samara, Russian Federation

and

Samara State Aerospace University (SSAU), Moskovskoye shosse 34, 443086, Samara, Russian Federation e-mail: astash@samsu.ru

ABSTRACT

The closed span of Rademacher functions is investigated in the weighted spaces X(w), where X is a symmetric space on [0, 1] and w is a positive measurable function on [0, 1]. By using the notion and properties of the Rademacher multiplicator space of a symmetric space, we give a description of the weights w for which the Rademacher orthogonal projection is bounded in X(w).

1. Introduction

We recall that the Rademacher functions on [0,1] are defined by $r_k(t) = \operatorname{sign}(\sin 2^k \pi t)$ for every $t \in [0,1]$ and each $k \in \mathbb{N}$. It is well known that $\{r_k\}$ is an incomplete orthogonal system of independent random variables. This system plays a prominent role in the modern theory of Banach spaces and operators (see, e.g., [11], [12], [17] and [19]).

Received August 5, 2015 and in revised form February 29, 2016

 $[\]ast$ This work was supported by the Ministry of Education and Science of the Russian Federation.

A classical result of Rodin and Semenov [20] states that the sequence $\{r_k\}$ is equivalent in a symmetric space X to the unit vector basis in ℓ_2 , i.e.,

(1)
$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_X \asymp \left(\sum_{k=1}^{\infty} |a_k|^2\right)^{1/2}, \quad (a_k) \in \ell_2,$$

if and only if $G \subset X$, where G is the closure of $L_{\infty}[0,1]$ in the Zygmund space Exp $L^2[0,1]$. When this condition is satisfied, the span $[r_k]$ of Rademacher functions is complemented in X if and only if $X \subset G'$, where the Köthe dual space G' to G coincides (with equivalence of norms) with another well-known Zygmund space $L \log^{1/2} L[0,1]$. This was proved independently by Rodin and Semenov [21] and Lindenstrauss and Tzafriri [15, Theorem 2.b.4, pp. 134–138]. Moreover, the condition $G \subset X \subset G'$ (equivalently, complementability of $[r_k]$ in X) is equivalent to the boundedness in X of the orthogonal projection

(2)
$$Pf(t) := \sum_{k=1}^{\infty} c_k(f) r_k(t),$$

where $c_k(f) := \int_0^1 f(u)r_k(u) du$, k = 1, 2, ... The main purpose of this paper is to investigate the behaviour of Rademacher functions and of the respective projection P in the weighted spaces X(w) consisting of all measurable functions f such that $fw \in X$ with the norm $||f||_{X(w)} := ||fw||_X$. Here, X is a symmetric space on [0, 1] and w is a positive measurable function on [0, 1]. We make use of the notion of the Rademacher multiplicator space $\mathcal{M}(X)$ of a symmetric space X, which originally arose from the study of vector measures and scalar functions integrable with respect to them (see [8] and [10]). For the first time a connection between the space $\mathcal{M}(X)$ and the behavior of Rademacher functions in the weighted spaces X(w) was observed in [6] when proving a weighted version of inequality (1) (under more restrictive conditions in the case of L_p -spaces it was proved in [23]).

To ensure that the operator P is well defined, we have to guarantee that the Rademacher functions belong both to X(w) and to its Köthe dual space (X(w))' = X'(1/w). For this reason, in what follows we assume that

$$(3) L_{\infty} \subset X(w) \subset L_1.$$

This assumption allows us to find necessary and sufficient conditions on the weight w under which the orthogonal projection P is bounded in the weighted space X(w). Moreover, extending the above mentioned result of Rodin and

Semenov from [20] to the weighted symmetric spaces, we show that, in contrast to the symmetric spaces, the embedding $X(w) \supset G$ is a stronger condition, in general, than equivalence of the sequence of Rademacher functions in X(w) to the unit vector basis in ℓ_2 . In the final part of the paper, answering a question from [10], we present a concrete example of a function $f \in \mathcal{M}(L_1)$, which does not belong to the symmetric kernel of the latter space.

2. Preliminaries

Let *E* be a Banach function lattice on [0,1], i.e., if *x* and *y* are measurable a.e. finite functions on [0,1] such that $x \in E$ and $|y| \leq |x|$, then $y \in E$ and $||y||_E \leq ||x||_E$. The *Köthe dual* of *E* is the Banach function lattice *E'* of all functions *y* such that $\int_0^1 |x(t)y(t)| dt < \infty$, for every $x \in E$, with the norm

$$\|y\|_{E'} := \sup \left\{ \int_0^1 x(t)y(t) \, dt : \, x \in E, \, \|x\|_E \le 1 \right\};$$

E' is a subspace of the topological dual E^* . If E is separable we have $E' = E^*$. A Banach function lattice E has the *Fatou property*, if from $0 \le x_n \nearrow x$ a.e. on [0,1] and $\sup_{n \in \mathbb{N}} ||x_n||_E < \infty$ it follows that $x \in E$ and $||x_n||_E \nearrow ||x||_E$.

Suppose that a Banach function lattice E satisfies $E \supset L_{\infty}$. By E_{\circ} we will denote the closure of L_{∞} in E. Clearly, E_{\circ} contains the *absolutely continuous part* of E, that is, the set of all functions $x \in E$ such that $\lim_{m(A)\to 0} \|x \cdot \chi_A\|_E = 0$. Here and subsequently, m is the Lebesgue measure on [0, 1] and χ_A is the characteristic function of a set $A \subset [0, 1]$.

Throughout the paper a symmetric (or rearrangement invariant) space X is a Banach space of classes of measurable functions on [0,1] such that from the conditions $y^* \leq x^*$ and $x \in X$ it follows that $y \in X$ and $\|y\|_X \leq \|x\|_X$. Here, x^* is the decreasing rearrangement of x, that is, the right continuous inverse of its distribution function: $n_x(\tau) = m\{t \in [0,1] : |x(t)| > \tau\}$. Functions x and y are said to be equimeasurable if $n_x(\tau) = n_y(\tau)$, for all $\tau > 0$. The Köthe dual X' is a symmetric space whenever X is symmetric. In what follows we assume that X is isometric to a subspace of its second Köthe dual X'' := (X')'. In particular, this holds if X is separable or it has the Fatou property. For every symmetric space X the following continuous embeddings hold: $L_{\infty} \subset X \subset L_1$. If X is a symmetric space, $X \neq L_{\infty}$, then X_{\circ} is a separable symmetric space.

Important examples of symmetric spaces are Marcinkiewicz, Lorentz and Orlicz spaces. Let $\varphi \colon [0,1] \to [0,+\infty)$ be a quasi-concave function, that is, φ increases, $\varphi(t)/t$ decreases and $\varphi(0) = 0$. The Marcinkiewicz space $M(\varphi)$ is the space of all measurable functions x on [0,1] satisfying the condition

$$\|x\|_{M(\varphi)} = \sup_{0 < t \le 1} \frac{\varphi(t)}{t} \int_0^t x^*(s) \, ds < \infty.$$

If $\varphi: [0,1] \to [0,+\infty)$ is an increasing concave function, $\varphi(0) = 0$, then the Lorentz space $\Lambda(\varphi)$ consists of all measurable functions x on [0,1] such that

$$\|x\|_{\Lambda(\varphi)} = \int_0^1 x^*(s) \, d\varphi(s) < \infty.$$

For an arbitrary increasing concave function φ we have $\Lambda(\varphi)' = M(\tilde{\varphi})$ and $M(\varphi)' = \Lambda(\tilde{\varphi})$, where $\tilde{\varphi}(t) := t/\varphi(t)$ [14, Theorems II.5.2 and II.5.4].

