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ABSTRACT

We answer a question of Bartholdi, Siegenthaler and Zalesskii, showing

that the congruence subgroup problem for branch groups is independent

of the branch action on a tree. We prove that the congruence topology of

a branch group is determined by the group, specifically, by its structure

graph, an object first introduced by Wilson. We also give a more natural

definition of this graph.

1. Introduction

Groups acting on rooted trees have been the subject of intense study over the

past few decades after the appearance in the 1980s of examples with exotic

properties (e.g., finitely generated infinite torsion groups, groups of intermediate

word growth, amenable but not elementary amenable groups, etc.). Several

attempts were made at the time to round up these examples into one class of

groups. One of these led to the definition of branch groups ([1]), which also

arise in the classification of just infinite groups ([13]).

For a sequence (mn)n≥0 of integers mn ≥ 2, the rooted tree of type (mn)

is a tree T with a distinguished vertex v0, called the root, of valency m0 and
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such that every vertex at distance n ≥ 1 from v0 has valency mn+1 (where the

distance of a vertex from v0 is the number of edges in the unique path from that

vertex to v0). The set of all vertices at distance n from v0 is the nth layer of T ,

denoted by Vn. We picture T with v0 at the top and with mn edges descending

from each vertex in Vn, so we call the vertices below a given v the descendants

of v. Each vertex v ∈ Vr is the root of a subtree Tv of type (mn)n≥r.

Let G be a group acting faithfully on T fixing v0. For each vertex v, the rigid

stabilizer of v is the subgroup ristG(v) of elements of G which fix every vertex

outside Tv. For each n ≥ 0, the direct product ristG(n) = 〈ristG(v) | v ∈ Vn〉 is
the rigid stabilizer of the nth layer. We call the faithful action of G on T

a branch action if the following holds for all n ≥ 0:

(i) G acts transitively on Vn;

(ii) ristG(n) has finite index in G.

We say that G is a branch group if there exists a branch action of G on some

tree T .

Since branch groups have such specific actions on rooted trees, it is natural

to wonder what the action tells us about the subgroup structure of the group.

Consider, for each n ≥ 0, the kernel StabG(n) of the action of G on Vn; can we

“detect” every finite index subgroup of G (or, equivalently, every finite quotient)

by looking at the finite quotients G/ StabG(n)? In other words, does every finite

index subgroup of G contain some StabG(n)? We can rephrase this question

in terms of profinite completions. Taking the subgroups {StabG(n) | n ≥ 0} as

a neighbourhood basis for the identity gives a topology on G—the congruence

topology—and the completion G of G with respect to this topology is a profinite

group called the congruence completion of G. As G acts faithfully on T we

have
⋂

n StabG(n) = 1, so G embeds in G. A fortiori, G is residually finite,

so it also embeds in its profinite completion Ĝ which maps onto G. Asking

whether each finite index subgroup of G contains some stabilizer StabG(n) is

tantamount to asking whether the map Ĝ → G is injective. The congruence

subgroup problem asks us to compute the congruence kernel C of this map,

which measures the deviation from a positive answer.

Since a branch group G has another obvious family of finite index subgroups,

namely {ristG(n) | n ≥ 0}, we may ask the same question for this family. Let

G̃ denote the branch completion of G, that is, the completion of G with

respect to the branch topology, which is generated by taking {ristG(n) | n ≥ 0}
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as a neighbourhood basis of the identity. Then, as above, there is a surjective

homomorphism Ĝ → G̃ and we are asked to determine the branch kernel B

of this map. Note that the branch topology is stronger than the congruence

topology so that we may also ask about the kernel R of the map G̃ → G, the

rigid kernel.

The term “congruence” is used by analogy with the classical congruence sub-

group problem for SLn(Z) (solved in [3, 9]), from which these questions take

inspiration. There are now several generalizations of this problem: for instance,

a now classical generalization in the context of algebraic groups (see [10] and

references therein), and a more recent one in the context of automorphisms of

free groups Fn, with the kernels of the action on finite quotients of Fn playing

the role of our subgroups StabG(n) (see [4]).

