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ABSTRACT

Define T (d, r) = (d + 1)(r − 1) + 1. A well known theorem of Tverberg

states that if n ≥ T (d, r), then one can partition any set of n points in

Rd into r pairwise disjoint subsets whose convex hulls have a common

point. The numbers T (d, r) are known as Tverberg numbers. Reay added

another parameter k (2 ≤ k ≤ r) and asked: what is the smallest number

n, such that every set of n points in Rd admits an r-partition, in such a

way that each k of the convex hulls of the r parts meet. Call this number

T (d, r, k). Reay conjectured that T (d, r, k) = T (d, r) for all d, r and k.

In this paper we prove Reay’s conjecture in the following cases: when

k ≥ [ d+3
2

], and also when d < rk
r−k

− 1. The conjecture also holds for the

specific values d = 3, r = 4, k = 2 and d = 5, r = 3, k = 2.

1. Introduction

A well known theorem of Radon says that any set of d+2 or more points in Rd

can be partitioned into two disjoint parts whose convex hulls meet. This follows

easily from the fact that every set of d+ 2 points in Rd is affinely dependent.

The corresponding statement for partitions into more than two parts is known

as Tverberg’s theorem.

Theorem 1.0.1 (H. Tverberg, 1966): Let a1, . . . , an be points in Rd. If n >

(d + 1)(r − 1), then the set N={1,. . . ,n} of indices can be partitioned into r

disjoint parts N1, . . . , Nr in such a way that the r convex hulls conv{ai : i ∈ Nj}
(j=1,. . . ,r) have a point in common.
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(This formulation covers also the case where the points a1, . . . , an are not all

distinct.) Henceforth we use the abbreviation a(Nj) for {ai : i ∈ Nj}. The

original proof (see [7]) was quite difficult. In 1981 Tverberg published another

proof, much simpler than the original one (see [8]). Sarkaria [6] gave a quite

accessible proof, with some algebraic flavor. It seems that the simplest proof so

far is due to Roudneff [5]. See [1] §8.3 for further information.

The numbers T (d, r) = (d+1)(r−1)+1 are known as Tverberg numbers. The

condition n ≥ T (d, r) in Tverberg’s theorem is extremely tight. If n < T (d, r),

then almost surely (with the exception of a “bad set” of measure zero), for any

r-partition N1, . . . , Nr of the set N = {1, . . . , n}, even the intersection of the

affine hulls aff(a(Nj)) (j = 1, . . . , r) is empty.

In fact, it can be shown that the “bad set” is not only of measure zero, but it

is included in the set of zeroes of a polynomial. (I.e., there exists a polynomial

P , not identically zero, in n · d scalar variables,

P ( �x1, . . . , �xn) = P (x11, . . . , x1d, . . . , xn1, . . . , xnd)

such that, for every n points a1, . . . , an satisfying P (a1, . . . , an) �= 0, and for

any r-partition N1, . . . , Nr of N , we have
⋂r

j=1 aff(a(Nj)) = ∅.) (For details,

see [2].)

In 1979, John R. Reay (see [4]) raised the following question: If we weaken

the requirement
⋂r

j=1 conv a(Nj) �= ∅ in Tverberg’s theorem and ask only that

each k of the convex hulls conv a(Nj) (j = 1, . . . , r) intersect, where 2 ≤ k ≤ r,

can this be done with fewer than T (d, r) points? Let us define T (d, r, k) to

be the smallest positive integer n with the following property: for any list

a1, . . . , an of points in Rd there is an r-partition N1, . . . , Nr of the set of indices

N = {1, . . . , n}, such that every k of the r convex hulls conv a(Nj) have a point

in common.

The function T (d, r, k) is clearly monotone non-decreasing in each of the

parameters d, r, k, and T (d, r, r) = T (d, r).

If r > d + 1, and each d + 1 of the convex hulls conv a(Nj) (j = 1, . . . , r)

meet, then they all meet, by Helly’s Theorem. Thus T (d, r, k) = T (d, r) for

d+1 ≤ k ≤ r. This reduces the interesting range of k to 2 ≤ k ≤ min(r− 1, d).

Reay settled the case d = 2, showing that T (2, r, 2) = T (2, r) for all r ≥ 2.

He also showed that T (3, 3, 2) = T (3, 3) (= 9) and made the following bold

conjecture.
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Conjecture 1.0.2: T (d, r, k) = T (d, r) for all 2 ≤ k ≤ r.

The meaning of Reay’s conjecture is: If n < T (d, r), then there exists a set

X ⊂ Rd, |X | = n, such that for every r-partition of X there are two parts whose

convex hulls are disjoint.

