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ETH Zürich.

Received March 31, 2015 and in revised form August 5, 2015

545



546 A. GUNDERT AND U. WAGNER Isr. J. Math.

ABSTRACT

We consider higher-dimensional generalizations of the normalized Lapla-

cian and the adjacency matrix of graphs and study their eigenvalues for

the Linial–Meshulam model Xk(n, p) of random k-dimensional simplicial

complexes on n vertices. We show that for p = Ω(log n/n), the eigenval-

ues of each of the matrices are a.a.s. concentrated around two values. The

main tool, which goes back to the work of Garland, are arguments that re-

late the eigenvalues of these matrices to those of graphs that arise as links

of (k − 2)-dimensional faces. Garland’s result concerns the Laplacian; we

develop an analogous result for the adjacency matrix.

The same arguments apply to other models of random complexes which

allow for dependencies between the choices of k-dimensional simplices. In

the second part of the paper, we apply this to the question of possible

higher-dimensional analogues of the discrete Cheeger inequality, which in

the classical case of graphs relates the eigenvalues of a graph and its edge

expansion. It is very natural to ask whether this generalizes to higher

dimensions and, in particular, whether the eigenvalues of the higher-

dimensional Laplacian capture the notion of coboundary expansion—a

higher-dimensional generalization of edge expansion that arose in recent

work of Linial and Meshulam and of Gromov; this question was raised, for

instance, by Dotterrer and Kahle. We show that this most straightforward

version of a higher-dimensional discrete Cheeger inequality fails, in quite

a strong way: For every k ≥ 2 and n ∈ �, there is a k-dimensional com-

plex Y k
n on n vertices that has strong spectral expansion properties (all

nontrivial eigenvalues of the normalised k-dimensional Laplacian lie in the

interval [1−O(1/
√
n), 1 +O(1/

√
n)]) but whose coboundary expansion is

bounded from above by O(logn/n) and so tends to zero as n → ∞; more-

over, Y k
n can be taken to have vanishing integer homology in dimension

less than k.

1. Introduction

Eigenvalues of graphs are a classical and well-studied subject, which goes back to

a fundamental paper of Kirchhoff [50], in which he used the combinatorial graph

Laplacian to analyze electrical networks and formulated his celebrated Matrix-

Tree Theorem for the number of spanning trees of a graph (which includes, as

the special case of the complete graph, Cayley’s [9] famous formula nn−2 for

the number of labeled trees on n vertices).

The eigenvalues of a graph G encode many important properties of G, in par-

ticular regarding connectivity and expansion properties of G (the mixing rate
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of a random walk on G) as well as other quasirandomness properties of G. Be-

cause of this, eigenvalues of graphs also play a major role in the design and anal-

ysis of algorithms, including heuristic and approximation algorithms for hard

graph partitioning problems (spectral partitioning) and Markov Chain Monte

Carlo approximation algorithms for hard counting problems. We cannot hope to

survey the relevant literature here and refer the reader to the survey articles and

monographs [12, 47, 53, 42, 54, 18, 70] for background and further references.

In the present paper, we consider eigenvalues of higher-dimensional simpli-

cial complexes and, in a nutshell, prove two results: First, generalizing well-

known results about random graphs G(n, p), we show (Theorem 2) that the

Linial–Meshulam k-dimensional random complexes are asymptotically al-

most surely (a.a.s.), i.e., with probability tending to 1 as n → ∞, strongly

spectrally expanding (their eigenvalues are strongly concentrated around two

values). Second, we give a probabilistic construction (Theorem 4) of k-di-

mensional complexes that are strong spectral expanders but that fail to have

the property of coboundary expansion—a generalization of edge expansion that

arose in the recent work of Linial and Meshulam [55] and of Gromov [36].

This shows that the most straightforward attempt of generalizing the discrete

Cheeger–Buser inequalities to higher-dimensional complexes fails and answers

a question raised, e.g., by Dotterrer and Kahle [23]. Before stating these results

more precisely, we first recall the basic definitions and terminology.

Adjacency Matrix and Laplacians of Graphs. We recall the three

(n× n)-matrices commonly associated with a graph1 G = (V,E) on n vertices.

The adjacency matrix A = A(G) ∈ {0, 1}V×V has entries defined by Au,v = 1

iff {u, v} ∈ E. The combinatorial Laplacian is defined as L = L(G) := D−A,

where D = D(G) ∈ �V×V is the diagonal matrix with entries Dv,v = degG(v),

the degrees of the vertices. Both of these are symmetric matrices and hence

have a multiset of n real eigenvalues, called the spectrum.

The eigenvalues of A and of L turn out to be quite sensitive to the maximum

and minimum degree of G. For graphs with very non-uniform degree distri-

butions, it is often more convenient to consider the normalized Laplacian,

1 Throughout this paper, we will assume that G is simple, i.e., we do not consider loops

or multiple edges.
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which is defined as Δ = Δ(G) := D−1L = I −D−1A, where I ∈ �V×V is the

identity matrix.2

The normalized Laplacian is not symmetric but corresponds to a self-adjoint

operator on �n with respect to a weighted inner product (see Section 2) and

so also has n real eigenvalues. Both versions of the Laplacian are positive

semidefinite relative to their respective inner products and so have nonnega-

tive eigenvalues, typically listed in increasing order λ1(L) ≤ · · · ≤ λn(L) and

λ1(Δ) ≤ · · · ≤ λn(Δ). The “all-1” vector 1 = (1, . . . , 1)T satisfies L1 = Δ1 = 0,

hence λ1(L) = λ1(Δ) = 0, which is called the trivial eigenvalue. For the

adjacency matrix, the eigenvalues are typically listed in decreasing order as

μ1(A) ≥ · · · ≥ μn(A). Define μ(G) := max{μ2(A), |μn(A)|}.
The graph G is connected iff λ2(L) > 0 iff λ2(Δ) > 0. More generally,

the multiplicity of 0 as an eigenvector of either Laplacian equals the number of

connected components ofG, and if G is connected, then the second eigenvalue λ2

of either Laplacian controls the edge expansion of the graph (see the discussion

below).

Eigenvalues of Random Graphs. Let G(n, p) be the binomial random

graph on n vertices, for which every edge is included independently with prob-

ability p = p(n), and let d = p(n − 1) be the expected average degree. We

summarize known concentration results on the spectra of G(n, p) as follows.

See Section 2.2 for a more detailed account.

Theorem 1 ([16, 26, 41]): For every c > 0 and every γ > c there exists a

constant C > 0 such that for p ≥ (1+γ) · log n/n and d = p(n−1) the following

statements hold with probability at least 1− n−c:

(i) μ1(A(G(n, p))) ∈ [d− C · √d, d+ C · √d] and μ(G(n, p)) ≤ C · √d;

(ii) 1− C√
d
≤ λ2(Δ(G(n, p))) ≤ · · · ≤ λn(Δ(G(n, p))) ≤ 1 + C√

d
.

For the adjacency matrix (i) even holds for p ≥ γ · logn/n.
2 Strictly speaking, D−1 is defined only if there are no isolated vertices, i.e., if degG(v) > 0

for all v ∈ V , which will be the case of primary interest to us. If there are isolated vertices,

we adopt the convention that D−1
v,v = 0 whenever degG(v) = 0 and retain the definition

Δ = D−1L. (The second equation Δ = I −D−1A no longer holds in this case, since Δ

has zero diagonal entries at isolated vertices.)

Sometimes, (e.g., in [13, 12, 16]) a slightly different matrix is referred to as the normalized

Laplacian, namely L := I − D−1/2AD−1/2. Assuming that there are no isolated vertices,

Δ and L have the same spectra, since Δx = λx for some λ ∈ � and x ∈ �V iff L y = λy,

where y = D1/2x.
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One type of application of such results is the analysis of spectral heuristics

for algorithms that deal with random instances of NP-hard graph partitioning

and related problems; see the discussions in [26, 16].

Higher-Dimensional Laplacians. Eckmann [25] introduced a generaliza-

tion of the graph Laplacian L to higher-dimensional simplicial complexes X to

study discrete boundary value problems on such complexes.

More precisely, let X be a finite simplicial complex and let Ci(X ;�), i ∈ �,
be the vector space of i-dimensional simplicial cochains with real coefficients (we

refer to Section 2 for the necessary definitions). Eckmann defines three linear

operators Ldown
i (X), Lup

i (X) and Li(X) = Ldown
i (X) + Lup

i (X) on the space

Ci(X ;�) and proves a discrete analogue of Hodge theory [39], which implies, in

particular, that the subspaceHi(X) := kerLi(X) of so-called harmonic cochains

on X is isomorphic to H̃i(X ;�), the i-th reduced cohomology.

In the case of a 1-dimensional simplicial complex (graph) G, Lup
0 (G) coincides

with the usual graph Laplacian L(G) discussed previously.

Subsequently, combinatorial Laplacians were applied in a variety of contexts.

Dodziuk [19] and Dodziuk and Patodi [21] showed how the continuous Laplacian

of a Riemannian manifold can be approximated by the combinatorial Laplacians

of a suitable sequence of successively finer triangulations of the manifold.

Kalai [48] used combinatorial Laplacians to prove a higher-dimensional gen-

eralization of Cayley’s formula for the number of labeled trees, and further

results in this direction, including a generalization of the Matrix-Tree Theo-

rem, were obtained in [1, 24]. For further combinatorial applications, see, e.g.,

[31, 30, 51, 22]. For further background and references regarding combinatorial

Laplacians, see also [43].

We will mostly work with a normalized version of the Laplacian,

Δi(X) = Δdown
i (X) + Δup

i (X)

(see Section 2 for the definition) and focus on the operator Δup
k−1(X). Again,

for graphs, Δup
0 (G) agrees with the normalized graph Laplacian Δ(G) discussed

above.

