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ABSTRACT

We introduce the class of lineal rings, defined by the property that the

lattice of right annihilators is linearly ordered. We obtain results on the

structure of these rings, their ideals, and important radicals; for instance,

we show that the lower and upper nilradicals of these rings coincide. We

also obtain an affirmative answer to the Köthe Conjecture for this class of

rings. We study the relationships between lineal rings, distributive rings,

Bézout rings, strongly prime rings, and Armendariz rings. In particular,

we show that lineal rings need not be Armendariz, but they fall not far

short.

1. Introduction

A good deal of the structure of a ring can often be determined from the lattice

structure of its right (or left) ideals. Some preeminent cases include the theories

of noetherian rings, von Neumann regular rings, local rings, Goldie dimension,

2-firs, uniserial rings, and rings whose right ideals form a distributive lattice.
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In this paper we introduce lineal rings, which are characterized by a natural

order condition within the right ideal lattice, namely that the annihilator right

ideals are linearly ordered. These rings subsume several diverse classes of rings;

nevertheless, they turn out to have a rich structure theory, and they enable us

to extend some useful results known to hold for narrower classes of rings.

Throughout the present paper all rings are associative, and, apart from The-

orem 4.1(i), all rings contain 1. Given a ring R, the right (resp. left) anni-

hilator of a subset A ⊆ R is denoted by annRr (A) (resp. annR� (A)), and the

right (resp. left) annihilator of an element a ∈ R is denoted by annRr (a) (resp.

annR� (a)). Right annihilators (or annihilator right ideals) of R are sets of the

form annRr (A) with A ⊆ R. Whenever we say two right ideals of a ring are

comparable or incomparable, we will always mean with respect to inclusion.

Lineal rings are those rings in which any two right annihilators are compa-

rable. Lineal rings are an obvious generalization of right uniserial rings (also

called right chain rings, cf. [6]), that is, rings in which any two right ideals

are comparable. Lineal rings also generalize the broader class of right annel-

idan rings, introduced in [22] as those rings in which any right annihilator is

comparable with every right ideal.

Further examples of lineal rings are presented in Section 2, where we also

establish some basic properties of these rings. In particular, we show that there

is no need to distinguish between “right lineal” and “left lineal” (Theorem 2.1),

and that the characteristic of a lineal ring is either 0 or a prime power (Propo-

sition 2.7).

In Section 3 we concentrate on zero-divisors of lineal rings and the relation-

ships between lineal rings, right distributive rings (i.e. rings whose right ideals

lattices are distributive), and right Bézout rings (i.e. rings whose finitely gen-

erated right ideals are principal). We prove that in any lineal ring the right

zero-divisors form a right ideal (Proposition 3.1), and that this property char-

acterizes lineal rings among right distributive rings (Proposition 3.2), as well

as among right Bézout rings (Proposition 3.3). We also discuss relationships

between reduced rings, domains, right strongly prime rings, and left strongly

prime rings within the class of lineal rings (Proposition 3.7 and Example 3.9).

In Section 4 we focus on nilpotent elements and nilradicals of lineal rings. We

prove in Theorem 4.1 that for any lineal ring R the set of nilpotent elements of

R is a (nonunital) subring of R, which is equal to the sum of its own nilpotent

ideals. We also prove that in a lineal ring several standard nilradicals coincide,
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so that, as with a commutative ring, one can speak of the nilradical of a lineal

ring. We conclude that the Köthe conjecture has an affirmative answer for the

class of lineal rings.

In Section 5 we prove that a polynomial ring R[x] is lineal if and only if the

ring R is lineal and Armendariz (Theorem 5.2). This result leads one to ask

whether every lineal ring is Armendariz. The answer to the question is “no”

(Example 5.10), which dashes any hope that the lineal condition is inherited by

polynomial rings. This counterexample stands in marked contrast to [22, Theo-

rem 6.1], which states that every right annelidan ring is Armendariz. There are

some partial positive results for lineal rings, however. If a lineal ring R contains

infinitely many central elements whose differences are regular, then R is Ar-

mendariz (Corollary 5.7). In particular, for any lineal ring R of characteristic

0, the ring R modulo its torsion ideal is Armendariz (Corollary 5.9). Surpris-

ingly, although a lineal ring need not be Armendariz, it is always “quadratically

Armendariz” (Theorem 5.3).

Given a ring R, the Jacobson radical of R is denoted by rad(R), and the

set of right (resp. left) zero-divisors of R by RZD(R) (resp. LZD(R)), i.e.

RZD(R) = {a ∈ R : annR� (a) �= 0} and LZD(R) = {a ∈ R : annRr (a) �= 0}.
An ideal p � R is prime if a, b ∈ R \ p ⇒ aRb �⊆ p. A one-sided ideal p � R

is completely prime if a, b ∈ R \ p ⇒ ab �∈ p. The set of positive integers is

denoted by N.
All other ring-theoretic terminology and notation will be standard, pursuant

to the usage in [19] and [20].

2. Basic properties and some examples of lineal rings

Ordered by inclusion, the set of right annihilators in a ring has the structure of

a complete lattice—albeit not, in general, a sublattice of the right ideal lattice

under the natural embedding. With reference to the lattice, we introduce the

class of lineal rings.

Definition: A ring R is called lineal if its right annihilator lattice is linearly

ordered, that is, for any subsets A,B ⊆ R we have annRr (A) ⊆ annRr (B) or

annRr (B) ⊆ annRr (A).

There is no need to distinguish between “right lineal” and “left lineal,” by

the following theorem.
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Theorem 2.1: For any ring R, the following conditions are equivalent:

(i) The ring R is lineal.

(i′) The opposite ring Rop is lineal.

(ii) For any a, b ∈ R we have annRr (a) ⊆ annRr (b) or annRr (b) ⊆ annRr (a).

(ii′) For any a, b ∈ R we have annR� (a) ⊆ annR� (b) or annR� (b) ⊆ annR� (a).

Proof. By symmetry, it suffices to prove (ii′) ⇒ (i). Assume (i) fails, so there

exist subsets A,B ⊆ R such that annRr (A) and annRr (B) are incomparable.

Choose x ∈ annRr (A) \ annRr (B) and y ∈ annRr (B) \ annRr (A). Then annR� (x)

and annR� (y) are incomparable, so (ii′) fails.