The problem of determining the congruence, branch and rigid kernels for a

branch group G was first posed in [2], where the authors also ask a “preliminary

question of great importance”:

Question: Do any of the kernels depend on the branch action of G?

In other words, is the nature of these kernels a property of the branch action

or of the group?

We provide a full answer to the above question by proving the following:

Theorem 1: Let G have two branch actions on trees. Then the congruence

kernels with respect to these actions coincide.

Theorem 2: Let G have two branch actions on trees. Then the branch kernels

with respect to these actions coincide.

The above immediately imply that the rigid kernels of a branch group with

respect to any two branch actions are naturally isomorphic.

We will deduce these theorems from a more powerful observation, namely

that the congruence and branch topologies of a branch group G can be defined

in purely group-theoretic terms, with no reference to a branch action, using the

structure graph B of G. This graph depends only on the subgroup structure of

G and is related to every tree on which G acts as a branch group. As we shall see

in Section 3 (Proposition 3.1), if G acts on T as a branch group then T embeds

G-equivariantly in B, where the action of G on B is that induced by conjugation

on subgroups. Further, the image of T is coinitial in B (Proposition 3.2). Once



4 A. GARRIDO Isr. J. Math.

we have analogues of StabG(n) and ristG(n) for the action of G on B, the

above-mentioned results are the key to showing that all congruence and branch

topologies induced by a branch action coincide; they all agree with the topologies

with respect to B.
In Section 2 we define the structure graph and the larger structure lattice

of a branch group. These very useful objects were first introduced in [12] and

[13] and used to analyse just infinite groups. They were also used in [8] to

characterize branch groups in purely group-theoretic terms. In those settings,

they are defined as quotients of the lattice of subnormal subgroups of a branch

group. Here we give a more direct description by examining the subgroups with

finitely many conjugates.

2. The structure lattice and structure graph

Notation: We write H ≤f G and H �f G to indicate, respectively, that H is

a finite index subgroup of G and that H is a normal finite index subgroup of

G. We also use the standard notation NG(H) (resp. CG(H)) for the normalizer

(resp. centralizer) of a subgroup H in G. Furthermore, HG will denote the

subgroup generated by all conjugates of H by G. Throughout the rest of the

paper, G will denote a branch group.

Subgroups of branch groups are subject to several constraints. The proof of

[7, Lemma 2] shows that branch groups have no non-trivial virtually abelian

normal subgroups and the following is obtained in [6, Theorem 4]:

Theorem 2.1: Suppose that G is a branch group acting on a tree T and let

K � G with K �= 1. Then K contains the derived subgroup ristG(n)
′ of ristG(n)

for some integer n.

Thus all branch groups are just non-(virtually abelian); that is, they are not

virtually abelian but all of their proper quotients are.

Let L(G) be the collection of all subgroups of G which have finitely many

conjugates (in other words, whose normalizer has finite index). If H,K ∈ L(G),

then clearly H ∩K, 〈H,K〉 ∈ L(G). Thus L(G) forms a lattice with respect to

subgroup inclusion, with H ∩K and 〈H,K〉 respectively the meet and join of

two elements H,K. Lemma 2.2 of [5] shows that L(G) contains no non-trivial
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virtually soluble subgroups. We will use this without further comment in the

remainder of the paper.

This allows us to prove the following, which is a generalization of [8, Theorem

8.3.1] and [13, Lemma 4.3].

Proposition 2.2: LetH,K ∈ L(G) with K � H and H/K virtually nilpotent.

Then CG(K) = CG(H).

Proof. First we claim that if A is a subgroup with finitely many conjugates in

a group Γ and A is virtually nilpotent then so is AΓ. Let N be the normal

core of NΓ(A), so that A0 := A ∩ N is virtually nilpotent and normal in N .

