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ABSTRACT

Let K and L be two convex bodies in R4, such that their projections

onto all 3-dimensional subspaces are directly congruent. We prove that

if the set of diameters of the bodies satisfies an additional condition and

some projections do not have certain π-symmetries, then K and L coincide

up to translation and an orthogonal transformation. We also show that

an analogous statement holds for sections of star bodies, and prove the

n-dimensional versions of these results.
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1. Introduction

In this paper we address the following problems (see [Ga, Problem 3.2, page

125 and Problem 7.3, page 289]).

Problem 1: Suppose that 2 ≤ k ≤ n− 1 and that K and L are convex bodies

in Rn such that the projection K|H is congruent to L|H for all H ∈ G(n, k). Is
K a translate of ±L?
Problem 2: Suppose that 2 ≤ k ≤ n− 1 and that K and L are star bodies in

Rn such that the section K ∩H is congruent to L ∩H for all H ∈ G(n, k). Is

K a translate of ±L?
Here we say that K|H , the projection of K onto H , is congruent to L|H if

there exists an orthogonal transformation ϕ ∈ O(k,H) in H such that ϕ(K|H)

is a translate of L|H ; G(n, k) stands for the Grassmann manifold of all k-

dimensional subspaces in Rn.

If the corresponding projections are translates of each other, or if the bodies

are convex and the corresponding sections are translates of each other, the

answers to Problems 1 and 2 are known to be affirmative [Ga, Theorems 3.1.3

and 7.1.1] (see also [A], [R1]). Besides, for Problem 1, with k = n−1, Hadwiger

established a more general result and showed that it is not necessary to consider

projections onto all (n − 1)-dimensional subspaces; the hypotheses need only

be true for one fixed subspace H , together with all subspaces containing a line

orthogonal to H . In other words, one requires only a “ground” projection on

H and all corresponding “side” projections. Moreover, Hadwiger noted that in

Rn, n ≥ 4, the ground projection might be dispensed with (see [Ha], and [Ga,

pages 126–127]).

If the corresponding projections (sections) of convex (star-shaped) bodies are

rotations of each other, the results in the case k = 2 were obtained by the third

author in [R]; see also [M].

In the general case of rigid motions, Problems 1 and 2 are open for any k and

n. In the special case of direct rigid motions, i.e., when the general orthogonal

group O(k) is replaced by the special orthogonal group SO(k), the problems

are open as well.

Golubyatnikov [Go1] obtained several interesting results related to Problem 1

in the cases k = 2, 3 [Go1, Theorem 2.1.1, page 13; Theorem 3.2.1, page 48]. In

particular, he gave an affirmative answer to Problem 1 in the case k = 2 if the
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projections of K and L are directly congruent and have no direct rigid motion

symmetries.

If the bodies are symmetric, then the answers to Problems 1 and 2 are known

to be affirmative. In the case of projections they are the consequence of the

Aleksandrov Uniqueness Theorem about convex bodies, having equal volumes

of projections (see [Ga, Theorem 3.3.1, page 111]); in the case of sections they

follow from the Generalized Funk Theorem [Ga, Theorem 7.2.6, page 281].

In this paper we follow the ideas from [Go1] and [R] to obtain several Hadwiger-

type results related to both Problems 1 and 2 in the case k = 3. In order to

formulate these results we introduce some notation and definitions.

Let n ≥ 4 and let Sn−1 be the unit sphere in Rn. We will use the notation

w⊥ for the (n − 1)-dimensional subspace of Rn orthogonal to w ∈ Sn−1. We

denote by dK(ζ) the diameter of a convex body K, which is parallel to the

direction ζ ∈ Sn−1. We will also denote by O = Oζ ∈ O(n) the orthogonal

transformation satisfying O|ζ⊥ = −I|ζ⊥ , and O(ζ) = ζ.

We define the notion of rigid motion symmetry for sets, as it will be used

throughout the paper. Let D be a subset of H ∈ G(n, k), 3 ≤ k ≤ n − 1. We

say that D has a rigid motion symmetry if ϕ(D) = D+a for some vector a ∈ H

and some non-identical orthogonal transformation ϕ ∈ O(k,H) in H . Similarly,

D has a direct rigid motion symmetry if ϕ(D) = D + a for some vector a ∈ H

and some non-trivial rotation ϕ ∈ SO(k,H). In the case when D is a subset

of H ∈ G(n, 3), and ξ ∈ (H ∩ Sn−1), we say that D has a (ξ, απ)-symmetry if

ϕ(D) = D + a for some vector a ∈ H and some rotation ϕ ∈ SO(3, H) by the

angle απ, α ∈ (0, 2), satisfying ϕ(ξ) = ξ. If, in particular, the angle of rotation

is π, we say that D has a (ξ, π)-symmetry.

1.1. Results about directly congruent projections. We start with the

following 4-dimensional result.

Theorem 1: Let K and L be two convex bodies in R4 having countably many

diameters. Assume that there exists a diameter dK(ζ), such that the “side” pro-

jections K|w⊥, L|w⊥ onto all subspaces w⊥ containing ζ are directly congruent;

see Figure 1. Assume also that these projections have no (ζ, π)-symmetries and

no (u, π)-symmetries for any u ∈ (ζ⊥∩w⊥∩S3). ThenK = L+b orK = OL+b
for some b ∈ R4.

If, in addition, the “ground” projections K|ζ⊥, L|ζ⊥, are directly congruent

and do not have rigid motion symmetries, then K = L+ b for some b ∈ R4.
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Figure 1. Diameter dK(ζ), side projection K|w⊥ and ground

projection K|ζ⊥.

We state a straight n-dimensional generalization of Theorem 1 as a corollary.

Corollary 1: Let K and L be two convex bodies in Rn, n ≥ 4, having

countably many diameters. Assume that there exists a diameter dK(ζ) such that

the “side” projectionsK|H , L|H onto all 3-dimensional subspacesH containing

ζ are directly congruent. Assume also that these projections have no (ζ, π)-

symmetries and no (u, π)-symmetries for any u ∈ (ζ⊥ ∩ H ∩ Sn−1). Then

K = L+ b or K = OL+ b for some b ∈ Rn.

If, in addition, the “ground” projections K|G, L|G onto all 3-dimensional

subspaces G of ζ⊥ are directly congruent and have no rigid motion symmetries,

then K = L+ b for some b ∈ Rn.

In particular, we see that if K and L are convex bodies in Rn, n ≥ 4, hav-

ing countably many diameters, and directly congruent projections onto all 3-

dimensional subspaces, and if the “side” and “ground” projections related to

one of the diameters satisfy the conditions of the above corollary, then K and

L are translates of each other.

This statement was proved by Golubyatnikov [Go1, Theorem 3.2.1, page 48]

under the stronger assumptions that the “side” projections have no direct rigid



Vol. 215, 2016 DIRECTLY CONGRUENT PROJECTIONS 769

motion symmetries. Theorem 1 and Corollary 1 under the same stronger as-

sumptions are implicitly contained in his proof. To weaken the symmetry condi-

tions on the “side” projections we replace the topological argument from [Go1]

with an analytic one based on ideas from [R] (compare [Go1, pages 48–52] with

Proposition 1 in Section 3).

We note that the assumption about countability of the sets of the diameters

of K and L can be weakened. Instead, one can assume, for example, that

these sets are subsets of a countable union of the great circles containing ζ (see

Remark 3 after Lemma 13). We also note that the set of bodies considered

in the above statements contains the set of all polytopes whose 3-dimensional

projections do not have rigid motion symmetries. This set of polytopes is an

everywhere dense set with respect to the Hausdorff metric in the class of all

convex bodies in Rn, n ≥ 4. For the convenience of the reader we prove this in

the Appendix.

1.2. Results about directly congruent sections. The analytic approach

also allows to obtain results related to Problem 2 (see [Ga, pages 288–290, open

problems 7.1, 7.3, and Note 7.1]).

Theorem 2: Let K and L be two star-shaped bodies with respect to the origin

in R4, having countably many diameters. Assume that there exists a diameter

dK(ζ) containing the origin and parallel to ζ, such that for all subspaces w⊥

containing ζ, the “side” sectionsK∩w⊥, L∩w⊥, are directly congruent. Assume

also that these sections have no (ζ, π)-symmetries and no (u, π)-symmetries for

any u ∈ (ζ⊥ ∩ w⊥ ∩ S3). Then K = L + b or K = OL + b for some b ∈ R4

parallel to ζ.

As in the case of projections, we state a straight n-dimensional generalization

of Theorem 2 as a corollary.

Corollary 2: Let K and L be star-shaped bodies with respect to the origin

in Rn, n ≥ 4, having countably many diameters. Assume that there exists a

diameter dK(ζ) containing the origin, such that for all 3-dimensional subspaces

H containing ζ, the “side” sectionsK∩H , L∩H are directly congruent. Assume

also that these sections have no (ζ, π)-symmetries and no (u, π)-symmetries for

any u ∈ (ζ⊥∩H ∩S3). Then K = L+b or K = OL+b for some b ∈ Rn parallel

to ζ.
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Applying the ideas used in this paper, one can obtain similar results related

to both Problems 1 and 2 in the case k = 2; see [AC]. However, we are unaware

of results related to the case k ≥ 4.

The paper is organized as follows. In Section 3 we formulate and prove

our main auxiliary result, Proposition 1. Section 4 is devoted to the proof of

Theorem 1 and Corollary 1. Theorem 2 and Corollary 2 are proved in Section 5.

We prove that the set of polytopes in Rn, n ≥ 4, with 3-dimensional projections

having no rigid motion symmetries is dense in the Hausdorff metric in the class

of all convex bodies in the Appendix.

2. Notation and auxiliary definitions

We will use the following standard notation. The unit sphere in Rn, n ≥ 2, is

Sn−1. Given w ∈ Sn−1, the hyperplane orthogonal to w and passing through

the origin will be denoted by w⊥ = {x ∈ Rn : x · w = 0}. Here x · w =

x1w1 + · · ·+ xnwn is the usual inner product in Rn. The Grassmann manifold

of all k-dimensional subspaces in Rn will be denoted by G(n, k). The notation

O(k) and SO(k), 2 ≤ k ≤ n, for the subgroups of the orthogonal group O(n)

and the special orthogonal group SO(n) in Rn is standard. If U ∈ O(n) is an

orthogonal matrix, we will write U t for its transpose.

