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ABSTRACT

The closed span of Rademacher functions is investigated in the weighted

spaces X(w), where X is a symmetric space on [0, 1] and w is a positive

measurable function on [0, 1]. By using the notion and properties of the

Rademacher multiplicator space of a symmetric space, we give a descrip-

tion of the weights w for which the Rademacher orthogonal projection is

bounded in X(w).

1. Introduction

We recall that the Rademacher functions on [0, 1] are defined by

rk(t) = sign(sin2kπt) for every t ∈ [0, 1] and each k ∈ N. It is well known

that {rk} is an incomplete orthogonal system of independent random variables.

This system plays a prominent role in the modern theory of Banach spaces and

operators (see, e.g., [11], [12], [17] and [19]).
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A classical result of Rodin and Semenov [20] states that the sequence {rk} is

equivalent in a symmetric space X to the unit vector basis in �2, i.e.,

(1)
∥∥∥

∞∑
k=1

akrk

∥∥∥
X

�
( ∞∑
k=1

|ak|2
)1/2

, (ak) ∈ �2,

if and only if G ⊂ X , where G is the closure of L∞[0, 1] in the Zygmund space

ExpL2[0, 1]. When this condition is satisfied, the span [rk] of Rademacher

functions is complemented in X if and only if X ⊂ G′, where the Köthe dual

space G′ to G coincides (with equivalence of norms) with another well-known

Zygmund space L log1/2 L[0, 1]. This was proved independently by Rodin and

Semenov [21] and Lindenstrauss and Tzafriri [15, Theorem 2.b.4, pp. 134–138].

Moreover, the condition G ⊂ X ⊂ G′ (equivalently, complementability of [rk]

in X) is equivalent to the boundedness in X of the orthogonal projection

(2) Pf(t) :=
∞∑
k=1

ck(f)rk(t),

where ck(f) :=
∫ 1

0
f(u)rk(u) du, k = 1, 2, . . . . The main purpose of this paper

is to investigate the behaviour of Rademacher functions and of the respective

projection P in the weighted spaces X(w) consisting of all measurable functions

f such that fw ∈ X with the norm ‖f‖X(w) := ‖fw‖X . Here, X is a symmetric

space on [0, 1] and w is a positive measurable function on [0, 1]. We make use

of the notion of the Rademacher multiplicator space M(X) of a symmetric

space X , which originally arose from the study of vector measures and scalar

functions integrable with respect to them (see [8] and [10]). For the first time a

connection between the space M(X) and the behavior of Rademacher functions

in the weighted spacesX(w) was observed in [6] when proving a weighted version

of inequality (1) (under more restrictive conditions in the case of Lp-spaces it

was proved in [23]).

To ensure that the operator P is well defined, we have to guarantee that

the Rademacher functions belong both to X(w) and to its Köthe dual space

(X(w))′ = X ′(1/w). For this reason, in what follows we assume that

(3) L∞ ⊂ X(w) ⊂ L1.

This assumption allows us to find necessary and sufficient conditions on the

weight w under which the orthogonal projection P is bounded in the weighted

space X(w). Moreover, extending the above mentioned result of Rodin and
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Semenov from [20] to the weighted symmetric spaces, we show that, in contrast

to the symmetric spaces, the embedding X(w) ⊃ G is a stronger condition, in

general, than equivalence of the sequence of Rademacher functions in X(w) to

the unit vector basis in �2. In the final part of the paper, answering a question

from [10], we present a concrete example of a function f ∈ M(L1), which does

not belong to the symmetric kernel of the latter space.

2. Preliminaries

Let E be a Banach function lattice on [0, 1], i.e., if x and y are measurable

a.e. finite functions on [0, 1] such that x ∈ E and |y| ≤ |x|, then y ∈ E and

‖y‖E ≤ ‖x‖E . The Köthe dual of E is the Banach function lattice E′ of all
functions y such that

∫ 1

0
|x(t)y(t)| dt <∞, for every x ∈ E, with the norm

‖y‖E′ := sup
{∫ 1

0

x(t)y(t) dt : x ∈ E, ‖x‖E ≤ 1
}
;

E′ is a subspace of the topological dual E∗. If E is separable we have E′ = E∗.
A Banach function lattice E has the Fatou property, if from 0 ≤ xn ↗ x a.e.

on [0, 1] and supn∈N ‖xn‖E <∞ it follows that x ∈ E and ‖xn‖E ↗ ‖x‖E .
Suppose that a Banach function lattice E satisfies E ⊃ L∞. By E◦ we will de-

note the closure of L∞ in E. Clearly, E◦ contains the absolutely continuous part

of E, that is, the set of all functions x ∈ E such that limm(A)→0 ‖x · χA‖E = 0.

Here and subsequently, m is the Lebesgue measure on [0, 1] and χA is the char-

acteristic function of a set A ⊂ [0, 1].

Throughout the paper a symmetric (or rearrangement invariant) space X is

a Banach space of classes of measurable functions on [0,1] such that from the

conditions y∗ ≤ x∗ and x ∈ X it follows that y ∈ X and ‖y‖X ≤ ‖x‖X . Here,

x∗ is the decreasing rearrangement of x, that is, the right continuous inverse of

its distribution function: nx(τ) = m{t ∈ [0, 1] : |x(t)| > τ}. Functions x and y

are said to be equimeasurable if nx(τ) = ny(τ), for all τ > 0. The Köthe dual

X ′ is a symmetric space whenever X is symmetric. In what follows we assume

that X is isometric to a subspace of its second Köthe dual X ′′ := (X ′)′. In

particular, this holds if X is separable or it has the Fatou property. For every

symmetric space X the following continuous embeddings hold: L∞ ⊂ X ⊂ L1.