By Fitting’s theorem ([11, 5.2.8]), A0 has a unique maximal nilpotent normal

subgroup, B say, which is normal in N . The finitely many Γ-conjugates of B are

also nilpotent and normal inN ; thus BΓ is nilpotent, again by Fitting’s theorem.

It remains to show that BΓ has finite index in AΓ. Since A/B is finite so is the

quotient (ABΓ)/BΓ and this has finitely many conjugates in Γ/BΓ because A

has finitely many in Γ. Therefore the quotient (AΓBΓ)/BΓ ∼= AΓ/BΓ is finite

by Dicman’s lemma (see [11, 14.5.7]) and our claim is proved.

Suppose that H,K ∈ L(G) with H/K virtually nilpotent and write

C := CG(K) ∈ L(G). We will prove the proposition for H1 := HC , K and

deduce the result for H,K from this. To see that H1/K is virtually nilpotent,

note that for each c ∈ C the conjugate (H/K)c = Hc/K is isomorphic to H/K.

There are finitely many of these C-conjugates, as H ∈ L(G), so it follows from

the claim that H1/K is virtually nilpotent. Now, C ∩ K ∈ L(G) is abelian,

hence trivial, and we have

C ∩H1 = (C ∩H1)/(C ∩K) ∼= K(C ∩H1)/K ≤ H1/K.

Thus C ∩H1 ∈ L(G) is virtually nilpotent and therefore trivial. Note that C is

normalized byH1, sinceK � H1, whence [C,H1] ≤ C. As H1 is also normalized

by C we have [C,H1] ≤ C ∩H1 = 1 and therefore C ≤ CG(H1). The proof is

complete as K ≤ H ≤ H1 implies that CG(H1) ≤ CG(H) ≤ C.

Notation: For H,K ∈ L(G), we write K ≤va H (respectively, K �va H) if

K ≤ H (resp. K � H) and K contains the derived group of a finite index

subgroup of H . Note that if K �va H then H/K is virtually abelian.

Proposition 2.2 has the following consequences.
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Lemma 2.3: Let H1, H2 ∈ L(G). Then H1∩H2 = 1 if and only if [H1, H2] = 1.

Proof. If [H1, H2] = 1 then H1 ∩H2 ∈ L(G) is abelian and therefore trivial.

For the converse, let N be the normal core of the intersection

NG(H1) ∩ NG(H2). Thus N �f G normalizes H1 and H2. For i = 1, 2, let

Ki = Hi ∩ N . Then Ki �f Hi and Ki ∈ L(G). Now, since Ki � K1K2, we

have [K1,K2] ≤ K1∩K2 ≤ H1∩H2 = 1. Therefore, applying Proposition 2.2 to

Ki ≤f Hi, we obtain CG(H1) = CG(K1) ≤ CG(K2) = CG(H2), and vice-versa,

so [H1, H2] = 1.

Lemma 2.4: For every H ∈ L(G) we have 〈H,CG(H)〉 = H × CG(H) ≤va G.

Proof. Write C = CG(H) and note that 〈H,C〉 = H × C by Lemma 2.3. If

the normal core N of H is non-trivial then N �va G, so H ≤va G and hence

H×C ≤va G. Suppose then that N = 1 and let V ∈ L(G) be the intersection of

a maximal number of conjugates ofH such that 1 < V ≤ H . IfW is a conjugate

of V which is not contained in H , then 1 ≤ W ∩H ≤ H is the intersection of

one more conjugate of H than V . Therefore W ∩ H = 1, by the choice of V

and W ≤ C by Lemma 2.3. This implies that H ×C contains all conjugates of

V ; in particular, it contains their product V G �va G. Thus H × C ≤va G, as

required.

Lemma 2.5: Let H,K ∈ L(G). The following are equivalent:

(i) H ∩K ≤va H,K;

(ii) CG(H) = CG(K);

(iii) there exists D ∈ L(G) such that H ×D ≤va G and K ×D ≤va G.