Let M be an Orlicz function, that is, an increasing convex function on $[0, \infty)$ with M(0) = 0. The norm of the Orlicz space L_M is defined as

$$\|x\|_{L_M} = \inf \left\{ \lambda > 0 : \int_0^1 M\left(\frac{|x(s)|}{\lambda}\right) ds \le 1 \right\}.$$

In particular, if $M(u) = u^p$, $1 \le p < \infty$, we have $L_M = L_p$ isometrically. Next, by $||f||_p$ we denote the norm $||f||_{L_p}$.

The fundamental function of a symmetric space X is the function $\phi_X(t) := \|\chi_{[0,t]}\|_X$. In particular, we have $\phi_{M(\varphi)}(t) = \phi_{\Lambda(\varphi)}(t) = \varphi(t)$, and $\phi_{L_M}(t) = 1/M^{-1}(1/t)$, respectively. The Marcinkiewicz $M(\varphi)$ and Lorentz $\Lambda(\varphi)$ spaces are, respectively, the largest and the smallest symmetric spaces with the fundamental function φ , that is, if the fundamental function of a symmetric space X is equal to φ , then $\Lambda(\varphi) \subset X \subset M(\varphi)$.

If ψ is a positive function defined on [0,1], then its lower and upper dilation indices are

$$\gamma_{\psi} := \lim_{t \to 0^+} \frac{\log\left(\sup_{0 < s \le 1} \frac{\psi(st)}{\psi(s)}\right)}{\log t} \quad \text{and} \quad \delta_{\psi} := \lim_{t \to +\infty} \frac{\log\left(\sup_{0 < s \le 1/t} \frac{\psi(st)}{\psi(s)}\right)}{\log t},$$

respectively. We always have $0 \leq \gamma_{\psi} \leq \delta_{\psi} \leq 1$.

In the case when $\delta_{\varphi} < 1$, the norm in the Marcinkiewicz space $M(\varphi)$ satisfies the equivalence

$$\|x\|_{M(\varphi)} \asymp \sup_{0 < t \le 1} \varphi(t) x^*(t)$$

[14, Theorem II.5.3]. Here, and throughout the paper, the notation $A \simeq B$ means that there exist constants C > 0 and c > 0 independent of all or of a part of arguments of functions (quasi-norms) A and B such that $c \cdot A \leq B \leq C \cdot A$.

The Orlicz spaces L_{N_p} , p > 0, where N_p is an Orlicz function equivalent to the function $\exp(t^p) - 1$, will be of major importance in our study. Usually these are referred to as Zygmund spaces and denoted by $\exp L^p$. The fundamental function of $\exp L^p$ is equivalent to the function $\varphi_p(t) = \log^{-1/p}(e/t)$. Since $N_p(u)$ increases at infinity very rapidly, $\exp L^p$ coincides with the Marcinkiewicz space $M(\varphi_p)$ [16]. This, together with the equality $\delta_{\varphi_p} = 0 < 1$, gives

$$||x||_{\operatorname{Exp} L^p} \asymp \sup_{0 < t \le 1} x^*(t) \log^{-1/p}(e/t).$$

In particular, for every $x \in \operatorname{Exp} L^p$ and $0 < t \leq 1$ we have

(4)
$$x^*(t) \le C \|x\|_{\operatorname{Exp} L^p} \log^{1/p}(e/t).$$

Hence, for a symmetric space X, the embedding $\operatorname{Exp} L^p \subset X$ is equivalent to the condition $\log^{1/p}(e/t) \in X$.

Recall that the Rademacher functions are $r_k(t) := \operatorname{sign} \sin(2^k \pi t), t \in [0, 1], k \geq 1$. The famous Khintchine inequality [13] states that, for every $1 \leq p < \infty$, the sequence $\{r_k\}$ is equivalent in L_p to the unit vector basis in ℓ_2 . As was mentioned in the introduction, Rodin and Semenov [20] extended this result to the class of symmetric spaces showing that equivalence (1) holds in a symmetric space X if and only if $G \subset X$, where $G = (\operatorname{Exp} L^2)_{\circ}$. Next, we will repeatedly use the Khintchine L_1 -inequality from [22] with optimal constants:

(5)
$$\frac{1}{\sqrt{2}} \|(a_k)\|_{\ell_2} \le \left\|\sum_{k=1}^{\infty} a_k r_k\right\|_1 \le \|(a_k)\|_{\ell_2},$$

where $\|(a_k)\|_{\ell_2} := (\sum_{k=1}^{\infty} a_k^2)^{1/2}$ (next, we consider real scalars; however, all results of the paper are valid also in the complex case).

The Rademacher multiplicator space of a symmetric space X is the space $\mathcal{M}(X)$ of all measurable functions $f: [0, 1] \to \mathbb{R}$ such that $f \cdot \sum_{k=1}^{\infty} a_k r_k \in X$, for every Rademacher sum $\sum_{k=1}^{\infty} a_k r_k \in X$. It is a Banach function lattice on [0, 1] when endowed with the norm

$$||f||_{\mathcal{M}(X)} = \sup\left\{ \left\| f \cdot \sum_{k=1}^{\infty} a_k r_k \right\|_X : \left\| \sum_{k=1}^{\infty} a_k r_k \right\|_X \le 1 \right\}.$$

Here, $\mathcal{M}(X)$ can be viewed as the space of operators given by multiplication by a measurable function, which are bounded from the subspace $[r_k]$ in X into the whole space X.

The Rademacher multiplicator space $\mathcal{M}(X)$ was first considered in [9], where it was shown that for a broad class of classical symmetric spaces X the space $\mathcal{M}(X)$ is not symmetric. This result was extended in [3] to include all symmetric spaces such that the lower dilation index γ_{φ_X} of their fundamental function φ_X is positive. This result motivated the study of the symmetric kernel Sym(X) of the space $\mathcal{M}(X)$. The space Sym(X) consists of all functions $f \in \mathcal{M}(X)$ such that an arbitrary function g, equimeasurable with f, belongs to $\mathcal{M}(X)$ as well. The norm in Sym(X) is defined as

$$\|f\|_{\operatorname{Sym}(X)} = \sup \|g\|_{\mathcal{M}(X)},$$

where the supremum is taken over all g equimeasurable with f. From the definition it follows that Sym(X) is the largest symmetric space embedded into $\mathcal{M}(X)$. Moreover, if X is a symmetric space such that $X'' \supset \text{Exp} L^2$, then

$$||f||_{\text{Sym}(X)} \asymp ||f^*(t) \log^{1/2}(e/t)||_{X''}$$

(see [5, Proposition 3.1 and Corollary 3.2]). The opposite situation is when the Rademacher multiplicator space $\mathcal{M}(X)$ is symmetric. The simplest case of this situation is when $\mathcal{M}(X) = L_{\infty}$. It was shown in [4] that $\mathcal{M}(X) = L_{\infty}$ if and only if $\log^{1/2}(e/t) \notin X_{\circ}$. Regarding the case when $\mathcal{M}(X)$ is a symmetric space different from L_{∞} , see the paper [5].

