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ABSTRACT

In this paper we investigate the existence of closed billiard trajectories

in not necessarily smooth convex bodies. In particular, we show that if a

body K ⊂ Rd has the property that the tangent cone of every non-smooth

point q ∈ ∂K is acute (in a certain sense), then there is a closed billiard

trajectory in K.

∗ Supported by People Programme (Marie Curie Actions) of the European Union’s

Seventh Framework Programme (FP7/2007-2013) under REA grant agreement

n◦[291734].
∗∗ Supported by the Russian Foundation for Basic Research grant 15-31-20403

(mol a ved), by the Russian Foundation for Basic Research grant 15-01-99563

A, in part by the Moebius Contest Foundation for Young Scientists, and in part

by the Simons Foundation.

Received September 9, 2015 and in revised form December 24, 2015

833



834 A. AKOPYAN AND A. BALITSKIY Isr. J. Math.

1. Introduction

The problem of existence of closed billiard trajectories in certain domains has a

long history (a good reference for a general discussion is [12]). It was established

that any smooth convex body K ⊂ Rd has a closed billiard trajectory with m

bounces at the boundary ofK, for primem and for some otherm. For example,

some lower bounds for the number of such trajectories in terms of d and m were

studied in [5, 7, 8, 10].

Another source for substantial current interest of studying billiard trajectories

(in more general setting, with the length measured using arbitrary Minkowski

norm) is in their relation to symplectic geometry and Hamiltonian dynamics

(see [3] where the connection is established between billiards and the Hofer–

Zehnder symplectic capacity of a Lagrangian product) and classical problems

in convexity theory (see [2] where the Mahler conjecture is deduced from the

Viterbo conjecture on the volume–capacity inequality using the billiard tech-

nique).

In this paper we study the question of existence of closed billiard trajectory

in a non-smooth convex body K in Rd. The famous problem of this kind is the

widely open problem of existence of a closed billiard trajectory in an obtuse

triangle; the strongest result at the moment is the existence of a closed billiard

trajectory in triangles with angles not greater than 100◦ (see [11]).

We have nothing to say about obtuse triangles; instead we mainly consider

“acute-angled” convex bodies and show that the minimal (by length) “gener-

alized” trajectory should be “classical”. This is the main idea of this paper,

though the details are different in several different theorems presented here.

Let us give some precise definitions. We are going to distinguish between two

types of trajectories:

• Classical trajectories may only have reflection (bounce) points on smooth

parts of the boundary ∂K. At such points the trajectory is reflected as

usual, so that the difference of the unit velocities is proportional to the

normal.

• Generalized trajectories may have also reflection points at non-smooth

points of ∂K. By definition, a reflection a → q → b of the trajectory

traveling from a ∈ K to b ∈ K through q ∈ ∂K is considered to be

generalized billiard if the bisector of the angle âqb is orthogonal to some

support hyperplane of K at the point q (we suppose here that q does
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not belong to the segment [a, b]). In other words, the difference of unit

velocities at the reflection point is proportional to some outer normal

to K at q.

Now we define the acuteness precisely:

Definition: We say that a non-smooth point q ∈ ∂K satisfies the acuteness con-

dition if the tangent cone TK(q) can be represented as the orthogonal product

TK(q) = F × T k, where T k is a k-dimensional cone with property that for all

points a, b ∈ T k the inequality âqb < π/2 holds, and F is an (d−k)-dimensional

linear subspace orthogonal to T k.

Definition: If all non-smooth points of ∂K satisfy the above acuteness condition

we call K an acute body.

The main results are the following theorems:

Theorem 1.1: In an acute convex body K ⊂ Rd there exists a closed classical

billiard trajectory with no more than d+ 1 bounces.

The idea of the proof is to show that the shortest closed generalized billiard

trajectory does not pass through non-smooth points. In other words, such

a trajectory turns out to be always classical. Recall that the shortest closed

generalized billiard trajectory always exists and has between 2 and d+1 bounces;

this result, due to K. Bezdek and D. Bezdek, is discussed in section 2.