If X is a symmetric space, X 
= L∞, then X◦ is a separable symmetric space.
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Important examples of symmetric spaces are Marcinkiewicz, Lorentz and Or-

licz spaces. Let ϕ : [0, 1] → [0,+∞) be a quasi-concave function, that is, ϕ

increases, ϕ(t)/t decreases and ϕ(0) = 0. The Marcinkiewicz space M(ϕ) is the

space of all measurable functions x on [0,1] satisfying the condition

‖x‖M(ϕ) = sup
0<t≤1

ϕ(t)

t

∫ t

0

x∗(s) ds <∞.

If ϕ : [0, 1] → [0,+∞) is an increasing concave function, ϕ(0) = 0, then the

Lorentz space Λ(ϕ) consists of all measurable functions x on [0,1] such that

‖x‖Λ(ϕ) =

∫ 1

0

x∗(s) dϕ(s) < ∞.

For an arbitrary increasing concave function ϕ we have Λ(ϕ)′ = M(ϕ̃) and

M(ϕ)
′
= Λ(ϕ̃), where ϕ̃(t) := t/ϕ(t) [14, Theorems II.5.2 and II.5.4].

Let M be an Orlicz function, that is, an increasing convex function on [0,∞)

with M(0) = 0. The norm of the Orlicz space LM is defined as

‖x‖LM = inf

{
λ > 0 :

∫ 1

0

M

( |x(s)|
λ

)
ds ≤ 1

}
.

In particular, if M(u) = up, 1 ≤ p <∞, we have LM = Lp isometrically. Next,

by ‖f‖p we denote the norm ‖f‖Lp.

The fundamental function of a symmetric space X is the function

φX(t) := ‖χ[0,t]‖X . In particular, we have φM(ϕ)(t) = φΛ(ϕ)(t) = ϕ(t), and

φLM (t) = 1/M−1(1/t), respectively. The Marcinkiewicz M(ϕ) and Lorentz

Λ(ϕ) spaces are, respectively, the largest and the smallest symmetric spaces

with the fundamental function ϕ, that is, if the fundamental function of a sym-

metric space X is equal to ϕ, then Λ(ϕ) ⊂ X ⊂M(ϕ).

If ψ is a positive function defined on [0,1], then its lower and upper dilation

indices are

γψ := lim
t→0+

log
(
sup 0<s≤1

ψ(st)
ψ(s)

)
log t

and δψ := lim
t→+∞

log
(
sup 0<s≤1/t

ψ(st)
ψ(s)

)
log t

,

respectively. We always have 0 ≤ γψ ≤ δψ ≤ 1.

In the case when δϕ < 1, the norm in the Marcinkiewicz space M(ϕ) satisfies

the equivalence

‖x‖M(ϕ) � sup
0<t≤1

ϕ(t)x∗(t)
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[14, Theorem II.5.3]. Here, and throughout the paper, the notation A � B

means that there exist constants C > 0 and c > 0 independent of all or of a part

of arguments of functions (quasi-norms) A and B such that c·A ≤ B ≤ C·A.
The Orlicz spaces LNp , p > 0, where Np is an Orlicz function equivalent to

the function exp(tp)−1, will be of major importance in our study. Usually these

are referred to as Zygmund spaces and denoted by ExpLp. The fundamental

function of ExpLp is equivalent to the function ϕp(t) = log−1/p(e/t). Since

Np(u) increases at infinity very rapidly, ExpLp coincides with the Marcinkiewicz

space M(ϕp) [16]. This, together with the equality δϕp = 0 < 1, gives

‖x‖ExpLp � sup
0<t≤1

x∗(t) log−1/p(e/t).

In particular, for every x ∈ ExpLp and 0 < t ≤ 1 we have

(4) x∗(t) ≤ C ‖x‖ExpLp log1/p(e/t).

Hence, for a symmetric space X , the embedding ExpLp ⊂ X is equivalent to

the condition log1/p(e/t) ∈ X .

Recall that the Rademacher functions are rk(t) := sign sin(2kπt), t ∈ [0, 1],

k ≥ 1. The famous Khintchine inequality [13] states that, for every 1 ≤ p <∞,

the sequence {rk} is equivalent in Lp to the unit vector basis in �2. As was

mentioned in the introduction, Rodin and Semenov [20] extended this result to

the class of symmetric spaces showing that equivalence (1) holds in a symmetric

space X if and only if G ⊂ X , where G = (ExpL2)◦. Next, we will repeatedly

use the Khintchine L1-inequality from [22] with optimal constants:

(5)
1√
2
‖(ak)‖�2 ≤

∥∥∥
∞∑
k=1

akrk

∥∥∥
1
≤ ‖(ak)‖�2 ,

where ‖(ak)‖�2 := (
∑∞
k=1 a

2
k)

1/2 (next, we consider real scalars; however, all

results of the paper are valid also in the complex case).

The Rademacher multiplicator space of a symmetric space X is the space

M(X) of all measurable functions f : [0, 1] → R such that f ·∑∞
k=1 akrk ∈ X ,

for every Rademacher sum
∑∞

k=1 akrk ∈ X . It is a Banach function lattice on

[0, 1] when endowed with the norm

‖f‖M(X) = sup
{∥∥∥f ·

∞∑
k=1

akrk

∥∥∥
X

:
∥∥∥

∞∑
k=1

akrk

∥∥∥
X

≤ 1
}
.
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Here, M(X) can be viewed as the space of operators given by multiplication

by a measurable function, which are bounded from the subspace [rk] in X into

the whole space X .