Proof. If (i) holds, we have A′ ≤ H ∩ K for some A ≤f H . Let N and L

be, respectively, the normal cores of A and H ∩ K in H . Then N �f H and

N ′ � L � H , that is L �va H . Thus CG(L) = CG(H) by Proposition 2.2, but

then L ≤ K ≤ H implies that CG(H ∩K) = CG(L) = CG(H). Repeating the

procedure with H replaced by K yields CG(H ∩K) = CG(K) = CG(H). This

immediately implies (iii) by Lemma 2.4.

Suppose that (iii) is true; so G′
0 ≤ H × D for some G0 ≤f G. Then

G0 ∩K ≤f K and, since D∩K = 1, we have (G0∩K)′ ≤ (H×D)∩K = H∩K,

that is, H ∩ K ≤va K. The same argument with H and K swapped gives

H ∩K ≤va H .
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The structure lattice. For H,K ∈ L(G), write K ∼ H if any of the equiv-

alent conditions of Lemma 2.5 holds. It is immediate that ∼ is an equivalence

relation on L(G). We show that ∼ is a congruence on L(G).

Proposition 2.6: Let H1, H2,K1,K2 ∈ L(G) with H1 ∼ H2 and K1 ∼ K2.

Then H1 ∩K1 ∼ H2 ∩K2 and 〈H1,K1〉 ∼ 〈H2,K2〉.
Proof. For i = 1, 2 we haveH1∩H2∩Ki ≤va Hi∩Ki andK1∩K2∩Hi ≤va Hi∩Ki

so that (H1 ∩H2 ∩Ki)∩ (K1 ∩K2∩Hi) ≤va Hi∩Ki. Thus H1 ∩H2 ∼ K1∩K2.

To show that the join operation is respected, write

M := 〈H1 ∩H2,K1 ∩K2〉 ∈ L(G).

Then CG(M) centralizes Hi and Ki for i = 1, 2 so that Lemma 2.3 yields

CG(M) ∩Hi = 1 and CG(M) ∩Ki = 1. Therefore

〈CG(M), Hi,Ki〉 = CG(M)× 〈Hi,Ki〉 ≥ CG(M)×M

and, since CG(M)×M ≤va G (by Lemma 2.4), we have CG(M)×〈Hi,Ki〉 ≤va G

for i = 1, 2.

By the above, the join and meet of two equivalence classes [H ], [K] of elements

H,K ∈ L(G) is well defined by

[H ] ∨ [K] = [〈H,K〉] and [H ] ∧ [K] = [H ∪K],

and the quotient L = L(G)/ ∼ is again a lattice with respect to these operations

and the natural partial order inherited from L(G):

[K] ≤ [H ] if and only if [K ∩H ] = [K].

This quotient L is the structure lattice of G.

Note that [G] and [1] = {1} are, respectively, the greatest and least elements

of L. Observe also that [H ]g = [Hg] for each H ∈ L(G) and g ∈ G. Thus the

action of G on its subgroups by conjugation induces a well-defined action on L.
It is shown in [8] that L is a Boolean lattice (it is uniquely complemented and

distributive), but we do not require this fact here.

The structure graph. An element B of L(G) is basal if 〈BG〉 is the direct

product of the finitely many conjugates of B; in particular, if Bg �= B then

Bg ∩B = 1. Examples of basal subgroups include ristG(v) for every vertex v of

a tree on which G acts as a branch group.

Basal subgroups have the following useful properties.
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Lemma 2.7 ([13]): Let B,B1, B2 be basal subgroups of G. Then

(i) B1 ∩B2 is basal;

(ii) if [B1] ≤ [B2] then NG(B1) ≤ NG(B2);

(iii) NG(B) is the stabilizer of [B] under the action of G by conjugation;

(iv)
⋂
(NG(B) | B is basal) = 1.

Proof. (i) Suppose that (B1∩B2)
g = Bg

1 ∩Bg
2 �= B1∩B2 for some g ∈ G. Then

either Bg
1 �= B1 or Bg

2 �= B2. In each case we have (B1 ∩B2)
g ∩ (B1 ∩B2) = 1.