We will denote by Δ_n^k the dyadic intervals of [0,1], that is, $\Delta_n^k = [(k-1)2^{-n}, k2^{-n}]$, where $n = 0, 1, \ldots, k = 1, \ldots, 2^n$; we say that Δ_n^k has rank n. For any undefined notions we refer the reader to the monographs [7], [14], [15].

3. Rademacher sums in weighted spaces

First, we find necessary and sufficient conditions on the symmetric space X, under which there is a weight w such that the sequence of Rademacher functions spans ℓ_2 in X(w). We prove the following refinement of the nontrivial part of the above mentioned Rodin–Semenov Theorem.

PROPOSITION 3.1: For every symmetric space X the following conditions are equivalent:

Vol. 218, 2017

(i) there exists a set $D \subset [0,1]$ of positive measure such that

(6)
$$\left\|\sum_{k=1}^{\infty} a_k r_k \cdot \chi_D\right\|_X \le M \|(a_k)\|_{\ell_2},$$

for some M > 0 and arbitrary $(a_k) \in \ell_2$; (ii) $X \supset G$.

Proof. Since the implication (ii) \Rightarrow (i) is an immediate consequence of the fact that the sequence $\{r_k\}$ spans ℓ_2 in the space G (see [18] or [24, Theorem V.8.16]), we need to prove only that (i) implies (ii).

Assume that (6) holds. By Lebesgue's density theorem, for sufficiently large $m \in \mathbb{N}$, we can find a dyadic interval $\Delta := \Delta_m^{k_0} = [(k_0 - 1)2^{-m}, k_02^{-m}]$ such that

$$2^{-m} = m(\Delta) \ge m(\Delta \cap D) > 2^{-m-1}.$$

Let us consider the set $E = \bigcup_{k=1}^{2^m} E_m^k$, where E_m^k is obtained by translating the set $\Delta \cap D$ to the interval Δ_m^k , $k = 1, 2, \ldots, 2^m$ (in particular, $E_m^{k_0} = \Delta \cap D$). Denote $f_i = r_i \cdot \chi_E$, $i \in \mathbb{N}$. It follows easily that $|f_i(t)| \leq 1, t \in [0, 1]$, $||f_i||_2 \geq 1/\sqrt{2}$, and $f_i \to 0$ weakly in $L_2[0, 1]$ when $i \to \infty$. Therefore, by [1, Theorem 5], the sequence $\{f_i\}_{i=1}^{\infty}$ contains a subsequence $\{f_{i_j}\}$, which is equivalent in distribution to the Rademacher system. This means that there exists a constant C > 0 such that

$$C^{-1}m\left\{t \in [0,1] : \left|\sum_{j=1}^{l} a_{j}r_{j}(t)\right| > Cz\right\} \le m\left\{t \in [0,1] : \left|\sum_{j=1}^{l} a_{j}f_{i_{j}}(t)\right| > z\right\}$$
$$\le Cm\left\{t \in [0,1] : \left|\sum_{j=1}^{l} a_{j}r_{j}(t)\right| > C^{-1}z\right\}$$

for all $l \in \mathbb{N}$, $a_j \in \mathbb{R}$, and z > 0. Hence, by the definition of r_j and f_j , for every $n \in \mathbb{N}$ we have

$$C^{-1}m\left\{t \in [0,1]: \left|\sum_{j=m+1}^{m+n} r_j(t)\chi_{[0,2^{-m}]}(t)\right| > Cz\right\}$$

$$\leq m\left\{t \in [0,1]: \left|\sum_{j=m+1}^{m+n} f_{i_j}(t)\chi_{\Delta}(t)\right| > z\right\}$$

$$\leq Cm\left\{t \in [0,1]: \left|\sum_{j=m+1}^{m+n} r_j(t)\chi_{[0,2^{-m}]}(t)\right| > C^{-1}z\right\},$$

whence

(7)
$$\left\|\sum_{j=m+1}^{m+n} r_{i_j} \chi_{\Delta \cap D}\right\|_X \ge \alpha \left\|\sum_{j=m+1}^{m+n} r_j \chi_{[0,2^{-m}]}\right\|_X,$$

where $\alpha > 0$ depends only on the constant C and on the space X.

Now, assume that (ii) fails, i.e., $X \not\supseteq G$. Then, by [4, inequality (2) in the proof of Theorem 1], there exists a constant $\beta > 0$, depending only on X, such that for every $m \ge 0$ there exists $n_0 \ge 1$ such that, if $n \ge n_0$ and Δ' is an arbitrary dyadic interval of rank m, we have

$$\left\|\chi_{\Delta'}\sum_{i=m+1}^{m+n}r_i\right\|_X \ge \beta \left\|\sum_{i=1}^nr_i\right\|_X.$$

From this inequality with $\Delta' = [0, 2^{-m}]$ and inequality (7) it follows that, for n large enough,

$$\left\|\sum_{j=m+1}^{m+n} r_{i_j} \chi_D\right\|_X \ge \left\|\sum_{j=m+1}^{m+n} r_{i_j} \chi_{\Delta \cap D}\right\|_X \ge \alpha \beta \left\|\sum_{j=1}^n r_j\right\|_X.$$

Combining the latter inequality together with (6) we deduce

$$\frac{1}{\sqrt{n}} \Big\| \sum_{j=1}^n r_j \Big\|_X \le \frac{M}{\alpha\beta}$$

for all $n \in \mathbb{N}$ large enough. At the same time, as follows from the proof of the Rodin–Semenov Theorem in [20], the last condition is equivalent to the embedding $X \supset G$. This contradiction concludes the proof.

COROLLARY 3.1: Suppose X is a symmetric space. Then, $X \supset G$ if and only if there exists a weight w such that the sequence $\{r_k\}$ spans ℓ_2 in X(w).

Proof. If $\{r_k\}$ spans ℓ_2 in X(w) for some weight w, we have

$$\left\|\sum_{k=1}^{\infty} a_k r_k \cdot w\right\|_X \le C \|(a_k)\|_{\ell_2}.$$

Since w(t) > 0 a.e. on [0,1], there is a set $D \subset [0,1]$ of positive measure such that inequality (6) holds for some M > 0 and arbitrary $(a_k) \in \ell_2$. Applying Proposition 3.1, we obtain that $X \supset G$. The converse is obvious, and so the proof is completed.

Corollary 3.1 shows the necessity of the condition $X \supset G$ in the following main result of this part of the paper.