The Rademacher multiplicator space M(X) was first considered in [9], where

it was shown that for a broad class of classical symmetric spaces X the space

M(X) is not symmetric. This result was extended in [3] to include all symmetric

spaces such that the lower dilation index γϕX of their fundamental function ϕX

is positive. This result motivated the study of the symmetric kernel Sym (X) of

the space M(X). The space Sym (X) consists of all functions f ∈ M(X) such

that an arbitrary function g, equimeasurable with f, belongs to M(X) as well.

The norm in Sym (X) is defined as

‖f‖Sym(X) = sup ‖g‖M(X),

where the supremum is taken over all g equimeasurable with f . From the

definition it follows that Sym (X) is the largest symmetric space embedded into

M(X). Moreover, if X is a symmetric space such that X ′′ ⊃ ExpL2, then

‖f‖Sym(X) � ‖f∗(t) log1/2(e/t)‖X′′

(see [5, Proposition 3.1 and Corollary 3.2]). The opposite situation is when the

Rademacher multiplicator space M(X) is symmetric. The simplest case of this

situation is when M(X) = L∞. It was shown in [4] that M(X) = L∞ if and

only if log1/2(e/t) 
∈ X◦. Regarding the case when M(X) is a symmetric space

different from L∞, see the paper [5].

We will denote by Δk
n the dyadic intervals of [0,1], that is,

Δk
n = [(k− 1)2−n, k2−n], where n = 0, 1, . . . , k = 1, . . . , 2n; we say that Δk

n has

rank n. For any undefined notions we refer the reader to the monographs [7],

[14], [15].

3. Rademacher sums in weighted spaces

First, we find necessary and sufficient conditions on the symmetric space X,

under which there is a weight w such that the sequence of Rademacher functions

spans �2 in X(w). We prove the following refinement of the nontrivial part of

the above mentioned Rodin–Semenov Theorem.

Proposition 3.1: For every symmetric space X the following conditions are

equivalent:
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(i) there exists a set D ⊂ [0, 1] of positive measure such that

(6)
∥∥∥

∞∑
k=1

akrk · χD
∥∥∥
X

≤M‖(ak)‖�2 ,

for some M > 0 and arbitrary (ak) ∈ �2;

(ii) X ⊃ G.

Proof. Since the implication (ii) ⇒ (i) is an immediate consequence of the fact

that the sequence {rk} spans �2 in the spaceG (see [18] or [24, Theorem V.8.16]),

we need to prove only that (i) implies (ii).

Assume that (6) holds. By Lebesgue’s density theorem, for sufficiently large

m ∈ N, we can find a dyadic interval Δ := Δk0
m = [(k0 − 1)2−m, k02−m] such

that

2−m = m(Δ) ≥ m(Δ ∩D) > 2−m−1.

Let us consider the set E =
⋃2m

k=1 E
k
m, where E

k
m is obtained by translating the

set Δ ∩ D to the interval Δk
m, k = 1, 2, . . . , 2m (in particular, Ek0m = Δ ∩ D).

Denote fi = ri · χE , i ∈ N. It follows easily that |fi(t)| ≤ 1, t ∈ [0, 1],

‖fi‖2 ≥ 1/
√
2, and fi → 0 weakly in L2[0, 1] when i → ∞. Therefore, by

[1, Theorem 5], the sequence {fi}∞i=1 contains a subsequence {fij}, which is

equivalent in distribution to the Rademacher system. This means that there

exists a constant C > 0 such that

C−1m

{
t ∈ [0, 1] :

∣∣∣∣
l∑

j=1

ajrj(t)

∣∣∣∣ > Cz

}
≤ m

{
t ∈ [0, 1] :

∣∣∣∣
l∑

j=1

ajfij (t)

∣∣∣∣ > z

}

≤ Cm

{
t ∈ [0, 1] :

∣∣∣∣
l∑

j=1

ajrj(t)

∣∣∣∣ > C−1z

}

for all l ∈ N, aj ∈ R, and z > 0. Hence, by the definition of rj and fj , for every

n ∈ N we have

C−1m

{
t ∈ [0, 1] :

∣∣∣∣
m+n∑
j=m+1

rj(t)χ[0,2−m](t)

∣∣∣∣ > Cz

}

≤ m

{
t ∈ [0, 1] :

∣∣∣∣
m+n∑
j=m+1

fij (t)χΔ(t)

∣∣∣∣ > z

}

≤ Cm

{
t ∈ [0, 1] :

∣∣∣∣
m+n∑
j=m+1

rj(t)χ[0,2−m](t)

∣∣∣∣ > C−1z

}
,
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whence

(7)
∥∥∥

m+n∑
j=m+1

rijχΔ∩D
∥∥∥
X

≥ α
∥∥∥

m+n∑
j=m+1

rjχ[0,2−m]

∥∥∥
X
,

where α > 0 depends only on the constant C and on the space X.

Now, assume that (ii) fails, i.e., X 
⊃ G. Then, by [4, inequality (2) in the

proof of Theorem 1], there exists a constant β > 0, depending only on X , such

that for every m ≥ 0 there exists n0 ≥ 1 such that, if n ≥ n0 and Δ′ is an

arbitrary dyadic interval of rank m, we have

∥∥∥χΔ′

m+n∑
i=m+1

ri

∥∥∥
X

≥ β
∥∥∥

n∑
i=1

ri

∥∥∥
X
.