We don’t really believe this is true. To press our point, consider the case d =

r = 1000. By Tverberg’s theorem, a million points in R1000 can be partitioned

into one thousand parts whose convex hulls have a common point. Is there

a set of 999,999 points in R1000 that cannot be partitioned into 1000 parts

whose convex hulls intersect just pairwise? Seems implausible. (See also the

concluding remarks in Section 5.)

Nevertheless, the purpose of this paper is to establish parts of Reay’s con-

jecture. We show, by means of suitable examples, that Reay’s conjecture does

hold in the following cases (Theorems 1.0.3–1.0.6):

Theorem 1.0.3: For every dimension d ≥ 2 and for every r(≥ �d+3
2 	),

T (d, r,

⌊
d+ 3

2

⌋
) = T (d, r) = (d+ 1)(r − 1) + 1.

In particular, this shows that T (3, 4, 3) = T (3, 4) = 13. For d = 3, r = 4,

k = 2 we have the following:

Theorem 1.0.4: T (3, 4, 2) = T (3, 4) = 13.

Another class of cases is covered by

Theorem 1.0.5: For every 2 ≤ k < r and for every dimension d < kr
r−k − 1,

T (d, r, k) = T (d, r) = (d+ 1)(r − 1) + 1.

Therefore, if r = 3 and k = 2 then T (d, r, k) = T (d, r) provided d < 5. The

case d = 5 is covered by the following:

Theorem 1.0.6: T (5, 3, 2) = T (5, 3) = 13.

In all cases, the examples are variations, specializations or perturbations of

the following: d+ 1 rays that emanate from the origin and positively span Rd,

with r − 1 points chosen on each ray.

In order to put the ranges of Theorems 1.0.3 and 1.0.5 on the same scale,

we can regard k as the independent variable. Theorem 1.0.3 establishes Reay’s

conjecture in the domain of d’s d+1 ≤ 2k−1 (of which the subdomain d+1 ≤ k
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is trivial, in view of Helly’s Theorem). For d+1 ≥ 2k, Theorem 1.0.5 establishes

Reay’s conjecture for k < r < d+1
d+1−kk. This domain of r’s reduces to k < r < 2k

when d + 1 = 2k. It shrinks with increasing d, and vanishes altogether for

d+ 1 ≥ k(k + 1).

The rest of the paper is organized as follows: Sections 2 and 3 are devoted to

the proofs of Theorems 1.0.3 and 1.0.5 respectively. Section 4 contains a short

outline of the proofs of the special cases (Theorems 1.0.4 and 1.0.6), and the

last section contains some concluding remarks, pertaining in particular to the

unsolved parts of Reay’s Conjecture.

For detailed proofs of Theorems 1.0.4 and 1.0.6, we refer the reader to the

unabridged version of this paper on the web; see [3].

2. Proof of Theorem 1.0.3

For the proof we will use the following (counter) example:

Let p0, p1, . . . , pd ∈ Rd be the vertices of a d-simplex centered at the origin,

i.e.,
∑d

i=0 pi = 0 and each d of the points p0, p1, . . . , pd are linearly independent.

Let D = {0, 1, . . . , d}, and for i ∈ D define Ri = {λpi : λ > 0} (the open ray

emanating from 0 through pi).

On each ray Ri we choose r− 1 distinct points. The chosen points form a set

X ⊂ Rd, |X | = (d + 1)(r − 1) = T (d, r) − 1. We show that in every partition

of X into r parts (X = C1 ∪ · · · ∪ Cr) there are some j parts Ci1 , . . . , Cij ,

j ≤ �d+3
2 	, whose convex hulls have empty intersection. This will show that

T (d, r, k) = T (d, r) for
⌊
d+3
2

⌋ ≤ k ≤ r. We start with some preliminaries

concerning the “positive basis” P = {p0, p1, . . . , pd} of Rd.

2.1. Properties of the spanning set P = {p0, p1, . . . , pd}.
Proposition 2.1.1: Every point x ∈ Rd has a representation

(2.1.1) x = ξ0p0 + ξ1p1 + · · ·+ ξdpd

where min{ξ0, ξ1, . . . , ξd} = 0. This representation is unique.