THEOREM 3.1: Let X be a symmetric space such that $X \supset G$ and let a positive measurable function w on [0, 1] satisfy condition (3). Then we have:

- (i) the sequence $\{r_k\}$ spans ℓ_2 in X(w) if and only if $w \in \mathcal{M}(X)$, where $\mathcal{M}(X)$ is the Rademacher multiplicator space of X;
- (ii) $X(w) \supset G$ if and only if $w \in \text{Sym}(X)$, where Sym(X) is the symmetric kernel of $\mathcal{M}(X)$.

Part (i) of this theorem was actually obtained in [6, p. 240]. However, for the reader's convenience we provide here its proof. But we begin with the following technical result, which will be needed to prove part (ii).

LEMMA 3.1: Let Y be a symmetric space and let w be a positive measurable function on [0,1]. Suppose the weighted function lattice $Y(w^*)$ contains an unbounded decreasing positive function a on (0,1]. Then $(Y(w))_{\circ} = Y_{\circ}(w)$.

Proof. Since $(wa)^*(t) \leq w^*(t/2)a(t/2), 0 < t \leq 1, [14, \S II.2]$ and, by assumption, $w^*a \in Y$, we have $wa \in Y$. Equivalently, $a \in Y(w)$.

Let $y \in (Y(w))_{\circ}$. By definition, there is a sequence $\{y_k\} \subset L_{\infty}$ such that

(8)
$$\lim_{k \to \infty} \|y_k w - yw\|_Y = 0.$$

Since a decreases, for arbitrary $A \subset [0, 1]$ and every (fixed) $k \in \mathbb{N}$ we have

$$\|y_k w \chi_A\|_Y \le \|y_k\|_{\infty} \|w^* \chi_{(0,m(A)]}\|_Y \le \frac{\|y_k\|_{\infty}}{a(m(A))} \|w^* a\|_Y.$$

Noting that the right hand side of this inequality tends to 0 as $m(A) \to \infty$, we get

$$\lim_{n(A)\to 0} \|y_k w \chi_A\|_Y = 0,$$

whence $y_k w \in Y_\circ$, $k \in \mathbb{N}$. Combining this with (8), we infer that $yw \in Y_\circ$ or, equivalently, $y \in Y_\circ(w)$.

To prove the opposite embedding, assume that $y \in Y_{\circ}(w)$. Then

(9)
$$\lim_{k \to \infty} \|y_k - yw\|_Y = 0$$

for some sequence $\{y_k\} \subset L_{\infty}$. From the hypothesis of the lemma it follows that $Y \neq L_{\infty}$. Therefore, for arbitrary $A \subset [0, 1]$ and each $k \in \mathbb{N}$

$$||y_k/w \cdot \chi_A||_{Y(w)} = ||y_k\chi_A||_Y \to 0 \text{ as } m(A) \to 0.$$

Hence, $y_k/w \in (Y(w))_\circ$, $k \in \mathbb{N}$. Since $||y_k/w - y||_{Y(w)} = ||y_k - yw||_Y$, from (9) it follows that $y \in (Y(w))_\circ$.

Proof of Theorem 3.1. (i) Since $X \supset G$, equivalence (1) holds. At first, assume that $w \in \mathcal{M}(X)$. Then, by definition of the norm in $\mathcal{M}(X)$, we have

(10)
$$||w||_{\mathcal{M}(X)} \asymp \sup \left\{ \left\| w \cdot \sum_{k=1}^{\infty} a_k r_k \right\|_X : ||(a_k)||_{\ell_2} \le 1 \right\}.$$

Therefore,

$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{X(w)} = \left\|w \cdot \sum_{k=1}^{\infty} a_k r_k\right\|_X \le C \|w\|_{\mathcal{M}(X)} \|(a_k)\|_{\ell_2}$$

for every $(a_k) \in \ell_2$. On the other hand, from embeddings (3) and inequality (5) it follows that

$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{X(w)} \ge c \left\|\sum_{k=1}^{\infty} a_k r_k\right\|_1 \ge \frac{c}{\sqrt{2}} \|(a_k)\|_{\ell_2}.$$

As a result we deduce that $\{r_k\}$ spans ℓ_2 in X(w).

Conversely, if

$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{X(w)} \asymp \|(a_k)\|_{\ell_2},$$

from (10) we obtain that $||w||_{\mathcal{M}(X)} < \infty$, i.e., $w \in \mathcal{M}(X)$.

(ii) Assume that $w \in \text{Sym}(X)$. Then, taking into account the properties of the symmetric kernel Sym(X) (see Preliminaries or [5, Corollary 3.2]) we have $w^*(t) \log^{1/2}(e/t) \in X''$. Let us prove that

(11)
$$\operatorname{Exp} L_2 \subset X''(w).$$

Given $x \in \text{Exp} L_2$, by [7, Theorem 2.7.5] there exists a measure-preserving transformation σ of (0, 1] such that $|x(t)| = x^*(\sigma(t))$. Applying inequality (4) and a well-known property of the rearrangement of a measurable function (see, e.g., [14, § II.2]), we have

$$(wx)^{*}(t) = (wx^{*}(\sigma))^{*}(t) \le C \left(w \log^{1/2}(e/\sigma(\cdot)) \right)^{*}(t)$$
$$\le Cw^{*}(t/2) \log^{1/2}(2e/t), \qquad 0 < t \le 1.$$

Therefore, $wx \in X''$ or, equivalently, $x \in X''(w)$, and (11) is proved. Hence, $G = (\operatorname{Exp} L_2)_{\circ} \subset (X''(w))_{\circ}$. Since $\log^{1/2}(e/t) \in X''(w^*)$, we can apply

380

Vol. 218, 2017

Lemma 3.1, and so, by [2, Lemma 3.3],

 $G \subset (X'')_{\circ}(w) = X_{\circ}(w) \subset X(w).$

Now, let $X(w) \supset G$. We show that $X(w^*) \supset G$. In fact, let τ be a measurepreserving transformation of (0,1] such that $w(t) = w^*(\tau(t))$ [7, Theorem 2.7.5]. Suppose $x \in G$. Since $x(\tau)$ and x are equimeasurable functions, we have $x(\tau) \in G$ and $||x(\tau)||_G = ||x||_G$. Therefore,

$$||x(\tau)w^*(\tau)||_X = ||x(\tau)w||_X \le C ||x||_G.$$

Then, $||x(\tau)w^*(\tau)||_X = ||xw^*||_X$, because X is a symmetric space, and from the preceding inequality we infer that $||xw^*||_X \leq C||x||_G$. Thus, $x \in X(w^*)$, and the embedding $X(w^*) \supset G$ is proved. Passing to the second Köthe dual spaces, we obtain $X''(w^*) \supset G'' = \operatorname{Exp} L^2$. Hence, $\log^{1/2}(e/t) \in X''(w^*)$ or, equivalently, $w \in \operatorname{Sym}(X)$ (as above, see Preliminaries or [5, Corollary 3.2]), and the proof is complete.

By the Rodin–Semenov Theorem [20], the sequence $\{r_k\}$ is equivalent in a symmetric space X to the unit vector basis in ℓ_2 if and only if $X \supset G$. In contrast to that from Theorem 3.1 we immediately deduce the following result.