From this inequality with Δ′ = [0, 2−m] and inequality (7) it follows that, for n

large enough,

∥∥∥
m+n∑
j=m+1

rijχD

∥∥∥
X

≥
∥∥∥

m+n∑
j=m+1

rijχΔ∩D
∥∥∥
X

≥ αβ
∥∥∥

n∑
j=1

rj

∥∥∥
X
.

Combining the latter inequality together with (6) we deduce

1√
n

∥∥∥
n∑
j=1

rj

∥∥∥
X

≤ M

αβ

for all n ∈ N large enough. At the same time, as follows from the proof of

the Rodin–Semenov Theorem in [20], the last condition is equivalent to the

embedding X ⊃ G. This contradiction concludes the proof.

Corollary 3.1: Suppose X is a symmetric space. Then, X ⊃ G if and only

if there exists a weight w such that the sequence {rk} spans �2 in X(w).

Proof. If {rk} spans �2 in X(w) for some weight w, we have

∥∥∥
∞∑
k=1

akrk · w
∥∥∥
X

≤ C‖(ak)‖�2 .

Since w(t) > 0 a.e. on [0, 1], there is a set D ⊂ [0, 1] of positive measure such

that inequality (6) holds for some M > 0 and arbitrary (ak) ∈ �2. Applying

Proposition 3.1, we obtain that X ⊃ G. The converse is obvious, and so the

proof is completed.
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Corollary 3.1 shows the necessity of the condition X ⊃ G in the following

main result of this part of the paper.

Theorem 3.1: Let X be a symmetric space such that X ⊃ G and let a positive

measurable function w on [0, 1] satisfy condition (3). Then we have:

(i) the sequence {rk} spans �2 in X(w) if and only if w ∈ M(X), where

M(X) is the Rademacher multiplicator space of X ;

(ii) X(w) ⊃ G if and only if w ∈ Sym (X), where Sym (X) is the symmetric

kernel of M(X).

Part (i) of this theorem was actually obtained in [6, p. 240]. However, for the

reader’s convenience we provide here its proof. But we begin with the following

technical result, which will be needed to prove part (ii).

Lemma 3.1: Let Y be a symmetric space and let w be a positive measurable

function on [0, 1]. Suppose the weighted function lattice Y (w∗) contains an

unbounded decreasing positive function a on (0, 1]. Then (Y (w))◦ = Y◦(w).

Proof. Since (wa)∗(t) ≤ w∗(t/2)a(t/2), 0 < t ≤ 1, [14, § II.2] and, by assump-

tion, w∗a ∈ Y , we have wa ∈ Y. Equivalently, a ∈ Y (w).

Let y ∈ (Y (w))◦. By definition, there is a sequence {yk} ⊂ L∞ such that

(8) lim
k→∞

‖ykw − yw‖Y = 0.

Since a decreases, for arbitrary A ⊂ [0, 1] and every (fixed) k ∈ N we have

‖ykwχA‖Y ≤ ‖yk‖∞‖w∗χ(0,m(A)]‖Y ≤ ‖yk‖∞
a(m(A))

‖w∗a‖Y .

Noting that the right hand side of this inequality tends to 0 as m(A) → ∞, we

get

lim
m(A)→0

‖ykwχA‖Y = 0,

whence ykw ∈ Y◦, k ∈ N. Combining this with (8), we infer that yw ∈ Y◦ or,

equivalently, y ∈ Y◦(w).
To prove the opposite embedding, assume that y ∈ Y◦(w). Then

(9) lim
k→∞

‖yk − yw‖Y = 0

for some sequence {yk} ⊂ L∞. From the hypothesis of the lemma it follows

that Y 
= L∞. Therefore, for arbitrary A ⊂ [0, 1] and each k ∈ N

‖yk/w · χA‖Y (w) = ‖ykχA‖Y → 0 as m(A) → 0.
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Hence, yk/w ∈ (Y (w))◦, k ∈ N. Since ‖yk/w − y‖Y (w) = ‖yk − yw‖Y , from (9)

it follows that y ∈ (Y (w))◦.

Proof of Theorem 3.1. (i) Since X ⊃ G, equivalence (1) holds. At first, assume

that w ∈ M(X). Then, by definition of the norm in M(X), we have

(10) ‖w‖M(X) � sup
{∥∥∥w ·

∞∑
k=1

akrk

∥∥∥
X

: ‖(ak)‖�2 ≤ 1
}
.

Therefore,

∥∥∥
∞∑
k=1

akrk

∥∥∥
X(w)

=
∥∥∥w ·

∞∑
k=1

akrk

∥∥∥
X

≤ C‖w‖M(X)‖(ak)‖�2

for every (ak) ∈ �2. On the other hand, from embeddings (3) and inequality (5)

it follows that

∥∥∥
∞∑
k=1

akrk

∥∥∥
X(w)

≥ c
∥∥∥

∞∑
k=1

akrk

∥∥∥
1
≥ c√

2
‖(ak)‖�2 .

As a result we deduce that {rk} spans �2 in X(w).

Conversely, if ∥∥∥
∞∑
k=1

akrk

∥∥∥
X(w)

� ‖(ak)‖�2 ,

from (10) we obtain that ‖w‖M(X) <∞, i.e., w ∈ M(X).