We refer to [Ga, Chapter 1] for the next definitions involving convex and star

bodies. A body in Rn is a compact set which is equal to the closure of its non-

empty interior. A convex body is a body K such that for every pair of points

in K, the segment joining them is contained in K. For x ∈ Rn, the support

function of a convex body K is defined as hK(x) = max{x · y : y ∈ K} (see

page 16 in [Ga]). The width function ωK(x) of K in the direction x ∈ Sn−1 is

defined as ωK(x) = hK(x)+hK(−x). A segment [z, y] ⊂ K is called a diameter

of the convex body K if |z − y| = max{θ∈Sn−1} ωK(θ). We say that a convex

body K ⊂ Rn has countably many diameters if the width function ωK reaches

its maximum on a countable subset of Sn−1.

Observe that a convex body K has at most one diameter parallel to a given

direction ζ ∈ Sn−1 (for, if K had two parallel diameters d1, d2, then K would

contain a parallelogram with sides d1 and d2, one of whose diagonals is longer

than d1). For this reason, if K has a diameter parallel to ζ ∈ Sn−1, we will

denote it by dK(ζ).
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A set S ⊂ Rn is said to be star-shaped with respect to a point p if the line

segment from p to any point in S is contained in S. For x ∈ Rn \ {0}, and
K ⊂ Rn a nonempty, compact, star-shaped set with respect to the origin, the

radial function of K is defined as ρK(x) = max{c : cx ∈ K}. Here, the line

through x and the origin is assumed to meet K ([Ga, page 18]). We say that

a body K is a star body if K is star-shaped with respect to the origin and its

radial function ρK is continuous.

Given a star body K, a segment [z, y] ⊂ K is called a diameter of K if

|z − y| = max{[a,b]⊂K} |a − b|. If a star body K, which is not convex, has a

diameter containing the origin, that is parallel to ζ ∈ Sn−1, we will also denote

it by dK(ζ).

Given ζ ∈ Sn−1, the great (n − 2)-dimensional sub-sphere of Sn−1 that is

perpendicular to ζ will be denoted by Sn−2(ζ) = {θ ∈ Sn−1 : θ · ζ = 0}. For

t ∈ [−1, 1], the parallel to Sn−2(ζ) at height t will be denoted by Sn−2
t (ζ) =

Sn−1 ∩ {x ∈ Rn : x · ζ = t}. Observe that when t = 0, Sn−2
0 (ζ) = Sn−2(ζ).

Figure 2 shows the case n = 4.

Figure 2. The great subsphere S2(ζ) and the parallel S2
t (ζ).

Let E be a 2- or 3-dimensional subspace of Rn. We will write ϕE ∈ SO(2, E),

or ϕE ∈ SO(3, E), meaning that there exists a choice of an orthonormal basis in

Rn and a rotation Φ ∈ SO(n), with a matrix written in this basis, such that the

action of Φ on E is the rotation ϕE in E, and the action of Φ on E⊥ is trivial,

i.e., Φ(y) = y for every y ∈ E⊥ (here E⊥ stands for the orthogonal complement

of E). A similar notation will be used for ϕE ∈ O(3, E). For w ∈ S3,

we will denote by O(3, S2(w)), SO(3, S2(w)) the orthogonal transformations
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in the 3-dimensional subspace spanned by the great subsphere S2(w) of S3.

The restriction of a transformation ϕ ∈ O(n) onto the subspace of smallest

dimension containing W ⊂ Sn−1 will be denoted by ϕ|W ; I stands for the

identity transformation.

Finally, we define the notion of rotational symmetry for functions, as it will

be used throughout the paper. Let ζ ∈ S3, and let w ∈ S2(ζ). For α ∈ [0, 2],

we will denote by ϕαπ
w the rotation of the sphere S2(w) by the angle απ around

ζ, i.e., ϕαπ
w (ζ) = ζ. By this we mean that ϕαπ

w is the restriction to the 3-

dimensional subspace spanned by S2(w) of a rotation Φ ∈ SO(4) with the

following properties: Φ(ζ) = ζ, Φ(w) = w, if {x, y, w, ζ} is a positively oriented

orthonormal basis of R4, then for every v ∈ (span{x, y}∩S3) = S2(w)∩S2(ζ),

the angle between the vectors v and ϕαπ
w (v) ∈ S2(w) ∩ S2(ζ) is απ, and if

α �= 0, 1, 2, {v, ϕαπ
w (v), w, ζ} form a positively oriented basis of R4.

Definition 1: Let f be a continuous function on S3 and let ξ ∈ S3. We say that

the restriction of f onto S2(ξ) (or just f) has a (ζ, απ)-rotational symmetry if for

some rotation ϕαπ
ζ ∈ SO(3, S2(ξ)) by the angle απ about the vector ζ ∈ S2(ξ),

one has f ◦ ϕαπ
ζ = f on S2(ξ). In particular, if α = 1, we say that f has a

(ζ, π)-rotational symmetry on S2(ξ).

3. A result about a functional equation on S3

In [R], the third author proved that if two continuous functions F and G

on S2 coincide up to rotation on each 1-dimensional great circle, then either

F (x) = G(x) or F (x) = G(−x) for every x ∈ S2. The main result of this

section is a related statement for S3, which, in our opinion, has independent

interest.

Proposition 1: Let f and g be two continuous functions on S3. Assume

that for some ζ ∈ S3 and for every w ∈ S2(ζ) there exists a rotation ϕw ∈
SO(3, S2(w)), verifying that

(1) f ◦ ϕw(θ) = g(θ), ∀θ ∈ S2(w).

Assume, in addition, that one of the following conditions holds:

(a) ϕw(ζ) = ζ ∀w ∈ S2(ζ);

(b) ϕw(ζ) = ±ζ ∀w ∈ S2(ζ), and f and g have no (ζ, π)-rotational symmetries

and no (u, π)-rotational symmetries for any u ∈ S2(ζ) ∩ S2(w).
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Figure 3. The upper figure depicts S3 with the 2-dimensional

great subspheres S2(ζ), dashed, and S2(w), dotted; the two

larger dots stand for the 1-dimensional subsphere S2(w)∩S2(ζ).

The lower figures depict S2(ζ) and S2(w), within their corre-

sponding 3-dimensional subspaces.

Then either f = g on S3 or f(θ) = g(Oθ) ∀θ ∈ S3, where O ∈ O(4) is the

orthogonal transformation satisfying O|S2(ζ) = −I, and O(ζ) = ζ.

3.1. Auxiliary Lemmata. The direction ζ ∈ S3 will be fixed throughout

the proof. We start with an easy observation about the geometry of the 3-

dimensional sphere.

Lemma 1: Let ζ ∈ S3 and let ξ ∈ S2(ζ). Then

(2) S3 =
⋃

{w∈S2(ξ)∩S2(ζ)}
S2(w).
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Proof. For any w ∈ S2(ζ), the 2-dimensional sphere S2(w) can be written as

the union of all 1-dimensional parallels S2(w) ∩ S2
t (ζ), t ∈ [−1, 1], i.e

(3) S2(w) =
⋃

{t∈[−1,1]}
(S2(w) ∩ S2

t (ζ)).

On the other hand, we can write the 2-dimensional sphere S2(ζ) as the union

of all meridians containing a fixed direction ξ ∈ S2(ζ) as

S2(ζ) =
⋃

{w∈S2(ξ)∩S2(ζ)}
(S2(w) ∩ S2(ζ)),

and, rescaling, the same is true for every S2
t (ζ), t ∈ [−1, 1] Thus, we have

(4) S2
t (ζ) =

⋃
{w∈S2(ξ)∩S2(ζ)}

(S2(w) ∩ S2
t (ζ)) ∀t ∈ [−1, 1].

Combining (3) and (4), we obtain

S3 =
⋃

{t∈[−1,1]}
S2
t (ζ) =

⋃
{t∈[−1,1]}

⋃
{w∈S2(ξ)∩S2(ζ)}

(S2(w) ∩ S2
t (ζ))

=
⋃

{w∈S2(ξ)∩S2(ζ)}

⋃
{t∈[−1,1]}

(S2(w) ∩ S2
t (ζ)) =

⋃
{w∈S2(ξ)∩S2(ζ)}

S2(w).

Let O ∈ O(4) be an orthogonal transformation, satisfying O|S2(ζ) = −I,
and O(ζ) = ζ. Observe that O|S2(w) commutes with every rotation ϕw ∈
SO(3, S2(w)), such that ϕw(ζ) = ±ζ, where w ∈ S2(ζ). It is clear that any

function f on S3 can be decomposed in the form

(5) f(θ) =
f(θ) + f(Oθ)

2
+
f(θ)− f(Oθ)

2
= fO,e(θ) + fO,o(θ), θ ∈ S3,

where we will call fO,e, fO,o, the even and odd parts of f with respect to O.

Since O2 = I, we have

fO,e(θ) = fO,e(Oθ), fO,o(θ) = −fO,o(Oθ).
It is also clear that every θ ∈ S3 belongs to S2

t (ζ) for some t ∈ [−1, 1], i.e., it

can be written in the form

(6) θ =
√

1− t2x+ tζ,

for some t ∈ [−1, 1] and x ∈ S2(ζ) (see Figure 2).

Let t ∈ [−1, 1]. For any function f on S3, we can define the function Ft on

S2(ζ),

(7) Ft(x) = Ft,ζ(x) = f(
√
1− t2x+ tζ), x ∈ S2(ζ),
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which is the restriction of f to S2
t (ζ). Observe that

(Ft)e(x) =
f(
√
1− t2x+ tζ) + f(−√

1− t2x+ tζ)

2
=
f(θ) + f(Oθ)

2
,

where θ is as in (6), i.e.,

(8) (Ft)e(x) = fO,e(θ), (Ft)o(x) = fO,o(θ).