The lineal condition on rings is a generalization of the annelidan condition,

introduced and studied in [22]. A ring R is said to be right annelidan if any

right annihilator in R is comparable with every right ideal of R, that is,

annRr (A) ⊆ I or I ⊆ annRr (A) for any subset A ⊆ R and right ideal I of R.

The classes of lineal and annelidan rings generalize the class of uniserial rings

(also known as chain rings or valuation rings), which date back to the number-

theoretic origins of commutative ring theory and in recent years have found

considerable application in connection with coding theory. The strength of the

annelidan condition allows one to obtain certain desirable results not possible

for lineal rings (notably vis-à-vis the Armendariz property). Nevertheless, the

lineal condition is, from a certain perspective, more natural, being a purely

lattice-theoretic condition on the right annihilators of a ring.

The following proposition might be regarded as the “magic square criterion”

for a ring to be lineal. We omit the easy proof.

Proposition 2.2: A ring R is lineal if and only if every 2 by 2 matrix over R

whose row products equal 0 has some diagonal product equal to 0, i.e. whenever[
a b

c d

]
∈ M2(R)

satisfies ab = cd = 0 we have ad = 0 or cb = 0.

A consequence of Proposition 2.2 is as follows.

Corollary 2.3: If R is a lineal ring, then 0 and 1 are the only idempotents

of R.
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Proof. Apply Proposition 2.2 with a = d = e and b = c = 1− e, where e is an

idempotent.

Next we characterize those rings R for which the factor ring R[x]/(xn) is

lineal, where x is an indeterminate and (xn) denotes the ideal of R[x] generated

by xn.

Proposition 2.4: Let R be a ring, and let n � 2 be an integer. Then the

ring R[x]/(xn) is lineal if and only if R is a domain.

Proof. We can think of the ring T = R[x]/(xn) as the set of polynomials over

R of the form f = a0 + a1x + · · · + an−1x
n−1, with usual addition and with

multiplication subject to the rule xn = 0.

Assuming R is a domain, it is easy to see that if f =
∑n−1

i=0 aix
i ∈ T is

nonzero and k is minimal for ak �= 0, then annTr (f) = xn−kT. Hence

(0) = xnT � xn−1T � xn−2T � · · · � x2T � xT � T

are the only annihilator right ideals of T, which shows that T is lineal.

If R is not a domain, then ab = 0 for some nonzero elements of R, in which

case annTr (x) and annTr (a) are incomparable, so T is not lineal.

To construct more examples of lineal rings, we extend the concept of a lineal

ring to modules. A module M over a ring R is said to be a lineal module if the

set {annR(m) : m ∈ M} is linearly ordered.

Given a ring R and an (R,R)-bimodule M, the trivial extension of R by M,

in the literature often denoted by R ∝ M, is the ring whose underlying additive

group is R⊕M and with multiplication given by

(r1,m1)(r2,m2) = (r1r2, r1m2 +m1r2).

Proposition 2.5: Let R be a ring and M an (R,R)-bimodule. Consider the

following two conditions:

(i) R is a domain, and the modules RM and MR are both lineal.

(ii) The trivial extension R ∝ M is lineal.

Then

(i) =⇒ (ii).

If the modules RM and MR are both faithful, then

(i) ⇐⇒ (ii).
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Proof. Set T = R ∝ M. If R is a domain and (r,m) ∈ T, then

(1) annTr ((r,m)) =

⎧⎨
⎩
0⊕ annMr (r) if r �= 0,

annRr (m)⊕M if r = 0,

where annMr (r) = {k ∈ M : rk = 0}. Furthermore, the set {annMr (r) : r ∈ R}
is linearly ordered if and only if the set {annR� (m) : m ∈ M} is linearly ordered.

Hence (i) implies (ii).

Now assume that the bimodule M is faithful on both sides. If R is not

a domain, then ab = 0 for some nonzero elements a, b ∈ R, in which case

annTr ((a, 0)) and annTr (0 ⊕M) are incomparable, so T is not lineal. If R is a

domain, and RM or MR is not a lineal module, then Equation (1) implies that

T is not lineal. Thus, if RM and MR are both faithful, and (i) fails, then (ii)

fails.

By Proposition 2.5, if R is a domain and M is a uniserial, faithful (R,R)-

bimodule, then the ring R ∝ M is lineal. Another consequence of Proposi-

tion 2.5 is the following characterization of domains via lineal rings and trivial

extensions of the form R ∝ R. Note that the characterization follows also from

Proposition 2.4, as the ring R ∝ R is isomorphic to the factor ring R[x]/(x2).

Corollary 2.6: A ring R is a domain if and only if the trivial extension

R ∝ R is lineal.

Various types of rings are excluded from the class of lineal rings. For example,

by Corollary 2.3 a lineal ring cannot contain nontrivial idempotents; therefore,

full matrix rings (and various subrings thereof) and Dedekind-infinite rings are

never lineal, and the maximal right quotient ring of a lineal ring need not be

lineal.

Below we show that there are also some restrictions on the characteristic of a

lineal ring. For a ring R and any r ∈ R, we write o(r) to denote the order of r

in the additive group of the ring R. The torsion ideal T (R) of a ring R consists

of elements r ∈ R whose order o(r) is finite. Recall that the characteristic of

a ring R is the order o(1), provided it is finite; otherwise, the characteristic of

R is defined to be 0.

Proposition 2.7: Let R be a lineal ring.
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(i) The torsion ideal T (R) is a p-subgroup of the additive group of the

ring R.

(ii) If R has characteristic n �= 0, then n is a prime power.

(iii) If R has characteristic 0, then T (R)2 = (0).

Proof. To prove (i), consider any elements x, y ∈ T (R). Applying Proposi-

tion 2.2 to [
o(x) x

o(y) y

]
∈ M2(R),

we infer that o(y) divides o(x) or o(x) divides o(y). Hence only one prime p

can exist for which the p-primary component of T (R) is nontrivial. Since a

torsion abelian group is the direct sum of its p-primary components, (i) follows.

Part (ii) is an immediate consequence of (i).

To prove (iii), assume R has characteristic 0. Given any x, y ∈ T (R), apply

Proposition 2.2 to [
x o(x)

o(y) y

]
∈ M2(R).