Random Complexes. Linial and Meshulam [55] introduced a higher-dimen-

sional analogue of the binomial random graph model G(n, p). By definition, the

random k-dimensional complex Xk(n, p) has n vertices, a complete (k − 1)-

skeleton (i.e., every subset of k of fewer vertices forms a face of the complex),
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and every (k + 1)-element set of vertices is taken as a k-face independently

with probability p, which may be constant or, more generally, a function p(n)

depending on n.

This model has been studied extensively, and threshold probabilities for sev-

eral basic topological properties of Xk(n, p) have been determined quite pre-

cisely; see, e.g., [63, 7, 6, 14, 52, 69].

Our first result is a higher-dimensional analogue of Theorem 1. The adjacency

matrix of a k-dimensional complex X is denoted by Ak−1 (see Section 2.6 for

the precise definition). Both Ak−1 and the normalized up-Laplacian Δup
k−1 have

rows and columns indexed by the (k − 1)-faces of X ; we assume that X has

n vertices and a complete (k − 1)-skeleton, so the matrices have dimension(
n
k

)× (
n
k

)
; Ak−1 has entries in {0,±1}, and (Ak−1)F,G = ±1 (with appropriate

signs) iff F ∪G is a k-face of X .

Theorem 2: Let k ≥ 2. For every c > 0 and every γ > c there exists a

constant C > 0 with the following property: Assume p ≥ (k + γ) log(n)/n

and let3 d := p(n − k). Then for γA = C · √d and γΔ = C/
√
d the following

statements hold with probability at least 1− n−c:

(i) The largest
(
n−1
k−1

)
eigenvalues of Ak−1(X

k(n, p)) lie in the interval

[d− γA, d+ γA], and the remaining
(
n−1
k

)
eigenvalues lie in the interval

[−γA,+γA].

(ii) The smallest
(
n−1
k−1

)
eigenvalues of Δup

k−1(X
k(n, p)) are (trivially) zero,

and the remaining
(
n−1
k

)
eigenvalues lie in the interval [1− γΔ, 1+ γΔ].

In particular, H̃k−1(Xk(n, p);�) = 0.

For the adjacency matrix (i) even holds for p ≥ γ · logn/n.
Both concentration results are achieved by reducing the higher-dimensional

problem to estimates for the eigenvalues of random graphs, i.e., to Theorem 1.

For the Normalized Laplacian this is done by applying a fundamental estimate

due to Garland [34] that relates the eigenvalues of the higher-dimensional matrix

to those of the graphs that arise as links of (k − 2)-dimensional faces. For the

generalized adjacency matrix we develop an analogous result (see Section 3).

3 Thus, d is the expected degree of any (k − 1)-face F in Xk(n, p), i.e., the expected

number of k-faces incident to F .
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Compared to the extended abstract [38] of this paper, Theorem 2 contains an

improved concentration for the eigenvalues of Ak−1 in intervals of width O(
√
d)

around the typical eigenvalues, as opposed to O(
√
d logn).

Theorem 2 also applies to any other random model for simplicial complexes

with n vertices and complete (k − 1)-skeleton in which the links of (k − 2)-

faces are random graphs with distribution G(n− k + 1, p). We use this for our

second result, a probabilistic construction of a counterexample for a conjectural

higher-dimensional discrete Cheeger inequality (Theorem 4 below).

Edge Expansion and the Cheeger Inequality for Graphs. For a graph

of arbitrary density, its edge expansion can be defined as follows. Let ε > 0

be a parameter. We say that G = (V,E) is ε-edge expanding if for every S ⊆ V ,

(1)
|E(S, V \ S)|

|E| ≥ ε · min{|S|, |V \ S|}
|V | ,

where E(S, V \ S) = {{u, v} ∈ E : u ∈ S, v ∈ V \ S} is the set of edges

across the cut (S, V \ S). Moreover, we call the best possible constant ε the

edge expansion of G and denote it by ε(G).4 For a survey of the numerous

applications of graph expansion in theoretical computer science and connections

to other branches of mathematics, we refer to [42].

As mentioned above, the edge expansion of a graph is controlled by the

second-smallest eigenvalue of its Laplacian. Here, we state this fact in its sim-

plest form, for d-regular graphs (due to Dodziuk [20], Alon and Milman [4, 3];

Cheeger [10] proved an analogous result for Laplacians on Riemannian mani-

folds). A version for non-regular graphs, with a slightly different notion of edge

expansion, can be found, e.g., in [12].

Theorem 3 (Discrete Cheeger Inequality): Let G = (V,E) be a d-regular

graph, and let λ2 = λ2(Δ(G)) be the second-smallest eigenvalue of its nor-

malized Laplacian. Then the edge expansion ε(G) satisfies

λ2 ≤ ε(G) ≤
√

8λ2.

The inequality on the left-hand side is proved fairly easily by expressing the

characteristic function 1S ∈ �V of a subset S ⊆ V as a linear combination of

4 Note that (1) is equivalent to the more common condition that |E(S, V \ S)| ≥ ε
2
· d · |S|

for all S ⊆ V with |S| ≤ |V |/2, where d = 2|E|/|V | is the average degree. Thus,

ε(G) = 2h(G), where h(G) := min{ |E(S,V \S)|
d|S| : S ⊆ V, |S| ≤ |V |/2} is the (normalized)

Cheeger constant of G.
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eigenvectors of the Laplacian Δ. We will refer to this as “the easy part of the

Cheeger inequality”. The harder part is the inequality on the right-hand side.

For a short proof see, e.g., [5].

We remark that even the easy part of the Cheeger inequality is very useful.

For instance, essentially all explicit constructions of constant-degree expanders

[60, 33, 57, 61, 67] prove a lower bound on the edge expansion of the constructed

graphs by analyzing their eigenvalues.

Higher-Dimensional Expansion. Recently, a higher-dimensional analogue

of edge-expansion of graphs, coboundary expansion (more precisely, �2-co-

boundary expansion), arose in the recent work of Gromov [36] and of Linial,

Meshulam and Wallach [55, 63]. The precise definition will be given in Section 2.

(For further related results, see also [27, 49, 64, 62, 23].)

It is natural to ask whether there is a higher-dimensional analogue of the dis-

crete Cheeger inequality; this question was raised explicitly, e.g., by Dotterrer

and Kahle [23]. As our second result we show, by a simple probabilistic construc-

tion, that the most straightforward attempt at a higher-dimensional Cheeger

inequality fails, even for the “easy part”. In higher dimensions, spectral ex-

pansion (an eigenvalue gap for the Laplacian) does not imply �2-coboundary

expansion:

Theorem 4: For every k > 1 there is an infinite family of k-dimensional com-

plexes (Y k
n )n∈�, where Y k

n has n vertices, that is spectrally but not coboundary

expanding in dimension k.

More precisely, all nontrivial eigenvalues of Δup
k−1(Y

k
n ) are 1±O(1/

√
n), but

every Yn contains a cochain a ∈ Ck−1(Yn;�2) of normalized Hamming weight

‖[a]‖ ≥ 1
2 − o(1) with ‖δa‖ = O(log n/n). Furthermore, Yn can be chosen such

that Hi(Yn;�) = 0 for all i ≤ k − 1.

For a graph G and any abelian group �, H̃0(G;�) = 0 iff G is connected. In

higher dimensions, however, it is well-known that the vanishing of a cohomology

group may depend on the choice of coefficients. A basic example for this is the

real projective plane �P 2 for which H̃1(�P 2;�) = 0 but H̃1(�P 2;�2) = �2.

In general, H̃1(Y ;�) = 0 iff Y is ε-expanding, with respect to a given norm

on �-cochains, for some small ε > 0 that may depend on Y . Thus, the point

of Theorem 4 is that there is an infinite family of examples whose coboundary

expansion tends to zero (as fast as logn/n) while the spectral expansion is

bounded away from zero (in fact, equal to 1±O(1/
√
n)).
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Compared to the extended abstract [38] of this paper, the probabilistic con-

struction behind Theorem 4 has been adapted to also allow for Hk−1(Yn;�)

to be trivial. To influence the random behaviour we choose two probabilities

p, q ≥ C · log(n)/n for suitably large C with q = o(p). The construction then

covers a whole range of parameters:

|fk(Yn)− p
2

(
n

k+1

)| ≤ o(1)p2
(

n
k+1

)
, ‖δa‖ = O

( q
p

)
,

while all nontrivial eigenvalues Δup
k−1(Yn) lie in the interval [1 − γ, 1 + γ] with

γ = O(1/
√
(p/2)n).

The concentration of eigenvalues is essentially optimal, as one can show5 that

Δup
k−1(X) always has a non-trivial eigenvalue λ with

1− λ ≥
√

k/dmax · (n− dmax)/(n− k),

where dmax is the maximal degree of a k-face in X , and the expected degree in

Yn is O((p/2)n).

In the extremal case q = C · log(n)/n and p = 1, we achieve a coboundary

expansion of order O(log(n)/n) and eigenvalue concentration in

[1−O(1/
√
n), 1 +O(1/

√
n)].

Of course it is just as natural to ask whether the other (“non-easy”) part of

the Cheeger inequality has a simple higher-dimensional generalization. Even

though any simplicial complex with non-zero �2-coboundary expansion has to

have non-zero spectral expansion, it has been shown that also for this part

of the Cheeger inequality no straightforward generalization can hold in higher

dimensions: There is an infinite family of simplicial k-balls Xn with spectral

expansion O(1/ log(n)log(k)) and coboundary expansion Ω(1/ log(n)), see [68].

To the best of our knowledge, it is an open question whether there are complexes

with coboundary expansion bounded away from zero and spectral expansion

tending to zero.

Related Work. A recent article by Steenbergen, Klivans and Mukherjee [68]

also presents a class of counterexamples for the most straightforward attempt

at a higher-dimensional Cheeger inequality—an explicit construction for an in-

finite family of simplicial k-balls Xn whose spectral expansion is bounded away

5 This can be shown analogously to the corresponding bound (2) for graphs, see

Preliminaries.
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from zero, while the coboundary expansion tends to zero. Here, the non-trivial

eigenvalues of Δup
k−1(Xn) are bounded below by a constant depending on the

dimension k, while the coboundary expansion of Xn is of order 1/Θ(log(n)).