COROLLARY 3.2: Suppose X is a symmetric space such that $\text{Sym}(X) \neq \mathcal{M}(X)$. Then, for every $w \in \mathcal{M}(X) \setminus \text{Sym}(X)$ the Rademacher functions $\text{span} \ell_2$ in X(w) but $X(w) \not\supseteq G$.

By [3, Theorem 2.1], $\operatorname{Sym}(X) \neq \mathcal{M}(X)$ (and therefore there is $w \in \mathcal{M}(X) \setminus \operatorname{Sym}(X)$) whenever the lower dilation index of the fundamental function ϕ_X is positive. In particular, it is fulfilled for L_p -spaces, $1 \leq p < \infty$. The condition $\gamma_{\phi_X} > 0$ means that the space X is situated "far" from the minimal symmetric space L_∞ . Now, consider the opposite case when a symmetric space is "close" to L_∞ . Then the Rademacher multiplicator space $\mathcal{M}(X)$ may be symmetric (equivalently, it coincides with its symmetric kernel). Since the space $\operatorname{Sym}(X)$ has an explicit description (see Preliminaries), in this case we are able to state a sharper result. For simplicity, let us consider only Lorentz and Marcinkiewicz spaces (for more general results of such a sort, see [5]).

Recall [5] that a function $\varphi(t)$ defined on [0, 1] satisfies the Δ^2 -condition (briefly, $\varphi \in \Delta^2$) if it is nonnegative, increasing, concave, and there exists C > 0 such that $\varphi(t) \leq C \cdot \varphi(t^2)$ for all $0 < t \leq 1$. By [5, Corollary 3.5], if $\varphi \in \Delta^2$, then $\mathcal{M}(\Lambda(\varphi)) = \operatorname{Sym}(\Lambda(\varphi))$ and $\mathcal{M}(M(\varphi)) = \operatorname{Sym}(M(\varphi))$. Moreover,

it is known [3, Example 2.15 and Theorem 4.1] that $\operatorname{Sym}(\Lambda(\varphi)) = \Lambda(\psi)$ (resp. $\operatorname{Sym}(M(\varphi)) = M(\psi)$), where $\psi'(t) = \varphi'(t) \log^{1/2}(e/t)$, whenever $\log^{1/2}(e/t) \in \Lambda(\varphi)$ (resp. $\log^{1/2}(e/t) \in M(\varphi)$). Therefore, we get

COROLLARY 3.3: Let $\varphi \in \Delta^2$ and $\log^{1/2}(e/t) \in \Lambda(\varphi)$ (resp. $\log^{1/2}(e/t) \in M(\varphi)$). If w is a positive measurable function on [0, 1] satisfying condition (3), then the sequence $\{r_k\}$ is equivalent in the space $\Lambda(\varphi)(w)$ (resp. $M(\varphi)(w)$) to the unit vector basis in ℓ_2 if and only if $w \in \Lambda(\psi)$ (resp. $w \in M(\psi)$), where $\psi'(t) = \varphi'(t) \log^{1/2}(e/t)$.

In particular, if $0 , the sequence <math>\{r_k\}$ is equivalent in the Zygmund space $\operatorname{Exp} L^p(w)$ to the unit vector basis in ℓ_2 if and only if $w \in \operatorname{Exp} L^q$, where q = 2p/(2-p) (here, we set $\operatorname{Exp} L^{\infty} = L_{\infty}$).

4. Rademacher orthogonal projection in weighted spaces

Here, we present necessary and sufficient conditions, under which the orthogonal projection P defined by (2) is bounded in a weighted symmetric space X(w) satisfying condition (3).

PROPOSITION 4.1: Let E be a Banach function lattice on [0, 1] that is isometrically embedded into E'', $L_{\infty} \subset E \subset L_1$. Then the projection P defined by (2) is bounded in E if and only if there are constants C_1 and C_2 such that for all $a = (a_k) \in \ell_2$

(12)
$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_E \le C_1 \|a\|_{\ell_2}$$

and

(13)
$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{E'} \le C_2 \|a\|_{\ell_2}.$$

Proof. Firstly, assume that inequalities (12) and (13) hold. Then, denoting, as above, $c_k(f) := \int_0^1 f(u)r_k(u) \, du, \, k = 1, 2, \dots$, for every $n \in \mathbb{N}$, by (13), we have

$$\sum_{k=1}^{n} c_k(f)^2 = \int_0^1 f(u) \sum_{k=1}^{n} c_k(f) r_k(u) \, du$$
$$\leq \|f\|_E \left\| \sum_{k=1}^{n} c_k(f) r_k \right\|_{E'} \leq C_2 \|f\|_E \left(\sum_{k=1}^{n} c_k(f)^2 \right)^{1/2},$$

382

whence

$$\left(\sum_{k=1}^{\infty} c_k(f)^2\right)^{1/2} \le C_2 \|f\|_E, \ f \in E.$$

Therefore, by (12), we obtain

$$||Pf||_E \le C_1 \Big(\sum_{k=1}^{\infty} c_k(f)^2\Big)^{1/2} \le C_1 C_2 ||f||_E$$

for all $f \in E$.

Conversely, suppose that the projection P is bounded in E. Let us consider the following sequence of finite-dimensional operators:

$$P_n f(t) := \sum_{k=1}^n c_k(f) r_k(t), \quad n \in \mathbb{N}.$$

Clearly, P_n is bounded in E for every $n \in \mathbb{N}$. Furthermore, by assumption, the series $\sum_{k=1}^{\infty} c_k(f)r_k$ converges in E for each $f \in E$. Therefore, by the Uniform Boundedness Principle,

(14)
$$||P_n||_{E\to E} \le B, \ n \in \mathbb{N}.$$

Moreover, since $L_{\infty} \subset E \subset L_1$, then $L_{\infty} \subset E' \subset L_1$ as well, and hence, by the L_1 -Khintchine inequality (5),

$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_E \ge c \|a\|_{\ell_2} \text{ and } \left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{E'} \ge c \|a\|_{\ell_2}.$$

Therefore, for all $f \in E$, $n \in \mathbb{N}$ and $a_k \in \mathbb{R}$, k = 1, 2, ..., n, we have

$$\int_{0}^{1} f(t) \cdot \sum_{k=1}^{n} a_{k} r_{k}(t) dt = \sum_{k=1}^{n} a_{k} c_{k}(f) \leq ||a||_{\ell_{2}} \left(\sum_{k=1}^{n} c_{k}(f)^{2}\right)^{1/2}$$
$$\leq c^{-1} ||a||_{\ell_{2}} \cdot ||P_{n}f||_{E} \leq Bc^{-1} ||a||_{\ell_{2}} \cdot ||f||_{E}$$

Taking the supremum over all $f \in E$, $||f||_E \leq 1$, we get

$$\left\|\sum_{k=1}^{n} a_k r_k\right\|_{E'} \le Bc^{-1} \|a\|_{\ell_2}, \ n \in \mathbb{N}.$$

Applying the latter inequality to Rademacher sums $\sum_{k=n}^{m} a_k r_k$, $1 \leq n < m$, with $a = (a_k)_{k=1}^{\infty} \in \ell_2$, we deduce that the series $\sum_{k=1}^{\infty} a_k r_k$ converges in the space E' and

$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{E'} \le Bc^{-1} \|a\|_{\ell_2}.$$

Thus, (13) is proved. Let us prove the corresponding inequality for E.