(ii) Let g ∈ NG(B1). Then 1 �= [B1]
g = [B1] ≤ [B2]

g ∧ [B2] = [Bg
2 ∩ B2] so

Bg
2 = B2 and g ∈ NG(B2), as required.

(iii) This follows from the argument in the previous part.

(iv) Note that NG([ristG(v)]) = StabG(v) for every v ∈ T , where T is a tree

on which G acts as a branch group. The claim follows from the observation

that every ristG(v) is basal and
⋂
(StabG(v) | v ∈ T ) = 1.

The structure graph B of G has as vertices all non-trivial elements [B] ∈ L
such that B is basal. Two elements [A] ≤ [B] of B are joined by an edge if [A]

is maximal subject to this inequality. Again, the conjugation action of G on its

basal subgroups induces an action on B by graph automorphisms.

3. The congruence and branch topologies

Notation: Since in this section we will deal with different branch actions of the

same group G, we will write Stabρ(n) and ristρ(v) for the stabilizer of the nth

layer and the rigid stabilizer of vertex v with respect to a given branch action

ρ : G → Aut(T ). We shall omit the subscript when there is no risk of confusion.

Proposition 3.1 ([8]): If G acts as a branch group on a tree T , then there is an

order-preserving G-equivariant embedding φ :T →B defined by φ :v �→ [rist(v)].

Proof. We have already seen that φ is G-equivariant as

φ(v)g = [rist(v)]g = [rist(v)g] = [rist(vg)] = φ(vg).

That φ is order-preserving is also clear since v is a descendant of w if and only

if rist(v) ≤ rist(w).

To see that φ is injective, let rist(v) ∼ rist(w). If v and w were incomparable

vertices, then rist(v) ∩ rist(w) = 1 would imply that rist(v) and rist(w) are

virtually abelian, a contradiction. Thus v and w are comparable, say v ≤ w.
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Suppose for a contradiction that v �= w; then there is a vertex v2 �= v in

the same layer as v such that v2 ≤ w (a ‘sibling’ of v). Since v, v2 ≤ w we

have rist(v) × rist(v2) ≤ rist(w) and rist(v) ≤va rist(w). It then follows that

rist(v) ≤va (rist(v) × rist(v2)) and that rist(v2) is virtually abelian. This gives

the desired contradiction, so v = w, as required.

Proposition 3.2 ([8]): LetG act as a branch group on T and let 1 �= B ∈ L(G).

Then there exists some v ∈ T such that [rist(v)] ≤ [B].

Proof. Since B is non-trivial it contains a non-trivial element g which moves

some vertex v. Let w = vg and N be the normal core of the normalizer of B.

Then rist(v)∩N �f rist(v). Let h, k∈rist(v)∩N . Note that hg∈rist(vg)=rist(w);

so hg and k commute (because [rist(w), rist(v)] = 1). Then [[h, g], k] ∈ B since

h, k normalize B and we have

[h, k] = h−1k−1hk = h−1hgk−1(h−1)ghk = [h−1hg, k] = [[h, g], k].

Thus (rist(v) ∩N)′ ≤ B and (rist(v) ∩N)′ ∼ rist(v) yields the result.

The above imply that the structure graph “contains” all possible branch ac-

tions of G. It is then reasonable to define the congruence and branch topologies

with respect to the action of G on B.
When the structure graph is itself a tree, then G acts on it with a branch

action and all other trees on which G acts as a branch group are obtained

from the structure graph by “deleting layers”. This was proved in [7], where

a sufficient condition for the structure graph to be a tree is given. Examples

of branch groups satisfying that condition include Grigorchuk’s first group, the

Gupta–Sidki p-groups and the Hanoi tower group. A necessary and sufficient

condition for the structure graph to be a tree is given in [8].

