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ABSTRACT

We discuss optimal constants in a recent result of Rudelson and Vershynin

on marginal densities. We show that if f is a probability density on R
n

of the form f(x) =
∏n

i=1 fi(xi), where each fi is a density on R, say

bounded by one, then the density of any marginal πE(f) is bounded by

2k/2, where k is the dimension of E. The proof relies on an adaptation

of Ball’s approach to cube slicing, carried out for functions. Motivated by

inequalities for dual affine quermassintegrals, we also prove an isoperimet-

ric inequality for certain averages of the marginals of such f for which the

cube is the extremal case.
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1. Introduction

In this note we present an alternate approach to a recent theorem of Rudelson

and Vershynin on marginal densities of product measures [18]. To fix the nota-

tion, if f is a probability density on Euclidean space R
n and E is a subspace,

the marginal density of f on E is defined by

πE(f)(x) =

∫
E⊥+x

f(y)dy (x ∈ E).

In [18], it is proved that if f(x) =
∏n

i=1 fi(xi), where each fi is a density on R,

bounded by 1, then for any k ∈ {1, . . . , n−1}, and any subspace E of dimension

k,

(1.1) ‖πE(f)‖1/kL∞(E) ≤ C,

where C is an absolute constant.

In [18], it is pointed out that when k = 1, the constant C in (1.1) may be

taken to be
√
2. This follows from a theorem of Rogozin [17], which reduces

the problem to f = �Qn where Qn = [−1/2, 1/2]n is the unit cube, together

with Ball’s theorem [1], [2] on slices of Qn. More precisely, one can formulate

Rogozin’s Theorem as follows: if θ is a unit vector with linear span [θ], then

(1.2)
∥∥π[θ](f)

∥∥
L∞([θ])

≤ ∥∥π[θ](�Qn)
∥∥
L∞([θ])

for any f in the class

Fn =

{
f(x) =

n∏
i=1

fi(xi) : ‖fi‖L∞(R) ≤ 1 = ‖fi‖L1(R) , i = 1, . . . , n

}
.

By definition of the marginal density and the Brunn–Minkowski inequality,∥∥π[θ](�Qn)
∥∥
L∞([θ])

= max
x∈[θ]

|Qn ∩ (θ⊥ + x)|n−1

= |Qn ∩ θ⊥|n−1,

where |·|n−1 denotes (n − 1)-dimensional Lebesgue measure. Ball’s theorem

gives |Qn ∩ θ⊥|n−1 ≤ √
2, which shows C =

√
2 works in (1.1).

Since Ball’s theorem holds in higher dimensions, i.e.,

(1.3) max
E∈Gn,k

|Qn ∩ E⊥|1/kn−k ≤
√
2 (k ≥ 1),

where Gn,k is the Grassmannian of all k-dimensional subspaces of R
n, it is

natural to expect that C =
√
2 works in (1.1) for all k > 1. However, in the
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absence of a multi-dimensional analogue of Rogozin’s result (1.2), the authors

of [18] prove (1.1) with an absolute constant C via different means.

Our goal is to show that one can determine the optimal C for suitable k > 1

directly by adapting Ball’s arguments giving (1.3), and a related estimate, to

the functional setting. The main result of this paper is the following theorem.

Theorem 1.1: Let 1 ≤ k < n and E ∈ Gn,k. Then there exists a collection of

numbers {γi}ni=1 ⊂ [0, 1] with
∑n

i=1 γi = k such that for any bounded functions

f1, . . . , fn : R → [0,∞) with ‖fi‖L1(R) = 1 for i = 1, . . . , n, the product f(x) =∏n
i=1 fi(xi) satisfies

(1.4) ‖πE(f)‖L∞(E) ≤ min

((
n

n− k

)n−k
2

, 2k/2

)
n∏

i=1

‖fi‖γi

L∞(R) .