By the Fubini theorem and (14), for arbitrary $f \in E, g \in E'$ and every $n \in \mathbb{N}$ we have

$$\int_0^1 f(u) \cdot \sum_{k=1}^n c_k(g) r_k(u) \, du = \int_0^1 g(t) \cdot \sum_{k=1}^n c_k(f) r_k(t) \, dt$$
$$\leq \|P_n f\|_E \|g\|_{E'} \leq B \|f\|_E \|g\|_{E'}$$

whence

$$\left\|\sum_{k=1}^{n} c_k(g) r_k\right\|_{E'} \le B \|g\|_{E'}, \ n \in \mathbb{N}.$$

Applying this inequality instead of (14), as above, we get

$$\left\|\sum_{k=1}^{n} a_k r_k\right\|_{E''} \le Bc^{-1} \|a\|_{\ell_2}.$$

Since $L_{\infty} \subset E$ and E is isometrically embedded into E'', from the last inequality it follows that

$$\left\|\sum_{k=1}^{n} a_k r_k\right\|_E \le Bc^{-1} \|a\|_{\ell_2}$$

for all $n \in \mathbb{N}$. Hence, if $a = (a_k)_{k=1}^{\infty} \in \ell_2$, the series $\sum_{k=1}^{\infty} a_k r_k$ converges in E and

$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_E \le Bc^{-1} \|a\|_{\ell_2}.$$

Thus, inequality (12) holds, and the proof is complete.

From Proposition 4.1, Corollary 3.1 and Theorem 3.1 we obtain the following results.

THEOREM 4.1: Let a symmetric space X and a positive measurable function w on [0,1] satisfy condition (3). Then, the projection P defined by (2) is bounded in X(w) if and only if $G \subset X \subset G'$, $w \in \mathcal{M}(X)$ and $1/w \in \mathcal{M}(X')$.

In particular, P is bounded in X(w) whenever $w^*(t) \log^{1/2}(e/t) \in X''$ and $(1/w)^*(t) \log^{1/2}(e/t) \in X'$.

As above, the result can be somewhat refined for Lorentz and Marcinkiewicz spaces whose fundamental function satisfies the Δ^2 -condition.

COROLLARY 4.1: Let $\varphi \in \Delta^2$ and let w be a positive measurable function on [0,1] satisfying condition (3) for $X = \Lambda(\varphi)$ (resp. $X = M(\varphi)$). Then the

projection P defined by (2) is bounded in $\Lambda(\varphi)(w)$ (resp. $M(\varphi)(w)$) if and only if $G \subset \Lambda(\varphi) \subset G'$, $w \in \Lambda(\psi)$ and $1/w \in \mathcal{M}(M(\tilde{\varphi}))$ (resp. $G \subset M(\varphi) \subset G'$, $w \in M(\psi)$ and $1/w \in \mathcal{M}(\Lambda(\tilde{\varphi}))$), where $\psi'(t) = \varphi'(t) \log^{1/2}(e/t)$ and $\tilde{\varphi}(t) = t/\varphi(t)$.

REMARK 4.1: It is easy to see that the orthogonal projection P is bounded in the space X(w) if and only if the projection

$$P_w f(t) := \sum_{k=1}^{\infty} \int_0^1 f(s) r_k(s) \, \frac{ds}{w(s)} \cdot r_k(t) w(t), \ \ 0 \le t \le 1$$

(on the subspace $[r_k w]$), is bounded in X.

5. Example of a function from $\mathcal{M}(L_1) \setminus \mathrm{Sym}(L_1)$

Answering a question from [10], we present here a concrete example of a function $f \in \mathcal{M}(L_1)$, which does not belong to the symmetric kernel Sym (L_1) , that is,

$$\int_0^1 f^*(t) \log^{1/2}(e/t) \, dt = \infty.$$

Since the latter space is symmetric, it is sufficient to find a function $f \in \mathcal{M}(L_1)$, for which there exists a function $g \notin \mathcal{M}(L_1)$ equimeasurable with f. We will look for f and g in the form

(15)
$$f = \sum_{k=1}^{\infty} \alpha_k \chi_{B_k}, \quad g = \sum_{k=1}^{\infty} \alpha_k \chi_{D_k},$$

where $\{B_k\}$ and $\{D_k\}$ are sequences of pairwise disjoint subsets of [0, 1], $m(B_k) = m(D_k)$, $\alpha_k \in \mathbb{R}$, $k = 1, 2, \ldots$ Next, we will make use of some ideas of the paper [9].

Let $n = 2^m$ with $m \in \mathbb{N}$ and let J be a subset of $\{1, 2, \ldots, 2^n\}$ with cardinality n. We define the set $A = \bigcup_{j \in J} \Delta_n^j$ associated with J (as above, Δ_n^j are the dyadic intervals of [0, 1]). Clearly, $m(A) = n2^{-n}$.

For arbitrary sequence $(b_i) \in \ell_2$ we have

(16)
$$\left\|\chi_{A}\sum_{i=1}^{\infty}b_{i}r_{i}\right\|_{1} \leq \left\|\chi_{A}\sum_{i=1}^{n}b_{i}r_{i}\right\|_{1} + \left\|\chi_{A}\sum_{i=n+1}^{\infty}b_{i}r_{i}\right\|_{1}.$$

Firstly, we estimate the tail term from the right hand side of this inequality. It is easy to see that the functions

$$\chi_A(t) \cdot \sum_{i=n+1}^{\infty} b_i r_i(t)$$
 and $\chi_{[0,n2^{-n}]}(t) \cdot \sum_{i=n+1}^{\infty} b_i r_i(t)$

are equimeasurable on [0, 1] and

$$\chi_{[0,n2^{-n}]}(t) \sum_{i=n+1}^{\infty} b_i r_i(t) = \sum_{i=n+1}^{\infty} b_i r_{i+m-n}(n^{-1}2^n t), \quad 0 < t \le 1$$

(here, we set $r_j(t) = 0$ if $t \notin [0, 1]$). Therefore,

(17)
$$\begin{aligned} \left\|\chi_{A}\sum_{i=n+1}^{\infty}b_{i}r_{i}\right\|_{1} &= \left\|\chi_{[0,n2^{-n}]}\sum_{i=n+1}^{\infty}b_{i}r_{i}\right\|_{1} = n2^{-n}\left\|\sum_{i=n+1}^{\infty}b_{i}r_{i+m-n}\right\|_{1} \\ &\leq n2^{-n}\left(\sum_{i=n+1}^{\infty}b_{i}^{2}\right)^{1/2}. \end{aligned}$$