Note that (Ft)e(x) = (Ft)e(−x) for every x ∈ S2(ζ).

As seen in the proof of Lemma 1, every 1-dimensional great circle of S2(ζ)

is of the form S2(w) ∩ S2(ζ) for some w ∈ S2(ζ). To simplify the notation, we

will denote such great circles by

E = Eζ,w = {θ ∈ S3 : θ · ζ = θ · w = 0}.
Since ϕw(ζ) = ±ζ and ϕw(S

2(w)) = S2(w), we have

ϕw(Eζ,w) = ϕw(S
2(w) ∩ S2(ζ)) = S2(w) ∩ S2(ζ) = Eζ,w.

Thus, for every t ∈ [−1, 1], and for the corresponding 1-dimensional equator

E = Eζ,w of S2(ζ), there is a rotation φE ∈ SO(2, E), which is the restriction

to E of the rotation ϕw ∈ SO(3, S2(w)) given by the conditions of Proposition

1, and which satisfies

(9) Ft ◦ φE(x) = Gt(x) ∀x ∈ E,

Here Gt is defined from g similarly to Ft in (7).

In the next lemma, we will need to use the Funk transform, [He, Chapter III,

§1)],
Rf(w) = Rζf(w) =

∫
S2(w)∩S2(ζ)

f(θ)dθ, w ∈ S2(ζ).

Here dθ stands for the Lebesgue measure on the 1-dimensional great circle

E = S2(w) ∩ S2(ζ) of S2(ζ).

Lemma 2: Let f and g be as in Proposition 1. Then fO,e = gO,e.

Proof. Let w ∈ S2(ζ), and let ϕw ∈ SO(3, S2(w)) be such that (1) holds.

Then, φE = ϕw|S2(w)∩S2(ζ) ∈ SO(2, E) is the corresponding rotation in E =

S2(w) ∩ S2(ζ). By the rotation invariance of the Lebesgue measure on E and

(9), we have

(10)

∫
E

Ft(x)dx =

∫
E

Ft ◦ φE(x)dx =

∫
E

Gt(x)dx, ∀t ∈ [−1, 1].
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Hence, RζFt(w) = RζGt(w) for every w ∈ S2(ζ). Thus, (Ft)e(x) = (Gt)e(x) for

every x ∈ S2(ζ) (apply Theorem C.2.4 from [Ga, page 430] to (Ft)e − (Gt)e).

Using the first relation in (8), its analogue for g, and (3), we obtain the desired

result.

Remark 1: By the previous Lemma, to prove Proposition 1 we can (and from

now on will) assume that the functions f and g are odd with respect to O. In

order to simplify the notation, from now on we will write f and g instead of

fO,o and gO,o. We will also write Ft for (Ft)o and Gt for (Gt)o.

We consider the set Ψ = {w ∈ S2(ζ) : ϕw(ζ) = −ζ}, and for any α ∈ [0, 2],

the set Ξα, defined as

(11) Ξα =
{
w ∈ S2(ζ) : ∃ϕαπ

w ∈ SO(3, S2(w)) such that

f ◦ ϕαπ
w = g on S2(w) and ϕαπ

w (ζ) = ζ
}
.

Observe that Ξ0 = {w ∈ S2(ζ) such that f = g on S2(w)}, and
(12) Ξ1 = {w ∈ S2(ζ) : f(θ) = g(Oθ) ∀θ ∈ S2(w)}.
With this notation, the result of Proposition 1 is that S2(ζ) = Ξ0 or S2(ζ) =

Ξ1, under either hypothesis (a) or (b). We will divide the proof into several

Lemmata.

Lemma 3: The set Ξα is closed.

Proof. We can assume that Ξα is not empty.

Let (wl)
∞
l=1 be a sequence of elements of Ξα converging to w ∈ S2(ζ) as

l → ∞, and let θ be any point on S2(w). Consider a sequence (θl)
∞
l=1 of points

θl ∈ S2(wl) converging to θ as l → ∞.

(It is readily seen that such a sequence exists. Indeed, let B 1
l
(θ) be a Eu-

clidean ball centered at θ of radius 1
l , where l ∈ N. Since S2(wm) → S2(w) as

m→ ∞, for each l ∈ N there exists m = m(l) such that

S2(wm(l)) ∩B 1
l
(θ) �= ∅.

Choose any θl = θm(l) ∈ S2(wm(l)) ∩B 1
l
(θ). Then θl → θ as l → ∞.)

By the definition of Ξα, we see that

(13) f ◦ ϕαπ
wl

(θl) = g(θl) θl ∈ S2(wl), l ∈ N.

Passing to a subsequence if necessary, we can assume that the sequence of rota-

tions (ϕαπ
wl

)∞l=1, ϕ
απ
wl

∈ SO(3, S2(wl)), is convergent, say, to ϕw ∈ SO(3, S2(w)).
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Writing out the matrices of rotations ϕαπ
wl

in the corresponding orthonormal

bases {xl, yl, wl, ζ}, xl, yl∈ S2(wl) ∩ S2(ζ), and passing to the limit as l → ∞
we see that ϕw is the rotation by the angle απ and the limit of (13) is f ◦ϕw(θ) =

g(θ). Since the choice of θ ∈ S2(w) was arbitrary, we obtain that w ∈ Ξα, and

the result follows.

Remark 2: A similar argument can be used to show that the set Ψ is closed.

Lemma 4: If α ∈ (R \Q) ∩ [0, 2], then Ξα ⊂ Ξ0.

Proof. Assume that Ξα �= ∅ and let w ∈ Ξα. Following the ideas of Schneider

[Sch1], we claim at first that f2 = g2 on S2(w). Indeed, since f and g are odd

with respect to O, f2 and g2 are even with respect to O, and satisfy (1) with

f2, g2 instead of f , g. Thus, by Lemma 2, we obtain that f2 = g2 on S2(w).

Squaring (1), we have (with ϕw = ϕαπ
w )

f2 ◦ ϕw(θ) = g2(θ) = f2(θ) ∀θ ∈ S2(w).

Iterating for any k ∈ Z,

f2 ◦ ϕk
w(θ) = f2 ◦ ϕk−1

w (θ) = · · · = f2(θ) ∀θ ∈ S2(w),

and using the fact that for every θ ∈ S2(w), the orbit of (ϕk
w(θ))k∈Z is dense

on every parallel S2(w) ∩ S2
t (ζ) of S2(w) (where t ∈ [−1, 1]), we obtain that

the restrictions of f2 and g2 onto S2(w) are invariant under rotations leaving

ζ fixed. In other words, f2 and g2 are constant on every parallel of S2(w)

orthogonal to ζ. By continuity, f and g must also be constant on these parallels

and f ◦ϕw = f . Hence, using (1) we have f = g on S2(w), and therefore w ∈ Ξ0.

Since w from Ξα was chosen arbitrarily, we obtain the desired result.

In Lemma 4, we have shown that rotations whose angle is an irrational mul-

tiple of π are not relevant under the assumptions of Proposition 1. Our next

goal is to prove that rational multiples are not relevant either, except for the

rotations by the angles 0 and π. This will be achieved in Lemma 8, by means

of a topological argument, which is based on one definition and two Lemmata

from [R] (see Lemmata 5 and 6 below). The argument will show that for

each t ∈ (−1, 1) and an appropriate w ∈ S2(ζ), the subset of a great circle

S2(w) ∩ S2(ζ), where the functions Ft = Gt are equal to each other, is open.

Since such a set is closed by definition, and it is non-empty, we will conclude
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that Ft equals Gt on this large circle. Using (3) we will obtain that f = g on

the corresponding S2(w), which will give us the desired result.

We will reformulate the corresponding statements from [R] in a way that is

more convenient for us here. Refer to Figure 4 for the next definition.

Definition 2: Let α ∈ (0, 1) and let S1, S2 be any two spherical circles in the

standard metric of S2(ζ), both of radius απ. The union l ∪m of two open arcs

l ⊂ S1 and m ⊂ S2 will be called a spherical X-figure if the angle between the

arcs is in (0, π4 ), the length of the arcs is less than απ, and the arcs intersect at

their centers only, l∩m = {x}. The point x ∈ S2(ζ) will be called the center of

the X-figure.

Figure 4. The spherical X-figures from Definition 2

Let t ∈ (−1, 1), Ft be a function on S2(ζ), and x be the center of a spherical

X-figure. If for every u ∈ X we have Ft(u) = Ft(x), we will say that there exists

an X-figure XFt(x) ⊂ S2(ζ). The following two Lemmata are Lemma 10 and

Lemma 12 from [R, pages 3438–39] (with f = Ft, g = Gt, fe = F 2
t , S

2 = S2(ζ)

and S2(w) ∩ S2(ζ) instead of ξ⊥).
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Lemma 5: Let t ∈ (−1, 1), and let Ft and Gt be two continuous functions on

S2(ζ). Assume that there is an open spherical cap U ⊂ Ξ p
q
, with p

q ∈ (0, 1)∩Q,

such that for every w ∈ U , there exists a rotation φw = φw,ζ of the great circle

S2(w) ∩ S2(ζ) by the angle p
qπ, verifying

(14) Ft ◦ φw(x) = Gt(x) ∀x ∈ S2(w) ∩ S2(ζ).

Then, for every x ∈ S2(w) ∩ S2(ζ) there exists an X-figure XF 2
t (x)

⊂ S2(ζ),

with one of the arcs of XF 2
t (x)

being orthogonal to S2(w)∩S2(ζ). Moreover, for

every x, y ∈ S2(w) ∩ S2(ζ) there exist X-figures XF 2
t (x)

, XF 2
t (y)

∈ S2(ζ), such

that

Θ(XF 2
t (x)

) = XF 2
t (y)

,

where Θ ∈ SO(3, S2(ζ)) is such that Θ(w) = w and Θ(x) = y.

Lemma 6: Let t ∈ (−1, 1), and let Ft, Gt, and U be as above. Then, for

every w ∈ U there exists a constant c such that F 2
t (x) = G2

t (x) = c for every

x ∈ S2(w) ∩ S2(ζ).

Observe that since any two great circles of S2(ζ) intersect, the above constant

is actually independent of w ∈ U .