The congruence topology. In order to define the congruence topology with

respect to the action of G on B, we must find analogues of the level stabilizers

Stabρ(n) for a branch action ρ of G. As G acts level-transitively, the obvious

analogue in B of a layer is an orbit bG where b = [B] ∈ B and B is basal. Recall

from Lemma 2.7 that Stab([B]) = NG(B), so the analogue of a level stabilizer

Stabρ(n) is an orbit stabilizer

StabB(bG) :=
⋂

(NG(B
g) | g ∈ G)
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for b = [B] ∈ B. Since each basal subgroup has only finitely many conjugates,

these orbit stabilizers have finite index in G. Furthermore, the intersection of

all orbit stabilizers is trivial. We take the family {StabB(bG) | b ∈ B} as a

neighbourhood basis of the identity to define the congruence topology of G

with respect to the action of G on B. The completion of G with respect to this

topology is a profinite group GB onto which the profinite completion Ĝ maps.

We denote the kernel of this map by CB. In the following theorem we prove that

for any branch action ρ of G, the topologies induced by {Stabρ(n) | n ≥ 0} and

by {StabB(bG) | b ∈ B} are equal. Thus the congruence kernels with respect to

each of them coincide and Theorem 1 as stated in the introduction follows.

Theorem 3.3: For any branch action ρ : G → Aut(T ), denote by Cρ the

congruence kernel with respect to this action. Then Cρ = CB.

Proof. We must show that for every n ≥ 0 there is some b ∈ B such that

Stabρ(n) ≥ StabB(bG) and conversely, that for every b ∈ B there is some n ≥ 0

such that StabB(bG) ≥ Stabρ(n). However, by Proposition 3.1, the nth layer

Vn of the tree corresponds to an orbit of basal subgroups so that the former

statement holds trivially. It therefore suffices to show the latter statement.

For a given b = [B] ∈ B, Proposition 3.2 gives a vertex v of T such that

[ristρ(v)] ≤ b. Suppose that v is in the nth layer of T and let x ∈ Stabρ(n).

Note that Stabρ(n) is the pointwise stabilizer of the G-orbit of [ristρ(v)] by

Proposition 3.1. Then

1 �= [ristρ(v
x)] = [ristρ(v)] ≤ bx ∧ b.

Since B is basal this implies that Bx = B (so bx = b). Thus the normal subgroup

Stabρ(n) fixes all elements of bG and we conclude that Stabρ(n) ≤ StabB(bG),
as required.

The branch topology. As with the congruence kernel, Theorem 2 will follow

from the fact that the branch kernel with respect to a branch action is equal to

the analogous object for the action on the structure graph. We must therefore

define the branch topology with respect to B. To do this we generalize the

notion of a rigid stabilizer. For a non-trivial basal subgroup A of a branch

group, define its rigid normalizer RG(A) by

RG(A) :=
⋂

(NG(B) | B is basal and A ∩B = 1).
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We will use the following properties of rigid normalizers. These were proved

in [8] but we include a shorter argument for the reader’s convenience.

Proposition 3.4: Let A,A1, A2 be basal subgroups and v a vertex of a tree

on which G acts as a branch group. Then

(i) A ≤ RG(A) ≤ NG(A);

(ii) if [A1] ≤ [A2] then RG(A1) ≤ RG(A2) (in particular, RG(A1) = RG(A2)

if [A1] = [A2]);

(iii) RG(A) is basal and the unique maximal element of [A];

(iv) RG(rist(v)) = rist(v).

Proof. (i) Let B be a basal subgroup with A ∩ B = 1. Then [A,B] = 1 by

Lemma 2.3 and so A ≤ NG(B); thus A ≤ RG(A). If g ∈ RG(A), then g

normalizes each of the conjugates of A distinct from A as they are basal and

have trivial intersection with A. Therefore g must normalize A itself.

(ii) Since [A1] ≤ [A2], there is some finite index subgroup K of A1 such that

K ′ ≤ A1 ∩ A2. Now, for a basal subgroup B with B ∩ A2 = 1, we have

(K ∩B)′ ≤ K ′ ∩B ≤ A1 ∩ A2 ∩B ≤ A2 ∩B = 1

and B ∩ K ≤f B ∩ A1. That is to say, B ∩ A1 is virtually abelian and so

B ∩ A1 = 1. Hence every g ∈ RG(A1) normalizes B and RG(A1) ≤ RG(A2), as

required.