In particular, the theorem implies that if f ∈ Fn and E ∈ Gn,k, then

(1.5) ‖πE(f)‖L∞(E) ≤ min

((
n

n− k

)n−k
2

, 2k/2

)
.

As noted in [2], if f = �Qn , the bound
(

n
n−k

)(n−k)/2

is achieved when n− k

divides n and E0 ∈ Gn,k is chosen so that Qn∩E⊥
0 is a cube of suitable volume;

note that
(

n
n−k

)n−k
2 ≤ ek/2. When k ≤ n/2, the bound 2k/2 is sharp when

Qn ∩E⊥
0 is a box of suitable volume. Thus for such k, Theorem 1.1 implies

(1.6) sup
E∈Gn,k

‖πE(f)‖L∞(E) ≤ sup
E∈Gn,k

‖πE(�Qn)‖L∞(E) (f ∈ Fn).

In terms of random vectors, if X ∈ R
n is distributed according to f , then the

density of the orthogonal projection PEX of X onto E is simply πE(f). Thus if

X has density f ∈ Fn and Y has density �Qn , the density of PEX is uniformly

bounded above by the value of the density of PE0Y at the origin (with E0 chosen

as above).

For another probabilistic consequence, note that (1.5) implies the following

small-ball probability: for each z ∈ E,

(1.7) P

(
‖PEX − z‖ ≤ ε

√
k
)
≤ (C

√
2eπε)k (ε > 0),

where ‖·‖ denotes the Euclidean norm; this was part of the motivation in [18];

see also Tikhomirov [19] for recent work on such estimates and their use in

random matrix theory.
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Ball’s approach to cube slicing [1], [2] has been adapted to a variety of re-

lated problems. We mention just a sample and refer the reader to the references

therein; see Barthe’s multidimensional version [3] of the Brascamp–Lieb inequal-

ity [6] and its normalized form; the use of the latter by Gluskin [11] for slices of

products of measurable sets; Koldobsky and König [13] for problems involving

measures other than volume; Brzezinski [8] for recent work on slices of products

of Euclidean balls; Bobkov and Chistyakov [4], [5] for connections to sums of

independent random variables.

Recently, bounds for marginals of arbitrary bounded densities have been

found by S. Dann and the second and third-named authors [9]. They obtain

extremal inequalities for certain averages; e.g., for any k and f : Rn → R
+

satisfying ‖f‖L∞(Rn) ≤ 1 = ‖f‖L1(Rn) and f(0) = ‖f‖L∞(Rn), one has

(1.8)

∫
Gn,k

πE(f)(0)
ndμn,k(E) ≤

∫
Gn,k

πE(�Dn)(0)
ndμn,k(E),

where μn,k is the Haar probability measure on Gn,k and Dn is the Euclidean

ball in R
n of volume one centered at the origin.

Using an idea from the proof of Theorem 1.1, we also obtain the following

strengthening of (1.8) within the class Fn.

Proposition 1.2: Let 1 ≤ k < n and f ∈ Fn. Then

(1.9)

∫
Gn,k

πE(f)(0)
ndμn,k(E) ≤

∫
Gn,k

πE(�Qn)(0)
ndμn,k(E).

The latter can be seen as a type of “average” domination of marginals of

�Qn over those of f ∈ Fn. This complements the pointwise domination of

Rogozin’s Theorem (1.2) when k = 1 and the worst-case comparison in (1.6)

when k ≤ n/2 or n− k divides n. As in [9], inequality (1.9) is another step in

extending results about dual affine quermassintegrals (we recall the definition

in §4) from convex sets to functions in order to quantify characteristics of high-

dimensional probability measures.

2. Preliminaries

The setting is Euclidean space R
n with the standard basis {e1, . . . , en}, usual

inner product 〈·, ·〉, Euclidean norm ‖·‖ and unit sphere Sn−1. We reserve

|·|k for k-dimensional Lebesgue measure; the subscript k will be omitted if the

context is clear. We denote the positive reals by R
+.