Lemma 7: Let t ∈ (−1, 1), and let Ft, Gt, and U be as above. Then f = g = 0

on S2(w) for every w ∈ U .

Proof. Let w be any point in U , and let t ∈ (−1, 1). By Remark 1, f and g

are odd with respect to O on S3. Using the second relation in (8), we see that

Ft, Gt are odd on S2(ζ). By continuity, there exist x1, x2 ∈ S2(w) ∩ S2(ζ)

such that Ft(x1) = Gt(x2) = 0. By Lemma 6, F 2
t (x) = G2

t (x) = 0 for every

x ∈ S2(w) ∩ S2(ζ). Using (7) and the continuity of f and g, we see that the

last statement is true for all t ∈ [−1, 1]. Finally, using (3) and (7) again, we

conclude that f = g = 0 on S2(w).

Now we are ready to prove

Lemma 8: We have S2(ζ) = Ξ0 ∪ Ξ1 ∪Ψ.

Proof. Assume that the set A := S2(ζ)\ (Ξ0∪Ξ1∪Ψ) is not empty. By Lemma

4, A ∩ Ξα = ∅, provided that α ∈ [0, 2] \Q. Hence, A may be written as

A =
⋃

p
q ∈Q∩[0,2]

(
A ∩ Ξ p

q

)
.
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By Lemma 3, all Ξ p
q
are closed and A is open. Hence, by the Baire category The-

orem (cf. Lemma 8 from [R]), there exists p
q ∈ Q ∩ [0, 2] such that int(Ξ p

q
) �= ∅.

We can assume that there exists an open spherical cap U ⊆ (A∩Ξ p
q
) such that

for every w ∈ U , there is a rotation ϕ
p
q π
w ∈ SO(3, S2(w)) such that

f ◦ ϕ
p
q π
w = g on S2(w).

In particular, for any t ∈ (−1, 1), and for every large circle E = S2(w) ∩ S2(ζ)

of S2(ζ) there exists a rotation φw ∈ SO(2, E) by the angle p
qπ such that (14)

holds. Changing the orientation if necessary, we can assume that p/q is between

0 and 1.

By Lemma 6, F 2
t (x) = G2

t (x) = c for every x ∈ S2(w) ∩ S2(ζ), and by

Lemma 7 we have f = g = 0 on S2(w). Hence, w ∈ Ξ0, which is impossible,

since w ∈ A. The result follows.

3.2. Proof of Proposition 1 under hypothesis (a). Under hypothesis

(a), the set Ψ is empty. Thus, by Lemma 8, we have that S2(ζ) = Ξ0 ∪ Ξ1.

The proof of the next result is similar to the one of Lemma 1 in [R, page

3434] (with Ξ1 instead of Ξπ and S2(ξ) ∩ S2(ζ) instead of ξ⊥).

Lemma 9: Let ζ ∈ S3, ξ ∈ S2(ζ). Assume that

(S2(ξ) ∩ S2(ζ)) ∩ Ξ0 ∩ Ξ1 = ∅.
Then,

(15) either (S2(ξ) ∩ S2(ζ)) ⊂ (Ξ0 \ Ξ1) or (S2(ξ) ∩ S2(ζ)) ⊂ (Ξ1 \ Ξ0).

If we assume that Ξ1 = ∅, then S2(ζ) = Ξ0, and therefore f(θ) = g(θ) for

every θ ∈ S3. On the other hand, if Ξ0 = ∅, we have that S2(ζ) = Ξ1, which

means that f(θ) = g(Oθ) for every θ ∈ S3. Hence, in these two situations we

obtain the desired conclusion.

Let us now assume that both Ξ0, Ξ1 are not empty. We can also assume that

Ξ0 ∩Ξ1 �= ∅. Indeed, let w be a point on the boundary of Ξ0, (w ∈ Ξ0, since Ξ0

is closed). Then for every l ∈ N, the set B 1
l
(w) ∩ S3 contains a point wl from

Ξ1. But then wl → w as l → ∞, hence w ∈ Ξ1, and w ∈ Ξ0 ∩ Ξ1.

We shall consider two cases:

1) There exists ξ ∈ S2(ζ) such that Ξ0 ∩ Ξ1 ∩ S2(ξ) = ∅.
2) For every x ∈ S2(ζ) we have Ξ0 ∩ Ξ1 ∩ S2(x) �= ∅.
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Consider the first case. Using Lemma 9, we obtain (15). If the first relation in

(15) holds, then, by Lemma 1, we have S3 =
⋃

{w∈Ξ0} S
2(w), and f(θ) = g(θ)

for every θ ∈ S3. If the second relation in (15) holds, then, using Lemma 1

again, we obtain S3 =
⋃

{w∈Ξ1} S
2(w), and f(θ) = g(Oθ) for every θ ∈ S3.

Consider the second case. We claim that

(16) S2(ζ) =
⋃

{u∈(Ξ0∩Ξ1)}
(S2(u) ∩ S2(ζ)).

Indeed, let x ∈ S2(ζ). By the hypothesis of the second case, the set Ξ0∩ Ξ1∩ S2(x)

is non-empty. Let u ∈ Ξ0 ∩ Ξ1 ∩ S2(x). Then x ∈ S2(u), and hence x ∈
S2(u) ∩ S2(ζ), from which it follows that

x ∈
⋃

{u∈(Ξ0∩Ξ1)}
(S2(u) ∩ S2(ζ)),

thus proving (16). Using (16), the fact that S3 =
⋃

{v∈S2(ζ)} S
2(v), and an

argument similar to the one in the proof of Lemma 1, we conclude that

(17) S3 =
⋃

{u∈(Ξ0∩Ξ1)}
S2(u).

It is easy to see that if (17) holds, then f and g are zero on S3, and we are

done. Indeed, let θ ∈ S3. Then θ ∈ S2(w) for some w ∈ (Ξ0 ∩ Ξ1). Using (12)

we see that f(θ) = g(θ) = g(Oθ). Since g is odd with respect to O, we have

g(θ) = f(θ) = 0. Since θ was arbitrary, we have proved that if (17) holds, then

f = g = 0 on S3.

Thus, in all possible cases, we have shown that if f and g are odd with respect

to O, then either f(θ) = g(θ) for every θ ∈ S3, or f(θ) = g(Oθ) for every θ ∈ S3

(see Remark 1). Proposition 1 is proved under hypothesis (a).

3.3. Proof of Proposition 1 under hypothesis (b). By Lemma 8, we

have that S2(ζ) = Ξ0 ∪Ξ1 ∪Ψ. We will show that the additional hypothesis on

the lack of symmetries for f and g implies that Ψ must be empty. This will be

achieved in Lemmata 10−12.

Lemma 10: We have (Ξ0 ∪ Ξ1) ∩Ψ = ∅.
Proof. Assume that (Ξ0∪Ξ1)∩Ψ is nonempty, and let w ∈ (Ξ0∪Ξ1)∩Ψ. Using

the definition of Ξ0,Ξ1 and Ψ, we have

f ◦ ϕw = g, f ◦ ψw = g on S2(w),
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where ϕw, ψw ∈ SO(3, S2(w)) are rotations satisfying ϕw(ζ) = ζ, ψw(ζ) = −ζ.
If w ∈ Ξ0, then ϕw is trivial, and we have f = f ◦ ψw on S2(w). Since

any 3-dimensional rotation has a 1-dimensional invariant subspace, there exists

u ∈ S2(w) ∩ S2(ζ) such that ψw(u) = u. This means that f has a (u, π)-

rotational symmetry, which is impossible by the assumptions of Proposition 1.

If w ∈ Ξ1, then ϕw is the rotation by angle π around ζ, while ψw is the

rotation by angle π around u ∈ S2(w) ∩ S2(ζ). Since ϕ−1
w = ϕw, it follows that

f = f ◦ϕw ◦ψw. It is well known (see, for example, [RS]) that the composition

of two rotations by π about axes that are separated by an angle β, is a rotation

by 2β about an axis perpendicular to the axes of the given rotations. Since ζ

and u are perpendicular, we conclude that ϕw ◦ ψw is a rotation by π around

v ∈ S2(w)∩ S2(u)∩S2(ζ). Hence, f has a (v, π)-rotational symmetry, which is

impossible by the assumptions of Proposition 1. Thus, (Ξ0 ∪ Ξ1) ∩ Ψ = ∅, and
the Lemma is proved.

Lemma 10 implies that either S2(ζ) = Ξ0 ∪ Ξ1 or S2(ζ) = Ψ. The first case

was already considered in the proof of Proposition 1 with hypothesis (a).

Consider the second case. To prove the next lemma we will need the following

result of Radin and Sadun [RS]: Let A and B be rotations of finite order in the

Euclidean 3-space, about axes that are themselves separated by an angle which

is a rational multiple of π. Then, the 2-generator subgroup of SO(3), generated

by A and B, is infinite and dense, except in the following cases: if one generator

has order 1, the group is cyclic; if one generator has order 2 and the axes are

orthogonal, the group is dihedral; and if both generators have order 4 and the

axes are orthogonal, the group is the symmetries of the cube.

Lemma 11: Assume that S2(ζ) = Ψ. Then ∀w ∈ S2(ζ) there exists a unique

rotation ϕw ∈ SO(3, S2(w)) by the angle π around some u ∈ S2(w) ∩ S2(ζ),

satisfying (1).

Proof. Assume that for some w ∈ S2(ζ) there exist two different rotations,

ϕ̃1 �= ϕ̃2, around u1 �= ±u2, u1, u2 ∈ S2(w) ∩ S2(ζ), satisfying

(18) f ◦ ϕ̃1(θ) = g(θ), f ◦ ϕ̃2(θ) = g(θ) ∀θ ∈ S2(w).

Then, f ◦ϕ̃1(θ) = f ◦ϕ̃2(θ) for every θ ∈ S2(w). This implies that f = f ◦ϕ̃1◦ϕ̃2

on S2(w), where ϕ̃1 ◦ ϕ̃2 is the rotation by angle 2β around ζ, and β is the angle
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between u1 and u2. Hence, f has a (ζ, 2β)-rotational symmetry. We claim that

this is impossible.