In the same article, the authors present the counterexample for simple higher-

dimensional generalizations of the other (“non-easy”) part of the Cheeger in-

equality mentioned above.

Chung [11] studies a higher Laplacian for hypergraphs that is closely related6

to the combinatorial Laplacian Lk−1 = Lup
k−1 + Ldown

k−1 . In [11, Section 7], she

proves a somewhat weaker concentration result for eigenvalues of random hyper-

graphs, namely, essentially, that for constant p and any ε > 0, the eigenvalues

of Lk−1(X
k(n, p)) are concentrated in an interval of width O(n1/2+ε). She

also states, without proof, that the proof methods for random graphs can be

extended to yield the sharp bound of O(
√
pn).

The probabilistic construction of the examples in Theorem 4 is well-known

in the study of quasirandomness for hypergraphs; see, e.g., the discussion in

[35, Section 5]. In [11, Section 8], it is asserted, again without proof, that the

eigenvalues of the combinatorial Laplacian of these examples are concentrated

in an interval of width O(
√
pn), but we are not aware of a proof appearing in

the literature.

Hoffman, Kahle and Paquette prove closely related results in their preprint

[41]. They improve previous results on eigenvalues of random graphs and achieve

precise information about the constant factor in the threshold. Using a result

by Żuk [71], which is a strengthening of Garland’s estimate, they obtain as an

immediate corollary that for p ≥ (2 + ε) logn
n , the fundamental group of the

random 2-complex X2(n, p) a.a.s. has Property (T).

Using a weaker combinatorial notion of higher-dimensional expansion, but the

same notion of Laplacian spectra, Parzanchevski, Rosenthal and Tessler show a

version of a higher-dimensional Cheeger inequality [66]. While �2-coboundary

expanding complexes also possess this weaker notion of expansion, the converse

is not true (see, e.g., [37], where an extension of their result is presented).

In another recent article, Lu and Peng [56] study a rather different kind of

Laplacian for random complexes. Specifically, given a k-dimensional complex X

on a vertex set V and a parameter s ≤ k+1
2 , they consider an auxiliary weighted

6 One difference is that Chung’s Laplacian operates not just on cochains, i.e., skew-

symmetric functions on oriented simplices, but on arbitrary real-valued functions.
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graph on the vertex set
(
V
s

)
in which I, J ∈ (

V
s

)
are connected by an edge of

weight w if I ∩ J = ∅ and I and J are contained in precisely w common k-faces

of X . Lu and Peng study the normalized Laplacian of this auxiliary weighted

graph. However, this Laplacian seems to capture the topology of X only in a

limited way. For instance, in the case k = 2 and s = 1, any two 2-dimensional

complexes on n vertices that have a complete 1-skeleton and are d-regular (every

edge is contained in d triangles) yield the same auxiliary graph, even though

the topologies of these complexes (as measured by real cohomology groups and

the usual Laplacian, say) may be very different.

2. Preliminaries

2.1. More on Eigenvalues of Graphs. It is known that the spectrum of the

normalized Laplacian Δ is contained in the interval [0, 2], and that λn(Δ) = 2 iff

G has a nontrivial bipartite connected component [12, Lemma 1.7]. Moreover,

if G has no isolated vertices then λn−1(Δ) ≥ n
n−1 .

If G is d-regular, i.e., degG(v) = d for all v ∈ V (where d may depend on n),

then L = d · I−A = d ·Δ, and so the spectra of A, L, and Δ are equivalent (up

to scaling and linear shifts): λi(L) = d ·λi(Δ) and μi(A) = d−λi(L), 1 ≤ i ≤ n.

In particular, μ1(A) = d, μ2(A) < d iff G is connected, and μn(A) = −d iff G

has a nontrivial bipartite connected component.

For μ(G) = max{μ2(A), |μn(A)|}, it is not hard to show that for every d-

regular graph

(2) μ(G) ≥
√

d · (n− d)/(n− 1)

(see, e.g., [42, Claim 2.8]). Hence μ(G) ≥ Ω(
√
d) for d ≤ 0.99n, say, which

shows that the concentration results for the eigenvalues of random graphs are

essentially optimal. For constant d, one has the sharper Alon–Boppana bound

μ(G) ≥ 2
√
d− 1 · (1−O(1/ log2 n)), see [65, 29].

A d-regular graph G is called a Ramanujan graph if it meets this bound for

the spectral gap, i.e., if μ(G) ≤ 2
√
d− 1. It is a deep result due to Lubotzky,

Phillips and Sarnak [57] and independently to Margulis [61] that for every fixed

number d with d − 1 prime, there exist Ramanujan graphs on n vertices for

infinitely many n (and moreover, these graphs can be explicitly constructed).

Recently, the existence of bipartite Ramanujan graphs with arbitrary degree
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and arbitrary number of vertices has been established by Marcus, Spielman

and Srivastava [58, 59].

2.2. Eigenvalues of Random Graphs. In the introduction, Theorem 1 sum-

marizes known results on the concentration of eigenvalues for random graphs

G(n, p). Here we want to explain the corresponding references in more detail.

For the normalized Laplacian the situation is simple: Building on the results

for the adjacency matrix and relating the spectrum of Δ(G(n, p)) to that of

A(G(n, p)), Coja-Oghlan [16] proved the result for the normalized Laplacian for

probabilities p ≥ C · log(n)/n with a suitable constant C. For p 
 (log n)2/n

this was also shown by Chung, Lu and Vu [13]. A recent preprint by Hoffman,

Kahle and Paquette [41] gives the precise result allowing all constants C > 1

(and even C > 1
2 when considering only the giant component of G(n, p)).

For the adjacency matrix the situation in the literature is more involved:

Füredi and Komlós [32] showed that for constant p a.a.s. μ(G(n, p)) = O(
√
d),

where d = p(n− 1) is the expected average degree. Their method of proof, the

so-called trace method, can be adapted to cover the range ln(n)7

n ≤ p ≤ 1− ln(n)7

n

(see [15]). Feige and Ofek [26] extended the result to values of p as small as

C · logn/n, but their proof requires an upper bound on p. They used methods

of Friedman, Kahn and Szemerédi [28], who proved that μ(G) = O(
√
d) holds

a.a.s. for random d-regular graphs with constant d. The most precise result is

again by Hoffman, Kahle and Paquette [41], who show that μ(G(n, p)) = O(
√
d)

a.a.s. for p ≥ γ log(n)/n for all γ > 0.

More precisely, in [41] it is shown that a.a.s.

(3) |〈Ax, y〉| = O(
√
d) for all unit vectors x, y such that x ⊥ 1.

This, together with 1
n 〈A1,1〉 = 2|E|

n ∈ [d − O(
√
d), d + O(

√
d)], which follows

from a straight-forward application of a Chernoff bound, gives the result as

stated in Theorem 1 (see, e.g., [26, Lemma 2.1] or Lemma 12 in this paper).

We remark that both parts of Theorem 1 can be extended to very sparse

random graphsG(n, p) with p = Θ(1/n) (for which they fail to hold as stated) by

passing to a suitable large core subgraph; see [16, 26, 41]. Moreover, analogous

results are also known for other random graph models, including random d-

regular graphs (see above) and random graphs with prescribed expected degree

sequences [13, 17].
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2.3. Simplicial Complexes and Cohomology. A (finite, abstract) simpli-

cial complex X is a finite set system that is closed under taking subsets, i.e.,

F ⊆ G ∈ X implies F ∈ X . The sets in X are called simplices or faces of

X . The dimension of a face F is dim(F ) := |F | − 1. We denote the set of

i-dimensional faces of X by Xi. The dimension of X is the maximum dimension

of any of its faces. The 0-dimensional faces are called vertices. Formally, these

are singletons (one-element sets) but in this context we will usually identify the

singleton {v} with its unique element v.

A k-dimensional simplicial complex is pure if all maximal simplices in X

have dimension k. We define the degree of a face F as

deg(F ) = |{G ∈ Xk : F ⊆ G}|.

The link of F in X is

lk(F,X) := {G ∈ X : F ∪G ∈ X,F ∩G = ∅}.

We denote by Kk
n the complete k-dimensional complex on n vertices, i.e.,

Kk
n = {F ⊆ [n] : |F | ≤ k + 1}.

Orientations and Incidence Numbers. Throughout we assume that we have

fixed a linear ordering on the vertex set V := X0 of X , and we consider the

faces of X with the orientations given by the order of their vertices. Formally,

consider an i-simplex F = {v0, v1, . . . , vi} ∈ Xi, where v0 < v1 < · · · < vi.

For an (i − 1)-simplex G ∈ Xi−1, we define the oriented incidence number

[F : G] by setting [F : G] := (−1)j if G ⊆ F and F \G = {vj}, 0 ≤ j ≤ i, and

[F : G] := 0 if G �⊆ F . In particular, for every vertex v ∈ X0 and the unique

empty face ∅ ∈ X−1, we have [v : ∅] = 1.

Cohomology. LetX be a finite simplicial complex and let� be an Abelian group

(we will mostly be concerned with the cases � = �2 and � = �, respectively).

We denote by Ci(X ;�) the group �Xi of functions from Xi to �, which are

called i-dimensional cochains of X with coefficients in �. In particular,

since ∅ is the unique empty face of X , we have C−1(X ;�) ∼= �. It is convenient

to define Ci(X ;�) := 0 for i < −1 or i > dimX . The characteristic functions

eF of faces F ∈ Xi form a basis of Ci(X ;�). They are called elementary

cochains.
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The coboundary map δi : C
i(X ;�) → Ci+1(X,�) is the linear map given

by

(δif)(F ) :=
∑
G∈Xi

[F : G] · f(G)

for f ∈ Ci(X ;�), −1 ≤ i < dimX , and δi = 0 otherwise.