(ii) Assume that w ∈ Sym (X). Then, taking into account the properties of

the symmetric kernel Sym (X) (see Preliminaries or [5, Corollary 3.2]) we have

w∗(t) log1/2(e/t) ∈ X ′′. Let us prove that

(11) ExpL2 ⊂ X ′′(w).

Given x ∈ ExpL2, by [7, Theorem 2.7.5] there exists a measure-preserving

transformation σ of (0, 1] such that |x(t)| = x∗(σ(t)). Applying inequality (4)

and a well-known property of the rearrangement of a measurable function (see,

e.g., [14, § II.2]), we have

(wx)∗(t) = (wx∗(σ))∗ (t) ≤ C
(
w log1/2(e/σ(·))

)∗
(t)

≤ Cw∗(t/2) log1/2(2e/t), 0 < t ≤ 1.

Therefore, wx ∈ X ′′ or, equivalently, x ∈ X ′′(w), and (11) is proved. Hence,

G = (ExpL2)◦ ⊂ (X ′′(w))◦. Since log1/2(e/t) ∈ X ′′(w∗), we can apply
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Lemma 3.1, and so, by [2, Lemma 3.3],

G ⊂ (X ′′)◦(w) = X◦(w) ⊂ X(w).

Now, let X(w) ⊃ G. We show that X(w∗) ⊃ G. In fact, let τ be a measure-

preserving transformation of (0, 1] such that w(t) = w∗(τ(t)) [7, Theorem

2.7.5]. Suppose x ∈ G. Since x(τ) and x are equimeasurable functions, we have

x(τ) ∈ G and ‖x(τ)‖G = ‖x‖G. Therefore,
‖x(τ)w∗(τ)‖X = ‖x(τ)w‖X ≤ C‖x‖G.

Then, ‖x(τ)w∗(τ)‖X = ‖xw∗‖X , because X is a symmetric space, and from

the preceding inequality we infer that ‖xw∗‖X ≤ C‖x‖G. Thus, x ∈ X(w∗),
and the embedding X(w∗) ⊃ G is proved. Passing to the second Köthe dual

spaces, we obtain X ′′(w∗) ⊃ G′′ = ExpL2. Hence, log1/2(e/t) ∈ X ′′(w∗) or,

equivalently, w ∈ Sym (X) (as above, see Preliminaries or [5, Corollary 3.2]),

and the proof is complete.

By the Rodin–Semenov Theorem [20], the sequence {rk} is equivalent in

a symmetric space X to the unit vector basis in �2 if and only if X ⊃ G. In

contrast to that from Theorem 3.1 we immediately deduce the following result.

Corollary 3.2: SupposeX is a symmetric space such that Sym (X) 
= M(X).

Then, for everyw ∈ M(X)\Sym (X) the Rademacher functions span �2 inX(w)

but X(w) 
⊃ G.

By [3, Theorem 2.1], Sym (X) 
= M(X) (and therefore there is

w ∈ M(X) \ Sym (X)) whenever the lower dilation index of the fundamental

function φX is positive. In particular, it is fulfilled for Lp-spaces, 1 ≤ p < ∞.

The condition γφX > 0 means that the space X is situated “far” from the min-

imal symmetric space L∞. Now, consider the opposite case when a symmetric

space is “close” to L∞. Then the Rademacher multiplicator space M(X) may

be symmetric (equivalently, it coincides with its symmetric kernel). Since the

space Sym (X) has an explicit description (see Preliminaries), in this case we

are able to state a sharper result. For simplicity, let us consider only Lorentz

and Marcinkiewicz spaces (for more general results of such a sort, see [5]).

Recall [5] that a function ϕ(t) defined on [0, 1] satisfies the Δ2-condition

(briefly, ϕ ∈ Δ2) if it is nonnegative, increasing, concave, and there exists

C > 0 such that ϕ(t) ≤ C·ϕ(t2) for all 0 < t ≤ 1. By [5, Corollary 3.5], if

ϕ ∈ Δ2, then M(Λ(ϕ)) = Sym(Λ(ϕ)) and M(M(ϕ)) = Sym(M(ϕ)). Moreover,
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it is known [3, Example 2.15 and Theorem 4.1] that Sym(Λ(ϕ)) = Λ(ψ) (resp.

Sym(M(ϕ)) = M(ψ)), where ψ′(t) = ϕ′(t) log1/2(e/t), whenever log1/2(e/t) ∈
Λ(ϕ) (resp. log1/2(e/t) ∈M(ϕ)). Therefore, we get

Corollary 3.3: Let ϕ ∈ Δ2 and log1/2(e/t) ∈ Λ(ϕ) (resp. log1/2(e/t) ∈
M(ϕ)). If w is a positive measurable function on [0, 1] satisfying condition (3),

then the sequence {rk} is equivalent in the space Λ(ϕ)(w) (resp. M(ϕ)(w)) to

the unit vector basis in �2 if and only if w ∈ Λ(ψ) (resp. w ∈ M(ψ)), where

ψ′(t) = ϕ′(t) log1/2(e/t).

In particular, if 0 < p ≤ 2, the sequence {rk} is equivalent in the Zygmund

space ExpLp(w) to the unit vector basis in �2 if and only if w ∈ ExpLq, where

q = 2p/(2− p) (here, we set ExpL∞ = L∞).

4. Rademacher orthogonal projection in weighted spaces

Here, we present necessary and sufficient conditions, under which the orthogonal

projection P defined by (2) is bounded in a weighted symmetric space X(w)

satisfying condition (3).