Hypothesis (b) excludes the case β = π
2 . If β is a rational multiple of π,

β �= π
2 , by the remarks before Lemma 11, we see that the 2-generator subgroup,

generated by ϕ̃1, ϕ̃2 (both of which have order 2) is dense in SO(3, S2(w)).

Using (18), we obtain

(19) f2 ◦ ϕ̃1(θ) = g2(θ) = f2 ◦ ϕ̃2(θ) ∀θ ∈ S2(w),

which implies

(20) f2 ◦ ϕ̃1(θ) = f2 ◦ ϕ̃2(θ) = f2 ◦ ϕ̃1 ◦ ϕ̃2(θ) = f2(θ) ∀θ ∈ S2(w).

Since for every θ ∈ S2(w) the sequence of points ϕ̃1(θ), ϕ̃2(θ), ϕ̃1 ◦ ϕ̃2(θ),...,

generated by the words with letters ϕ̃1, ϕ̃2, is dense in S2(w), the functions f2

and g2 must be identically constant (zero, since they are the squares of the odd

functions) on S2(w), and hence f and g must equal zero. Then, w ∈ Ξ0 ∩ Ψ,

which contradicts Lemma 10.

Similarly, if β is an irrational multiple of π, then, using (20) and an argument

similar to the one in Lemma 4, we see that f is constant on every parallel of

S2(w) orthogonal to ζ. We conclude that f has a (ζ, π)-symmetry.

Thus, the rotation ϕw ∈ SO(3, S2(w)) must be unique, and the lemma is

proved.

The idea of the proof of the following statement is taken from [Go1, Lemma

3.2.1, page 48, and the third paragraph on page 51].

Lemma 12: Assume that S2(ζ) = Ψ. Then there exist a continuous tangent

line field on S2(ζ).

Proof. Let A be the function assigning to each w ∈ S2(ζ) the rotation A(w) =

ϕw ∈ SO(3, S2(w)) by the angle π around some u ∈ S2(w)∩S2(ζ), ϕw(ζ) = −ζ.
By Lemma 11, the map A is well-defined. We claim that A is continuous. Let

(wl)
∞
l=1 be a convergent sequence of directions from S2(ζ), with liml→∞ wl = w,

and let (ϕl)
∞
l=1 be the corresponding sequence of rotations in S

2(wl),with ϕl(ζ) =

−ζ, for every l ∈ N. First, we prove that (ϕl)
∞
l=1 is convergent. Let (θl)

∞
l=1,

θl ∈ S2(wl), be a sequence converging to any point θ ∈ S2(w) as l → ∞ (the

existence of such a sequence can be shown as in Lemma 3). If (ϕl)
∞
l=1 were not

convergent, then there would exist two subsequences (ϕml
)∞l=1 and (ϕjl)

∞
l=1, with
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ϕ̃1 := liml→∞ ϕml
�= liml→∞ ϕjl =: ϕ̃2. Passing to the limit in the equalities

f ◦ ϕwml
(θml

) = g(θml
), f ◦ ϕwjl

(θjl) = g(θjl),

on the corresponding equators S2(wml
), S2(wjl), and using the fact that θ was

an arbitrary point in S2(w), we obtain (18). As we saw in the proof of the

previous lemma, this is impossible. This contradiction shows that the sequence

(ϕl)
∞
l=1 is convergent.

To show that A is continuous, it remains to prove that liml→∞ ϕl = ϕw.

Assume that the last equality is not true, and let liml→∞ ϕl = ϕ̃1 �= ϕw. Then

we have (18) with ϕ̃2 = ϕw, which is, as we have already seen, impossible.

Thus, A is continuous.

Consider now the map B assigning to each w ∈ S2(ζ) the 1-dimensional

invariant subspace Y(w) of the corresponding rotation ϕw ∈ SO(3, S2(w)),

ϕw(ζ) = −ζ. A similar argument to the one used for A allows us to show that

the map B is well-defined and continuous. Observe also that Y(w) ⊂ (w⊥∩ζ⊥).
Thus, assuming that S2(ζ) = Ψ, we have constructed a continuous tangent line

field Y(w) on S2(ζ).

It is a well-known result of Hopf (see [Mi], [Sa]) that if a compact differentiable

manifoldM admits a continuous tangent line field, then the Euler characteristic

of M is zero. Since the Euler characteristic of the 2-dimensional sphere is 2,

the assumption that S2(ζ) = Ψ leads to a contradiction, as seen in Lemma 12.

Proposition 1 is proven.

4. Proofs of Theorem 1 and Corollary 1

The proof of Theorem 1 relies on the existence of a diameter dK(ζ) of the

body K, for which we have information about the side projections of K and

L. The main idea of the proof [Go1] is to observe that if the width function

ωK achieves its maximum at the direction ζ, then the hypotheses of Theorem

1 imply that the body L also has a diameter in the direction ζ, and both

diameters have the same length (Lemma 13). Therefore, we can translate the

bodies to make the diameters coincide and be centered at the origin (Lemma

14). Next, sinceK and L have countably many diameters, it follows that almost

all 3-dimensional projections of the translated bodies K̃ and L̃ contain only this

particular diameter, and thus the direct rigid motion given by the statement

of Theorem 1 must fix it. There are only two possibilities, namely, that the
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rigid motion is a rotation around the diameter, or a rotation around a line

perpendicular to the diameter. We thus reduce matters to Proposition 1 with

f = hK̃ and g = hL̃.

4.1. Auxiliary Lemmata. Let ζ ∈ S3 be the direction of the diameter dK(ζ)

given by the statement of Theorem 1. By hypothesis, the projectionsK|w⊥ and

L|w⊥ are directly congruent for every w ∈ S2(ζ). Hence, for every w ∈ S2(ζ)

there exists χw ∈ SO(3, S2(w)) and aw ∈ w⊥ such that

(21) χw(K|w⊥) = L|w⊥ + aw.

Let AK ⊂ S3 be the set of directions parallel to the diameters of K, and

AL ⊂ S3 be the set of directions parallel to the diameters of L. We define

(22) Ω = {w ∈ S2(ζ) : (AK ∪ AL) ∩ S2(w) = {±ζ}}.
We will repeatedly use the following well-known properties of the support

function. For every convex body K̃,

(23) hK̃|w⊥(x) = hK̃(x) and hχw(K̃|w⊥)(x) = hK̃|w⊥(χ
t
w(x)), ∀x ∈ w⊥

(see, for example, [Ga, (0.21), (0.26), pages 17–18]).

Our first goal is to reduce matters to rotations fixing the 1-dimensional sub-

space containing ζ. We will do this by showing that for most of the directions

w ∈ S2(ζ) the projections K|w⊥ and L|w⊥ have exactly one diameter, parallel

to ζ.

Lemma 13: LetK and L be as in Theorem 1, and let ζ ∈ AK . Then ζ ∈ AL and

Ω is everywhere dense in S2(ζ). Moreover, for every w ∈ Ω we have χw(ζ) = ±ζ
and ωK(ζ) = ωL(ζ).

Proof. Using (23), we see that the length of diameters dK|w⊥(ζ) and dK(ζ) is

the same for every w ∈ S2(ζ). Let ξ be any element of AL, and let w ∈ S2(ζ)

be such that S2(w) � ζ, ξ. Since K|w⊥ and L|w⊥ are directly congruent, and

the length of the diameters is not changed under rigid motions, we have that

the diameter of K in the direction ζ has the same length as the diameter of L

in the direction ξ.

We prove that Ω is everywhere dense in S2(ζ). Suppose ξ ∈ (S2(ζ)\Ω). Then
there exists η ∈ (AK ∪AL) ∩ S2(ξ), η �= ±ζ. Hence, ξ ∈ S2(η) ∩ S2(ζ) and

(S2(ζ) \ Ω) ⊆
⋃

{η∈AK∪AL,η 
=±ζ}

(
S2(η) ∩ S2(ζ)

)
.



786 M. ANGELES ALFONSECA ET AL. Isr. J. Math.

Since the right-hand side of the above inclusion is a countable union of 1-

dimensional circles, the measure of S2(ζ) \ Ω is zero. Hence, Ω is everywhere

dense in S2(ζ).

We now show that ζ ∈ AK implies ζ ∈ AL. By definition of Ω, we have

AK ∩S2(w) = {±ζ} for every w ∈ Ω. If AL∩S2(w) = ∅, then the projection of

K on the subspace containing S2(ζ)∩S2(w) contains the diameter ofK, and the

corresponding projection of L does not. Therefore, the width functions satisfy

ωL(θ) < ωK(ζ) for every θ ∈ S2(w). This contradicts the fact that K|w⊥ and

L|w⊥ are directly congruent. Thus, AL ∩ S2(w) = {±ζ}.
Finally, assume that for some w ∈ Ω we have χw(ζ) �= ±ζ. Then χw(K|w⊥)

has a diameter in a direction η �= ±ζ. Since χw(K|w⊥) and L|w⊥ are transla-

tions of each other, L|w⊥ must have a diameter parallel to η, which is impossible.

Hence for every, w ∈ Ω we have χw(ζ) = ±ζ, and ωK(ζ) = ωL(ζ). The result

follows.

Remark 3: The previous lemma remains valid if, instead of the condition about

countability of the diameters of the bodies, one assumes that, say, the sets of

diameters of K and L are countable unions of large circles containing ζ. The

only fact that was used in the proof is that the set of the directions w ∈ S2(ζ),

such that dK(ζ) and dL(ζ) are the only diameters of the projections K|w⊥ and

L|w⊥, is dense in S2(ζ).

Our next goal is to “separate” translations from rotations. We translate the

bodies K and L by vectors aK , aL ∈ R4, to obtain K̃ = K+aK and L̃ = L+aL

such that their diameters dK̃(ζ) and dL̃(ζ) coincide and are centered at the

origin.

Lemma 14: Let χw be the rotation given by (21), and let w ∈ Ω. Then the

rotation ϕw := (χw)
t
satisfies ϕw(ζ) = ±ζ and

(24) hK̃ ◦ ϕw(θ) = hL̃(θ) ∀θ ∈ S2(w).