It is an easy but central observation that the composition δi ◦ δi−1 = 0,

which means that Bi(X ;�) := im δi−1 ⊆ Zi(X ;�) := ker δi. The elements of

Bi(X ;�) and Zi(X ;�) are called i-dimensional coboundaries and cocycles,

respectively. Since Bi(X ;�) ⊆ Zi(X ;�), we can form the quotient group

H̃i(X ;�) := Zi(X ;�)/Bi(X ;�), the i-th (reduced) cohomology group of

X with coefficients in �.

2.4. Norms on Cochains and Expansion. We now describe a very general

definition of expansion for simplicial complexes, which was introduced in [36]

(with a slightly different normalization and under the name inverse (co)filling

norm).

Let X be a finite simplicial complex. Assume that every cochain group

Ci(X ;�) is equipped with a pseudonorm ‖ · ‖, taking real values and satis-

fying ‖f‖ = ‖ − f‖ and ‖f + g‖ ≤ ‖f‖ + ‖g‖ for all f, g ∈ Ci(X ;�). We will

focus on the following two cases.

(1) �-cochains with weighted �2-norm: Assume that we are given a

weight function w with nonnegative real values on the simplices of X .

Define by 〈f, g〉 := ∑
F∈Xi

w(F )f(F )g(F ) a weighted inner product on

Ci(X ;�). Observe that the inner products obtained in this way are

characterized by the condition that the elementary cochains be pair-

wise orthogonal. We then consider the corresponding weighted �2-norm

‖f‖ = ‖f‖2 :=
√〈f, f〉.

(2) �2-cochains with weighted Hamming norm: Let w be as before

and define the weighted Hamming norm on Ci(X ;�2) by

‖f‖ :=
∑

F∈Xi:f(F )=1

w(F ).

The idea is to define a notion of i-dimensional expansion that provides lower

bounds for the norm of the coboundary δi−1(f)∈Ci(X ;�) of (i−1)-dimensional

cochains f ∈ Ci−1(X ;�). However, we cannot define such a lower bound in

terms of the norm ‖f‖ of f , since the set Bi−1(X ;�) is always contained in

the kernel of the coboundary operator δ = δi−1. Thus, the right comparison
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measure is the distance of a cochain f from this trivial part of the kernel. That

is, we define, for f ∈ Ci−1(X ;�),

‖[f ]‖ := min{‖f + δi−2g‖ : g ∈ Ci−2(X ;�)}.

Coboundary Expansion for Arbitrary Coefficients. Suppose every cochain group

Ci(X ;�) is equipped with a pseudonorm ‖ · ‖ as above. We say that X is

ε-expanding in dimension i (with respect to � and the given norm) if

‖δf‖ ≥ ε · ‖[f ]‖
for all f ∈ Ci−1(X ;�). The best possible ε is called the i-dimensional expan-

sion of X . Note that, in particular, H̃i−1(X ;�) = 0 if X has i-dimensional

expansion ε > 0.

For an infinite family of k-dimensional complexes (Xn)n∈� (where k is fixed

and independent of n) we say that the family (Xn) is expanding in dimension

i (with respect to � and the given norm) if the i-dimensional expansion of all

Xn is bounded away from zero.

�2-Coboundary Expansion. Now we focus on the case of �2-coefficients. Define

a weight function by w(F ) := 1/|Xi| for F ∈ Xi (whenever |Xi| > 0). In

this setting, the normalized Hamming weight of a �2-cochain f ∈ Ci−1(X ;�2)

is just the number of faces in the support of f divided by the number of all

(i − 1)-faces of X .

If X is ε-expanding in dimension i with respect to this norm, we also say that

X is �2-coboundary ε-expanding in dimension i.

Note that in the case i = 1 of graphs, there are just two 0-dimensional

coboundaries, namely the constant functions 0 and 1 on the set V = X0

of vertices. Moreover, a 0-dimensional cochain f ∈ C0(X ;�2) is in bijec-

tive correspondence with its support S = {v ∈ V : f(v) = 1} ⊆ V , and

‖[f ]‖ = min{|S|,|V \S|}
|V | . Thus, 1-dimensional �2-coboundary expansion corre-

sponds precisely to the definition (1) of edge expansion discussed in the intro-

duction.

A basic observation in this context is that complete complexes are �2-coboun-

dary expanding in all dimensions. This was observed independently by Gromov

[36], Linial, Meshulam and Wallach [55, 63] and Newman and Rabinovich [64]:

Proposition 5: The complete complex Kk
n has i-dimensional �2-coboundary

expansion 1 for all i ∈ {0, 1, . . . , k}.
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From this, standard Chernoff bounds immediately imply that a.a.s., Xk(n, p)

is �2-coboundary expanding in dimension k and Hk−1(Xk(n, p);�2) = 0 if

p > C logn/n for a suitable constant C. Much of the work in [55, 63] is devoted

to refining this argument to obtain the optimal constant C = k for the threshold.

Dotterrer and Kahle [23] prove results analogous to Proposition 5 for some

other complexes, specifically for skeleta of crosspolytopes and for complete mul-

tipartite complexes. They also explicitly raise the question whether there is

some higher-dimensional analogue of the Cheeger inequality. The most straight-

forward attempt at such an inequality would be to relate �2-coboundary ex-

pansion and eigenvalue gaps of higher-dimensional Laplacians, which we discuss

next.

2.5. Matrices and their Spectra. A symmetric real (n × n)-matrix has a

multiset of n real eigenvalues, called its spectrum, and �n has an orthonormal

basis of corresponding eigenvectors.

We recall the variational characterization of eigenvalues:

Theorem 6 (Courant–Fischer Theorem; see, e.g., [44, Theorem 4.2.11]): Let

M ∈ �n×n be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and

let k be a given integer with 1 ≤ k ≤ n. Then

λk = min
w1,w2,...,wn−k∈�n

max
x �=0,x∈�n

x⊥w1,w2,...,wn−k

〈Mx, x〉
〈x, x〉

and

λk = max
w1,w2,...,wk−1∈�n

min
x �=0,x∈�n

x⊥w1,w2,...,wk−1

〈Mx, x〉
〈x, x〉 .

For a matrix M we denote its �2-norm by ‖M‖ = maxx �=0 ‖Mx‖/‖x‖, which
for a symmetric matrix M equals the in absolute value largest eigenvalue of M .

2.6. Higher-Dimensional Laplacians and Adjacency Matrices. We in-

troduce generalizations of the graph Laplacians and the adjacency matrix for a

k-dimensional complex in all dimensions 0 ≤ i ≤ k − 1. Later on, we will only

be concerned with these matrices in dimension k − 1.

Adjacency Matrices. For a finite k-dimensional simplicial complex X and

0 ≤ i ≤ k − 1 we define the adjacency matrix Ai = Ai(X) by

(Ai(X))F,G =

⎧⎨
⎩−[F ∪G : F ][F ∪G : G] = [F : F ∩G][G : F ∩G] if F ∼ G,

0 otherwise,
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where F,G ∈ Xi and we write F ∼ G if F and G share a common (i − 1)-face

F ∩G and F ∪G ∈ Xi+1. Figure 1 illustrates the case i = 1. An entry A1(X)e,e′

is non-zero exactly if the two edges e and e′ share a common vertex and the

triangle e ∪ e′ is contained in X . The sign of A1(X)e,e′ is then determined by

the orientations of the two edges.

e

e′

ee e

e′e′ e′

+1 +1 −1 −1

Figure 1. Signs of non-zero entries A1(X)e,e′ . The arrows rep-

resent the orientations of edges.

Note that the matrix A0(X) agrees with the adjacency matrix of the graph

(X0, X1) because [{u, v} : u][{u, v} : v] = −1 for all vertices u, v ∈ X0. The

motivation for the signs in higher dimensions will hopefully become clear later

on.

Weighted Laplacians. Following the exposition in [43], we begin by defining a

general weighted Laplacian. Suppose we are given a nonnegative weight function

w on the faces of a finite simplicial complex X and that the spaces Ci(X ;�)

are equipped with the weighted inner product and the corresponding weighted

�2-norm as described above.

The elementary cochains eF , F ∈ Xi, form an orthogonal basis of Ci(X ;�).

With respect to these bases, the coboundary map δi : C
i(X ;�) → Ci+1(X ;�)

is given by the following |Xi+1|× |Xi|-matrix (for which we abuse notation and

again use the symbol δ):

(δi(X))F,G = [F : G].

Consider the transpose map δ∗i : C
i+1(X ;�) → Ci(X ;�) of δi(X) with

respect to the given inner product. This transpose is determined by the con-

dition that 〈δ∗i f, g〉 = 〈f, δig〉 for all f ∈ Ci+1(X ;�) and g ∈ Ci(X ;�). More

explicitly,

(δ∗i f)(G) =
∑

F∈Xi+1

w(F )

w(G)
[F : G]f(F )

for f ∈ Ci+1(X ;�) and G ∈ Xi.
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For example, in the case of unit weights w(F ) = 1 for all F ∈ X , we get the

standard inner product on Ci(X ;�), and δ∗i = ∂i+1 coincides with the usual

boundary map given on elementary cochains by ∂i+1(eF ) =
∑

G∈Xi
[F : G]eG,

F ∈ Xi+1.

In general, for arbitrary weights w on X , we define the weighted Laplacian

by

Ldown
i := δi−1δ

∗
i−1, Lup

i := δ∗i δi, Li := Ldown
i + Lup

i .

Note that all three maps Ldown
i ,Lup

i ,Li are self-adjoint and positive semidefinite

(with respect to the given weighted inner product) linear operators on Ci(X ;�).

In general, setting

Hi = Hi(X ;�) := kerLi = kerLdown
i ∩ kerLup

i = ker δ∗i−1 ∩ Zi(X ;�),

one gets a Hodge decomposition of Ci(X ;�) into pairwise orthogonal sub-

spaces

(4) Ci(X ;�) = Hi ⊕Bi(X ;�)⊕ im(δ∗i )

(see [25, 43]); in particular, Hi
∼= Hi(X ;�).