Since R has characteristic 0, we cannot have o(y)o(x) = 0 in R; therefore,

Proposition 2.2 implies xy = 0. Thus, T (R)2 = (0).

Clearly, a factor ring of a lineal ring need not be lineal. As the following

proposition shows, however, the factor ring of a lineal ring R modulo its torsion

ideal T (R) is always lineal. A ring R is said to be torsion-free if T (R) = (0).

Proposition 2.8: If R is a lineal ring of characteristic 0, then the factor ring

R/T (R) is lineal and torsion-free.

Proof. The result follows from the observation that for any ring R, if a, b ∈ R

and annRr (a) ⊆ annRr (b), then in the factor ring R = R/T (R) we have annRr (a) ⊆
annRr (b), where a (resp. b) is the image of a (resp. b) in R.

Needless to say, Proposition 2.8 is of interest only in the case where (0) �
T (R) � R. The same is true of the parallel result [22, Proposition 2.4], on

passage of the annelidan condition from R to R/T (R). Thus, it behooves us

to observe that (0) � T (R) � R can actually occur when R is a lineal ring—

even when R is a right annelidan ring. A lineal example can be obtained by

taking the trivial extension R = Z ∝ (Z/qZ) where q is a prime power (see
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Proposition 2.5). Unfortunately, this ring is not right or left annelidan. An

example with R not only annelidan but uniserial follows.

Example 2.9: (There exists a commutative uniserial ring R with (0) � T (R) �
R.) Let p ∈ N be a prime number, and let Z(p) denote the localization of the

ring of integers at the prime ideal (p). Let S be the following subring of the

power series ring Q[[x]]:

S = Z(p) + x ·Q[[x]].

Then S is a commutative uniserial ring. The factor ring R = S/xS is a

commutative uniserial ring whose torsion ideal is neither (0) nor R.

Here T (R) is isomorphic as an additive group to the Prüfer p-group. This

is no accident. It is easy to see that for any right annelidan ring R satisfying

(0) � T (R) � R, as an additive group T (R) is divisible.

3. Zero-divisors and prime ideals

In general, neither left zero-divisors nor right zero-divisors of a ring form one-

sided ideals of the ring. However, for lineal rings we have the following result.

Proposition 3.1: If R is a lineal ring, then the set LZD(R) is a completely

prime left ideal of R and the set RZD(R) is a completely prime right ideal of

R.

Proof. Since LZD(R) =
⋃

a∈R\{0} ann
R
� (a) is the union of a chain of left ideals,

it is a left ideal, which is clearly completely prime. Analogously one shows that

RZD(R) is a completely prime right ideal of R.

By the above proposition, if a ring R is lineal, then RZD(R) is a right ideal

of R. The requirement that RZD(R) be a right ideal of R actually charac-

terizes lineal rings among right distributive rings as well as right Bézout rings.

Indeed, in the case of right distributive rings we have the following proposi-

tion, which follows directly from results of [24]. Recall that a ring R is said

to be right distributive if the lattice of right ideals of R is distributive, that is,

(A + B) ∩ C = (A ∩ C) + (B ∩ C) for any right ideals A,B,C of R. Among

commutative domains, the (right) distributive rings are precisely the Prüfer

rings [17]. Right distributive noncommutative rings and modules were first

studied by W. Stephenson in [28] and subsequently by numerous authors (e.g.

[7, 9, 11, 29, 30]).
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Background information on uniform dimension can be found in [19, §6]. The
following proposition follows from results of Stephenson [28] and the second

author [24].

Proposition 3.2: Let R be a right distributive ring. Then:

(i) The following conditions are equivalent:

(1) R is lineal.

(2) RZD(R) is a right ideal of R.

(3) R has right uniform dimension 1.

(ii) If R is prime, then R is lineal.

Proof. The equivalence of conditions (1) and (3) of part (i) was first proved

by W. Stephenson in [28, p. 300, Corollary 4]; the equivalence of all three

conditions in part (i) was proved by the second author in [24, Proposition 2.2].

For part (ii), see [24, Corollary 2.4].

Recall that a ring R is said to be a right Bézout ring if all finitely generated

right ideals of R are principal, that is, for any a, b ∈ R there exists c ∈ R such

that aR+ bR = cR. For lineal right Bézout rings we have the following result.

Proposition 3.3: Let R be a right Bézout ring. Then:

(i) The following conditions are equivalent:

(1) R is lineal.

(2) RZD(R) is a right ideal of R.

(ii) If R is lineal, then R has right uniform dimension 1.

Proof. (i): (1) ⇒ (2) follows from Proposition 3.1. To prove (2) ⇒ (1), assume

RZD(R) is a right ideal of R. To prove R is lineal we will apply Proposition 2.2.

Thus, suppose we have a matrix[
a b

c d

]
∈ M2(R)

such that ab = cd = 0. We have to show that ad = 0 or cb = 0. Since R is

right Bézout, bR + dR = eR for some e ∈ R. Hence there exist x, y, z, t ∈ R

with

b = ex, d = ey, and e = bz + dt.

It follows that e(1 − xz − yt) = 0. If e = 0 then b = d = 0, and we are done

by Proposition 2.2. If e �= 0 then 1 − xz − yt ∈ RZD(R). Since RZD(R) is a
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right ideal of R, we have x �∈ RZD(R) or y �∈ RZD(R). If x �∈ RZD(R), then

from 0 = ab = aex we get ae = 0, which implies ad = aey = 0. Similarly,

y �∈ RZD(R) implies cb = 0. In any case ad = 0 or cb = 0; therefore, R is

lineal.

(ii): Suppose aR ∩ bR = {0} for some a, b ∈ R. Since R is right Bézout,

there exists c ∈ R with aR⊕ bR = cR. Choose x, y, z, t ∈ R such that

a = cx, b = cy, and c = az + bt.

From aR ∩ bR = {0} it follows that

a(1− zx) = btx = 0 and b(1− ty) = azy = 0.

Since R is lineal, annR� (x) ⊆ annR� (y) or annR� (y) ⊆ annR� (x). Without loss of

generality, we can assume annR� (x) ⊆ annR� (y). Then

btx = 0 =⇒ bty = 0 =⇒ b = cy = (az + bt)y = azy = 0.