Proof. Define bw = χw(aK |w⊥) − aL|w⊥ + aw, where aK |w⊥, aL|w⊥ are the

projections of the vectors aK , aL, onto w
⊥. Then (21) holds with K̃ and L̃

instead of K and L, and bw instead of aw. We claim at first that bw = 0 for all

w ∈ Ω. In other words,

(25) χw(K̃|w⊥) = L̃|w⊥.
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Indeed, using the definition of K̃ and L̃, and Lemma 13, for every w ∈ Ω ⊂ S2(ζ)

we have

dK̃|w⊥(ζ) = dK̃(ζ) = dL̃(ζ) = dL̃|w⊥(ζ), χw(dK̃(ζ)) = dK̃(ζ).

It follows that

dK̃|w⊥(ζ) = χw(dK̃|w⊥(ζ)) = dL̃|w⊥(ζ) + bw = dK̃|w⊥(ζ) + bw.

Thus, bw = 0 and (25) holds for every w ∈ Ω. Then,

hχw(K̃|w⊥)(x) = hL̃|w⊥(x) ∀x ∈ w⊥

together with (23) gives us the desired conclusion.

4.2. Proof of Theorem 1. Consider the closed sets

Ξ = {w ∈ S2(ζ) : (24) holds with ϕw(ζ) = ζ}

and

Ψ = {w ∈ S2(ζ) : (24) holds with ϕw(ζ) = −ζ}.

Since the set Ω ⊂ (Ξ ∪Ψ) is everywhere dense in S2(ζ) by Lemma 13, we have

that Ξ∪Ψ = S2(ζ). We have thus reduced matters to Proposition 1 with f = hK̃
and g = hL̃. Therefore, either hK̃ = hL̃ on S3 or hK̃(θ) = hL̃(Uθ) for every θ ∈
S3, where U ∈ O(4) is the orthogonal transformation satisfying U|S2(ζ) = −I,
and U(ζ) = ζ. Letting O = U t, it follows from (23) that hK̃(Uθ) = hOK̃(θ) for

every θ ∈ S3, and either K + aK = L + aL or K + aK = OL + O(aL). This

proves the first part of the Theorem.

Assume, in addition, that the ground projections K|ζ⊥, L|ζ⊥, are directly

congruent. Then, there exists χζ ∈ SO(3, S2(ζ)) and aζ ∈ ζ⊥ such that

χζ(K|ζ⊥) = L|ζ⊥ + aζ . If K = OL+ b holds, then we have

K|ζ⊥ = (OL)|ζ⊥ + b|ζ⊥ = −L|ζ⊥ + b|ζ⊥.

Therefore, χζ(K|ζ⊥) − aζ = −K|ζ⊥ + b|ζ⊥, and K|ζ⊥ has a rigid motion

symmetry, which contradicts our assumptions. We conclude that K = L + b,

and the proof of Theorem 1 is finished.
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4.3. Proof of Corollary 1. Let J be an arbitrary 4-dimensional subspace of

Rn, containing ζ. Observe that K|J and L|J satisfy the conditions of Theorem

1 with K|J and L|J instead of K and L. We translate the bodies K and L by

vectors aK , aL ∈ Rn, to obtain K̃ = K + aK and L̃ = L + aL such that the

origin is the center of dK̃(ζ) = dL̃(ζ).

By Theorem 1 we have K̃|J = L̃|J or K̃|J = OJ (L̃|J) where OJ ∈ O(4, J),

OJ |ζ⊥ = −I and OJ (ζ) = ζ. If there existed two different 4-dimensional sub-

spaces J1 and J2, such that K̃|J1 = L̃|J1 and K̃|J2 = OJ2(L̃|J2), then L̃ would

have a 3-dimensional projection with a (ζ, π)-symmetry. Indeed, assume that

J1 ∩ J2 is a 3-dimensional subspace. Then,

L̃|(J1 ∩ J2) = (L̃|J1)|(J1 ∩ J2) = (K̃|J1)|(J1 ∩ J2) = (K̃|J2)|(J1 ∩ J2)
= (OJ2(L̃|J2))|(J1 ∩ J2) = OJ2 |J1(L̃|(J1 ∩ J2)),

and L̃|(J1 ∩ J2) has a (ζ, π)-symmetry, contradicting the assumptions of the

Corollary. Hence, either K̃|J = L̃|J for every J , or K̃|J = OJ (L̃|J) for every

J . If we are in the second case, letO ∈ O(n) such thatO|ζ⊥ = −I andO(ζ) = ζ.

Then we have that O|J = OJ . Since J was arbitrary, the projections of K̃ and

L̃ onto all 4-dimensional subspaces containing ζ (and, in particular, onto all

2-dimensional subspaces containing ζ) coincide or are reflections of each other

(with respect to the line containing ζ). Using Theorem 3.1.1 from [Ga, page 99]

we have K̃ = L̃ or K̃ = OL̃. Thus, K = L+aL−aK or K = OL+O(aL)−aK .

Now assume that the dimension of J1 ∩J2 is 2. In this case, let {ζ, v1, v2, v3}
be an orthonormal basis of J1, and {ζ, v1, v′2, v′3} be an orthonormal basis of

J2. Define J0 to be the 4-dimensional subspace with basis {ζ, v1, v2, v′2}. Then,
both J1 ∩ J0 and J2 ∩ J0 have dimension 3, and the above argument can be

used. A similar argument can be used if the dimension of J1 ∩ J2 is 1.

Finally, assume that, in addition, the “ground” projections K|G, L|G onto

all 3-dimensional subspaces G of ζ⊥ are directly congruent and have no rigid

motion symmetries. Then, using Theorem 1, we see that K̃|J = L̃|J for an

arbitrary 4-dimensional subspace J . Hence, the projections of K̃ and L̃ onto all

2-dimensional subspaces containing ζ coincide. Using Theorem 3.1.1 from [Ga]

we have K̃ = L̃. Thus, K + aK = L+ aL and the Corollary is proved.
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5. Proofs of Theorem 2 and Corollary 2

The proofs are slightly different from the ones about projections. We recall

that we consider star-shaped bodies with respect to the origin. The direction

ζ ∈ S3 will be fixed throughout the proof. By the conditions of Theorem 2, the

sections K ∩w⊥ and L∩w⊥ are directly congruent for every w ∈ S2(ζ). Hence,

for every w ∈ S2(ζ) there exists χw ∈ SO(3, S2(w)) and aw ∈ w⊥ such that

(26) χw(K ∩ w⊥) = (L ∩w⊥) + aw.

Let l(ζ) denote the 1-dimensional subspace containing ζ. As in Section 4,

we use the notation AK ⊂ S3 for the set of directions that are parallel to the

diameters of K (similarly for L). We consider the set Ωr, which is defined

similarly to Ω (see (22)). We will use the notation vK(ζ) = ρK(ζ)+ ρK(−ζ) for
the length of the diameter dK(ζ), which contains the origin and is parallel to ζ.

5.1. Auxiliary Lemmata. Our first goal is to reduce matters to rotations

leaving l(ζ) fixed. We will do this by showing that for most of the directions

w ∈ S2(ζ), the sections K∩w⊥ and L∩w⊥ have exactly one diameter contained

in l(ζ).

We will use the well-known properties of the radial function (see, for example,

[Ga, (0.33), page 20])

(27) ρK̃∩w⊥(θ) = ρK̃(θ), ρχw(K̃∩w⊥)(θ) = ρK̃∩w⊥(χ
−1
w (θ)), ∀θ ∈ w⊥ ∩ S3.

Lemma 15: Let K and L be as in Theorem 2. Then L has a diameter dL(ζ)

passing through the origin, and Ωr is everywhere dense in S2(ζ). Moreover, for

every w ∈ Ωr we have χw(ζ) = ±ζ and vK(ζ) = vL(ζ).

Proof. Arguing as in the proof of Lemma 13 (with Ωr instead of Ω), we obtain

that Ωr is everywhere dense in S2(ζ), and that ζ ∈ AL.

We will show that there exists a diameter dL(ζ) passing through the origin.

Assume that this is not true. Then, for each diameter dL parallel to ζ, the

linear subspace span(dL) is 2-dimensional. Let R(ζ) be the union of all such 2-

dimensional subspaces, which is a countable union by the conditions of Theorem

2. Since AL is also countable, there exists w ∈ S2(ζ) such that w⊥∩R(ζ) = l(ζ)

and w⊥ does not contain any direction η �= ζ that is parallel to a diameter of

L. But then L does not have a diameter in w⊥, while K does. This contradic-

tion shows that the diameter in the direction ζ passes through the origin, and
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therefore, arguing as in the proof of Lemma 13, we obtain that for all w ∈ Ωr,

χw(ζ) = ±ζ, and vK(ζ) = vL(ζ). The result follows.

Our next step is to translate the body L so that its diameter in the direction ζ

coincides with dK(ζ). However, if we translate a star-shaped body with respect

to the origin, the resulting body need not necessarily be star-shaped with respect

to the origin. Lemma 16 will show that, under the hypothesis of Theorem 2,

the translation of L must also be star-shaped with respect to the origin (if the

bodies K,L are convex, this lemma can be dispensed with).

Lemma 16: There exists a vector a ∈ R4, parallel to ζ, such that the body

L̃ = L+ a is star-shaped with respect to the origin, and dK(ζ) = dL̃(ζ).

Proof. Consider the sets

R1 = {w ∈ Ωr : χw(dK(ζ)) = dK(ζ)},
R2 = {w ∈ Ωr : χw(dK(ζ)) �= dK(ζ)},

where χw is the rotation in (26). Recall that for any w ∈ Ωr, the sectionsK∩w⊥

and L ∩ w⊥ contain only diameters in the direction ζ. If w ∈ R1, χw must be

either a rotation about ζ, or a rotation by angle π about some u ∈ S2(ζ)∩S2(w)

(in this last case, dK(ζ) must be centered at the origin). On the other hand, if

w ∈ R2, χw is a rotation by angle π about some u ∈ S2(ζ) ∩ S2(w), and dK(ζ)

cannot be centered at the origin.