Proof. The vectors p0, p1, . . . , pd span Rd linearly. In fact, each d of them form

a linear basis of Rd . Let x =
∑d

i=0 αipi be some arbitrary representation of x in

terms of P . The only linear dependences among p0, p1, . . . , pd are
∑d

i=0 λpi = 0,

λ ∈ R. Therefore, the most general representation of x in terms of P is x =
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∑d
i=0(αi−λ)pi, λ ∈ R. To obtain a representation with the smallest coefficient

equal 0, we must choose λ = min{αi : i ∈ D}.
We call (2.1.1) the non-negative representation of x (in terms of P ). The

support of x (with respect to P ) is defined by

suppx = {i ∈ D : ξi > 0}.
Simple properties of suppx are:

(1) ∅ ⊆ suppx � D.

(2) suppx = ∅ iff x = 0.

(3) supp pi = {i}.
(4) suppλx = suppx for λ > 0.

(5) supp(x+ y) ⊆ suppx ∪ supp y, with equality iff suppx ∪ supp y �= D.

(6) If x �= 0, then suppx ∪ supp(−x) = D.

Recall that our set X consists of r − 1 distinct points on each ray Ri (i ∈ D).

For a subset C ⊆ X , define I(C) = {i ∈ D : C ∩ Ri �= ∅}. Now make the

following observations:

Proposition 2.1.2: If C ⊆ X and x ∈ convC, then suppx ⊆ I(C). (This is

obviously true also when I(C)=D.)

When I is a subset of D, we shall denote by R(I) the union
⋃{Ri : i ∈ I}.

Proposition 2.1.3: Suppose C ⊆ X and x ∈ convC. If I(C) �= D then

x ∈ conv{C ∩R(suppx)}.
Proof. Suppose x =

∑n
ν=1 γνcν , where cν ∈ C, γν > 0,

∑n
ν=1 γν = 1. If cν =

λνpi ∈ Ri, λν > 0, then pi will appear with a positive coefficient in the non-

negative representation of x in terms of P , and therefore i ∈ suppx. Note that

we have used the fact that I(C) �= D.

For points a = αpi ∈ Ri, b = βpi ∈ Ri (α, β > 0), we say that a is lower

than b (or b is higher than a) on Ri if α < β (or, equivalently, if ‖a‖ < ‖b‖).
Proposition 2.1.4: Suppose I � D. Let C,C′ be two finite subsets of R(I)(=⋃{Ri : i ∈ I}). If, for each i ∈ I, every point of C ∩ Ri is lower (on Ri) than

every point of C′ ∩Ri, then convC ∩ convC′ = ∅.
Proof. Assume, w.l.o.g., that |I|=d. (We do not assume that C ∩ Ri �= ∅ and

C′ ∩ Ri �= ∅ for all i ∈ I.) For each i ∈ I choose a point si = σipi ∈ Ri that
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is higher (on Ri) than every point of C ∩ Ri and lower than every point of

C′ ∩ Ri. The d points si (i ∈ I) are linearly independent, and their affine hull

H = aff{si : i ∈ I} ⊂ Rd is a hyperplane that does not pass through the origin.

Denote by H−, H+ the two open half-spaces determined by H , and assume 0

∈ H−. From our assumptions it follows that C ⊂ H− and C′ ⊂ H+, hence

convC ∩ convC′ = ∅.
Proposition 2.1.5: Suppose U � D. Let C1, C2, . . . , Cn (n ≥ 2) be subsets

of X . Assume

(1)
⋂n

ν=1 I(Cν) ⊆ U ,

(2) I(Cν) � D for ν = 1, 2,

(3) for each i ∈ U , each point of C1 ∩Ri is lower (on Ri) than every point

of C2 ∩Ri.

Then
⋂n

ν=1 convCν = ∅.
Proof. Assume, on the contrary, that

⋂n
ν=1 convCν �= ∅, and suppose that x ∈⋂n

ν=1 convCν . By Proposition 2.1.2 we conclude that suppx ⊆ ⋂n
ν=1 I(Cν) ⊆ U .

Applying Proposition 2.1.3 to C1 and C2, we find that

(2.1.2) x ∈ conv(Cν ∩R(U)) for ν = 1, 2.

Now invoke Proposition 2.1.4 with C = C1∩R(U), C′ = C2∩R(U), and I = U ,

to conclude that conv(C1 ∩ R(U)) ∩ conv(C2 ∩ R(U)) = ∅, which contradicts

(2.1.2).

2.2. Completion of the proof of Theorem 1.0.3. Let X ⊂ Rd be the

set described at the beginning of this section (r − 1 points on each of the rays

R0, R1, . . . , Rd), and let C1, . . . , Cr be an arbitrary partition of X into r disjoint

(nonempty) sets. Our aim is to apply Proposition 2.1.5 to some n of the parts

Ci, with n as small as possible. We shall be able to do this with some n ≤ ⌊
d+3
2

⌋
.