Therefore R has right uniform dimension 1.

By Proposition 3.1, for any lineal ring R the set of left zero-divisors LZD(R)

is a left ideal of R and the set of right zero-divisors RZD(R) is a right ideal

of R, but as we will show in Example 3.9, neither LZD(R) nor RZD(R) need

be an ideal of R. This contrasts with the situation for right annelidan rings,

in which LZD(R) and RZD(R) are ideals [22, Theorem 3.1]. For a lineal ring

R, it makes sense to study the largest ideals of R contained in LZD(R) and

RZD(R). In Theorem 3.5 we will see that these two ideals are, respectively,

right strongly prime and left strongly prime.

A ring is said to be right (resp. left) strongly prime if every nonzero ideal

contains a finite subset whose right (resp. left) annihilator is zero. For exam-

ple, any prime one-sided Goldie ring is left and right strongly prime. Strongly

prime rings were first studied, under a different name (viz. absolutely torsion-

free rings), by R. A. Rubin in [27], as a noncommutative generalization of

commutative domains characterized via kernel functors on module categories.

Strongly prime rings were independently discovered by D. Handelman and J.

Lawrence, who developed various fundamental properties and constructed in-

teresting examples in [13]. Strongly prime rings were pivotal in K. R. Goodearl

and Handelman’s classification of simple self-injective rings in [12]. Left and

right strongly prime rings are also of interest in radical theory, where they are

used to define the left and right Groenewald–Heyman radicals.
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An ideal I of a ring R is right (resp. left) strongly prime if the factor ring

R/I is right (resp. left) strongly prime. Completely prime ideals and maximal

ideals are left and right strongly prime, and a left or right strongly prime ideal

is prime.

If A is a one-sided ideal of a ring R, let core(A) denote the largest ideal of

R contained in A. Although a number of authors have studied the relationship

between the completely prime and strongly prime conditions, the following basic

lemma does not seem to be on record.

Lemma 3.4: If A is a completely prime left (resp. right) ideal of a ring R, then

core(A) is a right (resp. left) strongly prime ideal of R.

Proof. Assume that A is a completely prime left ideal of R, and put

I = core(A) = {x ∈ R : xR ⊆ A}.

Let R = R/I, and for any a ∈ R let a = a + I ∈ R. To show that R is

right strongly prime, let K be any nonzero ideal of R. Then K = K/I for

some ideal K of R with I � K, whence K � A. Choose any b ∈ K \ A. We

claim that annRr (b) = {0}. For suppose c ∈ annRr (b); then bc ∈ I, and thus

bcR ⊆ A. Since A is completely prime and b �∈ A, we have cR ⊆ A. Hence

c ∈ I, i.e. c = 0, so I is a right strongly prime ideal. The opposite case follows

by symmetry.

As promised, we now show that for a lineal ring R, the largest ideals of R

contained in LZD(R) and RZD(R) are, respectively, right strongly prime and

left strongly prime. The last two points of the following result are parallel to

Proposition 2.8, establishing that certain factor rings of a lineal ring are lineal.

Theorem 3.5: Let R be a lineal ring.

(i) The ideal core(LZD(R)) is right strongly prime.

(i′) The ideal core(RZD(R)) is left strongly prime.

(ii) If LZD(R) is not an ideal of R, then rad(R) � LZD(R).

(ii′) If RZD(R) is not an ideal of R, then rad(R) � RZD(R).

(iii) The factor ring R/core(LZD(R)) is a right strongly prime lineal ring.

(iii′) The factor ring R/core(RZD(R)) is a left strongly prime lineal ring.

Proof. (i): Combine Proposition 3.1 and Lemma 3.4.
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(ii): A left ideal that is closed under right multiplication by units is closed

under right multiplication by elements of the Jacobson radical; therefore, by

Proposition 3.1, LZD(R) · rad(R) ⊆ core(LZD(R)). From (i) we infer that

LZD(R) ⊆ core(LZD(R)) or rad(R) ⊆ core(LZD(R)). If LZD(R) is not an

ideal then the first case cannot occur, and (ii) follows.

(iii): By (i), we only need to show that the factor ring R = R/core(LZD(R))

is lineal. For any a ∈ R let a = a + core(LZD(R)) ∈ R. By Theorem

2.1, to prove that R is lineal, it is enough to show for any a, b ∈ R that

annRr (a) ⊆ annRr (b) implies annRr (a) ⊆ annRr (b). Let t ∈ annRr (a). Then

at ∈ core(LZD(R)), whence atR ⊆ LZD(R). Since annRr (a) ⊆ annRr (b), it

follows that btR ⊆ LZD(R), and thus bt ∈ core(LZD(R)). Hence t ∈ annRr (b),

which proves that annRr (a) ⊆ annRr (b).

(i′), (ii′), (iii′): Symmetry.

Within the class of lineal rings, right and left strongly prime rings can be

characterized as follows.

Proposition 3.6: Let R be a lineal ring. Then R is right strongly prime

if and only if core(LZD(R)) = (0); R is left strongly prime if and only if

core(RZD(R)) = (0).

Proof. By symmetry, it suffices to prove the first statement. The “if” part

follows from Theorem 3.5(i). To prove the “only if” part, suppose R is lineal

and right strongly prime. If 0 �= a ∈ core(LZD(R)), then the ideal RaR

contains a finite subset with zero right annihilator, and since R is lineal, RaR

contains a single element b with zero right annihilator. But b ∈ LZD(R), a

contradiction.

For any ring R, we write N(R) to denote the set of nilpotent elements of R.

Recall that a ring is reduced if it contains no nonzero nilpotent elements.

Proposition 3.7: For a ring R, consider the following conditions:

(i) R is reduced.

(ii) R is a domain.

(iii) R is right strongly prime.

(iv) R is left strongly prime.

If R is lineal, then (i) ⇔ (ii). If, in addition, N(R) ⊆ rad(R) or rad(R) �= (0),

then (i) ⇔ (ii) ⇔ (iii) ⇔ (iv).
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Proof. The implications (ii) ⇒ (i), (ii) ⇒ (iii), and (ii) ⇒ (iv) are true for any

ring R.