Vol. 216, 2016 SHARP BOUNDS FOR MARGINAL DENSITIES 881

For a Borel set A ⊂ R of finite Lebesgue measure, the symmetric rearrange-

ment A∗ of A is the symmetric interval A∗ = [−|A|/2, |A|/2]. For an integrable

function g : R → [0,∞) its symmetric decreasing rearrangement g∗ is defined

by

g∗(x) =
∫ ∞

0

1{g>t}∗(x)dt.

This can be compared with the layer-cake representation of g:

(2.1) g(x) =

∫ ∞

0

1{g>t}(x)dt =
∫ ‖g‖L∞(R)

0

1{g>t}(x)dt.

Then g and g∗ are equimeasurable, i.e., |{g > t}| = |{g∗ > t}| for each t > 0.

In particular, ‖g‖Lp(R) = ‖g∗‖Lp(R) for 1 ≤ p ≤ ∞.

3. Adapting Ball’s arguments

We start with the following basic fact used in [1], [2], proved for completeness.

Lemma 3.1: Let b = (b1, . . . , bn) ∈ Sn−1 and let A be a measurable subset of

b⊥ with dim(span(A)) = k ∈ {1, . . . , n− 1}. Then for each 1 ≤ i ≤ n,

|bi||A|k ≤ |Pi(A)|k,
where Pi = Pe⊥i

is the orthogonal projection onto e⊥i .

Proof. We may assume that Pi : b⊥ → e⊥i is injective (otherwise bi = 0 and

the inequality is trivial). We may also assume that b = ±ei (otherwise equality

holds). Let v1, . . . , vk be an orthonormal basis of span(A) with v1 = 1
‖Pib‖ei −

bi
‖Pib‖b and v2, . . . , vk orthogonal to both ei and b. Then Pi(vi) = vi for i ≥
2, and ‖Pi(v1)‖ = |bi|. Consider the k-dimensional cube C =

∏k
i=1[0, vi] ⊂

span(A). Then PiC is a k-dimensional box in e⊥i with the sides |bi|, 1, ..., 1.
Hence |Pi(C)|k = |bi||C|k. Thus the lemma is true for coordinate cubes in

span(A). The inequality follows by approximating A by disjoint cubes. Since

Pi|b⊥ is injective, the images of such cubes under Pi remain disjoint.

The first ingredient in Ball’s approach is the following integral inequality [1].

Theorem 3.2: For every p ≥ 2,

(3.1)
1

π

∫ ∞

−∞

∣∣∣∣ sin tt
∣∣∣∣p dt ≤√2

p
.
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The second ingredient is Ball’s normalized form [2] of the Brascamp-Lieb

inequality [6].

Theorem 3.3: Let u1, ..., um be unit vectors in R
n, m ≥ n, and c1, ..., cm > 0

satisfying
∑m

1 ciui ⊗ ui = In. Then for integrable functions f1, ..., fm : R →
[0,∞),

(3.2)

∫
Rn

m∏
i=1

fi(〈ui, x〉)cidx ≤
m∏
i=1

(∫
R

fi

)ci

.

There is equality if the fi’s are identical Gaussian densities.

We will also use the following standard fact, proved for the convenience of

the reader.

Lemma 3.4: Let 1 ≤ k < n and E ∈ Gn,k. Then there exist vectors w1, . . . , wn

in R
n−k = span{e1, . . . , en−k} such that In−k =

∑n
i=1 wi ⊗ wi, and for any

integrable function f(x) =
∏n

i=1 fi(xi) with fi : R → [0,∞),

(3.3) πE(f)(0) =

∫
Rn−k

n∏
i=1

fi(〈y, wi〉)dy.

Proof. Let v1, . . . , vn−k ∈ R
n be an orthonormal basis of E⊥ and let wi be

defined by

wi := (〈v1, ei〉, . . . , 〈vn−k, ei〉), 1 ≤ i ≤ n.