Corollary 1.2: In a simplex with all acute dihedral angles (e.g., a simplex

close to regular) there exists a closed classical billiard trajectory with d + 1

bounces.

Remark 1.3: A simplex with all acute dihedral angles is commonly called acute

in the literature; see for example [6]. Here we use a different definition for acute-

ness, but it can be seen that for simplices both definitions coincide. Lemma 3.5

establishes this in one direction, and the opposite direction is obvious.

More generally, we can prove that under some additional conditions on a

shortest generalized billiard trajectory the trajectory turns out to be classical.

Theorem 1.4: If the shortest closed generalized trajectory in K ⊂ Rd has

precisely d+ 1 bounces, then it is classical.
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In the last section of the paper we prove a generalization of this theorem for

the normed space.

Acknowledgments. The authors thank Roman Karasev and the anonymous

referee for their numerous remarks improving the presentation and the language

of the paper.

2. Bezdeks’ trajectories

Let us recall the powerful approach to closed billiard trajectories from [4].

There, the problem of finding the length, denoted here by ξ(K), of the shortest

closed generalized trajectory in K was restated in terms of minimizing another

functional that has a minimum from the compactness considerations.

Let �(Q) be the (Euclidean) length of the closed polygonal line Q. Using the

same notation as in [1] we put

Pm(K) = {(q1, . . . , qm) : {q1, . . . , qm} doesn’t fit into (intK + t) with t ∈ Rd}
= {(q1, . . . , qm) : {q1, . . . , qm} doesn’t fit into (αK + t) with α ∈ (0, 1),

t ∈ Rd}.
Our main tool is:

Theorem 2.1 (Theorem 1.1 in [4]): For any convex body K ⊂ Rd an equality

holds:

ξ(K) = min
m≥2

min
Q∈Pm(K)

�(Q),

and furthermore, the minimum is attained at m ≤ d+ 1.

Remark 2.2: Here we need to make an important remark. Suppose a polygonal

line Q (that cannot be translated into intK) has more than d+ 1 vertices and

it has no fake vertices, that is, no coinciding consecutive vertices and no two

consecutive segments in the same direction. Then from the proof in [4] it follows

that �(Q) > ξ(K).

3. Sufficient conditions in the Euclidean case

Lemma 3.1 (Particular case of Lemma 2.2 in [4]): Suppose the points q1, . . . , qm

satisfy the following condition: There exist affine halfspaces H+
1 , . . . , H

+
m with

outer normals n1, . . . , nm, such that

(1) qi ∈ ∂H+
i for i = 1, . . . ,m;
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(2) K ⊂ H+
i for i = 1, . . . ,m;

(3) 0 ∈ conv{n1, . . . , nm}.
Then the polygonal line with vertices q1, . . . , qm (and maybe with some other

vertices) cannot be translated into intK.

Proof. See [4].

Lemma 3.2: Suppose a generalized billiard trajectory in K ⊂ Rd with three or

more bounces has a point of return, that is, a part qi−1 → qi → qi+1 such that

qi−1 = qi+1. Then it cannot be the shortest generalized trajectory.

Proof. Suppose it is the shortest. We note that dropping the point qi−1 from

the trajectory, we obtain the polygonal line whose length is strictly shorter than

it was before and which still cannot be translated into intK, since it has the

same set of vertices. This contradicts Theorem 2.1.

We denote by NK(q) the cone of outer normals, and by TK(q) = N◦
K(q) the

tangent cone for a point q ∈ ∂K; the latter was already used in the definition

of acuteness. We assume that both these cones have the vertices at the origin.

If q is a non-smooth point of ∂K then NK(q) is non-trivial (not a single ray).

The proof of Theorem 1.1 will follow from its slightly more general form:

Theorem 3.3: Suppose that for all non-smooth q ∈ ∂K and each ray ρ ⊂
NK(q) there exists a section NK(q) ∩ τ by a two-dimensional plane τ ⊃ ρ,

that contains an angle of measure > π
2 . Then the shortest closed generalized

trajectory in K ⊂ Rd is classical.