Proposition 4.1: Let E be a Banach function lattice on [0, 1] that is isomet-

rically embedded into E′′, L∞ ⊂ E ⊂ L1. Then the projection P defined by

(2) is bounded in E if and only if there are constants C1 and C2 such that for

all a = (ak) ∈ �2

(12)
∥∥∥

∞∑
k=1

akrk

∥∥∥
E
≤ C1‖a‖�2

and

(13)
∥∥∥

∞∑
k=1

akrk

∥∥∥
E′

≤ C2‖a‖�2.

Proof. Firstly, assume that inequalities (12) and (13) hold. Then, denoting, as

above, ck(f) :=
∫ 1

0
f(u)rk(u) du, k = 1, 2, . . . , for every n ∈ N, by (13), we have

n∑
k=1

ck(f)
2 =

∫ 1

0

f(u)

n∑
k=1

ck(f)rk(u) du

≤ ‖f‖E
∥∥∥

n∑
k=1

ck(f)rk

∥∥∥
E′

≤ C2‖f‖E
( n∑
k=1

ck(f)
2
)1/2

,
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whence ( ∞∑
k=1

ck(f)
2
)1/2

≤ C2‖f‖E, f ∈ E.

Therefore, by (12), we obtain

‖Pf‖E ≤ C1

( ∞∑
k=1

ck(f)
2
)1/2

≤ C1C2‖f‖E

for all f ∈ E.

Conversely, suppose that the projection P is bounded in E. Let us consider

the following sequence of finite-dimensional operators:

Pnf(t) :=

n∑
k=1

ck(f)rk(t), n ∈ N.

Clearly, Pn is bounded in E for every n ∈ N. Furthermore, by assumption, the

series
∑∞

k=1 ck(f)rk converges in E for each f ∈ E. Therefore, by the Uniform

Boundedness Principle,

(14) ‖Pn‖E→E ≤ B, n ∈ N.

Moreover, since L∞ ⊂ E ⊂ L1, then L∞ ⊂ E′ ⊂ L1 as well, and hence, by the

L1-Khintchine inequality (5),

∥∥∥
∞∑
k=1

akrk

∥∥∥
E
≥ c‖a‖�2 and

∥∥∥
∞∑
k=1

akrk

∥∥∥
E′

≥ c‖a‖�2.

Therefore, for all f ∈ E, n ∈ N and ak ∈ R, k = 1, 2, . . . , n, we have∫ 1

0

f(t) ·
n∑
k=1

akrk(t) dt =

n∑
k=1

akck(f) ≤ ‖a‖�2
( n∑
k=1

ck(f)
2
)1/2

≤ c−1‖a‖�2 · ‖Pnf‖E ≤ Bc−1‖a‖�2 · ‖f‖E.
Taking the supremum over all f ∈ E, ‖f‖E ≤ 1, we get

∥∥∥
n∑
k=1

akrk

∥∥∥
E′

≤ Bc−1‖a‖�2, n ∈ N.

Applying the latter inequality to Rademacher sums
∑m
k=n akrk, 1 ≤ n < m,

with a = (ak)
∞
k=1 ∈ �2, we deduce that the series

∑∞
k=1 akrk converges in the

space E′ and ∥∥∥
∞∑
k=1

akrk

∥∥∥
E′

≤ Bc−1‖a‖�2.
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Thus, (13) is proved. Let us prove the corresponding inequality for E.

By the Fubini theorem and (14), for arbitrary f ∈ E, g ∈ E′ and every n ∈ N

we have ∫ 1

0

f(u) ·
n∑
k=1

ck(g)rk(u) du =

∫ 1

0

g(t) ·
n∑
k=1

ck(f)rk(t) dt

≤ ‖Pnf‖E‖g‖E′ ≤ B‖f‖E‖g‖E′,

whence ∥∥∥
n∑
k=1

ck(g)rk

∥∥∥
E′

≤ B‖g‖E′, n ∈ N.

Applying this inequality instead of (14), as above, we get

∥∥∥
n∑
k=1

akrk

∥∥∥
E′′

≤ Bc−1‖a‖�2.

Since L∞ ⊂ E and E is isometrically embedded into E′′, from the last inequality

it follows that ∥∥∥
n∑
k=1

akrk

∥∥∥
E
≤ Bc−1‖a‖�2

for all n ∈ N. Hence, if a = (ak)
∞
k=1 ∈ �2, the series

∑∞
k=1 akrk converges in E

and ∥∥∥
∞∑
k=1

akrk

∥∥∥
E
≤ Bc−1‖a‖�2.

Thus, inequality (12) holds, and the proof is complete.

From Proposition 4.1, Corollary 3.1 and Theorem 3.1 we obtain the following

results.

Theorem 4.1: Let a symmetric space X and a positive measurable function w

on [0, 1] satisfy condition (3). Then, the projection P defined by (2) is bounded

in X(w) if and only if G ⊂ X ⊂ G′, w ∈ M(X) and 1/w ∈ M(X ′).
In particular, P is bounded in X(w) whenever w∗(t) log1/2(e/t) ∈ X ′′ and

(1/w)∗(t) log1/2(e/t) ∈ X ′.

As above, the result can be somewhat refined for Lorentz and Marcinkiewicz

spaces whose fundamental function satisfies the Δ2-condition.