In matrix terms, if V is the n× (n− k) matrix with columns v1, . . . , vn−k, then

wi = V T ei, where V T is the transpose of V . Then

n∑
i=1

wiw
T
i =

n∑
i=1

V T eie
T
i V = IRn−k

and

πE(f)(0) =

∫
E⊥

f(y)dy =

∫
Rn−k

f

(
n−k∑
i=1

yivi

)
dy

=

∫
Rn−k

n∏
i=1

fi(〈V y, ei〉)dy =

∫
Rn−k

n∏
i=1

fi(〈y, wi〉)dy.

The following two propositions extend Ball’s estimates on slices of the cube

to coordinate boxes. It is essential that we obtain estimates that are uniform

among all such boxes. The proofs draw heavily on [2].
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Proposition 3.5: Let 1 ≤ k < n and H ∈ Gn,n−k. Then there exists

{βi}ni=1 ⊂ [0, 1] with
∑n

i=1 βi = n − k such that for any z1, . . . , zn ∈ R
+,

the box B =
∏n

i=1[−zi/2, zi/2] satisfies

(3.4) |B ∩H | ≤
(

n

n− k

)n−k
2

n∏
i=1

zβi

i .

Proof. Let w1, . . . , wn be as in Lemma 3.4 (with k and n−k interchanged). For

i = 1, . . . , n, let ui = wi/ ‖wi‖ and ai = ‖wi‖ and βi = a2i . For z1, . . . , zn ∈ R
+,

we apply (3.3) with f = �B and E = H⊥ to get

|B ∩H | = πH⊥(�B)(0)

=

∫
Rk

n∏
i=1

1[− zi
2 ,

zi
2 ](〈y, wi〉)dy

=

∫
Rk

n∏
i=1

1[− zi
2ai

,
zi
2ai

](〈y, ui〉)dy.

Using Theorem 3.3, the latter is at most

(3.5)

n∏
i=1

(∫
R

1[− zi
2ai

,
zi
2ai

](t)dt

)a2
i

=

n∏
i=1

(
zi
ai

)a2
i

.

As in [2, Proof of Proposition 4], we use the bound

n∏
i=1

a
−a2

i

i ≤
(

n

n− k

)n−k
2

,

from which the lemma follows.

Proposition 3.6: Let 1 ≤ k ≤ n/2 and H ∈ Gn,n−k. Then there exists

{βj}nj=1 ⊂ [0, 1] with
∑n

i=1 βi = n − k such that for any z1, . . . , zn ∈ R
+, the

box B =
∏n

j=1[−zj/2, zj/2] satisfies

(3.6) |B ∩H | ≤ 2k/2
n∏

j=1

z
βj

j .

Proof. Assume first that all unit vectors b = (b1, . . . , bn) ∈ H⊥ satisfy bi ≤ 1√
2

for each i = 1, . . . , n. Let P̃ = PH⊥ be the orthogonal projection onto H⊥. For
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i = 1, . . . , n, let ui =
˜Pei

‖ ˜Pei‖ and ai = ||P̃ ei||. Note that

(3.7) (i)

n∑
i=1

a2iui ⊗ ui = IH⊥ , (ii)

n∑
i=1

a2i = k.

By our assumption, all ai ≤ 1√
2
, since ai is the i-th coordinate of the unit vector

ui in H⊥.
Assume for the time being that z1, . . . , zn are fixed and satisfy |B| =∏n

j=1 zj =

1. Let X = (X1, . . . , Xn) be a random vector with density �B and Y =

(Y1, . . . , Yn) be a random vector with density �Qn . The characteristic func-

tion Φ : H⊥ → R of P̃X satisfies

Φ(w) = E exp
(
i〈w, P̃X〉

)
= E exp

⎛⎝i

n∑
j=1

Xjaj〈w, uj〉
⎞⎠

= E exp

⎛⎝i
n∑

j=1

Yjzjaj〈w, uj〉
⎞⎠

=

n∏
j=1

2 sin 1
2zjaj〈w, uj〉

zjaj〈w, uj〉 .