Proof. Assume that the shortest generalized closed trajectory passes through a

non-smooth point q ∈ ∂K. The normal cone NK(q) satisfies the assumption in

the theorem.

Let a → q → b be the part of the trajectory and n be the outer normal at q

opposite to the bisector of âqb. Find the plane τ (containing the ray emanating

from q with direction n) that cuts from q +NK(q) an angle of measure > π
2 .

Denote the vectors of the sides of the angle τ ∩ (q + NK(q)) by n1 and

n2. Without loss of generality we may assume that a and n1 lie on one side

with respect to n, and b and n2 lie on the other side. Denote by H1 and H2

the support hyperplanes at q orthogonal to n1 and n2. Reflect a and b in

hyperplanes H1 and H2 respectively and obtain point a′ and b′ (see Figure 1).
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Figure 1.

Note that the angle â′qb′ is less than π, since the points a′ and b′ lie in

the open halfspace bounded by the hyperplane through q, whose normal is the

reflection of n in the bisector hyperplane of H1 and H2. Let q1 and q2 be the

points of intersection of the segment [a′, b′] with H1 and H2. Then

|aq1|+ |q1q2|+ |q2b| = |a′q1|+ |q1q2|+ |q2b′| = |a′b′| < |a′q|+ |qb′| = |aq|+ |qb|.
Thus if we replace a → q → b with a → q1 → q2 → b then the trajectory

becomes shorter, but the normals at the vertices of the trajectory still surround

the origin, because n is a positive combination of n1 and n2. This certifies that

the new trajectory still cannot be translated into intK.

Let us show that Theorem 3.3 is indeed more general than Theorem 1.1.

Lemma 3.4: Acute bodies satisfy the assumption of Theorem 3.3.

Proof. Suppose a non-smooth point q ∈ ∂K satisfies the acuteness condition.

Let TK(q) = F × T k be the orthogonal decomposition from the acuteness defi-

nition, where T k is a k-dimensional acute cone, whose diameter equals ϕ < π
2 .

Then the cone of outer normals NK(q) = T ◦
K(q) is k-dimensional. Denote by L

the k-dimensional linear hull of NK(q).

Consider the ray ρ ⊂ NK(q) from the origin and denote by p an arbitrary

point (different from q) on the ray from q in the direction opposite to ρ. Let

ψ = supb∈K∩(q+L) p̂qb. From the acuteness, ψ < π
2 . Let b be such a point that

p̂qb = ψ − ε for 0 < ε < π
2 − ϕ.
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Figure 2.

Now we work in the two-dimensional plane τ through the points p, q, b. In

this plane we draw the line �1 through q forming angle ψ with (qp), and line �2

through q forming angle ϕ with (qb) (see Figure 2). Note that the hyperplanes

H1 and H2, passing through �1, �2 and orthogonal to τ are support hyperplanes

for K (H1 is such because of the definition of ψ, and H2 is such because of the

acuteness condition). This is exactly the construction needed in Theorem 3.3:

The section of NK(q) by τ − q ⊃ ρ contains an angle of measure > π
2 .

Proof of Corollary 1.2. In Lemma 3.5 below we show that such a simplex is

indeed acute in the sense of our definition of acuteness. Now consider the

shortest generalized trajectory and show that it is classical and has d+1 bounces.

The first conclusion follows from Theorem 1.1. The second conclusion follows

from the observation that the outer normals to some d facets of the simplex

cannot surround the origin.

Lemma 3.5: A simplex with all acute dihedral angles satisfies the acuteness

condition.

Proof. Consider a simplex S = conv{v0, v1, . . . , vd} ⊂ Rd having all acute di-

hedral angles. It is known that any face of such a simplex also has only acute

dihedral angles (see [9, Satz 4] or [6, Proposition 2.7]).