Henceforth assume R is lineal. If a and b are elements of a reduced ring,

ab = 0 ⇔ ba = 0. Thus, to prove (i) ⇒ (ii), assume that R is reduced and

apply Proposition 2.2 to [
a b

b a

]
∈ M2(R).

Now assume that N(R) ⊆ rad(R) or rad(R) �= (0). If (iii) holds, then by

Proposition 3.6 we have core(LZD(R)) = (0). If LZD(R) = core(LZD(R)), then

R is a domain. If LZD(R) �= core(LZD(R)), then it follows from Theorem 3.5(ii)

that rad(R) � LZD(R), which implies rad(R) = (0), and consequently N(R) ⊆
rad(R) = (0). So in this case R is reduced. In either case we obtain (iii) ⇒ (i).

By symmetry, (iv) ⇒ (i).

The condition N(R) ⊆ rad(R) in Proposition 3.7 is satisfied, for instance,

by any right quasi-duo ring, that is, a ring whose maximal right ideals are two-

sided ideals (e.g. see [31, Lemma 2.3]). Since right distributive rings are right

quasi-duo (see [28, p. 293, Corollary 4]), and any right or left strongly prime

ring is prime, by combining Propositions 3.2(ii) and 3.7 we recover the following

known characterization of right strongly prime rings among right distributive

rings.

Corollary 3.8 ([25, Proposition 5]): For any right distributive ring R, the

following conditions are equivalent:

(i) R is right strongly prime.

(ii) R is left strongly prime.

(iii) R is a domain.

The following example shows that conditions (iii) and (iv) of Proposition 3.7

are genuinely weaker than conditions (i) and (ii) for lineal rings, though all four

conditions are equivalent for right annelidan rings, as shown in Corollary 3.10.

Example 3.9: (A primitive, strongly prime, lineal ring need not be reduced.) Let

k be a field, let F be the free algebra F = k〈x, y〉, and let R be the factor ring

R = F/Fx2F. (We will continue to write x and y for their images in R.)

In [10, Example 9.3] it is shown that the right annihilators in R are precisely

{0}, xR, and R. Thus, R is lineal. Obviously R is not reduced. It is observed in
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[10, Example 9.3] (and also follows from [15, Example 1]) that R is semiprime.

In fact, as we will now show, R satisfies two much stronger conditions: it is

strongly prime and primitive.

Note that

core(RZD(R)) = core(xR) = (0),

since no nonzero subset of xR is closed under left multiplication by y. By

Proposition 3.6, R is left strongly prime; by symmetry, R is also right strongly

prime.

To see that R is left primitive, let V be a countably-infinite-dimensional

k-vector space with basis {v1, v2, v3, . . .}. Define a left action of F on V by

xvn =

⎧⎨
⎩
0 if n ∈ {2k+1 : k ∈ N}
v2n+1 otherwise

and

yvn =

⎧⎨
⎩
vn−1 if n � 2

0 if n = 1,

extended linearly. Since x2 ∈ annF� (V ), this action induces a left R-module

structure on V.

Assume, for a contradiction, that some element
∑

i ciwi ∈ R annihilates V,

where ci ∈ k \ {0} for each i, and each wi is a word in x and y containing no

two adjacent x’s . Order the words wi as follows: a word is larger than another

if it contains a larger number of x’s, and for two words with the same number of

x’s, each of the form ymn+1xymnxymn−1x · · · ym1xym0 , the larger word is the

one for which (m0,m1, . . . ,mn+1) is smaller under the natural lexicographic

order. Then for some n, the maximal wi (with respect to this ordering) will

carry vn to a basis element with larger subscript than will any other wi. Hence

vn is not annihilated by
∑

i ciwi, a contradiction. This proves that V is a

faithful left R-module.

Fix any nonzero v ∈ V, say, v =
∑m

i=1 civi with each ci ∈ k and cm �= 0.

Since c−1
m ym−1v = v1, we have v1 ∈ Rv. For every n ∈ N there exist some

s, t ∈ N such that ys(yx)tv1 = vn. Consequently, Rv = V. This proves that V

is a simple left R-module.

Thus, R is left primitive. By symmetry, R is also right primitive.
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It is well known that a right strongly prime ring need not be left strongly

prime, and vice versa (see [13, Example 1]). However, by Corollary 3.8, for any

right distributive ring R the right strongly prime condition and the left strongly

prime condition are both equivalent to R being a domain. For right annelidan

rings we can get even more.

Corollary 3.10: For a right annelidan ring R, the following conditions are

equivalent:

(i) R is reduced.

(ii) R is a domain.

(iii) R is right strongly prime.

(iv) R is left strongly prime.

Proof. Since R is right annelidan, R is lineal. Hence, by Proposition 3.7, to

prove the result it suffices to show that N(R) ⊆ rad(R). Suppose N(R) �
rad(R). Then for some t ∈ N(R) and some maximal right ideal m of R we

have t �∈ m. Choose n ∈ N minimal such that tn = 0 (note that n � 2). Since

t ∈ annRr (t
n−1) \ m and R is right annelidan, it follows that m � annRr (t

n−1).

Hence annRr (t
n−1) = R and thus tn−1 = 0, contradicting the minimal choice

of n.

We close this section with two results on semiprime lineal rings. Recall that

a ring is said to be right duo if every right ideal of the ring is a two-sided ideal.

Proposition 3.11: Let R be a lineal ring.

(i) R is semiprime if and only if R is prime.

(ii) If R is semiprime and right duo, then R is a right Ore domain.

Proof. To prove (i), note that if I and J are ideals of a semiprime ring R, then

IJ = (0) implies JI = (0). If, in addition, R is lineal, it follows that I2 = (0)

or J2 = (0), so I = (0) or J = (0), proving (i).

To prove (ii), assume the ring R is lineal, right duo, and semiprime. Any

semiprime right duo ring is reduced; thus, by Proposition 3.7, R is a domain,

and (ii) follows.

Corollary 3.12: Suppose R is a lineal, semiprime ring that has the ascending

chain condition on right annihilators of elements. If R is right distributive or

right Bézout, then R is a right Ore domain.
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Proof. By Proposition 3.2(i) (in the right distributive case) or Proposition 3.3(ii)

(in the right Bézout case), R has right uniform dimension 1. Hence LZD(R)

coincides with the right singular ideal of R. Since any semiprime ring with the

ascending chain condition on right annihilators of elements is right nonsingular

(see [19, Corollary (7.19)]), it follows that R is a domain. Having right uniform

dimension 1, R is a right Ore domain.