Since the marginal density πH⊥(�B) is continuous, we can apply the Fourier

inversion formula (e.g., [10, Theorem 9.5.4]) to obtain

|B ∩H | = πH⊥ (�B)(0)

=
1

(2π)k

∫
H⊥

Φ(w)dw

=
1

πk

∫
H⊥

n∏
j=1

sin zjaj〈w, uj〉
zjaj〈w, uj〉 dw

≤ 1

πk

∫
H⊥

n∏
j=1

∣∣∣∣ sin zjaj〈w, uj〉
zjaj〈w, uj〉

∣∣∣∣ dw
=

1

πk

∫
H⊥

n∏
j=1

Φj(〈w, uj〉)dw,
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where Φj : R → [0,∞) is defined by Φj(t) =
∣∣∣ sin zjajt

zjajt

∣∣∣ . Consequently, Theorem
3.3 with cj =

1
a2
j
implies that |B ∩H | is at most

(3.8)
1

πk

n∏
j=1

(∫
R

Φj(t)
1

a2
j dt

)a2
j

=

n∏
j=1

(
1

π

∫
R

Φj(t)
1

a2
j dt

)a2
j

(cf. (3.7)). Finally, we use Theorem 3.2:

1

π

∫
R

Φj(t)
1

a2
j dt =

1

π

∫
R

∣∣∣∣ sin zjajtzjajt

∣∣∣∣ 1

a2
j
dt

=
1

zjaj

(
1

π

∫
R

∣∣∣∣ sin tt
∣∣∣∣ 1

a2
j
dt

)

≤
√
2

zj
.

In summary, for any z1, . . . , zn ∈ R
+ with |B| =∏n

j=1 zj = 1, we have

(3.9) |B ∩H | ≤
n∏

j=1

(√
2

zj

)a2
j

= 2k/2
n∏

j=1

z
−a2

j

j .

For an arbitrary box B =
∏n

j=1[− zj
2 ,

zj
2 ], we get via scaling that

(3.10) |B ∩H | ≤ 2k/2
n∏

j=1

zj

n∏
j=1

z
−a2

j

j = 2k/2
n∏

j=1

z
βj

j ,

where βj = 1− a2j . Note that we assumed aj ≤ 1√
2
, so in fact βj ∈ [ 12 , 1].

Suppose now that there exists a unit vector b ∈ H⊥ such that bi ≥ 1√
2
for

some i. By induction, assume the proposition is true for all dimensions at most

n− 1 and for all k. For z1, . . . , zn ∈ R
+, note that the cylinder

C =
{
x ∈ R

n : |xj | ≤ zj
2

∀j = i
}

satisfies |B ∩H | ≤ |C ∩H |. By Lemma 3.1,

(3.11) |C ∩H | ≤ 1

bi
|Pi(C ∩H)| ≤

√
2|B̃ ∩ H̃ |,

where B̃ is an (n − 1)-dimensional box with sides {zj}j �=i and H̃ = PiH is a

(k − 1)-codimensional subspace in R
n−1. If k = 1, then

|B̃ ∩ H̃| = |B̃| =
∏
j �=i

zj,
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and thus

|B ∩H | ≤
√
2
∏
j �=i

zj ,

hence the proposition holds with βj = 1 for j = i. If k ≥ 2, we use the inductive

hypothesis: there exists {βj}j �=i ⊂ [0, 1] with
∑

j �=i βj = n− 1− (k− 1) = n− k

such that

|B̃ ∩ H̃| ≤ 2(k−1)/2
∏
j �=i

z
βj

j .

Using (3.11), and taking βj = 0, we conclude that

|B ∩H | ≤ 2k/2
∏
j �=i

z
βj

j .

4. Proofs of Theorem 1.1 and Proposition 1.2

Proof of Theorem 1.1. By translating if necessary, we may assume that

(4.1) ‖πE(f)‖L∞(E) = πE(f)(0).