Now consider a non-smooth point q belonging to, say, k-dimensional (0 ≤ k ≤
d− 2) face F = conv{v0, . . . , vk}. The corresponding tangent cone decomposes

orthogonally as TS(q) = F × C, where C is a simplicial cone ((d − k)-hedral

angle) in some (d− k)-dimensional subspace L, generated by its extremal rays

ρk+1, . . . , ρd; let the ray ρi be parallel to the face conv(F ∪{vi}) and be orthog-

onal to the face F .
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Note that the angle between ρi and ρj in L equals a certain dihedral angle of

the (k+2)-dimensional face conv(F ∪ {vi, vj}), so this angle is acute. Consider

the (d− k)-dimensional cone C as a (d − k − 1)-dimensional spherical simplex

in Sd−k−1. All its edges are less than π
2 , thus a simple convexity argument

implies that its diameter is attained at an edge and is less than π
2 . Therefore,

the acuteness condition is fulfilled.

Remark 3.6: Corollary 1.2 can be proved without using Fiedler’s theorem [9,

Satz 4]. It can be directly shown that a simplex with only acute dihedral angles

satisfies the condition of Theorem 3.3 by considering what the normal fan of

the simplex cuts on the sphere Sd−1.

In a certain particular case the acuteness condition may be omitted. The

corresponding result is Theorem 1.4, which we are going to prove now:

Proof of Theorem 1.4. Assume q1, . . . , qd+1 form the shortest closed generalized

trajectory in K ⊂ Rd.

Consider the outer normals to support hyperplanes H1, . . . , Hd+1 at the

points q1, . . . , qd+1. They are opposite to the bisectors of ̂qi−1qiqi+1: ni =
qi−qi−1

|qi−qi−1| −
qi+1−qi
|qi+1−qi| (the indexing is cyclic).

Note that a positive combination of ni is zero. First, consider the case when

ni span a proper hyperspace of Rd. Then one of ni’s can be dropped keeping

the condition 0 ∈ conv{ni} (this follows from the Carathéodory theorem). We

also omit the corresponding qi from the trajectory. Then, the obtained polyg-

onal line becomes strictly shorter but still cannot be translated into intK (see

Remark 2.2). Thus it remains to consider the case 0 ∈ int conv{ni} (here we

essentially use the assumption that the trajectory has the maximal number d+1

of bounces).

Second, we note that the trajectory does not have points of return (see

Lemma 3.2).

Now assume that a→ q → b is a fragment of the shortest generalized trajec-

tory near the non-smooth point q ∈ ∂K, and a, q, b do not lie on the same line.

Consider the cone NK(q) of outer normals. Since it is non-trivial, it contains

rays from the origin other than the ray ρ that is opposite to the bisector of

âqb. We rotate ρ slightly to obtain ρ̃ ∈ NK(q), ρ̃ 	= ρ. Consider the support

hyperplane H at q with outer normal ρ̃.
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As shown in Lemma 3.7 below, the point q can be shifted along H so that

the length |a − q| + |q − b| becomes strictly smaller. It remains to show that,

if we replace a → q → b with a → q̃ → b in the trajectory, then the trajectory

still cannot be translated into intK. After the replacement, one of the support

hyperplanes at the vertices slightly rotates (its outer normal ρ is replaced with

ρ̃). Since the rotation is slight we can assume that the origin still belongs to the

convex hull of normals to the support hyperplanes (recall that 0 ∈ int conv{ni}).
Thus, Lemma 3.1 yields the required statement.

Lemma 3.7: Let a, q, b be points in Rd not lying on the same line, H be a

hyperplane such that q ∈ H and a, b lie at the same closed halfspace bounded

by H . Suppose that H is not orthogonal to the bisector of âqb. Then q does

not deliver the minimum of |a− r|+ |r − b| subject to r ∈ H .

Proof. Reflect the point b in H and obtain the point b′. By the assumptions of

the lemma, a, q, b′ do not lie on the same line, so |a− q|+ |q − b| can be made

smaller if we shift q to a point from [a, b′] ∩H .