4. Nilpotent elements, nilradicals, and the Köthe conjecture

Among the major unsolved problems in noncommutative ring theory is the

Köthe conjecture, which posits that a ring with no nonzero nil ideals has no

nonzero nil one-sided ideals. (See [26] for discussion and context.) We will

presently show that the Köthe conjecture has an affirmative answer in the spe-

cial case of lineal rings.

Given a ring R, the set of nilpotent elements of R will continue to be denoted

by N(R). The upper nilradical of R will be denoted by Nil∗(R), the Baer lower

nilradical (i.e. the prime radical) of R by Nil∗(R), the Levitzki nil radical by

L(R), and the sum of all nil one-sided ideals of R by A(R). For any ring R we

have Nil∗(R) ⊆ L(R) ⊆ Nil∗(R) ⊆ A(R); furthermore, the set A(R) is an ideal

of R (see [26, §3]). The Köthe conjecture is equivalent to the statement that

A(R) is always nil, i.e. Nil∗(R) = A(R) for every ring R.

Given a ring R, with or without unity, let N1(R) denote the sum of all

nilpotent ideals of R. Recall that N1(R) is the first in a transfinite ascending

chain of ideals whose union equals the prime radical, and in general it may

require an arbitrarily large ordinal before the chain stabilizes (see [1, §IV]).
However, as we now show, if R is lineal, then the chain stabilizes at the first

step on A(R), proving the Köthe conjecture for such rings.

Theorem 4.1: Let R be a lineal ring.

(i) The set N(R) is a nonunital subring of R, and N(R) = N1(N(R)).

(ii) Any finitely generated nil one-sided ideal of R is nilpotent.

(iii) We have N1(R) = Nil∗(R) = L(R) = Nil∗(R) = A(R).

Thus, the Köthe conjecture has an affirmative answer for the class of lineal

rings.
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Proof. Observe first that for any a, b, c ∈ R and n ∈ N,

(2) (ab = 0 and acb �= 0) ⇒ acnb �= 0.

Indeed, if there is a minimal n ∈ N for which (2) fails, then applying Proposi-

tion 2.2 with [
a b

acn−1 cb

]

yields a contradiction.

Clearly (2) implies that if t ∈ R is nilpotent and a, b ∈ R satisfy ab = 0,

then atb = 0. From this it follows immediately that for any integer n � 2 and

for any a1, a2, . . . , an ∈ R and t1, t2, . . . , tn−1 ∈ N(R) ∪ {1}, we have

(3) a1a2 · · · an = 0 ⇒ a1t1a2t2 · · ·at−1tn−1an = 0.

Now we are ready to prove (i). Let a, b ∈ N(R), with an = bn = 0. As a

consequence of (3) we obtain (a + b)2n−1 = 0 = (ab)n, and thus N(R) is a

nonunital subring of R. Furthermore, if I is the ideal of N(R) generated by a,

then In = 0. This proves (i).

To prove (ii), let J be a nil right or left ideal of R generated by elements

a1, a2, . . . , am ∈ R. Each ai lies in A(R), and by (i) the ideal of A(R) generated

by ai is nilpotent. By the Andrunakievich Lemma [3, p. 186, Lemma 4], the

ideal of R generated by ai is nilpotent. Thus J is contained in a finite sum of

nilpotent ideals, so J is nilpotent.

The equation in (iii), and a fortiori the conclusion of the theorem, follows

from (ii).

The “finitely generated” hypothesis is needed in Theorem 4.1(ii); indeed,

there are examples of commutative uniserial rings containing ideals that are

nil but not nilpotent. For right annelidan rings satisfying certain mild chain

conditions, Theorem 4.1(i) can be strengthened to the conclusion that N(R)

is actually an ideal: see [22, Theorem 3.5]. Nevertheless, N(R) need not even

be a one-sided ideal for R right annelidan, or even uniserial. Examples can

be obtained as prime factor rings of the exceptional rank one chain domains

constructed by H. H. Brungs and N. I. Dubrovin in [8].
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5. Lineal rings and Armendariz rings

A ring R with the property that

(4)

(∑
i

aix
i

)⎛
⎝∑

j

bjx
j

⎞
⎠ = 0 in R[x] =⇒ aibj = 0 ∀ i, j

is said to be Armendariz. The terminology was chosen to honor E. P. Armen-

dariz, who noted in [4] that all reduced rings satisfy condition (4). Various

interesting properties and constructions of Armendariz rings can be found in

[2, 10, 14, 16, 18, 21, 23]. In particular, Y. Hirano’s result [14, Proposition 3.1]

affords an important reformulation of the Armendariz condition. Given a ring

R, put

Lann r
(R) = {annRr (S) : S is a nonempty subset of R}.

Under the inclusion ordering, Lann r
(R) is a lattice, with join and meet given

by A∧B = A∩B and A∨B = annRr (ann
R
� (A∪B)). For R to be lineal means,

of course, that this lattice is a chain. For any ring R, there is a natural lattice

monomorphism

Lann r
(R) → Lann r

(R[x])

given by annRr (S) �→ ann
R[x]
r (S[x]) for every nonempty subset S ⊆ R. The

following proposition is a special case of [23, Theorem 3.4].

Proposition 5.1: A ring R is Armendariz if and only if the natural map

Lann r
(R) → Lann r

(R[x]) is a lattice isomorphism.

From this it follows immediately that if a ring R is lineal and Armendariz,

then the polynomial ring R[x] is lineal. Below we prove the converse, obtaining

a characterization of polynomial rings that are lineal, even for polynomials in

any set of commuting indeterminates.

Theorem 5.2: Let R be a ring and let X be any nonempty set of commuting

indeterminates over R. Then the following conditions are equivalent:

(i) R[X ] is lineal.

(ii) R[X ] is lineal and Armendariz.

(iii) R is lineal and Armendariz.