Now, choosing a set A in a special way, estimate the first term from the right hand side of (16). Denote by ε_{ij}^n the value of the function r_i , $i = 1, 2, \ldots, n$, on the interval Δ_n^j , $1 \leq j \leq 2^n$. Since $n = 2^m$, we can find a set $J_1(n) \subset \{1, 2, \ldots, 2^n\}$, card $J_1(n) = n$, such that the $n \times n$ matrix $n^{-1/2} \cdot (\varepsilon_{ij}^n)_{1 \leq i \leq n, j \in J_1(n)}$ is orthogonal. Then, if $c_j := n^{-1/2} \sum_{i=1}^n \varepsilon_{ij}^n b_i$, $j \in J_1(n)$, we have $\|(c_j)_{j \in J_1(n)}\|_{\ell_2} = \|(b_i)_{i=1}^n\|_{\ell_2}$. Therefore, setting $B(n) := \bigcup_{j \in J_1(n)} \Delta_n^j$, we obtain

$$\begin{aligned} \left\| \chi_{B(n)} \sum_{i=1}^{n} b_{i} r_{i} \right\|_{1} &= \left\| \sum_{j \in J_{1}(n)} \left(\sum_{i=1}^{n} b_{i} r_{i} \right) \chi_{\Delta_{n}^{j}} \right\|_{1} = \left\| \sum_{j \in J_{1}(n)} \sum_{i=1}^{n} \varepsilon_{ij}^{n} b_{i} \cdot \chi_{\Delta_{n}^{j}} \right\|_{1} \\ &= n^{1/2} \left\| \sum_{j \in J_{1}(n)} c_{j} \chi_{\Delta_{n}^{j}} \right\|_{1} \\ &= n^{1/2} 2^{-n} \sum_{j \in J_{1}(n)} |c_{j}| \le n 2^{-n} \| (b_{i})_{i=1}^{n} \|_{\ell_{2}}. \end{aligned}$$

Combining this inequality with (16), (17) for A = B(n) and (5), by definition of the norm in the space $\mathcal{M}(L_1)$, we have

(18)
$$\|\chi_{B(n)}\|_{\mathcal{M}(L_1)} \le 2\sqrt{2n2^{-n}}.$$

Let $\{n_k\}_{k=1}^{\infty}$ be an increasing sequence of positive integers, $n_k = 2^{m_k}, m_k \in \mathbb{N}$, satisfying the condition

(19)
$$n_k^{1/8} \ge 2^{n_1 + \dots + n_{k-1}}, \ k = 2, 3, \dots$$

At first, we construct a sequence of sets $\{B_k\}$. Setting $J_1^1 := J_1(n_1)$ and $B_1 := B(n_1)$, in view of (18) we have

$$\|\chi_{B_1}\|_{\mathcal{M}(L_1)} \le 2\sqrt{2n_1}2^{-n_1}.$$

Isr. J. Math.

386

To define B_2 , we take for I_1 any interval $\Delta_{n_1}^j$ such that $j \notin J_1^1$. Now, we can choose a set $J_1^2 \subset \{1, 2, \ldots, 2^{n_1+n_2}\}$ satisfying the conditions: card $J_1^2 = n_2$, $\Delta_{n_1+n_2}^j \subset I_1$ for every $j \in J_1^2$ and the $n_2 \times n_2$ matrix $n_2^{-1/2} \cdot (\varepsilon_{ij}^{n_1+n_2})_{n_1 < i \le n_1+n_2, j \in J_1^2}$ is orthogonal. We set $B_2 := \bigcup_{j \in J_1^2} \Delta_{n_1+n_2}^j$. Clearly, $m(B_2) = n_2 2^{-(n_1+n_2)}$ and $B_1 \cap B_2 = \emptyset$, because of $B_2 \subset I_1$. As in the case of B(n) we have

$$\begin{aligned} \left\|\chi_{B_2} \sum_{i=1}^{n_1+n_2} b_i r_i\right\|_1 &= \left\|\sum_{j \in J_1^2} \left(\sum_{i=1}^{n_1+n_2} b_i r_i\right) \chi_{\Delta_{n_1+n_2}^j}\right\|_1 \\ &\leq \left\|\sum_{j \in J_1^2} \left(\sum_{i=1}^{n_1} b_i r_i\right) \chi_{\Delta_{n_1+n_2}^j}\right\|_1 + \left\|\sum_{j \in J_1^2} \left(\sum_{i=n_1+1}^{n_2} b_i r_i\right) \chi_{\Delta_{n_1+n_2}^j}\right\|_1 \\ &\leq \sum_{i=1}^{n_1} |b_i| \|\chi_{B_2}\|_1 + \left\|\sum_{j \in J_1^2} \sum_{i=n_1+1}^{n_1+n_2} \varepsilon_{ij}^{n_1+n_2} b_i \cdot \chi_{\Delta_{n_1+n_2}^j}\right\|_1 \\ &\leq (n_1^{1/2} + 1)n_2 2^{-(n_1+n_2)} \|(b_i)_{i=1}^{n_1+n_2}\|_{\ell_2} \\ &\leq n_2 2^{-n_2} \|(b_i)_{i=1}^{n_1+n_2}\|_{\ell_2}. \end{aligned}$$

Therefore, from (16), (17) and (5) it follows that

$$\|\chi_{B_2}\|_{\mathcal{M}(L_1)} \le \sqrt{2} \left((n_1 + n_2)2^{-(n_1 + n_2)} + n_2 2^{-n_2} \right) \le 2\sqrt{2}n_2 2^{-n_2}$$

Proceeding in the same way, we get a sequence $\{B_k\}$ of pairwise disjoint subsets of [0, 1] such that $m(B_k) = n_k 2^{-(n_1 + \dots + n_k)}$ and

(20)
$$\|\chi_{B_k}\|_{\mathcal{M}(L_1)} \le 2\sqrt{2}n_k 2^{-n_k}, \ k = 1, 2, \dots$$

Now we define the sets D_k , $k = 1, 2, \ldots$ Select a set $J_2^1 \subset \{1, 2, \ldots, 2^{n_1}\}$, card $J_2^1 = n_1$, such that each column of the $n_1 \times n_1$ matrix $(\varepsilon_{ij}^{n_1})_{1 \leq i \leq n_1, j \in J_2^1}$ has exactly one entry equal to -1 and the rest are equal to 1. Setting $D_1 := \bigcup_{j \in J_2^1} \Delta_{n_1}^j$, we have $m(D_1) = n_1 2^{-n_1}$. Furthermore, from the inequality $\|n_1^{-1/2}\sum_{i=1}^{n_1}r_i\|_1\leq 1$ (see (5)) and the definition of D_1 it follows that

$$\begin{aligned} \|\chi_{D_1}\|_{\mathcal{M}(L_1)} &\geq & \left\|\sum_{j\in J_2^1} \left(n_1^{-1/2}\sum_{i=1}^{n_1} r_i\right)\chi_{\Delta_{n_1}^j}\right\|_1 \\ &= & \left\|\sum_{j\in J_2^1} \left(n_1^{-1/2}\sum_{i=1}^{n_1} \varepsilon_{ij}^{n_1}\right)\chi_{\Delta_{n_1}^j}\right\|_1 \\ &= & (n_1^{1/2} - 2n_1^{-1/2})n_12^{-n_1} \geq \frac{1}{2}n_1^{3/2}2^{-n_1} \end{aligned}$$

if $n_1 \ge 4$.