Assume, at first, that Ωr = R1. Since the diameter dK(ζ) is fixed by χw, the

vector aw in (26) is independent of w ∈ Ωr and aw = a1 = (ρK(ζ)− ρL(ζ)) ζ.

The translated section (L∩w⊥)+ a1 coincides with χw(K ∩w⊥), and therefore

(L∩w⊥) + a1 is star-shaped with respect to the origin for every w ∈ Ωr. Since

Ωr is dense in S2(ζ), we conclude that the translated body L̃ = L + a, with

a = a1, is also star-shaped with respect to the origin.

Secondly, assume that Ωr = R2. Then, aw is independent of w ∈ Ωr and

aw = a2 = (ρK(−ζ)− ρL(ζ)) ζ. We conclude that L̃ = L + a, with a = a2, is

star-shaped with respect to the origin.

Finally, we show that the case where R1 and R2 are both nonempty does

not occur under the assumptions of Theorem 2. Since R1 ∪ R2 = Ωr, we have

S2(ζ) = R1 ∪R2 ⊆ R1 ∪ R2 ⊆ S2(ζ). Hence, there exists w0 ∈ R1 ∩ R2, i.e.,

there is a rotation χw0 such that χw0(dK(ζ)) = dK(ζ) and

(28) χw0(K ∩ w⊥
0 ) = L ∩ w⊥

0 + a1,



Vol. 215, 2016 DIRECTLY CONGRUENT PROJECTIONS 791

and a rotation χ̃w0 such that χ̃w0(dK(ζ)) �= dK(ζ) and

(29) χ̃w0(K ∩ w⊥
0 ) = L ∩ w⊥

0 + a2.

In particular, since χ̃w0 does not fix dK(ζ), this diameter cannot be centered at

the origin, and it follows that the other rotation χw0 must be about ζ. By (28)

and (29) we have

K ∩ w⊥
0 = χ−1

w0

(
χ̃w0(K ∩ w⊥

0 )
)
+ b.

Observe that the rotation χ−1
w0

◦ χ̃w0 is about the vector v ∈ S2(u) ∩ S2(ζ).

Since χ−1
w0

◦ χ̃w0(ζ) = −ζ, this rotation is by angle π. Therefore, K ∩ w⊥
0 has a

(v, π)-symmetry. This contradicts the hypothesis of Theorem 2. The Lemma is

proven.

Lemma 17: For every w ∈ Ωr there exists ϕw = χ−1
w ∈ SO(3, S2(w)), ϕw(ζ) =

±ζ, such that

(30) ρK ◦ ϕw(θ) = ρL̃(θ) ∀θ ∈ S2(w).

Proof. In terms of K and L̃, equation (26) can be written as

(31) χw(K ∩ w⊥) = L̃ ∩ w⊥

for some χw ∈ SO(3, S2(w)), χw(ζ) = ±ζ. Then, ρχw(K∩w⊥)(x) = ρL̃∩w⊥(x)

for all x ∈ w⊥. In particular, we have that ρχw(K∩w⊥)(θ) = ρL̃∩w⊥(θ) for all

θ ∈ S2(w). We now use (27) to conclude the proof.

5.2. Proof of Theorem 2. Consider the sets

Ξr = {w ∈ S2(ζ) : (30) holds with ϕw(ζ) = ζ}

and

Ψr = {w ∈ S2(ζ) : (30) holds with ϕw(ζ) = −ζ}.
By definition, Ωr ⊂ (Ξr ∪Ψr). Therefore, Lemma 15 implies that Ξr ∪Ψr =

S2(ζ). Now we can apply Proposition 1 (with f = ρK , g = ρL̃, and Ξ = Ξr,

Ψ = Ψr) obtaining that either ρK = ρL̃ on S3, or ρK(θ) = ρL̃(Uθ) for all θ ∈ S3.

Here U ∈ O(4) is an orthogonal transformation, satisfying U|S2(ζ) = −I and

U(ζ) = ζ. In the first case,K = L̃, and in the second,K = OL̃, whereO = U−1.

Thus, either K = L+ a, or K = OL+ b with b = O(a). This finishes the proof

of Theorem 2.
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5.3. Proof of Corollary 2. The proof is similar to the one of Corollary 1.

One has only to consider the sections K ∩ J , L̃ ∩ J , instead of the projections

K|J , L̃|J , and Theorem 7.1.1 from [Ga, page 270], instead of Theorem 3.1.1

from [Ga, page 99].

6. Appendix

Let δ(K,P ) be the Hausdorff distance between the convex bodies K and P in

Rn, n ≥ 2, δ(K,P ) = maxθ∈Sn−1 |hK(θ) − hP (θ)|.
Our goal is to prove

Proposition 2: Any convex body K in Rn, n ≥ 4, can be approximated in

the Hausdorff metric by polytopes without 3-dimensional projections that have

rigid motion symmetries.

Since polytopes have finitely many diameters, Proposition 2 shows that the

set of bodies satisfying the conditions of Corollary 1 contains a set of polytopes

which is dense in the set of all convex bodies.

Proposition 2 is not a new result (see [Go1, page 48]). An abstract geometric

proof of this fact can be given [Pa]. However, for the convenience of the reader,

we include an elementary proof. The idea is, assuming that K has positive

Gaussian curvature, to observe first that K can be approximated by polytopes

whose 3-dimensional projections have many vertices. If a polytope has a 3-

dimensional projection with a rigid motion symmetry, then we use (33) to form

a system of linear equations, and use the implicit function theorem to prove

that these polytopes form a “manifold” of small dimension.

6.1. Auxiliary results. We will need the following theorem and two lem-

mata. Let C2
+(R

n) be the set of convex bodies in Rn having a positive Gaussian

curvature. It is well-known that any convex body can be approximated in the

Hausdorff metric by convex bodies K ∈ C2
+(R

n) [Sch, pages 158–160]. Hence,

we can assume that K ∈ C2
+(R

n).

Our first auxiliary statement is the following result of Schneider, [Sch2].

Theorem 3: Let K ∈ C2
+(R

n), n ≥ 3. Then, for v → ∞, we have

δ(K,P ∗
v ) ≈ cn v

− 2
n−1

( ∫
∂K

√
GK(σ)dσ

) 2
n−1

,
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where P ∗
v is a polytope with vertices on the boundary ∂K, not unique in general,

for which δ(K,P ∗
v ) equals the infimum of δ(K,P ) over all convex polytopes P

contained in K that have at most v vertices, cn is a constant depending on the

dimension, and GK(σ) is the Gaussian curvature of K at σ ∈ ∂K.

The next statement is well known.

Lemma 18: Let K ∈ C2
+(R

n), n ≥ 4. Then K|H ∈ C2
+(H), where K|H is the

projection of K onto H ∈ G(n, 3).
Proof. Let x be any point on the boundary of K. Changing the coordinates if

necesssary we can assume that x is the origin and the tangent hyperplane to K

at x is the (x1, . . . , xn−1)-hyperplane. Using the Taylor decomposition of the

boundary of K near the origin we have

xn = f(x1, . . . , xn−1) = k1x
2
1 + · · ·+ kn−1x

2
n−1 + o(x),

where kj > 0, j = 1, . . . , n− 1, are the main curvatures of the boundary at x,

and o(x)
|x| → 0 as |x| → 0. Consider the ball B,

B =

{
x ∈ Rn : x21 + · · ·+ x2n−1 +

(
xn − 1

k

)2

=
1

k2

}
, k = min

j=1,...,n−1
kj .

Since the main curvatures are the reciprocals of the main radii of curvature we

see that in a small enough neighborhood W of the origin, K ∩W is contained

in B. Let u ∈ Sn−1 be such that un = 0, i.e., u is the unit vector contained

in the (x1, . . . , xn−1)-hyperplane, and let Hu ∈ G(n, 3) be contained in the

(x1, . . . , xn−1)-hyperplane, and orthogonal to u. Observe that the boundary of

the projection (K ∩W )|Hu is contained in the 3-dimensional ball of radius 1
k ,

which is the projection of B. Since the main curvatures of the boundary of

(K ∩W )|Hu are the reciprocals of the radii of curvature, we see that the main

curvatures of (K ∩W )|Hu at the origin are positive. Since x was an arbitrary

point on the boundary of K, the result follows.

By Theorem 3, the number of vertices of P ∗
v tends to infinity as v → ∞.

We claim that for every 3-dimensional space H , the number of vertices of the

sequence of polytopes {P ∗
v |H} is unbounded as v → ∞.

Lemma 19: Let VH,v be the number of vertices of P ∗
v |H , and let βv := infH VH,v.

Then the sequence (βv)
∞
v=1 is unbounded.
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Proof. If the sequence (βv)
∞
v=1 is bounded, then there exists a natural number

m such that βv ≤ m for all v ∈ N. In particular, for every v ∈ R there exists

a subspace Hv ∈ G(n, 3) such that the number of vertices of P ∗
v |Hv does not

exceed m.

Using the first relation in (23), we have that δ(P ∗
v |Hv,K|Hv) ≤ δ(P ∗

v ,K),

and that δ(P ∗
v ,K) → 0 as v → ∞. For every v ∈ N, denote by Qm = Qm(v)

the polytope inscribed in K|Hv such that its distance to K|Hv is minimal

among all polytopes inscribed in K|Hv and having at most m vertices. Then

δ(P ∗
v |Hv,K|Hv) ≥ δ(Qm(v),K|Hv), and δ(Qm(v),K|Hv) → 0 as v → ∞. On

the other hand, applying Theorem 3 with K|Hv instead of K and m instead of

v, we see that

δ(Qm(v),K|Hv) ≈ m−1

∫
∂(K|Hv)

√
GK|Hv

(σ)dσ.

We claim that this is impossible by compactness. Indeed, we can assume that

the sequence of bodies K|Hv is convergent, say to K|H0. Hence,

(32)

∫
∂(K|Hv)

√
GK|Hv

(σ)dσ →
∫

∂(K|H0)

√
GK|H0

(θ)dθ

as v → ∞, and

δ(Qm(v),K|Hv) ≈ m−1

∫
∂(K|H0)

√
GK|H0

(θ)dθ.