4. Sufficient conditions in arbitrary normed spaces

Let us extend the proof of Theorem 1.4 to the case of the generalized reflection

law in a normed space.

Let a d-dimensional real vector space V = Rd be endowed with a norm with

unit ball T ◦ (where T ◦ ⊂ V is polar to a convex body T ⊂ V ∗). We follow the

notation of [1] and denote such a norm by ‖ · ‖T .
By definition, ‖q‖T = maxp∈T 〈p, q〉, where 〈·, ·〉 : V ∗×V → R is the canonical

bilinear form of the duality between V and V ∗. Here we assume that T contains

the origin (although this can be relaxed to some extent), but is not necessarily

centrally symmetric. Therefore the norm may be non-symmetric; in general,

‖q‖T 	= ‖ − q‖T . In what follows, we always assume that T is smooth and thus

T ◦ is strictly convex.

We measure lengths in V using the norm ‖ ·‖T and the billiard reflection rule

is given by locally minimizing the length functional. We say that a polygonal

line qstart → qrefl → qend (where qrefl ∈ ∂K, qstart ∈ K, qend ∈ K) has a

billiard reflection at the point qrefl if there exists a support hyperplane H for

the body K at the point qrefl such that the functional

ϕ(q) = ‖qend − q‖T + ‖q − qstart‖T
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has a local minimum at the point q = qrefl under the constraint q ∈ H . If qrefl

belongs to the smooth piece of ∂K we say that a classical billiard reflection

occurs. In such a case one can rewrite the reflection rule in the differential form

(4.1) p′ − p = −λnK(q), λ > 0.

Here we define the momenta p, p′ ∈ ∂T ⊂ V ∗ before and after the reflection so

that p is a functional reaching its maximum at qend − q, and p′ is a functional

reaching its maximum at q − qstart (if T is strictly convex then such p and p′

are uniquely defined).

Also here we define the outer normal to the body K at a point q ∈ ∂K as

nK(q) = d‖q‖K◦ , nK(q) ∈ ∂K◦.

The cone NK(q) of outer normals is defined by

NK(q) = {n ∈ V ∗ : 〈n, q′ − q〉 ≤ 0 ∀q′ ∈ K}.
It can be easily checked that in the case of a smooth point q ∈ ∂K the above

definitions of normals agree: NK(q) = {nK(q)}.
Thus the generalized reflection law looks like

(4.2) p′ − p ∈ −NK(q).

We again use the notions

Pm(K) = {(q1, . . . , qm) : {q1, . . . , qm} doesn’t fit into (intK + t) with t ∈ V }
= {(q1, . . . , qm) : {q1, . . . , qm} doesn’t fit into (αK + t) with α ∈ (0, 1),

t ∈ V }
and

ξT (K) = min
Q∈QT (K)

�T (Q),

where Q = (q1, . . . , qm), m ≥ 2, ranges over the set QT (K) of all closed

generalized billiard trajectories in K with geometry defined by T . (Here we

denote the length �T (q1, . . . , qm) =
∑m

i=1 ‖qi+1 − qi‖T .)
The generalization of the main result of [4], proved in [1], is the following:

Theorem 4.1: For any convex bodiesK ⊂ V , T ⊂ V ∗ (T is smooth) containing

the origins of V and V ∗ in their interiors, the equality

ξT (K) = min
m≥2

min
Q∈Pm(K)

�T (Q);

holds, and furthermore, the minimum is attained at m ≤ d+ 1.
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Remark 4.2: Lemma 3.1 still holds in this setting (see [1]). It is used in the

proof of 4.1.

Remark 4.3: Actually, Theorem 4.1 is proved in [1] only for a smooth body

K and classical trajectories. But approximating non-smooth K in Hausdorff

metrics and passing to the limit we obtain the formulation above. Note that

the formula of Theorem 4.1 can be used as the definition of ξT (K) for arbitrary

T and K without any smoothness assumptions.