Spectra of Lup
i and Spectral Expansion. Observe that, trivially,

Bi(X ;�) ⊆ kerLup
i .

Thus, every f ∈ Bi(X ;�) is an eigenvector of Lup
i with eigenvalue zero. We

call these the trivial eigenvectors of Lup
i and the trivial part of its spectrum.

Thus, the nontrivial eigenvalues of Lup
i are, by definition, the eigenvalues of

the restriction of Lup
i to the orthogonal complement (with respect to the given

weighted inner product) (Bi(X ;�))⊥.
By the variational definition of eigenvalues, the minimal nontrivial eigenvalue

of Lup
i is given by

min
f⊥Bi(X;�)

〈Lup
i f, f〉
〈f, f〉 = min

f⊥Bi(X;�)

‖δif‖2
‖f‖2 .

Thus, we see that the minimal nontrivial eigenvalue of Lup
i is at least ε2 iff X

has (i+ 1)-dimensional expansion at least ε with respect to the given weighted

�2-norms on real cochains. In this case, we will also say that X is spectrally

expanding in dimension i.
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We focus on the operator Lup
i , more precisely we consider Lup

k−1 for k-dimen-

sional complexes because it corresponds to coboundary expansion with respect

to real coefficients and the �2-norm.

The spectra of the other two maps are related: By the Hodge decomposition

(4) the spectrum of Li is determined by the spectra of Ldown
i and Lup

i . For

any linear map A, the spectra of AA∗ and A∗A differ only in the multiplicity

of 0; in particular, this holds for the spectra of Lup
i and Ldown

i+1 . Nevertheless,

as we cover only Lup
k−1 for k-dimensional complexes, our results do not yield

corresponding statements on Lk−1.

Combinatorial Laplacians. The combinatorial Laplacian Li = Ldown
i +Lup

i cor-

responds to the special case of the standard inner product

〈f, g〉 =
∑
f∈Xi

f(F )g(F ),

that is, the case of unit weights w(F ) = 1 for all F ∈ X . Thus,

Lup
i = Lup

i (X) = ∂i+1δi.

Recall that the matrix corresponding to the coboundary map δi with respect

to the orthogonal basis of elementary cochains is, by abuse of notation, also

denoted by δi = δi(X), and its transpose δTi corresponds to the boundary map

∂i+1. The combinatorial Laplacian Lup
i can be expressed as the matrix δTi δi.

We can now motivate the signs in the definition of the adjacency matrix

Ai(X): Recall that for a graph G the combinatorial Laplacian satisfies

L(G) = D(G) −A(G). If we let Di(X) denote the diagonal matrix with entry

DiF,F = |{H ∈ Xi+1 : F ⊂ H}|
for F ∈ Xi, we also have

Lup
i (X) = Di(X)−Ai(X).

Normalized Laplacians. Suppose that X is a pure k-dimensional simplicial com-

plex. The normalized Laplacian Δi = Δdown
i + Δup

i is the special case of the

weighted Laplacian obtained by taking the weight function w(F ) := deg(F ).

That is, the corresponding weighted inner product is

〈f, g〉 =
∑
F∈Xi

deg(F )f(F )g(F ).
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Let δ∗i be the adjoint of δi with respect to this weighted inner product. Thus,

(δ∗i f)(G) =
∑

F∈Xi+1

deg(F )

deg(G)
[F : G]f(F ).

Note that we have deg(F ) > 0 for every F ∈ X , since we assume that X is

pure. The normalized Laplacian is then Δup
i = Δup

i (X) = δ∗i δi.
With respect to the basis of elementary cochains, the map Δup

i corresponds

to the matrix W−1
i δTi Wi+1δi, where Wi(X) denotes the diagonal matrix with

entry WiF,F = deg(F ). As Wk−1 = Dk−1 and Wk = I, for i = k − 1 we can

write Δup
k−1 as the matrix D−1

k−1L
up
k−1 = I −D−1

k−1Ak−1.

Eigenvalues of the Complete Complex. As an example we consider the spectra

of the three matrices Lup
k−1(K

k
n), Δup

k−1(K
k
n) and Ak−1(K

k
n) for the complete

complexKk
n. First recall the following well-known (and easily verifiable) lemma:

Lemma 7: For a complex X with complete (k − 1)-skeleton, the space

B(k−1)(X) = im δk−2

has dimension
(
n−1
k−1

)
. A basis is given by {δk−2eF : 1 /∈ F ∈ (

[n]
k−1

)}. For

the complete complex Kk
n, the space im δ∗k−1(K

k
n) is

(
n−1
k

)
-dimensional and has

{δ∗k−1eF : 1 ∈ F ∈ (
[n]
k+1

)} as a basis.

Lemma 8: The eigenvalues of the combinatorial Laplacian Lup
k−1(K

k
n) are 0 with

multiplicity
(
n−1
k−1

)
and n with multiplicity

(
n−1
k

)
. The normalized Laplacian

Δup
k−1(K

k
n) has eigenvalues 0 with multiplicity

(
n−1
k−1

)
and n

n−k with multiplicity(
n−1
k

)
. The eigenvalues of Ak−1(K

k
n) are n− k with multiplicity

(
n−1
k−1

)
and −k

with multiplicity
(
n−1
k

)
.

Proof. Because Kk
n is (n − k)-regular, it suffices to consider the spectrum of

Lup
k−1(K

k
n). The following equality is contained implicitly in [48] and follows from

a straightforward calculation using the matrix representations of the Laplacians:

Lup
k−1(K

k
n) + Ldown

k−1 (Kk
n) = nI.

Any non-zero element of kerLdown
k−1 (Kk

n) = ker δ∗k−2(K
k
n) = im δ∗k−1(K

k
n) is hence

an eigenvector of Lup
k−1 with eigenvalue n. Naturally, any non-zero element

of kerLup
k−1(K

k
n) = Zk−1(Kk

n) = Bk−1(Kk
n) is an eigenvector of Lup

k−1 with

eigenvalue 0. By Lemma 7 im δ∗k−1(K
k
n) and Bk−1(Kk

n) have dimensions
(
n−1
k

)
and

(
n−1
k−1

)
, respectively. As these add up to

(
n
k

)
, the dimension of Ck−1(Kk

n),

we have determined the complete spectrum.
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3. Garland’s estimate revisited

In [34] Garland studies the normalized Laplacian Δup
i (X). His main result

regards a conjecture of Serre’s on the cohomology of certain groups. As a

technical lemma, he proves a bound for the nontrivial eigenvalues of Δup
i (X)

in terms of the eigenvalues of the Laplacian on links of lower-dimensional faces

(see also [8] for a very clear exposition).

We state the result for the case of Δup
k−1(X) and the links of (k−2)-dimensional

faces F ∈ Xk−2. In this case, lkF = lk(F,X) is a graph and the normalized

Laplacian Δup
0 (lkF ) agrees with the usual normalized graph Laplacian Δ(lkF ).

Furthermore, we show an analogous result for the generalized adjacency matrix

Ak−1(X).

For a combinatorial application of Garland’s ideas (to clique complexes of

graphs) see [2]. Garland’s estimate was subsequently further strengthened and

extended. In particular, Żuk [71] proved that if a 2-dimensional complex X

satisfies λ2(Δ(lk(v,X))) > 1/2 for all vertex links, then the fundamental group

of X has Kazhdan’s Property (T).

3.1. Normalized Laplacian.

Theorem 9 ([34], see also [8, Theorem 1.5,1.6]): LetX be a pure k-dimensional

complex and let Δup
k−1 = Δup

k−1(X) be its normalized Laplacian. Denote by 〈, 〉
the weighted inner product on Ck−1(X ;�) that is defined by

〈f, g〉 =
∑

F∈Xk−1

deg(F )f(F )g(F ).

Assume that for all F ∈ Xk−2

λmin ≤ λ2(Δ(lkF )) ≤ λn−k+1(Δ(lkF )) ≤ λmax.

Then for all f ∈ Bk−1(X)⊥ (where the orthogonal complement is taken with

respect to 〈, 〉)
(1 + kλmin − k)〈f, f〉 ≤ 〈Δup

k−1f, f〉 ≤ (1 + kλmax − k)〈f, f〉.
Hence, all nontrivial eigenvalues of Δup

k−1 on Bk−1(X)⊥ lie in

[1 + kλmin − k, 1 + kλmax − k].

We remark that Garland only states the lower bound. The upper bound

follows directly from the proof, which we reproduce here in our notation. The
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main idea of the proof is to present the normalized Laplacian as a sum of

matrices each of which has non-zero entries only on the link of some (k − 2)-

face. These matrices then correspond to the Laplacians of the links.

For a pure k-dimensional simplicial complex X , fix a face F ∈ Xk−2 of di-

mension k − 2. Let ρF be the diagonal |Xk−1| × |Xk−1|-matrix defined by

(ρF )G,H =

⎧⎨
⎩1 if G = H and F ⊂ G,

0 otherwise.

We set

Δup,F
k−1 (X) := ρFΔ

up
k−1(X)ρF

and for f ∈ Ck−1(X) furthermore define fF ∈ C0(lkF ) by

fF ({u}) = [F ∪ {u} : F ]f(F ∪ {u}).
Lemma 10: Let X be a pure k-dimensional complex.

(a)
∑

F∈Xk−2
Δup,F

k−1 (X) = Δup
k−1(X) + (k − 1)I.

(b) For u, v ∈ V (lkF ) let Fu = F ∪ {u} and Fv = F ∪ {v}. Then

(Δup,F
k−1 (X))Fu,Fv = [Fu : F ][Fv : F ](Δ(lkF ))u,v. So, for f ∈ Ck−1(X),

〈Δup,F
k−1 (X)f, f〉 = 〈Δ(lkF )fF , fF 〉.

(c) If f ∈ Bk−1(X)⊥ then fF ∈ 1⊥.