Proof. (iii) ⇒ (ii): Assume R is lineal and Armendariz. Then R[X ] is Armen-

dariz by [2, Corollary 3], so we need only show that R[X ] is lineal. Note that for
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any x ∈ X, the subring R[x] of R[X ] is Armendariz, and by Proposition 5.1,

R[x] is lineal as well. By induction, it follows that for any finite subset S ⊆ X,

the ring R[S] is lineal and Armendariz. It is clear from Proposition 2.2 that

a direct limit of a directed system of lineal rings is lineal; therefore, R[X ] is

lineal.

(i) ⇒ (iii): Assume R[X ] is lineal. Clearly, so is R. Suppose R is not

Armendariz. Then there exist polynomials

f(x) = a0 + a1x+ · · ·+ akx
k, g(x) = b0 + b1x+ · · ·+ bmxm

in R[x] such that f(x)g(x) = 0, but not all aibj equal 0. Choose the two

polynomials so as to minimize k +m. Being a subring of R[X ], the ring R[x]

is lineal. Applying Proposition 2.2 to[
a0 b0

f(x) g(x)

]
∈ M2(R[x]),

we infer that

(5) a0g(x) = 0, whence

(
k∑

i=1

aix
i−1

)
g(x) = 0,

or

(6) f(x)b0 = 0, whence f(x)

(
m−1∑
i=1

bix
i−1

)
= 0.

By the minimal choice of f(x) and g(x), either (5) or (6) implies aibj = 0 for

all i and j, a contradiction.

Theorem 5.2 raises the obvious question whether every lineal ring is Armen-

dariz. The answer, as we will see in Example 5.10, is “no”; consequently, by

Theorem 5.2, the polynomial ring over a lineal ring need not be lineal. In this

context, it is noteworthy that every one-sided annelidan ring is Armendariz

[22, Theorem 6.1], and therefore a polynomial ring over a one-sided annelidan

ring must be lineal. This gives some indication how much stronger than lin-

eal the annelidan condition is. A similar comparison can be drawn between

Proposition 3.7 and Corollary 3.10.

Before constructing a counterexample to show that lineal rings need not be

Armendariz, let us prove some positive results.
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Theorem 5.3: Every lineal ring R is “quadratically Armendariz,” that is to

say, if in R[x] we have

(7) (a0 + a1x+ a2x
2)(b0 + b1x+ b2x

2) = 0,

then aibj = 0 for all i, j ∈ {0, 1, 2}. In particular, every lineal ring R is “linearly

Armendariz” (in the terminology of [10]).

Proof. Since the ring R is lineal, the right annihilators annRr (a0), annRr (a1),

and annRr (a2) are linearly ordered. If annRr (a0) ⊆ annRr (a1) and annRr (a0) ⊆
annRr (a2), then (7) clearly implies aibj = 0 for all i, j ∈ {0, 1, 2}. We are also

done in the case where annRr (a2) ⊆ annRr (a0) and annRr (a2) ⊆ annRr (a1). This

leaves only the case where annRr (a1) ⊆ annRr (a0) and annRr (a1) ⊆ annRr (a2).

Since Equation (7) is equivalent to the equation

(a2 + a1x+ a0x
2)(b2 + b1x+ b0x

2) = 0,

we can assume without loss of generality that

(8) annRr (a1) ⊆ annRr (a0) ⊆ annRr (a2).

In particular, since a0b0 = 0 by (7), it follows from (8) that

(9) a2b0 = 0.

Equation (7) implies a0b0 = 0 and (a0+ a1+ a2)(b0+ b1+ b2) = 0. Applying

Proposition 2.2 to

[
a0 b0

a0 + a1 + a2 b0 + b1 + b2

]
∈ M2(R),
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we infer that a0(b1 + b2) = 0 or (a1 + a2)b0 = 0. Now

a0(b1 + b2) = 0 or (a1 + a2)b0 = 0

⇒ a0(b1 + b2) = 0 or a1b0 = 0 (by (9))

⇒ a2(b1 + b2) = 0 or a1b0 = 0 (by (8))

⇒ a2b1 = 0 or a0b1 = 0 (by (7))

⇒ a2b1 = 0 (by (8))

⇒ a1b2 = 0 (by (7))

⇒ a0b2 = 0 (by (8))

⇒ a1b1 = 0 (by (7) and (9))

⇒ a0b1 = 0 (by (8))

⇒ a1b0 = 0 (by (7)).

Hence aibj = 0 for all i, j ∈ {0, 1, 2}.

For a positive integer n, we call a ring R an n-Armendariz ring if the Ar-

mendariz condition (4) is satisfied for polynomials of degree at most n. Thus, in

this terminology, all lineal rings are 2-Armendariz by Theorem 5.3. As we will

see in Example 5.10, a lineal ring need not be “cubically Armendariz” and so

in general lineal rings are not n-Armendariz for n � 3. Nevertheless, for any n,

by the following theorem, a lineal ring R is n-Armendariz provided R contains

2n+ 1 central elements whose differences are regular elements of R.

Theorem 5.4: Let R be a lineal ring and n a positive integer. If R is an

algebra over a commutative ring D, and there exist elements d1, d2, . . . , d2n+1 ∈
D such that annR(di − dj) = {0} whenever 1 � i < j � 2n + 1, then R is

n-Armendariz.

The proof of Theorem 5.4 is based on the following observation, which extends

to modules a well-known result in linear algebra on homogeneous Vandermonde

systems of linear equations.

Lemma 5.5: Let R be a ring, M a right R -module, and n a positive integer.

Assume the elements r0, r1, . . . , rn ∈ R satisfy the following two conditions:

(i) rirj = rjri whenever 2 � i � n and 0 � j � n,

(ii) annM� (ri − rj) = {0} whenever 0 � i < j � n.
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Then for any m0,m1, . . . ,mn ∈ M, if

(10) m0 +m1ri +m2r
2
i + · · ·+mnr

n
i = 0 for every i ∈ {0, 1, . . . , n},

then m0 = m1 = · · · = mn = 0.

Proof. We induct on n. The case n = 1 is obvious. Assume that n � 2 and

the result is true for n − 1. Suppose m0,m1, . . . ,mn ∈ M satisfy (10). Then

for every i ∈ {0, 1, . . . , n− 1} we have

(11) m1(ri − rn) +m2(r
2
i − r2n) + · · ·+mn(r

n
i − rnn) = 0.