To proceed further, we generalize Lemma 3.7:

Lemma 4.4: Let a, q, b be points in Rd not lying on the same line, H be a

hyperplane with normal n ∈ V ∗ such that q ∈ H and a, b lie at the same closed

halfspace bounded by H . Suppose the length is measured using the norm with

unit body T ◦, such that T is strictly convex.

Let p, p′ ∈ ∂T be the uniquely defined momenta of the segments a → q, q →
b. Suppose that 〈n, p′ − p〉 	= 0. Then q does not deliver the minimum of

‖a− r‖T + ‖r − b‖T subject to r ∈ H .

Proof. If q delivered the minimum of ‖a− r‖T +‖r− b‖T subject to r ∈ H then

the reflection law (4.1) would imply that 〈n, p′ − p〉 = 0.

Lemma 4.5: Let a, q, b be such that q does not belong to the segment [a, b].

Suppose the length is measured using the norm with unit body T ◦. Then

‖a− q‖T + ‖q − b‖T > ‖a− b‖T subject to r ∈ H .

Proof. The result follows easily from the strict convexity of T ◦ (which follows

from the smoothness of T ).

Remark 4.6: As in the Euclidean case, if a polygonal line Q (that cannot be

translated into intK) has more than d+ 1 vertices and it has no fake vertices,

then its length is strictly greater than ξT (K). The argument is the same as in

Remark 2.2, but makes use of Lemma 4.5.

Remark 4.7: Lemma 4.5 and Remark 4.6 allow us to prove Lemma 3.2 in the

non-Euclidean case.

Here comes our final result:
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Theorem 4.8: Suppose the length is measured using the norm with strictly

convex unit body T ◦ such that T is strictly convex too (in other words, T is

smooth and strictly convex).

If the shortest closed generalized trajectory in K ⊂ Rd has d + 1 bounces,

then it is classical, that is, it does not pass through non-smooth points of ∂K.

Proof. Assume that q1, . . . , qd+1 form the shortest closed generalized trajectory

inK ⊂ Rd. Denote by pi the momentum along the trajectory segment qi−1 → qi

(the indexing is cyclic). Consider support hyperplanes H1, . . . , Hd+1 to K at

the points q1, . . . , qd+1 with normals p2 − p1, p3 − p2, . . . , p1 − pd+1 respectively.

There are two possibilities: Either p2 − p1, . . . , p1 − pd+1 with zero sum span

all V ∗ or they are contained in a hyperplane. The latter is impossible, and the

argument is the same as in the proof of Theorem 1.4. In this case we drop one

of the qi keeping the condition 0 ∈ int conv{pi+1 − pi}; the obtained polygonal

line is strictly shorter but still cannot be translated into intK (see Remark 4.2).

So we can consider that 0 ∈ int conv{p2 − p1, . . . , p1 − pd+1}.
Next, we note that the trajectory does not have points of return (see Re-

mark 4.7).

Then, assume that a→ q → b is a fragment of the shortest closed generalized

trajectory near the non-smooth point q ∈ ∂K, and a, q, b do not lie on the

same line. Consider the cone NK(q) of outer normals. Since it is non-trivial, it

contains rays from the origin other than the ray ρ which is opposite to p′ − p,

where p and p′ are the momenta of the trajectory parts a→ q and q → b. Let us

rotate ρ slightly to obtain ρ̃ ∈ NK(q), ρ̃ 	= ρ. Consider the support hyperplane

H at q with outer normal ρ̃.

As shown in Lemma 4.4, the point q can be shifted along H so the length

‖a − q‖T + ‖q − b‖T becomes strictly smaller. It remains to show that, if we

replace a → q → b with a → q̃ → b in the trajectory, then it still cannot be

translated into intK. After the replacement, one of the support hyperplanes at

the vertices slightly rotates (its outer normal ρ is replaced with ρ̃). Since the

rotation is slight we can assume that the origin still belongs to the convex hull

of the normals to those support hyperplanes. Thus, the non-Euclidean version

of Lemma 3.1 yields the required conclusion.
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