Proof. (a) Observe that Δup,F
k−1 (X) is obtained by replacing by 0 all entries

of Δup
k−1(X) that are contained in a row or column corresponding to

some G with F � G. The non-zero entries of Δup
k−1(X) lie on the diago-

nal or correspond to facesG,H ∈ Xk−1 that share a common (k−2)-face

and for which G∪H ∈ Xk. Hence, every non-zero entry (Δup
k−1(X))G,H

with G �= H is contained in exactly one summand and the diagonal

entries, which are 1, are each contained in exactly k summands.

(b) First consider u �= v with F ∪ {u, v} ∈ X . Straightforward calculations

show that degX(Fu) = deglkF (u) and that furthermore

[Fu,v : Fu][Fu,v : Fv] = −[Fu : F ][Fv : F ]

where Fu,v stands for F ∪ {u, v}. Hence,

(Δup,F
k−1 (X))Fu,Fv =

[Fu,v : Fu][Fu,v : Fv]

degX(Fu)

=− [Fu : F ][Fv : F ]

deglkF (u)
= [Fu : F ][Fv : F ](Δ(lkF ))u,v.
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If F ∪ {u, v} /∈ X , the corresponding entry is 0 in both matrices. For

the diagonal entries we get

(Δup,F
k−1 (X))Fu,Fu = 1 = [Fu : F ][Fu : F ]Δ(lkF )u,u.

(c) Let f ∈ Bk−1(X)⊥. Then∑
G∈Xk−1

deg(G)f(G)[G : F ] = 〈f, δk−2eF 〉 = 0

and therefore

〈fF ,1〉 =
∑

v∈V (lkF )

deglkF (v)fF ({v}) =
∑

v∈V (lkF )

deg(Fv)[Fv :F ]f(Fv)= 0.

The statements of Lemma 10 can easily be combined to prove Garland’s

estimate:

Proof of Theorem 9. Let f ∈ Bk−1(X)⊥. Then〈 ∑
F∈Xk−2

Δup,F
k−1 (X)f, f

〉
=

∑
F∈Ff

〈Δ(lkF )fF , fF 〉,

where Ff = {F ∈ Xk−2|F ⊂ G for some G with f(G) �= 0}. Now, since

f ∈ Bk−1(X)⊥, we have fF ∈ 1⊥ and fF �= 0 for F ∈ Ff . As furthermore∑
F∈Ff

〈fF , fF 〉 = k〈f, f〉,

kλmin〈f, f〉 ≤
〈 ∑

F∈Xk−2

Δup,F
k−1 (X)f, f

〉
≤ kλmax〈f, f〉.

By Lemma 10 we have furthermore

〈Δup
k−1(X)f, f〉 =

〈 ∑
F∈Xk−2

Δup,F
k−1 (X)f, f

〉
− (k − 1)〈f, f〉,

which concludes the proof.

3.2. Adjacency Matrix. We now turn to the generalized adjacency matrix

Ak−1(X). The same methods as above can be applied to achieve a result of sim-

ilar nature (Proposition 13). However, this only enables us to cover vectors from

Bk−1(X)⊥. Controlling the behaviour on this space sufficed for the normalized

Laplacian, where Bk−1(X) is always a subspace of the eigenspace of zero. For

the generalized adjacency matrix we know much less about its eigenspaces, in

particular we do not know of any trivial eigenvalues.
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This is analogous to the situation for graphs, where 1, the all-ones vector,

which is known to be the first eigenvector of the Laplacian (with eigenvalue 0),

is not necessarily an eigenvector of the adjacency matrix. In [26] Feige and Ofek,

considering the adjacency matrix of random graphsG(n, p), show that for p large

enough the first eigenvector can in some sense be replaced by 1. Following their

strategy, we show that controlling the behaviour of the generalized adjacency

matrix Ak−1(X) on the two spaces Bk−1(X) and Bk−1(X)⊥ suffices to give

concentration results for the spectrum of Ak−1(X).

The results of this section together will yield the following theorem which

can be considered as an analogue of Garland’s Theorem 9 for the generalized

adjacency matrix Ak−1(X).

Theorem 11: Let X be a k-dimensional simplicial complex with n vertices and

complete (k−1)-skeleton and let Ak−1 = Ak−1(X) be its generalized adjacency

matrix. Fix a positive value d and let u = (1/
√
n− k + 1)1. Suppose that we

have for all F ∈ Xk−2:

(i) |〈A(lkF )u, u〉 − d| ≤ f(n),

(ii) |〈A(lkF )u,w〉| ≤ g(n) for all w⊥1 with ‖w‖ = 1 and

(iii) |〈A(lkF )w,w〉| ≤ h(n) for all w⊥1 with ‖w‖ = 1.

Let ϕ(n) = f(n) + g(n) + h(n). Then:

(a) |〈Ak−1b, b〉 − d| ≤ k · ϕ(n) for all b ∈ Bk−1(X) with ‖b‖ = 1,

(b) |〈Ak−1b, z〉| ≤ k · ϕ(n) for all z ∈ Bk−1(X)⊥ and b ∈ Bk−1(X) with

‖b‖ = ‖z‖ = 1 and

(c) |〈Ak−1z, z〉| ≤ k · h(n) for all z ∈ Bk−1(X)⊥ with ‖z‖ = 1.

Hence, the largest
(
n−1
k−1

)
eigenvalues of Ak−1 lie in the interval

[d− kϕ(n), d+ 2kϕ(n) + kh(n)],

and the remaining
(
n−1
k

)
eigenvalues lie in the interval

[−k(ϕ(n) + h(n)), kh(n)].

The following lemma explains the connection of Conclusions (a), (b) and (c)

with the spectrum of Ak−1(X). It is a generalization of [26, Lemma 2.1], which

gives the corresponding statement for graphs and deals with a single vector u,

here replaced by the subspace B, and is then used with u = 1√
n
1. We will

use B = Bk−1(X). Note that Bk−1(X) = Bk−1(Kk
n) if X has a complete

(k − 1)-skeleton.
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Lemma 12: Let X be a k-dimensional simplicial complex with n vertices and

complete (k − 1)-skeleton, let Ak−1 = Ak−1(X) be its generalized adjacency

matrix and let B be an
(
n−1
k−1

)
-dimensional subspace of Ck−1(X). Suppose we

have:

(i) 0 ≤ f1(n) ≤ 〈Ak−1b, b〉 ≤ f2(n) for all b ∈ B with ‖b‖ = 1,

(ii) |〈Ak−1b, z〉| ≤ g(n) for all z ∈ B⊥ and b ∈ B with ‖b‖ = ‖z‖ = 1 and

(iii) |〈Ak−1z, z〉| ≤ h(n) for all z ∈ B⊥ with ‖z‖ = 1.

Then the largest
(
n−1
k−1

)
eigenvalues of Ak−1 lie in the interval

[f1(n), f2(n) + g(n) + h(n)],

and the remaining
(
n−1
k

)
eigenvalues lie in the interval

[−(g(n) + h(n)), h(n)].

Proof of Lemma 12. Write A = Ak−1. Let v be an arbitrary unit vector. Then

there are unit vectors b ∈ B, z ∈ B⊥ and −1 ≤ α, β ≤ 1 such that v = αb+ βz

and α2 + β2 = 1. Because A is symmetric, we get

〈Av, v〉 = α2〈Ab, b〉+ 2αβ〈Ab, z〉+ β2〈Az, z〉.

Using (i), (ii) and (iii) as well as αβ ≤ 1/2 and 0 ≤ α, β ≤ 1, we can conclude

that

−g(n)− h(n) ≤ 〈Av, v〉 ≤ f2(n) + g(n) + h(n).

Hence, all eigenvalues of A are contained in [−g(n)−h(n), f2(n)+ g(n)+h(n)].

Now, let μ1 ≤ μ2 ≤ · · · ≤ μ(nk)
be the eigenvalues of A. Applying (i) and (iii)

we get

μ(n−1
k ) ≤ max

z∈B⊥,‖z‖=1
〈Az, z〉 ≤ h(n) and μ(n−1

k )+1 ≥ min
b∈B,‖b‖=1

〈Ab, b〉 ≥ f1(n),

by the variational characterization of eigenvalues (Theorem 6), since

dimB⊥ =
(
n−1
k

)
.

The proof of Theorem 11 makes up the remainder of this section and is divided

into two parts. We first deal with Conclusion (c) and then turn to Conclusions

(a) and (b).
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Conclusion (c)—Behaviour on Bk−1(X)⊥. We address Conclusion (c) with the

same methods that we used to prove Garland’s Theorem 9.

Proposition 13: Let X be a k-dimensional complex and let Ak−1 = Ak−1(X)

be its generalized adjacency matrix. Assume that for all F ∈ Xk−2 and for all

w ∈ C0(lkF ) with w⊥1

|〈A(lkF )w,w〉| ≤ h(n)〈w,w〉.
Then for all z ∈ Bk−1(X)⊥ (where the orthogonal complement is taken with

respect to the standard, non-weighted inner product)

|〈Ak−1z, z〉| ≤ k · h(n)〈z, z〉.
Proof. For any face F ∈ Xk−2 set AF

k−1 := ρFAk−1ρF , the matrix obtained

from Ak−1 by replacing all rows and columns corresponding to (k−1)-faces not

containing F by all-zero rows/columns. Similar as in Lemma 10, straightforward

calculations show:

(a)
∑

F∈Xk−2
AF

k−1 = Ak−1,

(b) (AF
k−1)F∪{u},F∪{v} = [F ∪{u} : F ][F ∪{v} : F ]A(lkF )u,v for F ∈ Xk−2

and u, v ∈ V (lkF ) and hence 〈AF
k−1f, f〉 = 〈A(lkF )fF , fF 〉 for any

f ∈ Ck−1(X).

As z ∈ Bk−1(X)⊥ implies zF ∈ 1⊥ also with respect to the non-weighted inner

product, this proves the proposition:

|〈Ak−1z, z〉| =|
∑

F∈Xk−2

〈AF
k−1z, z〉|

≤
∑

F∈Xk−2

|〈A(lkF )zF , zF 〉| ≤ k · h(n)〈z, z〉.