For i = 1, . . . , n we divide I(Ci) into two disjoint sets:

Si = {j ∈ D : |Ci ∩Rj | = 1},

Mi = {j ∈ D : |Ci ∩Rj | > 1},
and get

(2.2.1) |Ci| ≥ 2|Mi|+ |Si|.
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Furthermore, for every subset J of D,

(2.2.2) |Ci ∩R(J)| ≥ 2|Mi ∩ J |+ |Si ∩ J |.
Assume the parts Ci are ordered in such a way that

(1) |C1| ≤ |Ci| for i = 2, 3, . . . , r,

(2) |C2 ∩R(S1)| ≤ |Ci ∩R(S1)| for i = 3, 4, . . . , r.

From condition (1) we have

|I(C1)| ≤ |C1| ≤
⌊
1

r
|X |

⌋
=

⌊
r − 1

r
(d+ 1)

⌋
,

and therefore |I(C1)| ≤ |C1| ≤ d.

Condition (2) yields

|C2 ∩R(S1)| ≤ 1

r − 1

r∑
i=2

|Ci ∩R(S1)| = 1

r − 1
|

r⋃
i=2

Ci ∩R(S1)|

=
1

r − 1
|(X � C1) ∩R(S1)| = r − 2

r − 1
|S1|

and therefore

(2.2.3) |R(S1) ∩C2| < |S1|.
This, in turn, implies |I(C2)| ≤ d.

Assume |M1| = a (a ≥ 0). From (2.2.1) we obtain

|S1| ≤ |C1| − 2|M1| ≤ d− 2a

and from (2.2.3)

|R(S1) ∩ C2| ≤ d− 2a− 1.

Next, we define the set U to be plugged into Proposition 2.1.5:

The set S1 ∩ S2 can be divided into two disjoint subsets:

U1 = {j ∈ S1 ∩ S2 : C1 is lower than C2 on Rj},
U2 = {j ∈ S1 ∩ S2 : C2 is lower than C1 on Rj}.

If |U1| ≥ |U2| we define U = U1, otherwise we define U = U2. In any case,

|U | ≥ 1
2 |S1 ∩ S2|.

Proposition 2.2.1: Under these notations

|I(C1) ∩ I(C2)� U | ≤
⌊
d− 1

2

⌋
.
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Proof. I(C1) ∩ I(C2) � U =
(
M1 ∩ I(C2)

) ∪ (S1 ∩ M2) ∪ (S1 ∩ S2 � U) and

therefore

|I(C1) ∩ I(C2)� U | ≤ |M1|+ |S1 ∩M2|+ |S1 ∩ S2 � U |
≤ |M1|+ |S1 ∩M2|+ 1

2 |S1 ∩ S2|
≤by (2.2.2) |M1|+ 1

2 |R(S1) ∩ C2|
≤ a+ 1

2 (d− 2a− 1)

= d−1
2 .

To finish the proof of Theorem 1.0.3, for each index i ∈ I(C1) ∩ I(C2) � U

we choose a set Cq (3 ≤ q ≤ r) that does not meet Ri, and call it C(i). (Such

a set does exist, since |(X � (C1 ∪ C2)) ∩ Ri| ≤ r − 3.) Note that the sets

C(i) (i ∈ I(C1) ∩ I(C2)� U) are not necessarily distinct.

Under these conditions, the sets C1, C2, {C(i) : i ∈ I(C1)∩I(C2)�U} satisfy

the assumptions of Proposition 2.1.5 with n ≤ 2+
⌊
d−1
2

⌋
=

⌊
d+3
2

⌋
, and therefore

convC1 ∩ convC2 ∩
⋂

i∈I(C1)∩I(C2)�U convC(i) = ∅.
To sum it up, we have shown that for every d ≥ 2 and r ≥ ⌊

d+3
2

⌋
there is a

set X of (d+1)(r− 1) points in Rd, such that in any r-partition of X there are⌊
d+3
2

⌋
parts whose convex hulls have empty intersection. This completes the

proof of Theorem 1.0.3.

3. Proof of Theorem 1.0.5

For this proof we use the same counterexample as in Theorem 1.0.3, with an

additional restriction. Recall that we started with a simplex, centered at the

origin, with d+1 vertices p0, . . . , pd. For each vertex pi we defined Ri to be the

open ray emanating from 0 through pi. On each ray we chose r− 1 points. The

set of all these chosen points is denoted by X ; |X | = (d+1)(r−1) = T (d, r)−1.

The additional restriction in our case is that the r − 1 points on each ray Ri

(i = 0, . . . , d) be in “general position”, as detailed in the next paragraph.