Similarly, we can define the set D_2 . Let I_2 be any interval $\Delta_{n_1}^j$ with $j \notin J_2^1$. Choose the set $J_2^2 \subset \{1, 2, \ldots, 2^{n_1+n_2}\}$ such that card $J_2^2 = n_2$, $\Delta_{n_1+n_2}^j \subset I_2$ for every $j \in J_2^2$ and each column of the $n_2 \times n_2$ matrix $(\varepsilon_{ij}^{n_1+n_2})_{n_1 < i \leq n_1+n_2, j \in J_2^2}$ has exactly one entry equal to -1 and the rest are equal to 1. Then, if $D_2 := \bigcup_{j \in J_2^2} \Delta_{n_1+n_2}^j$, then $m(D_2) = n_2 2^{-(n_1+n_2)}$ and $D_1 \cap D_2 = \emptyset$. Moreover, we have

$$\begin{aligned} \|\chi_{D_2}\|_{\mathcal{M}(L_1)} &\geq \|\sum_{j\in J_2^2} \left(n_2^{-1/2} \sum_{i=n_1+1}^{n_1+n_2} r_i\right) \chi_{\Delta_{n_1+n_2}^j} \|_1 \\ &= \|\sum_{j\in J_2^2} \left(n_2^{-1/2} \sum_{i=n_1+1}^{n_1+n_2} \varepsilon_{ij}^{n_1+n_2}\right) \chi_{\Delta_{n_1+n_2}^j} \|_1 \\ &= (n_2^{1/2} - 2n_2^{-1/2}) n_2 2^{-(n_1+n_2)} \geq \frac{1}{2} n_2^{3/2} 2^{-(n_1+n_2)}. \end{aligned}$$

Arguing in the same way, we construct a sequence $\{D_k\}$ of pairwise disjoint subsets of [0, 1] such that $m(D_k) = n_k 2^{-(n_1 + \dots + n_k)}$ and

(21)
$$\|\chi_{D_k}\|_{\mathcal{M}(L_1)} \ge \frac{1}{2} n_k^{3/2} 2^{-(n_1 + \dots + n_k)}, k = 1, 2, \dots$$

Since $m(B_k) = m(D_k)$, k = 1, 2, ..., the functions f and g defined by (15) are equimeasurable for arbitrary $\alpha_k \in \mathbb{R}$, k = 1, 2, ... Setting $\alpha_k = 2^{n_k} n_k^{-5/4}$, by (20), we obtain

$$\|f\|_{\mathcal{M}(L_1)} \le \sum_{k=1}^{\infty} \alpha_k \|\chi_{B_k}\|_{\mathcal{M}(L_1)} \le 2\sqrt{2} \sum_{k=1}^{\infty} n_k^{-1/4} < \infty,$$

because of $n_k = 2^{m_k}$, $m_1 < m_2 < \cdots$. Thus, $f \in \mathcal{M}(L_1)$.

On the other hand, for every k = 1, 2, ..., from (21) and (19) it follows that

$$\begin{split} \sup \Big\{ \Big\| g \cdot \sum_{i=1}^{\infty} a_i r_i \Big\|_1 : \Big\| \sum_{i=1}^{\infty} a_i r_i \Big\|_1 \le 1 \Big\} \ge \alpha_k \|\chi_{D_k}\|_{\mathcal{M}(L_1)} \\ \ge \frac{1}{2} n_k^{1/4} 2^{-(n_1 + \dots + n_{k-1})} \ge \frac{1}{2} n_k^{1/8}. \end{split}$$

Hence, this supremum is infinite, and so $g \notin \mathcal{M}(L_1)$.

ACKNOWLEDGMENT. The author thanks the referee whose remarks and suggestions helped to improve the paper.

References

- S. V. Astashkin, Systems of random variables equivalent in distribution to the Rademacher system and K-closed representability of Banach pairs, Matem. sb. 191 (2000), 3–30 (Russian); English transl.: Sb. Math. 191 (2000), 779–807.
- [2] S. V. Astashkin, Rademacher functions in symmetric spaces, Sovrem. Mat. Fundam. Napravl., **32** (2009), 3–161 (Russian); English transl.: J. Math. Sci. (N.Y.) (6), **169** (2010), 725–886.
- [3] S. V. Astashkin and G. P. Curbera, Symmetric kernel of Rademacher multiplicator spaces, J. Funct. Anal. 226 (2005), 173–192.
- [4] S. V. Astashkin and G. P. Curbera, Rademacher multiplicator spaces equal to L[∞], Proc. Amer. Math. Soc. 136 (2008), 3493–3501.
- [5] S. V. Astashkin and G. P. Curbera, Rearrangement invariance of Rademacher multiplicator spaces, J. Funct. Anal. 256 (2009), 4071–4094.
- [6] S. V. Astashkin and G. P. Curbera, A weighted Khintchine inequality, Revista Mat. Iberoam. 30 (2014), 237–246.
- [7] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, Vol. 119, Academic Press, Boston, 1988.
- [8] G. P. Curbera, Operators into L¹ of a vector measure and applications to Banach lattices, Math. Ann. 293 (1992), 317–330.
- [9] G. P. Curbera, A note on function spaces generated by Rademacher series, Proc. Edinburgh. Math. Soc. 40 (1997), 119–126.
- [10] G. P. Curbera, How summable are Rademacher series? Operator Theory: Adv. and Appl. 201 (2009), 135–148.
- [11] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge University Press, Cambridge, 1995.
- [12] W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. No. 217, 1979.
- [13] A. Khintchine, Über dyadische Brüche, Math. Zeit. 18 (1923), 109–116.
- [14] S. G. Krein, Ju. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, AMS Translations of Math. Monog., 54, American Mathematical Society, Providence, RI, 1982.

- [15] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin, 1979.
- [16] G. G. Lorentz, Relations between function spaces, Proc. Amer. Math. Soc. 12 (1961), 127–132.
- [17] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Mathematics, Vol. 1200, Springer-Verlag, Berlin, 1986.
- [18] R. E. A. C. Paley and A. Zygmund, On some series of functions. I, II, Proc. Camb. Phil. Soc. 26 (1930), 337–357, 458–474.
- [19] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS 60, Amer. Math. Soc., Providence, RI, 1986.
- [20] V. A. Rodin and E. M. Semenov, Rademacher series in symmetric spaces, Anal. Math. 1 (1975), 207–222.
- [21] V. A. Rodin and E. M. Semenov, The complementability of a subspace that is generated by the Rademacher system in a symmetric space, Funktsional. Anal. i Prilozhen. (2) 13 (1979), 91–92 (Russian); English transl.: Functional Anal. Appl. 13 (1979), 150–151.
- [22] S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197–208.
- [23] M. Veraar, On Khintchine inequalities with a weight, Proc. Amer. Math. Soc. 138 (2011), 4119–4121.
- [24] A. Zygmund, Trigonometric Series, Vol. I, 2nd ed., Cambridge University Press, New York, 1959.