As explained above, in contrast to the Laplacian, for the adjacency matrix

we are also interested in the behaviour on Bk−1(X). For this space, we cannot

apply a proof similar to the one above because f ∈ Bk−1(X) does not imply that

fF is constant for every F ∈ Xk−2. (For a k-dimensional complex with complete

(k − 1)-skeleton, the basis vectors δk−2eF are a simple counterexample.)

Conclusions (a) and (b)—Behaviour on Bk−1(X). For b ∈ Bk−1(X) we have

Ak−1(X)b = Dk−1(X)b. If the complex X was regular, i.e., all (k − 1)-faces

would have the same degree d, Bk−1(X) would be a subspace of the eigenspace

of d.
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The random complexXk(n, p) is not regular but with high probability the de-

grees of all (k−1)-faces lie close to the expected average degree d = p(n− 1). For

an arbitrary complex we can fix any positive value d and study the divergences

of the degrees from d by considering the diagonal matrix E(X) = Dk−1(X)−dI

which has entries E(X)F,F = degX(F )− d. Then Ak−1(X)b = E(X)b+ db for

b ∈ Bk−1(X).

It will turn out that our main task is to control the behaviour of ‖E(X)b‖
for all b ∈ Bk−1(X). We manage to reduce this to a question on the links

of (k − 2)-faces: Proposition 14 relates ‖E(X)b‖ for every b ∈ Bk−1(X) to

the values ‖E(X)δk−2eF ‖ for F ∈ Xk−2, to the behaviour of E(X) on the

coboundaries of elementary cochains. These values in turn match the values

‖E(lkF )1‖ on the corresponding links.

Proposition 14: Let X be a k-dimensional complex with vertex set [n] and

complete (k − 1)-skeleton. Fix some positive value d and let

E = E(X) = Dk−1(X)− dI.

Assume that for all F ∈ Xk−2 we have

‖EδeF ‖ ≤ f(n)‖δeF ‖.
Then for all b ∈ Bk−1(X)

‖Eb‖ ≤ k · f(n)‖b‖.
Remark 15: Proposition 14 also holds if E is replaced by any diagonal

|Xk−1| × |Xk−1|-matrix.

The proof of Proposition 14 is deferred to the end of this section. Here is how

we use it to address Conclusions (a) and (b).

Proposition 16: Let X be a k-dimensional simplicial complex with n vertices

and complete (k − 1)-skeleton. Fix some postive value d and suppose that we

have ∑
v∈V (lkF )

(deglk(F )(v)− d)2 = ‖E(lkF )1‖2 ≤ f(n)2(n− k + 1)

for all F ∈ Xk−2. Then

(i) |〈Ak−1b, b〉 − d| ≤ k · f(n) for all b ∈ Bk−1(X) with ‖b‖ = 1 and

(ii) |〈Ak−1b, z〉| ≤ k · f(n) for all b ∈ Bk−1(X), z ∈ Bk−1(X)⊥ with

‖b‖ = ‖z‖ = 1.
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Proof. As deg(F ∪ {v}) = deglkF (v) for v /∈ F , we have

‖EδeF‖2 =
∑
H⊃F

(deg(H)− d)2 =
∑
v/∈F

(deglkF (v)− d)2 ≤ f(n)2(n− k + 1).

By Proposition 14 we hence have ‖Eb‖ ≤ k ·f(n)‖b‖ for all b ∈ Bk−1(X). Now,

let b ∈ Bk−1(X) and z ∈ Bk−1(X)⊥. As Ak−1b = Dk−1b = db+ Eb, we get

|〈Ak−1b, b〉 − d‖b‖2| ≤ ‖b‖ · ‖Eb‖ ≤ k · f(n)‖b‖2

and

|〈Ak−1b, z〉| ≤ |〈Eb, z〉| ≤ ‖z‖ · ‖Eb‖ ≤ k · f(n)‖z‖‖b‖.

To conclude the proof of Theorem 11 we are missing a small lemma:

Lemma 17: Let G be a graph with n vertices with adjacency matrix A = A(G)

and let u = 1√
n
1. Fix a positive value d. Assume that

(i) |〈Au, u〉 − d| ≤ f(n),

(ii) |〈Au,w〉| ≤ g(n) for all w⊥1 with ‖w‖ = 1 and

(iii) |〈Aw,w〉| ≤ h(n) for all w⊥1 with ‖w‖ = 1.

Then ‖E(G)1‖2 =
∑

v∈V (deg(v)− d)2 ≤ (f(n) + g(n) + h(n))2n.

Proof. We have ‖E(G)1‖ = ‖( dnJ −A)1‖ ≤ ‖ d
nJ −A‖ · ‖1‖ and the conditions

above imply ‖ d
nJ −A‖ ≤ f(n) + g(n) + h(n).

Proof of Proposition 14. The proof of Propositon 14 is based on the observations

in the following lemma. Its proof will use the following simple consequence of

the Cauchy-Schwarz inequality:

(5)

(∑
i∈I

ai

)2

≤ |I|
∑
i∈I

a2i .

Lemma 18: Let X be a k-complex with vertex set [n] and complete (k − 1)-

skeleton and let b ∈ Bk−1(X). For every (k − 2)-face F ∈ Xk−2 define

hb(F ) :=
∑
v/∈F

[F ∪ {v} : F ]b(F ∪ {v}).

Then

(a) b(H) = 1
n

∑
F⊂H,F∈Xk−2

[H : F ]hb(F ) for H ∈ Xk−1,

(b) 〈Eb,Eb〉 ≤ k
n2

∑
F∈Xk−2

hb(F )2〈EδeF , EδeF 〉,
(c)

∑
F∈Xk−2

hb(F )2 ≤ k(n− k + 1)〈b, b〉.
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Proof. (a) As X has a complete (k − 1)-skeleton, we have

b ∈ Bk−1(X) = Bk−1(Kk
n)

and δk−1(K
k
n)b = 0. Thus, for any H ∈ Xk−1 and v /∈ H :

0 =(δk−1(K
k
n)b)(H ∪ {v})

=[H ∪ {v} : H ]b(H) +
∑
F⊂H

[H ∪ {v} : F ∪ {v}]b(F ∪ {v}).

Note that −[H ∪ {v} : H ][H ∪ {v} : F ∪ {v}] = [H : F ][F ∪ {v} : F ].

Thus, we can rearrange:

b(H) =− [H ∪ {v} : H ]
∑
F⊂H

[H ∪ {v} : F ∪ {v}]b(F ∪ {v})

=
∑
F⊂H

[H : F ][F ∪ {v} : F ]b(F ∪ {v}).

Summing over all v /∈ H and adding additional multiples of b(H), we

get

n · b(H) =
∑
v/∈H

∑
F⊂H

[H : F ][F ∪ {v} : F ]b(F ∪ {v}) + k · b(H)

=
∑
F⊂H

[H : F ]
∑
v/∈F

[F ∪ {v} : F ]b(F ∪ {v}) =
∑
F⊂H

[H : F ]hb(F ).

(b) By (a) and inequality (5) and because 〈EδeF , EδeF 〉 =
∑

H⊃F E(H)2

for F ∈ Xk−2:

〈Eb,Eb〉 =
∑

H∈Xk−1

E(H)2b(H)2 =
1

n2

∑
H∈Xk−1

E(H)2
( ∑

F⊂H

[H : F ]hb(F )

)2

≤ k

n2

∑
H∈Xk−1

E(H)2
∑
F⊂H

hb(F )2 =
k

n2

∑
F∈Xk−2

hb(F )2〈EδeF , EδeF 〉.

(c) Again by inequality (5):∑
F∈Xk−2

hb(F )2 ≤
∑

F∈Xk−2

(n− k + 1) ·
∑
v/∈F

b(F ∪ {v})2

=(n− k + 1) ·
∑

H∈Xk−1

k · b(H)2 = k(n− k + 1)〈b, b〉.

The statements of Lemma 18 together yield Proposition 14:
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Proof of Propositon 14. Let b ∈ Bk−1(X). As ‖δeF‖ =
√
n− k + 1 for

F ∈ Xk−2, by Lemma 18:

〈Eb,Eb〉 ≤ k

n2

∑
F∈Xk−2

hb(F )2〈EδeF , EδeF 〉 ≤ k

n2

∑
F∈Xk−2

hb(F )2f(n)2〈δeF , δeF 〉

≤k2 · (n− k + 1)2

n2
· f(n)2〈b, b〉 ≤ k2 · f(n)2〈b, b〉.

4. The spectra of random complexes

In this section, we prove Theorem 2, the concentration result on the spectra

of the normalized Laplacian and the generalized adjacency matrix of random

complexes Xk(n, p). The basic idea is to reduce the statement to a question on

the links of (k−2)-faces by applying Theorems 9 and 11. Since for every (k−2)-

face F , the link lk(F,Xk(n, p)) is a random graph with the same distribution as

G(n− k+1, p), we can then apply results on the eigenvalues of random graphs.

For convenience, we repeat Theorem 2:

Theorem 2: Let k ≥ 2. For every c > 0 and every γ > c there exists a

constant C > 0 with the following property: Assume p ≥ (k + γ) log(n)/n

and let d := p(n − k). Then for γA = C · √d and γΔ = C/
√
d the following

statements hold with probability at least 1− n−c:

(i) The largest
(
n−1
k−1

)
eigenvalues of Ak−1(X

k(n, p)) lie in the interval

[d− γA, d+ γA], and the remaining
(
n−1
k

)
eigenvalues lie in the interval

[−γA,+γA].

(ii) The smallest
(
n−1
k−1

)
eigenvalues of Δup

k−1(X
k(n, p)) are (trivially) zero,

and the remaining
(
n−1
k

)
eigenvalues lie in the interval [1− γΔ, 1+ γΔ].

In particular, H̃k−1(Xk(n, p);�) = 0.