For a subset M � D (D = {0, 1, . . . , d}), define an (M,X)-selection S to

be a subset of X , of size |M |, consisting of exactly one point on each ray

Rj , j ∈ M . The set X (�
⋃{Ri : i ∈ D}) is in “general position” if for

any set M � D, 2 ≤ |M | = m ≤ d, and for every m̄ pairwise disjoint (M,X)-

selections S1, . . . , Sm̄, the intersection
⋂m̄

i=1 aff Si is a single point if m̄ = m, and

is empty if m̄ > m. (Since the maximum possible number of pairwise disjoint

(M,X)-selections is just r − 1, this condition applies only to sets M � D of
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size 2 ≤ |M | ≤ min{r − 1, d}.) A necessary and sufficient condition for this to

happen is that if Si = {λi,jpj : j ∈ M}, i = 1, . . . , m̄ and M = {j1, . . . , jm},
then

det

⎛
⎜⎜⎝

λ−1
1,j1

· · · λ−1
1,jm

...
...

λ−1
m,j1

· · · λ−1
m,jm

⎞
⎟⎟⎠ �= 0 if m̄ = m,

and

det

⎛
⎜⎜⎝

λ−1
1,j1

· · · λ−1
1,jm

1
...

...
...

λ−1
m+1,j1

· · · λ−1
m+1,jm

1

⎞
⎟⎟⎠ �= 0 if m̄ = m+ 1.

We will show that if d < rk
r−k − 1, then for any r-partition (C1, . . . , Cr) of X ,

some k of the convex hulls convC1, . . . , convCr have empty intersection.

We proceed by induction on r. This will enable us to focus on partitions

(C1, . . . , Cr) of X where each part Cj misses at least one ray Ri.

For r = 2 there is nothing to prove. Now assume r > 2, and suppose the

theorem holds for r− 1. Let (C1, . . . , Cr) be an r-partition of the set X defined

above. If one of the parts, say Cr, contains a point from each ray Ri, then

we turn to the induction hypothesis. We delete Cr, define X̃ = X � Cr, and

consider the (r − 1)-partition (C1, . . . , Cr−1) of X̃. Note that X̃ contains at

most r − 2 points on each ray Ri and is in “general position”, like X .

If 2 ≤ k < r−1, apply the induction hypothesis: By assumption, d < rk
r−k −1

and since rk
r−k < (r−1)k

r−1−k , X̃ satisfies the conditions of the theorem, and therefore

some k of the convex hulls convCj (j = 1, . . . , r − 1) have empty intersection.

If k = r − 1, then
⋂r−1

j=1 convCj = ∅. Indeed if x ∈ ⋂r−1
j=1 convCj , then

suppx ⊂ ⋂r−1
j=1 I(Cj) by Proposition 2.1.2. But

⋂r−1
j=1 I(Cj) = ∅, since each ray

Ri is missed by at least one of the parts C1, . . . , Cr−1. The only point x ∈ Rd

with suppx = ∅ is the origin 0, but 0 /∈ convCj unless I(Cj) = D.

From now on we assume that for every j, I(Cj) � D.

We now prove the theorem. To do this we define a (weight) function: given

k distinct parts (say Cj1 , . . . , Cjk) and a ray Ri, define

W ((Cj1 , . . . , Cjk), Ri) :=

⎧⎪⎨
⎪⎩

0 if Ri ∩ Cjs = ∅ for some s ∈ {1, . . . , k},

1 + #{s : |Cjs ∩Ri| > 1} otherwise .
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In Section 3.1 we will show that if
⋂k

s=1 convCjs �= ∅, then

(3.0.1)

d∑
i=0

W ((Cj1 , . . . , Cjk), Ri) ≥ k.

In Section 3.2 we will show that for each i ∈ D,

(3.0.2)
∑

1≤j1<j2<···<jk≤r

W ((Cj1 , . . . , Cjk ), Ri) ≤
(
r − 1

k

)
.

We use these two results to establish Theorem 1.0.5. If
⋂k

s=1 convCjs �= ∅
for all 1 ≤ j1 < j2 < · · · < jk ≤ r, then from the inequalities (3.0.1) and (3.0.2)

we conclude that

(3.0.3) k

(
r

k

)
≤

∑
1≤j1<j2<...<jk≤r

d∑
i=0

W ((Cj1 , · · · , Cjk), Ri) ≤ (d+ 1)

(
r − 1

k

)
.

We thus obtain

k

(
r

k

)
≤ (d+ 1)

(
r − 1

k

)
,

which is equivalent to d ≥ rk
r−k − 1, and the theorem follows.