Corollary 4.1: Let ϕ ∈ Δ2 and let w be a positive measurable function on

[0, 1] satisfying condition (3) for X = Λ(ϕ) (resp. X = M(ϕ)). Then the
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projection P defined by (2) is bounded in Λ(ϕ)(w) (resp. M(ϕ)(w)) if and only

if G ⊂ Λ(ϕ) ⊂ G′, w ∈ Λ(ψ) and 1/w ∈ M(M(ϕ̃)) (resp. G ⊂M(ϕ) ⊂ G′, w ∈
M(ψ) and 1/w ∈ M(Λ(ϕ̃))), where ψ′(t) = ϕ′(t) log1/2(e/t) and ϕ̃(t) = t/ϕ(t).

Remark 4.1: It is easy to see that the orthogonal projection P is bounded in

the space X(w) if and only if the projection

Pwf(t) :=
∞∑
k=1

∫ 1

0

f(s)rk(s)
ds

w(s)
· rk(t)w(t), 0 ≤ t ≤ 1

(on the subspace [rkw]), is bounded in X.

5. Example of a function from M(L1) \ Sym(L1)

Answering a question from [10], we present here a concrete example of a function

f ∈ M(L1), which does not belong to the symmetric kernel Sym (L1), that is,∫ 1

0

f∗(t) log1/2(e/t) dt = ∞.

Since the latter space is symmetric, it is sufficient to find a function f ∈ M(L1),

for which there exists a function g 
∈ M(L1) equimeasurable with f . We will

look for f and g in the form

(15) f =

∞∑
k=1

αkχBk
, g =

∞∑
k=1

αkχDk
,

where {Bk} and {Dk} are sequences of pairwise disjoint subsets of [0, 1], m(Bk) =

m(Dk), αk ∈ R, k = 1, 2, . . . . Next, we will make use of some ideas of the pa-

per [9].

Let n = 2m withm ∈ N and let J be a subset of {1, 2, . . . , 2n} with cardinality

n. We define the set A =
⋃
j∈J Δ

j
n associated with J (as above, Δj

n are the

dyadic intervals of [0, 1]). Clearly, m(A) = n2−n.
For arbitrary sequence (bi) ∈ �2 we have

(16)
∥∥∥χA

∞∑
i=1

biri

∥∥∥
1
≤

∥∥∥χA
n∑
i=1

biri

∥∥∥
1
+ ‖χA

∞∑
i=n+1

biri

∥∥∥
1
.

Firstly, we estimate the tail term from the right hand side of this inequality. It

is easy to see that the functions

χA(t) ·
∞∑

i=n+1

biri(t) and χ[0,n2−n](t) ·
∞∑

i=n+1

biri(t)
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are equimeasurable on [0, 1] and

χ[0,n2−n](t)

∞∑
i=n+1

biri(t) =

∞∑
i=n+1

biri+m−n(n−12nt), 0 < t ≤ 1

(here, we set rj(t) = 0 if t 
∈ [0, 1]). Therefore,

(17)

∥∥∥χA
∞∑

i=n+1

biri

∥∥∥
1
=

∥∥∥χ[0,n2−n]

∞∑
i=n+1

biri

∥∥∥
1
= n2−n

∥∥∥
∞∑

i=n+1

biri+m−n
∥∥∥
1

≤ n2−n
( ∞∑
i=n+1

b2i

)1/2

.

Now, choosing a set A in a special way, estimate the first term from the right

hand side of (16). Denote by εnij the value of the function ri,

i = 1, 2, . . . , n, on the interval Δj
n, 1 ≤ j ≤ 2n. Since n = 2m, we can

find a set J1(n) ⊂ {1, 2, . . . , 2n}, cardJ1(n) = n, such that the n × n ma-

trix n−1/2 · (εnij)1≤i≤n,j∈J1(n) is orthogonal. Then, if cj := n−1/2
∑n
i=1 ε

n
ijbi,

j ∈ J1(n), we have ‖(cj)j∈J1(n)‖�2 = ‖(bi)ni=1‖�2 . Therefore, setting B(n) :=⋃
j∈J1(n)

Δj
n, we obtain

∥∥∥χB(n)

n∑
i=1

biri

∥∥∥
1
=

∥∥∥ ∑
j∈J1(n)

( n∑
i=1

biri

)
χΔj

n

∥∥∥
1
=

∥∥∥ ∑
j∈J1(n)

n∑
i=1

εnijbi · χΔj
n

∥∥∥
1

= n1/2
∥∥∥ ∑
j∈J1(n)

cjχΔj
n

∥∥∥
1

= n1/22−n
∑

j∈J1(n)

|cj | ≤ n2−n‖(bi)ni=1‖�2.

Combining this inequality with (16), (17) for A = B(n) and (5), by definition

of the norm in the space M(L1), we have

(18) ‖χB(n)‖M(L1) ≤ 2
√
2n2−n.

Let {nk}∞k=1 be an increasing sequence of positive integers, nk = 2mk , mk ∈ N,

satisfying the condition

(19) n
1/8
k ≥ 2n1+···+nk−1 , k = 2, 3, . . . .

At first, we construct a sequence of sets {Bk}. Setting J1
1 := J1(n1) and

B1 := B(n1), in view of (18) we have

‖χB1‖M(L1) ≤ 2
√
2n12

−n1 .
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.

To define B2, we take for I1 any interval Δj
n1

such that j 
∈ J1
1 . Now,

we can choose a set J2
1 ⊂ {1, 2, . . . , 2n1+n2} satisfying the conditions:

cardJ2
1 = n2, Δj

n1+n2
⊂ I1 for every j ∈ J2

1 and the n2 × n2 matrix

n
−1/2
2 · (εn1+n2

ij )n1<i≤n1+n2,j∈J2
1
is orthogonal. We set B2 :=

⋃
j∈J2

1
Δj
n1+n2

.