For i = 1, ..., n, set ci = ‖fi‖L∞(R) and consider the box C =
∏n

i=1[0, ci]. Let

w1, . . . , wn be as in Lemma 3.4. Using (3.3), the rearrangement inequality of

Rogers [16] and Brascamp–Lieb–Luttinger [7], and the layer-cake representation

(2.1), we have

πE(f)(0) =

∫
Rn−k

n∏
i=1

fi(〈y, wi〉)dy

≤
∫
Rn−k

n∏
i=1

f∗
i (〈y, wi〉)dy

=

∫ c1

0

· · ·
∫ cn

0

∫
Rn−k

n∏
i=1

1{f∗
i >ti}(〈x,wi〉)dxdt1 · · · dtn.

Write dt = dt1 · · · dtn and M =
(

n
n−k

)n−k
2

. Since each f∗
i is symmetric and

decreasing, the set {f∗
i > ti} is a symmetric interval. Consequently, we apply

Proposition 3.5 with zi := |{f∗
i > ti}|, i = 1, . . . , n, to get

πE(f)(0) ≤ M

∫
C

n∏
i=1

|{f∗
i > ti}|βidt

≤ M
n∏

i=1

c1−βi

i ·
n∏

i=1

||f∗
i ||βi

L1(R)
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≤ M

n∏
i=1

c1−βi

i ;

here we used Fubini’s theorem, Hölder’s inequality and the fact that

(4.2)

∫ ci

0

|{f∗
i > ti}|dti = ‖f∗

i ‖L1(R) = ‖fi‖L1(R) = 1, i = 1, . . . , n.

Thus setting γi = 1 − βi, i = 1, . . . , n, we obtain the first estimate in the

theorem. Repeating the latter argument with M = 2k/2, using Proposition 3.6,

concludes the proof of the theorem.

Before proving Proposition 1.2, we recall the following notion, proposed by

Lutwak: if K is a convex body in R
n, and 1 ≤ k < n, the dual affine quermass-

integrals of K are defined by

(4.3) Φ̃k(K) =
ωn

ωk

(∫
Gn,k

|K ∩ E|ndμn,k(E)

) 1
n

,

where ωn is the volume of the Euclidean ball in R
n of radius one; see [14], [15]

for further background. Grinberg [12] proved that

(4.4) Φ̃k(K) = Φ̃k(SK)

for each volume-preserving linear transformation S; see [9] for a generalization

of the latter invariance property for functions.

Proof of Proposition 1.2. Let w1, . . . , wn be as in Lemma 3.4. As in the proof

of Theorem 1.1,

πE(f)(0) ≤
∫ 1

0

· · ·
∫ 1

0

∫
Rn−k

n∏
i=1

1{f∗
i >ti}(〈x,wi〉)dxdt1 · · · dtn

=

∫
[0,1]n

|B(t) ∩ E⊥|dt,

where B(t) is the origin-symmetric box with side-lengths |{f∗
i ≥ ti}|, i =

1, . . . , n. Thus∫
Gn,k

πE(f)(0)
ndμn,k(E)

≤
∫
Gn,k

(∫
[0,1]n

|B(t) ∩ E⊥|dt
)n

dμn,k(E)
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=

∫
Gn,k

⎛⎜⎝∫
[0,1]n

⎛⎝ n∏
j=1

|{f∗
j > tj}|

⎞⎠
n−k
n

|B̃(t) ∩ E⊥|dt

⎞⎟⎠
n

dμn,k(E),

where B̃(t) = B(t)/|B(t)|1/n. Using Hölder’s inequality (twice), along with

(4.2) and (4.4), we get∫
Gn,k

πE(f)(0)
ndμn,k(E) ≤

∫
[0,1]n

∫
Gn,k

|B̃(t) ∩ E⊥|ndμn,k(E)dt

=

∫
Gn,k

|Qn ∩ E⊥|ndμn,k(E).
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