3.1. A lower bound for the weight function W . Let {Cj}j∈J

(J ⊂ {1, . . . , r}, |J | = k) be a collection of k parts. We aim to show that

if
⋂{convCj : j ∈ J} �= ∅ then

∑d
i=0 W ({Cj}j∈J , Ri} ≥ k.

For the weight W ({Cj}j∈J , Ri) to be positive, each of the parts Cj (j ∈ J)

must meet the rayRi. We say thatRi is a common ray (for the given collection)

if Ri∩Cj �= ∅ for all j ∈ J . For convenience, we define I(J) =
⋂

j∈J I(Cj) to be

the set of indices of the common rays. Then the union of the common rays is just

R(I(J)). Proposition 3.1.1 below says that the intersection of the convex hulls⋂{convCj : j ∈ J} depends only on the intersections of the parts Cj(j ∈ J)

with the common rays.

Proposition 3.1.1: For J ⊂ {1, . . . , r}, if I(Cj) � D for every j ∈ J then⋂
j∈J

convCj =
⋂
j∈J

conv(Cj ∩R(I(J))).

Proof. The r.h.s. is clearly a subset of the l.h.s. We show that the l.h.s. is in-

cluded in the r.h.s. as follows: suppose x ∈ ⋂
j∈J convCj . Then, by Proposition
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2.1.2, suppx ⊂ I(J). By Proposition 2.1.3 it follows that x ∈ conv(Cj∩R(I(J)))

for all j ∈ J .

Proposition 3.1.2: Given a set of k parts, {Cj}j∈J(J ⊂ {1, . . . , r}, |J | = k),

if |I(J)| = m < k, and if each of the common rays Ri (i ∈ I(J)) contains exactly

one point of each of the Cj -s, then
⋂

j∈J convCj = ∅.
Proof. Since |I(J)| = m, we have m common rays spanning an m-dimensional

linear space. Each of the sets Cj ∩ R(I(J)) consists of m linearly independent

points and therefore spans a hyperplane in that space. By the definition of

“general position” (see above), we have⋂
j∈J

aff(Cj ∩R(I(J))) = ∅.

The following is a natural generalization of the last proposition:

Proposition 3.1.3: Given a set of k parts, {Cj}j∈J (J ⊂ {1, . . . , r}, |J | = k),

suppose |I(J)| = m and denote by t the number of parts among the Cj ’s that

contain more than one point on at least one of the common rays. Under these

conventions, m < k − t implies
⋂

j∈J convCj = ∅.
Proof. Divide J into two subsets S, T as follows:

j ∈ S if Cj meets each ray Ri (i ∈ I(J)) in a single point.

j ∈ T if Cj meets at least one ray Ri (i ∈ I(J)) in more than one point.

Then |T | = t, |S| = k − t.

By Proposition 3.1.1,⋂
j∈J

convCj =
⋂
j∈J

conv(Cj ∩R(I(J)))

⊆
⋂
j∈S

conv(Cj ∩R(I(J)))

⊆
⋂
j∈S

aff(Cj ∩R(I(J))).

The last expression is the intersection of k − t(> m) hyperplanes in the m-

dimensional space spanned by R(I(J)), which is empty due to the “general

position” of X .

Proposition 3.1.3 implies inequality (3.0.1). Indeed, from Proposition 3.1.3 it

follows that if J = {j1, . . . , jk} and
⋂

j∈J convCj �= ∅, then m+ t ≥ k. But the
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l.h.s. of (3.0.1) is just m + #{(i, s) : i ∈ I(J), 1 ≤ s ≤ k and |Cjs ∩ Ri| > 1},
which is ≥ m+ t.

3.2. An upper bound for the weight function W . The weight of a ray

Ri is defined as

W (Ri) :=
∑

1≤j1<j2<···<jk≤r

W ((Cj1 , . . . , Cjk), Ri).

We will show thatW (Ri) is maximal when each point in Ri belongs to a different

part Cj , i.e., when |Cj

⋂
Ri| ≤ 1 for all j. In that case it is clear that W (Ri) =(

r−1
k

)
.

Now assume |Cj ∩ Ri| > 1 for some j, say |C1 ∩ Ri| > 1. Since |X ∩ Ri| =
r − 1, there is another part, say C2, that does not meet Ri at all. Choose

one point x ∈ C1 ∩ Ri, and change the given partition C = (C1, . . . , Cr) into

C′ = (C′
1, . . . , C

′
r) as follows:

C′
1 = C1 � {x}, C′

2 = C2 ∪ {x}, C′
j = Cj for 3 ≤ j ≤ r.