The left-hand side of the last quantity tends to zero, while the right-hand side

is a positive constant, and we obtain a contradiction.

To show that (32) holds, we use formula (2.5.29) from [Sch, page 112],∫
∂(K|Hv)

√
GK|Hv

(σ)dσ =

∫
Sn−1∩Hv

√
GK|Hv

(∇hK|Hv
(θ))H(hK|Hv

)(θ)dθ.

Here, H(hK|Hv
) is the Hessian of the support function (the partial derivatives

are the usual derivatives of the support function extended as a homogeneous

function of degree 1 onto Rn). Let θ0 ∈ Sn−1 ∩H0, and consider any sequence

(θv)
∞
v=1, θv ∈ Sn−1∩Hv, converging to θ0. Using the fact that hK|Hv

(θ) = hK(θ)

for θ ∈ Sn−1 ∩Hv, we see that as v → ∞ we have

GK|Hv
(∇hK|Hv

(θv)) = GK|Hv
(∇hK(θv))

→ GK|H0
(∇hK(θ0)) = GK|H0

(∇hK|H0
(θ0)),
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and

H(hK|Hv
)(θv) = H(hK)(θv) → H(hK)(θ0) = H(hK|H0

)(θ0).

Hence, (32) follows.

To formulate our last auxiliary lemma, we recall the definition of the Haus-

dorff dimension, [WikiH]. Given any subset E of Rn and α ≥ 0, the exterior α-

dimensional Hausdorff measure of E is defined by m∗
α(E) = limδ→0+ infHδ

α(E),

where

Hδ
α(E) := inf{

∞∑
k=1

( diamFk)
α : E ⊂

∞⋃
k=1

Fk, diamFk ≤ δ},

and diam(S) = supx,y∈S |x − y| stands for the diameter of S. The Hausdorff

dimension of E is dimH(E) = inf{α > 0 : m∗
α(E) = 0}.

Lemma 20: Let M be a smooth manifold of dimension k in Rm, m ≥ 3,

k ≤ m−2, and let M|H be the orthogonal projection ofM onto a l-dimensional

subspace H , k < l ≤ m − 1. Then the Hausdorff dimension of M|H does not

exceed the dimension of M.

Proof. Let δ > 0 and let
⋃∞

k=1 Fk, diam(Fk) ≤ δ, be a covering of M. Since⋃∞
k=1(Fk|H) is a covering of M|H , and diam(Fk|H) ≤ diam(Fk) ≤ δ, we see

that
∞∑
k=1

( diam(Fk|H))α ≤
∞∑
k=1

( diam(Fk))
α,

and m∗
α(M|H) ≤ m∗

α(M). The result follows.

6.2. Proof of Proposition 2. To prove the proposition it is enough to show

that each P ∗
v , having sufficiently many vertices, can be approximated by poly-

topes without any 3-dimensional projection rigid motion symmetries. We will

do this by proving that the set of polytopes having v vertices with 3-dimensional

projection rigid motion symmetries is a nowhere dense set contained in the set

of all polytopes having v vertices.

Define Pv to be the set of polytopes in Rn, n ≥ 4, with v vertices p1, p2, . . . , pv.

We see that Pv can be parametrized by points from Rnv, with pj = (p1j , . . . , pnj) ∈
Rn, j = 1, . . . , v, and we can identify Pv with an open domain in Rnv.

We denote by Πv the set of polytopes in Pv that have a 3-dimensional pro-

jection with rigid motion symmetries. Our goal is to show that Πv is nowhere
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dense in Pv, provided that v is large enough. We can partition Πv into equiv-

alence classes such that two polytopes are in the same class if there is a rigid

motion in Rn taking one to the other. Letting H0 be the (x1, x2, x3)-plane in

Rn, each equivalence class can be represented by a polytope whose projection

on H0 has rigid motion symmetries. Let us define Qv to be the set of these

representatives, i.e.,

Qv = {Q ∈ Pv : ∃ϕH0 ∈ O(3, H0), ϕH0 �= I, ∃aH0 ∈ R3 such that

(33) ϕH0(Q|H0) + aH0 = Q|H0}.

Observe that every P ∈ Πv can be written as P = φ(Q) + b for some φ ∈
O(n), Q ∈ Qv, b ∈ Rn, and hence can be represented as the triple (Q,φ, b) ∈
Qv × O(n) × Rn. Thus,

(34) dim(Πv) ≤ dim(Qv) + dim(O(n)) + n = dim(Qv) +
n(n+ 1)

2
.

All that remains is to find the dimension of Qv. Consider the set M = M(Qv)

of all triples

(Q,ϕH0 , aH0) ∈ Rnv ×O(3, H0)× R3,

satisfying (33).

Let H ∈ G(n, 3). By (23), for every θ ∈ H ∩Sn−1, we have hK|H(θ) = hK(θ).

Thus, K|H can be approximated in the Hausdorff metric by polytopes P ∗
v |H .

By Lemma 19, we have a subsequence {βvj} of {βv}, such that

(35) βvj > 5 +
n(n+ 1)

2

if j is large enough. For simplicity, in the following we will denote βvj by βv.

Lemma 21: The set M is a manifold in Rnv+6 with dimension at most

(nv + 5− βv), provided that v is such that βv > 5 + n(n+1)
2 .

Proof. Let Q be a polytope in Qv and consider its projection Q|H0, which is

also a polytope with t vertices, where t ≥ βv. We will write the assumption that

Q|H0 has rigid motion symmetries as a system of linear equations that equal

zero precisely at the vertices of Q|H0, and explicitly compute the determinant

of its Jacobian matrix to show that it is nonzero. The implicit function theorem

[Wiki] will allow us to obtain the result.
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Since any rigid motion maps a vertex into a vertex, an equation, similar to

(33), can be written for the corresponding vertices qi|H0 of Q|H0,

(36) qi|H0 = ϕH0(qj(i)|H0) + aH0 ,

where ϕH0 is a nonidentical orthogonal transformation whose 3× 3 matrix has

coordinates (ol,m)l,m=1,2,3, and j is a permutation on the set {1, . . . , t}, which
indicates that the j(i)-th vertex gets mapped to the i-th vertex. As it is well

known, a permutation can be written as a product of cycles. We will consider

two cases: cycles of length one, and cycles of length greater than one.

Assume that the vertex qi|H0 is mapped to itself, i.e., qi|H0 = ϕH0(qi|H0) +

aH0 . Since ϕH0 is not the identity, given a basis e1, e2, e3 of H0, there exists

r ∈ {1, 2, 3} such that ϕH0(er) �= er. For this r, consider the function Fri :

Rnv ×O(3, H0)× R3 → R defined by

Fri(x11, . . . , xnv, ϕH0 , aH0) = ((x1i, x2i, x3i)− ϕH0 (x1i, x2i, x3i)− aH0)r

= xri − or1x1i − or2x2i − or3x3i − (aH0)r.

Since the right-hand side depends only on the variables x1i, x2i, x3i, we see that
∂Fri

∂xks
= 0 for all s �= i and all k, while ∂Fri

∂xri
�= 0 because ϕH0 (er) �= er. Thus,

this cycle forms a (1× 1)-Jacobian block whose entry is not 0.

Next, suppose that the cycle is of length k and permutates the vertices

qi1 , qi2 , . . . , qik (for � < k, qi�+1
gets mapped to qi� and qi1 is mapped back to

qik). Consider the system of 3(k − 1) functions Frs : R
nv ×O(3, H0)×R3 → R

defined by

Frs(x11, . . . , xnv, ϕH0 , aH0) = ((x1s, x2s, x3s)−ϕH0(x1j(s) , x2j(s), x3j(s))−aH0)r

for r = 1, 2, 3 and for s = i1, i2, . . . , ik−1.

We will order the variables in such a way that the Jacobian block corre-

sponding to this cycle will be upper triangular. We note that for r = 1, 2, 3,

and s = i1, . . . , ik−1, Frs depends on the variables xrs and xkj(s) for k = 1, 2, 3.

Thus, ∂Frs

∂xks
= 0 for k �= r, and ∂Frs

∂xk�
= 0 for all � �= s, � �= j(s) and all k. Order

the Jacobian block as follows: x1i1 , x2i1 , x3i1 , x1i2 , . . . , x3ik−1
. Since ∂Frs

∂xrs
= 1,

the diagonal entries are all 1. In addition, the variables xkj(s) occur after xrs,

so the Jacobian block is upper triangular. Therefore, the determinant of this

block is equal to 1. Thus, the Jacobian of the system of equations is a block

diagonal matrix with nonzero determinant.
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We observe that the number of equations in our system depends on the de-

composition of the permutation j into cycles. Each 1-cycle gives us one equa-

tion, while each cycle of length k > 1 contributes 3(k − 1) equations to the

system. Hence, the smallest possible number of equations in our system is

3 + (t− 2), which occurs if the decomposition of the permutation j into cycles

contains only one two-cycle and all the rest are one-cycles. By the implicit

function theorem, we can express at least t + 1 variables xrs as functions of

the coordinates of ϕH0 , aH0 and at most nv − (t + 1) other variables. Since

t ≥ βv, this shows that the dimension of the manifold M in Rnv+6 is at most

(nv + dim(O(3) + dim(H0)− (βv + 1)) = nv + 5− βv.

We are now ready to prove our goal.

Lemma 22: The set Πv is nowhere dense in Pv.

Proof. By definition, Qv is equal to the projection of M onto Rnv and by

Lemmata 20 and 21,

dim(Qv) = dim(M|Rnv) ≤ dim(M) ≤ nv + 5− βv.

Hence, using (34), we have dim(Πv) ≤ nv+5−βv+ n(n+1)
2 . Finally, (35) yields

dim(Πv) < dim(Pv) = nv.

To complete the proof of Proposition 2, we use Theorem 3 to approximate

K ∈ C2
+(R

n) in the Hausdorff metric, by polytopes P ∗
v with v so large that

t0 > 5 + n(n+1)
2 . By Lemma 22, we can approximate P ∗

v by polytopes without

3-dimensional projections that have rigid motion symmetries.
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