Since n � 2, condition (i) implies that for every k ∈ N we have

rki − rkn =

⎛
⎝k−1∑

j=0

rji r
k−1−j
n

⎞
⎠(ri − rn).

Hence for any i ∈ {0, 1, . . . , n− 1} Equation (11) can be rewritten as⎛
⎝ n∑

k=1

mk

(
k−1∑
j=0

rji r
k−1−j
n

)⎞
⎠(ri − rn) = 0,

so condition (ii) implies that for any i ∈ {0, 1, . . . , n− 1} we have

(12)

n∑
k=1

mk

(
k−1∑
j=0

rji r
k−1−j
n

)
= 0.

For each i ∈ {0, 1, . . . , n− 1}, put
vi = mi+1 +mi+2rn +mi+3r

2
n + · · ·+mnr

n−i−1
n ;

then Equation (12) becomes

v0 + v1ri + v2r
2
i + v3r

3
i + · · ·+ vn−1r

n−1
i = 0.

By inductive hypothesis, vn−1 = vn−2 = · · · = v1 = v0 = 0, which implies that

mn = mn−1 = · · · = m2 = m1 = 0. From Equation (10) we obtain m0 = 0 as

well, which completes the proof.

Now we are in a position to prove Theorem 5.4.

Proof of Theorem 5.4. Suppose R is not n-Armendariz. Then there exist

f(x) = a0 + a1x+ · · ·+ akx
k ∈ R[x], g(x) = b0 + b1x+ · · ·+ bmxm ∈ R[x]

where k � n and m � n and f(x)g(x) = 0, but not all aibj equal 0. Choose

f(x) and g(x) so as to minimize k +m.
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For every i ∈ {1, 2, . . . , 2n+ 1} we have f(di)g(di) = 0; thus, we can apply

Proposition 2.2 to [
a0 b0

f(di) g(di)

]
,

obtaining 2n+ 1 pairs of alternatives:

a0g(di) = 0 or f(di)b0 = 0.

There exists a subset I ⊆ {1, 2, . . . , 2n+ 1} such that

|I| = m+ 1 and a0g(di) = 0 for every i ∈ I,

or

|I| = k + 1 and f(di)b0 = 0 for every i ∈ I.

Now Lemma 5.5 implies that a0g(x) = 0 or f(x)b0 = 0. But then f(x) can be

replaced by
∑k

i=1 aix
i−1 or g(x) can be replaced by

∑m
j=1 bjx

j−1, contradicting

the minimal choice of f(x) and g(x).

Corollary 5.6: Let R be a lineal ring and n a positive integer. If R contains

central elements r1, r2, . . . , r2n+1 such that annR� (ri − rj) = {0} whenever 1 �
i < j � 2n+ 1, then R is n-Armendariz.

Proof. Let D be the subring of R generated by r1, r2, . . . , r2n+1, and apply

Theorem 5.4.

Corollary 5.7: Let R be a lineal ring in which there exist infinitely many

central elements r1, r2, r3, . . . such that annR� (ri − rj) = {0} whenever i �= j.

Then R is Armendariz.

As a consequence of Corollary 5.7, we obtain the full Armendariz condition

for some broad classes of lineal rings.

Corollary 5.8: Let R be a lineal ring that is an algebra over an infinite field.

Then R is Armendariz.

Corollary 5.9: If R is a lineal ring whose additive group is torsion-free, then

R is Armendariz. In particular, if R is a lineal ring of characteristic 0, and

T (R) is the torsion ideal of R, then the torsion-free, lineal factor ring R/T (R)

is Armendariz.

Proof. Apply Proposition 2.8 and Corollary 5.7.
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We conclude this paper with an example of a lineal ring that is not Armen-

dariz. By Theorem 5.2, this shows that the lineal condition is not inherited by

polynomial rings.

Example 5.10: (A lineal ring need not be Armendariz.) Define the free algebra

R0 = F2〈a, b, c, d〉, and let I be the ideal of R0 generated by the following set

of elements:

(13)

a2, ab+ ba, ab+ ac, ac+ b2 + ca,

ad, bc+ cb+ da, bd+ c2 + db, bd+ cd,

cd+ dc, d2, xyz for all x, y, z ∈ {a, b, c, d}.

Let R = R0/I. Abusing notation a bit, we will write a, b, c, d for the images of

these elements in R.

With respect to the lexicographic order on length 2 words in {a, b, c, d},
the last summand of every element in (13) is a linear combination of smaller

words modulo I. As a straightforward consequence of the Diamond Lemma [5,

Theorem 1.2], every element s ∈ R can be written uniquely as

(14) s = k0 + k1a+ k2b+ k3c+ k4d+ k5ab+ k6b
2 + k7bc+ k8bd+ k9cb+ k10c

2

where k0, k1, . . . , k10 ∈ F2.

It is evident that in R[x] we have

(
a+ bx+ cx2 + dx3

)2
= 0,

and thus R is not an Armendariz ring (e.g. ab �= 0). Yet R is lineal, as we will

now show.

Note that R is a finite local ring whose maximal ideal m = aR+bR+cR+dR

satisfies m3 = (0). If s ∈ R\m then annRr (s) = {0}. If s = 0 then annRr (s) = R.

If s ∈ m2\{0} then annRr (s) = m. In each of these cases, annRr (s) is comparable

with every right ideal of R. We are left with the case where s ∈ m \m2 (i.e. in

Equation (14) we have k0 = 0 and ki = 1 for at least one i ∈ {1, 2, 3, 4}). Then
m2 ⊆ annRr (s) ⊆ m, and thus annRr (s) = annRr (k1a+ k2b+ k3c+ k4d)+m2. We

assume without loss of generality that s = k1a + k2b + k3c + k4d, and direct
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calculation yields

annRr (s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F2a+ F2(b+ c) + F2d+m2 if s ∈ {a}
F2(a+ b+ c) + F2d+m2 if s ∈ {b+ c+ d, a+ b+ c+ d}
F2d+m2 if s ∈ {d, a+ d, b+ c, a+ b+ c}
m2 otherwise.

Since m2 ⊆ F2d+m2 ⊆ F2(a+ b+ c) + F2d+m2 ⊆ F2a+ F2(b+ c) + F2d+m2,

we conclude that R is lineal.
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