This change will increase the value of W (Ri), or leave it unaffected. In fact,

if |C1 ∩Ri| > 2, then

W ({C′
j : j ∈ J}, Ri) ≥ W ((Cj : j ∈ J}, Ri)

for all k-subsets J ⊂ D. If |C1 ∩Ri| = 2, define

Pi = {j ∈ {1, . . . , r} : Cj ∩Ri �= ∅}
and note that

W ({C′
j : j ∈ J}, Ri) = W ({Cj : j ∈ J}, Ri)− 1

iff J ⊆ Pi (|J | = k) and 1 ∈ J . This happens exactly
(|Pi|−1

k−1

)
times. On the

other hand,

W ({C′
j : j ∈ J}, Ri) ≥ W ({Cj : j ∈ J}, Ri) + 1 (= 1)

iff 2 ∈ J (|J | = k) and J � {2} ⊂ Pi. This happens exactly
( |Pi|
k−1

)
times. For all

other k-sets J ⊂ D there is no change at all. Since
( |Pi|
k−1

)− (|Pi|−1
k−1

)
=

(|Pi|−1
k−2

) ≥
0, the total change in W (Ri) is non-negative.

We can repeat this operation until all r−1 points of X∩Ri belong to different

parts Cj , in which case W (Ri) =
(
r−1
k

)
. Thus initially W (Ri) ≤ (

r−1
k

)
, as

claimed in (3.0.2).
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If initially |Pi| < r−1, then in the last step of the process described above |Pi|
increases from r− 2 to r− 1. In that step W (Ri) increases by

(|Pi|−1
k−2

)
=

(
r−3
k−2

)
,

which is strictly positive, since 0 ≤ k−2 ≤ r−3. This shows thatW (Ri) =
(
r−1
k

)
iff the r − 1 points of X ∩Ri belong to r − 1 different parts Cj .

Remark 3.2.1: In case d + 1 = rk
r−k (or, equivalently, k

(
r
k

)
= (d + 1)

(
r−1
k

)
)

we can repeat the arguments of the proof of Theorem 1.0.5 and find that if

C = (C1, . . . , Cr) is an r-partition of X , and each k of the convex hulls convCj

have a point in common, then inequality (3.0.3) holds. (This is true if we assume

that no part Cj visits all d+ 1 rays R0, . . . , Rd. But if one part visits all rays,

some k of the convex hulls of the remaining r−1 parts have empty intersection.

This is shown in detail in the earlier part of the proof of Theorem 1.0.5.) Since

k
(
r
k

)
= (d+1)

(
r−1
k

)
, both inequalities in (3.0.3) must hold as equalities. In view

of (3.0.2), this implies that

W (Ri) =
∑

1≤j1<j2<···<jk≤r

W ((Cj1 . . . , Cjk), Ri) =

(
r − 1

k

)
for i = 0, 1, . . . , d.

This, in turn, implies that each ray Ri carries r − 1 points of X that belong

to r − 1 different parts. One can easily deduce that for each k distinct parts

Cj1 , . . . , Cjk , there are exactly k rays Ri that intersect each of these parts,

and therefore the convex hulls convCj1 , . . . , convCjk intersect in a single point

(because of the requirement that the points of X be in “general position”). In

these cases there is some hope to transform X by a small perturbation into a

“bad” set X ′, such that in any r-partition of X ′ there are some k parts whose

convex hulls have empty intersection. In the next section we shall outline how

to do this in the two special cases d = 3, r = 4, k = 2 and d = 5, r = 3, k = 2.

4. Two special cases

To prove Theorem 1.0.4 (T (3, 4, 2) = T (3, 4) = 13) we must produce a set X ′′

of 12 points in R3, such that every 4-partition (C′′
0 , C

′′
1 , C

′′
2 , C

′′
3 ) of X

′′ contains
two parts with disjoint convex hulls.

We start with the usual construction: four rays R0, R1, R2, R3 that emanate

from the origin and together positively span R3, and a set X that consists

of three points chosen on each ray in “general position”, as specified in the

beginning of the proof of Theorem 1.0.5 above; |X | = 12.
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Call a 4-partition of X (or of another set X ′) “bad” if some two of the parts

have disjoint convex hulls. A partition is “good” if the convex hulls of each two

parts have a point in common.