For the adjacency matrix (i) even holds for p ≥ γ · logn/n.
Observe that Bk−1(Kk

n) ⊆ kerΔup
k−1(X

k(n, p)) because Xk(n, p) has a com-

plete (k−1)-skeleton, so the multiplicity of 0 as an eigenvalue of Δup
k−1(X

k(n, p))

is at least
(
n−1
k−1

)
.

Proof of Theorem 2. Let c > 0 and let γ > c. For F ∈ (
[n]
k−1

)
, the link

lkF = lk(F,Xk(n, p)) is a random graph G(n− k + 1, p). By Theorem 1 (and

(3) in Section 2.2) we can hence choose C > 0 such that for p ≥ (k+γ) log(n)/n

the following holds with probability at least 1− n−c−k+1:
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(i) |〈Ax, y〉| ≤ C
√
d for all unit vectors x, y with x ⊥ 1 and

1

n− k + 1
〈A1,1〉 ∈ [d− C

√
d, d+ C

√
d].

(ii) All nontrivial eigenvalues of Δ(lkF ) are contained in the interval

[1− C/(k
√
d), 1 + C/(k

√
d)].

We first focus on the adjacency matrix: A union bound yields that for

p ≥ (k + γ) log(n)/n:

Pr[∃F ∈Xk−2 :| 1
n−k+1 〈A1,1〉 − d|>C

√
d or |〈Ax, y〉| > C

√
d for some x⊥1, y]

≤n−c.

This implies that the conditions of Theorem 11 with f(n), g(n), h(n) = O(
√
d),

and hence the desired concentration bounds, are fulfilled with probability at

least 1 − n−c. Note that so far by Theorem 1 it would have sufficed to choose

p ≥ γ log(n)/n.

Now consider the normalized Laplacian. Again, a union bound gives for

p ≥ (k + γ) log(n)/n

Pr[∀F ∈Xk−2 :1− C/(k
√
d) ≤ λ2(Δ(lkF )) ≤ λn−k+1(Δ(lkF ))≤1+C/(k

√
d)]]

≥1− n−c.

For every (k − 1)-face H ∈ (
[n]
k

)
of Xk(n, p), the random variable deg(H) is

binomially distributed with parameters (n − k) and p. So, for n large enough,

the complex Xk(n, p) is pure with probability at least 1− n−c. Hence, also the

conditions of Theorem 9 are fulfilled with probability at least 1− n−c.

Remark 19: Note that that the preceding proof works for any random distribu-

tion Xk(n, p) on k-dimensional simplicial complexes with n vertices and com-

plete (k − 1)-skeleton with the property that the link lk(F,Xk(n, p)) of every

F ∈ (
[n]
k−1

)
is a random graph with distribution G(n− k + 1, p).

5. Spectral vs. coboundary expansion

In this section, we prove Theorem 4. As mentioned in the introduction, the

examples are obtained by a probabilistic construction.
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5.1. Basic Construction. Denote by Y k(n, p) the random k-dimensional

simplicial complex with vertex set V = [n] and complete (k − 1)-skeleton ob-

tained as follows: Randomly choose a map a :
(
V
k

) → �2 by setting a(F ) = 1

with probability 1/2 and a(F ) = 0 otherwise, independently for each F ∈ (
V
k

)
.

Thus, the support of a has the same distribution as the (k − 1)-faces of the

Linial–Meshulam random complex Xk−1(n, 1/2).

Call H ∈ (
V

k+1

)
good iff H contains an even number of (k − 1)-faces F with

a(F ) = 1. Every good H is added as a k-face to Y k(n, p) independently with

probability p. Note that, by construction, a is a �2-cocycle in the complex

Y k(n, p), i.e., a ∈ Zk−1(Y k(n, p);�2).

For any fixed b ∈ Ck−1(Y k(n, p);�2) = �
(Vk)
2 , the expected normalized Ham-

ming distance between b and the randomly chosen a equals 1/2. Since there are

fewer than 2(
n

k−1) coboundaries b ∈ Bk−1(Y k(n, p);�2) and
(
n
k

)
independent

random choices for the entries of a, a straightforward application of a Cher-

noff bound (see, e.g., [45, Theorem 1], [46, Theorem 2.1]) plus a union bound

implies that, a.a.s., a has normalized Hamming distance 1/2 − o(1) from any

coboundary, i.e.,

‖[a]‖ ≥ 1/2− o(1).

In particular, a.a.s. H̃k−1(Y k(n, p),�2) �= 0.

Note that for H ∈ (
V

k+1

)
, the probability that H is a k-face of Y k(n, p) equals

p/2. However, in contrast to the model Xk(n, p/2), the decisions for different

k-faces that share some (k − 1)-face are not independent. Nevertheless, we can

still easily analyze the links of (k − 2)-faces in Y k(n, p):

Lemma 20: For every (k − 2)-face H ∈ (Y k(n, p))k−2 =
(

V
k−1

)
, the random

graph lk(H,Y k(n, p)) has the distribution G(n− k + 1, p/2).

Proof. First note that it suffices to consider the case p=1, because lk(H,Y k(n,p))

carries the distribution attained by taking every edge in lk(H,Y k(n, 1)) inde-

pendently with probability p.

For simplicity, we write Y instead of Y k(n, 1). Let U := V \H . For e ∈ (
U
2

)
,

consider the event that e ∈ lk(H,Y ), i.e., that H ∪ e ∈ Y . We need to show

that these events are mutually independent. To see this, choose and fix, for

each e ∈ (
U
2

)
, an arbitrary (k − 1)-simplex Fe with e ⊆ Fe ⊆ H ∪ e; we call

these the undecided (k − 1)-simplices, and let D :=
(
V
k

) \ {Fe : e ∈ (
U
2

)} be

the set of remaining, decided (k − 1)-simplices. Note that, by construction,
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each k-simplex of the form H ∪ e, e ∈ (
U
2

)
, contains exactly one undecided

(k − 1)-simplex Fe and that these are pairwise distinct. Fix a map r : D → �2

and condition upon the event that r is the restriction of a to D. For each

e ∈ (
U
2

)
, we have e ∈ lk(H,Y ) iff a(Fe) =

∑
F∈D,F⊂H∪e r(F ). For a fixed r,

the (conditional) probability of this happening is 1/2, and the values a(Fe) are

mutually independent since the Fe are pairwise distinct. Thus, for any set of

edges e1, . . . , e� ∈ (
U
2

)
and for any fixed r, we get the conditional probability

Pr[∀i : ei ∈ lk(H,Y ) | a|D = r] = (1/2)�. Since this holds for all choices of r, it

also holds unconditionally, which proves the lemma.

For p ≥ (k + γ) log(n)/n with γ > 0 we can thus, by this lemma and

Remark 19, proceed as in the proof of Theorem 2 to show that there ex-

ists γΔ = O(1/
√
pn) such that a.a.s. the nontrivial part of the spectrum of

Δup
k−1(Y

k(n, p)) lies in the interval [1 − γΔ, 1 + γΔ].

5.2. Modification. We have so far shown the existence of an infinite family

of k-dimensional complexes that is spectrally but not �2-coboundary expand-

ing. However, the complexes constructed have non-trivial cohomology groups

H̃k−1(Y,�2), and hence also H̃k−1(Y,�) �= 0, because a is a �2-cocycle by

construction.

To change this we can add a second round to our experiment and randomly

add possible further k-simplices as follows: After constructing Y k(n, p), we add

each H ∈ (
V

k+1

)
independently with some probability q. We denote the obtained

random complex by Zk(n, p, q). Thus, Zk(n, p, q) is the union of Y k(n, p) and

the Linial–Meshulam random complex Xk(n, q). We assume that p, q ≥ C ·
log(n)/n for some suitably chosen C.

To analyze the �2-coboundary expansion of Z = Zk(n, p, q), we first argue

that Z, a.a.s., contains at least p
2 (1− o(1))

(
n

k+1

)
many k-faces:

fk(Z
k(n, p, q)) ≥ p

2 (1− o(1))
(

n
k+1

)
.

Applying the second moment method it is not hard to see that the number

of good k-faces, after choosing a, is at least 1
2 (1 − o(1))

(
n

k+1

)
with probability

tending to 1. A Chernoff bound then tells us that a.a.s.

fk(Y
k(n, p)) ≥ p

2
(1− o(1))

(
n

k+1

)
.
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As Y k(n, p) is a subcomplex of Z, this yields the desired bound. With a similar

argument, also applying a Chernoff bound, we get that a.a.s.

|δa| ≤ q

2
(1 − o(1))

(
n

k + 1

)
.

As we have ‖[a]‖ ≥ 1/2− o(1) with the same probability as before, we see that

a.a.s.

ε(Z) ≤ ‖δa‖
‖a‖ = O

( q
p

)
= o(1),

if q = o(p). In the extremal case q = C · log(n)/n and p = 1, we achieve

ε(Z) = O(log(n)/n).

Furthermore, since Z has Xk(n, q) as a subcomplex, we know that the groups

H̃k−1(Z,�2) and H̃k−1(Z,�) are a.a.s. trivial if q ≥ C · log n/n for C sufficiently

large (see [40, 55, 63]).

For the analysis of the spectrum of Δup
k−1(Z), we can again consider the

links of (k − 2)-faces. For H ∈ (
V

k−1

)
, the random graph lk(H,Z) is the

union of lk(H,Y k(n, p/2)) and lk(H,Zk(n, q)). Hence, it has the distribution

G(n− k + 1, r) with r = p/2 + q − pq/2, the union of G(n − k + 1, p/2) and

G(n − k + 1, q). As r ≥ p/2, we see that also for this construction, a.a.s., the

nontrivial part of the spectrum of the normalized Laplacian Δup
k−1(Z) lies in the

interval [1− γΔ, 1 + γΔ] with γΔ = O(1/
√
rn).
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(1973), 71–80.

[61] G. A. Margulis, Explicit group-theoretic constructions of combinatorial schemes and

their applications in the construction of expanders and concentrators, Problemy Peredači
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