Clearly, m(B2) = n22
−(n1+n2) and B1 ∩B2 = ∅, because of B2 ⊂ I1. As in the

case of B(n) we have

∥∥∥χB2

n1+n2∑
i=1

biri

∥∥∥
1
=

∥∥∥ ∑
j∈J2

1

( n1+n2∑
i=1

biri

)
χΔj

n1+n2

∥∥∥
1

≤
∥∥∥ ∑
j∈J2

1

( n1∑
i=1

biri

)
χΔj

n1+n2

∥∥∥
1
+
∥∥∥ ∑
j∈J2

1

( n2∑
i=n1+1

biri

)
χΔj

n1+n2

∥∥∥
1

≤
n1∑
i=1

|bi|‖χB2‖1 +
∥∥∥ ∑
j∈J2

1

n1+n2∑
i=n1+1

εn1+n2

ij bi · χΔj
n1+n2

∥∥∥
1

≤ (n
1/2
1 + 1)n22

−(n1+n2)‖(bi)n1+n2

i=1 ‖�2
≤ n22

−n2‖(bi)n1+n2

i=1 ‖�2.

Therefore, from (16), (17) and (5) it follows that

‖χB2‖M(L1) ≤
√
2
(
(n1 + n2)2

−(n1+n2) + n22
−n2

)
≤ 2

√
2n22

−n2 .

Proceeding in the same way, we get a sequence {Bk} of pairwise disjoint subsets

of [0, 1] such that m(Bk) = nk2
−(n1+···+nk) and

(20) ‖χBk
‖M(L1) ≤ 2

√
2nk2

−nk , k = 1, 2, . . . .

Now we define the sets Dk, k = 1, 2, . . . . Select a set J1
2 ⊂ {1, 2, . . . , 2n1},

cardJ1
2 = n1, such that each column of the n1 × n1 matrix (εn1

ij )1≤i≤n1,j∈J1
2

has exactly one entry equal to −1 and the rest are equal to 1. Setting D1 :=⋃
j∈J1

2
Δj
n1
, we have m(D1) = n12

−n1 . Furthermore, from the inequality
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‖n−1/2
1

∑n1

i=1 ri‖1 ≤ 1 (see (5)) and the definition of D1 it follows that

‖χD1‖M(L1) ≥
∥∥∥ ∑
j∈J1

2

(
n
−1/2
1

n1∑
i=1

ri

)
χΔj

n1

∥∥∥
1

=
∥∥∥ ∑
j∈J1

2

(
n
−1/2
1

n1∑
i=1

εn1

ij

)
χΔj

n1

∥∥∥
1

= (n
1/2
1 − 2n

−1/2
1 )n12

−n1 ≥ 1

2
n
3/2
1 2−n1

if n1 ≥ 4.

Similarly, we can define the set D2. Let I2 be any interval Δj
n1

with j 
∈ J1
2 .

Choose the set J2
2 ⊂ {1, 2, . . . , 2n1+n2} such that cardJ2

2 = n2, Δ
j
n1+n2

⊂ I2 for

every j ∈ J2
2 and each column of the n2 × n2 matrix (εn1+n2

ij )n1<i≤n1+n2,j∈J2
2

has exactly one entry equal to −1 and the rest are equal to 1. Then, if D2 :=⋃
j∈J2

2
Δj
n1+n2

, then m(D2) = n22
−(n1+n2) and D1∩D2 = ∅. Moreover, we have

‖χD2‖M(L1) ≥
∥∥∥ ∑
j∈J2

2

(
n
−1/2
2

n1+n2∑
i=n1+1

ri

)
χΔj

n1+n2

∥∥∥
1

=
∥∥∥ ∑
j∈J2

2

(
n
−1/2
2

n1+n2∑
i=n1+1

εn1+n2

ij

)
χΔj

n1+n2

∥∥∥
1

= (n
1/2
2 − 2n

−1/2
2 )n22

−(n1+n2) ≥ 1

2
n
3/2
2 2−(n1+n2).

Arguing in the same way, we construct a sequence {Dk} of pairwise disjoint

subsets of [0, 1] such that m(Dk) = nk2
−(n1+···+nk) and

(21) ‖χDk
‖M(L1) ≥

1

2
n
3/2
k 2−(n1+···+nk), k = 1, 2, . . . .

Since m(Bk) = m(Dk), k = 1, 2, . . . , the functions f and g defined by (15)

are equimeasurable for arbitrary αk ∈ R, k = 1, 2, . . . . Setting αk = 2nkn
−5/4
k ,

by (20), we obtain

‖f‖M(L1) ≤
∞∑
k=1

αk‖χBk
‖M(L1) ≤ 2

√
2

∞∑
k=1

n
−1/4
k <∞,

because of nk = 2mk , m1 < m2 < · · · . Thus, f ∈ M(L1).
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On the other hand, for every k = 1, 2, . . . , from (21) and (19) it follows that

sup
{∥∥∥g ·

∞∑
i=1

airi

∥∥∥
1
:
∥∥∥

∞∑
i=1

airi

∥∥∥
1
≤ 1

}
≥ αk‖χDk

‖M(L1)

≥ 1

2
n
1/4
k 2−(n1+···+nk−1) ≥ 1

2
n
1/8
k .

Hence, this supremum is infinite, and so g 
∈ M(L1).
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