In view of Remark 3.2.1 above, with d = 3, r = 4, k = 2, in a “good” partition

of X each part misses one ray completely, and contains just one point fron each

of the remaining three rays. For i = 0, 1, 2, 3, denote by Ci the part that misses

the ray Ri. Two distinct parts Ci, Cj have exactly two common rays, Rk and

Rl ({i, j, k, l} = {0, 1, 2, 3}), with Ci higher than Cj on Rk, and Cj higher than

Ci on Rl. It follows easily that each part Ci must contain the highest point on

one ray, the lowest point on another ray and the middle point on a third ray.

As a matter of fact, there are exactly 18 good partitions (C0, C1, C2, C3) of

X , three for each of the six possible assignments of the points of X ∩ R0 to

C1, C2 and C3. In each of these partitions, the sets convCi (i = 0, 1, 2, 3) are

triangles. Each two of these triangles have just one point in common, and this

common point lies in the relative interior of an edge in both triangles.

A suitable small perturbation of the highest point on R0, followed by a suit-

able small perturbation of the lowest point on R3, will separate at least two of

the triangles convCi in each of the 18 “good” partitions. (Note that a “bad”

partition remains “bad” if we apply a sufficiently small perturbation to the

points of X .)

Let us now pass to the proof of Theorem 1.0.6 (T (5, 3, 2) = T (5, 3) = 13).

Here we are looking for a set Y ′′′ of 12 points in R5, such that in every 3-partition

(C
′′′
1 , C

′′′
2 , C

′′′
3 ) of Y ′′′, some two parts have disjoint convex hulls.

We start, as usual, with six rays R0, R1, . . . , R5 that emanate from the origin

and together positively span R5, and a set Y that consists of two points chosen

on each ray; |Y | = 12.

By Remark 3.2.1, a 3-partition (C
′′′
1 , C

′′′
2 , C

′′′
3 ) of Y ′′′ is “good” (i.e., the

convex hulls of each two parts meet) iff every two distinct parts Ci, Cj have two

common rays Rk and Rl, with Ci higher than Cj on Rk and Cj higher than

Ci on Rl. We can use R0 to name the three parts. (The part that contains

the higher point on R0 is “red”, the part that contains the lower point on R0

is “yellow”, and the remaining part is “blue”.) This leaves 120 (= 5!) “good”

ways to split the points on the remaining five rays between red, yellow and

blue. Thus there are altogether exactly 120 “good” partitions of Y . In each

such partition the convex hulls of each part form a tetrahedron (= 3-simplex),
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and each two tetrahedra touch at a single point that lies in the relative interior

of an edge in both tetrahedra.

We apply to Y a sequence of three small perturbations, first to the higher

point on R0, then to the higher point on R5, and finally to the higher point on

R2. As a result, we strictly separate at least two of the three monochromatic

tetrahedra in each of the 120 “good” partitions of Y . In other words, after

the three perturbations we arrive at a set Y ′′′ of 12 points in R5, for which

all 3-partitions are “bad”, hence T (5, 3, 2) = 13. The full details of both con-

structions, along with their proofs, can be found in [3] and will appear in a

forthcoming paper.

5. Conclusion

This paper is devoted to the proof of parts of Reay’s conjecture (T (d, r, k) =

T (d, r) for 2 ≤ k ≤ min(d, r− 1)). The meaning of this conjecture (for specified

values of d, r and k) is just this: there is a subset X of Rd, |X | = T (d, r) − 1

(= (d+1)(r−1)), such that in every r-partition of X (X = C1∪· · ·∪Cr) there

are some k parts whose convex hulls have empty intersection. The conjecture

is meaningful for all triples (d, r, k) of values that satisfy 2 ≤ k ≤ d and k < r.

We prove the conjecture whenever k + 1 ≤ d + 1 ≤ 2k − 1 (Theorem 1.0.3).

When 2k ≤ d+ 1 < k(k + 1) we prove the conjecture for k < r < d+1
d+1−kk (see

the comment following the statement of Theorem 1.0.6), and also in the two

special cases (d, r, k) = (3, 4, 2) and (d, r, k) = (5, 3, 2). In all cases, the set X

is a variation, specialization or perturbation of the same example: d + 1 rays

that emanate from the origin and positively span Rd, with r − 1 points chosen

on each ray.

Unfortunately, we were unable to disprove Reay’s conjecture for any admis-

sible triple (d, r, k). It is conceivable, though, that T (d, r, k) < T (d, r) holds

for any given values of r and k (2 ≤ k < r), provided d is large enough. In

particular, one might try to show that T (d, 3, 2) < T (d, 3) = 2d+ 3 from some

d onward (maybe already for d ≥ 6).

Note that claims concerning T (d, r, 2) (k = 2) are actually statements about

Radon partitions. Radon partitions are much better understood and easier to

handle than Tverberg k-partitions for k ≥ 3.
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