(iii) We first show that RG(A) ∼ A using Lemma 2.5(iii). Let D denote the

product of the finitely many conjugates of A that are distinct from A; then

AG = A×D �va G. Since A ≤ RG(A), it suffices to show that RG(A)∩D = 1.

Let x ∈ RG(A) ∩D and B be a basal subgroup. If B ∩ A = 1 then x ∈ RG(A)

normalizes B. If B ∩ A �= 1 then B ∩ A ≤ A is basal and is centralized by

x ∈ D ≤ CG(A); hence x ∈ NG(B ∩ A) ≤ NG(B) by Lemma 2.7. Thus

x ∈ ⋂
(NG(B) | B is basal) = 1.

To see that RG(A) is basal, suppose that RG(A)
g �= RG(A) for some g ∈ G.

Then, as RG(A)
g = RG(A

g), we have A �= Ag by (ii) so that Ag ∩ A = 1

and [Ag, A] = 1 by Lemma 2.3. Now, RG(A) ∼ A, so CG(RG(A)) = CG(A)

by Lemma 2.5 which implies that [Ag,RG(A)] = 1. Similarly, RG(A)
g ∼ Ag

implies that [RG(A)
g,RG(A)] = 1, yielding RG(A)

g ∩ RG(A) = 1.

For any H ∈ [A] and any basal subgroup B such that B ∩ A = 1 we have

[B,A] = 1, so B ≤ CG(A) = CG(H). This means that [B,H ] = 1, in particular,

H ≤ NG(B). Hence H ≤ RG(A).
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(iv) By part (i), it suffices to show that RG(rist(v)) ≤ rist(v). Let

g ∈ RG(rist(v)) and w ∈ T \ Tv. If w is incomparable with v, then

rist(w) ∩ rist(v) = 1

and so g fixes w. If v ≤ w, then rist(v) ≤ rist(w) and

RG(rist(v)) ≤ NG(rist(v)) ≤ NG(rist(w))

by Lemma 2.7. Thus w = wg and the claim follows.

By analogy with the rigid stabilizers of layers, the rigid normalizer of an

orbit aG = [A]G in B is defined to be RG(a
G) := RG(A)

G. That these rigid

normalizers of orbits have finite index in G follows from Proposition 3.2. It

also follows that the intersection of all of them is trivial. We may therefore

take {RG(a
G) | a ∈ B} as a neighbourhood basis of the identity to generate the

branch topology of G with respect to the action of G on B. The completion

G̃B with respect to this topology is a profinite group in which G embeds. We

denote by BB the kernel of the map Ĝ → G̃B. In our last theorem we prove that

for any branch action ρ of G, the topologies induced by {ristρ(n) | n ≥ 0} and

by {RG(a
G) | a ∈ B} are equal; consequently, the branch kernels with respect

to each of them coincide and Theorem 2 as stated in the introduction follows.

Theorem 3.5: For a branch action ρ : G → Aut(T ), denote by Bρ the branch

kernel with respect to this action. Then Bρ = BB.

Proof. As with the proof for the congruence kernels, we must show that for

every n ≥ 0 there is some b ∈ B such that ristρ(n) ≥ RG(b
G) and that for

every b ∈ B there is some n ≥ 0 such that RG(b
G) ≥ ristρ(n). The former claim

follows from Proposition 3.4(iv) since all rigid stabilizers of vertices are basal. It

therefore suffices to prove the latter claim. Given b ∈ B, Proposition 3.2 yields

that [ristρ(v)] ≤ b for some v ∈ T . Suppose that v ∈ Vn ⊂ T . We then have

ristρ(v) = RG(ristρ(v)) ≤ RG(b) by Proposition 3.4, and the transitivity of G

on each of the layers of T implies that ristρ(n) ≤ RG(b
G), as required.
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