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ABSTRACT

We isolate here a wide class of well-founded orders called tame orders, and

show that each such order of cardinality at most κ can be realized as the

Mitchell order on a measurable cardinal κ, from a consistency assumption

weaker than o(κ) = κ+.

1. Introduction

This paper is the first of a two-part study on the possible structure of the

Mitchell order. In this first paper, we identify a large class of well-founded

orders with some appealing properties, and prove that each of its members can

be realized as �(κ)—the Mitchell order on the set of normal measures on κ.

In [15] Mitchell introduced the following relation: Given two normal measures

U,W , we write U � W to denote that U ∈ MW
∼= Ult(V,W ). Mitchell proved

that � is a well-founded order now known as the Mitchell ordering. The Mitchell

ordering and its extension to arbitrary extenders have become a major tool in

the study of large cardinals, with important applications to consistency results

and inner model theory. Given a cardinal κ, we write o(κ) to denote the rank

of the well-founded order �(κ). The research on the possible structure on the

Mitchell order �(κ) is closely related to the question of its possible size, namely,

the number of normal measures on κ: The first results by Kunen [10] and by
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Kunen and Paris [11] showed that this number can take the extremal values of 1

and κ++ (in a model of GCH) respectively. Soon after, Mitchell [15] [16] showed

that this size can be any cardinal λ between 1 and κ++, under the large cardinal

assumption and in a model of o(κ) = λ. Baldwin [2] showed that for λ < κ and

from stronger large cardinal assumptions, κ can also be the first measurable

cardinal. Apter–Cummings–Hamkins [1] proved that there can be κ+ normal

measures on κ from the minimal assumption of a single measurable cardinal;

for λ < κ+, Leaning [12] reduced the large cardinal assumption from o(κ) = λ

to an assumption weaker than o(κ) = 2. The question of the possible number

of normal measures on κ was finally resolved by Friedman and Magidor in [7],

where it is shown that κ can carry any number of normal measures 1 ≤ λ ≤ κ++

from the minimal assumption. The Friedman–Magidor poset will be extensively

used in this paper and the subsequent part II.

Further results were obtained on the possible structure of the Mitchell order:

Mitchell [15] and Baldwin [2] showed that from some large cardinal assumptions,

every well-order and pre-well-order (respectively) can be isomorphic to �(κ) at

some κ. Cummings [5],[6] and Witzany [18] studied the � ordering in various

generic extensions, and showed that �(κ) can have a rich structure. Cummings

constructed models where �(κ) embeds every order from a specific family of

orders we call tame. Witzany showed that in a Kunen–Paris extension of a

Mitchell model L[U ], with oU (κ) = κ++, every well-founded order of cardinality

≤ κ+ embeds into �(κ). However, the general question of the possible structure

of �(κ) has remained open.

In this paper and the subsequent part II ([4]) we gradually develop a series of

techniques by which we obtain an increasing variety of possible � structures from

increasingly large cardinal assumptions: In this paper, we develop a technique

for realizing a wide family of well-founded orders called tame orders from as-

sumptions weaker than the existence of a measurable cardinal κ with o(κ) = κ+.

In part II ([4]) we increase our large cardinal assumption slightly above the ex-

istence of a sharp to a strong cardinal 0¶, and show that every well-founded

order can be consistently realized as �(κ) on a measurable cardinal κ.

The forcing constructions in both papers obey the following guidelines:

1. The ground model V = K(V ) is a core model, presented as an extender

model L[E] (as in [17]) or a Mitchell model L[U ] (see [16] or [14]).

2. An intermediate forcing extension V ′ = V [G′] is introduced, to serve as an

intermediate ground for a final � structure. Our goal is to make �(κ)V
′
as rich
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as possible (relative to the large cardinal assumption) while ensuring that the

normal measures on κ are separated by sets. We say that the normal measures

on κ are separated when one can assign each normal measure U on κ a set

XU ∈ U which does not belong to any distinct normal measure U ′ �= U .

3. In a final last extension, we restrict �(κ)V
′
to any chosen W ⊂ �(κ)V

′
of

cardinality |W| ≤ κ. We refer to this last forcing as a final cut. The final cut

relies on the fact that the normal measures in V ′ are separated by sets.

The orders at the center of this paper are tame orders. For every ordinal λ,

we define an order (Rλ, <Rλ
) by Rλ = {(α, β) ∈ λ2 | α ≤ β}, and (α, β) <Rλ

(α′, β′) ⇐⇒ β < α′. In Section 2, we introduce tame orders and show that

up to a simple operation called reduction, every tame order (S,<S) embeds in

some (Rλ, <Rλ
). The rest of the paper is largely devoted to realizing Rλ using

�(κ). The following observation relates Rλ to the generalized Mitchell order in

V : Suppose that 〈Uα | α < λ〉 is a �-increasing sequence, and let t be the map

defined by

t(α, β) =

⎧⎨
⎩
Uα × Uβ if α < β,

Uα if α = β.

Then t defines an isomorphism of (Rλ, <Rλ
) with a set of ultrafilters in V ,

ordered by �. Here Uα × Uβ = {X ⊆ κ2 | {ν | {μ | (ν, μ) ∈ X} ∈ Uβ} ∈ Uα}.
The purpose of the main forcing is to reduce each Uα×Uβ to a normal measure

on κ to construct an intermediate model V ′ where �(κ)V
′
embeds Rλ. This

is done by forcing with a Magidor iteration of one-point Prikry forcings P1.

The iteration introduces an almost injective function d : κ → κ and ultrafilters

U1
(α,β), so that the map ν → (ν, d−1(ν)) defines an isomorphism of U1

(α,β) with

an extension of Uα × Uβ. However, there is a problem with forcing directly

over V . The one-point Prikry forcing at stage ν < κ is based on a normal

measure Uν,α on ν (where α < o(ν)). For each β < o(κ), we get that the choice

ν → Uν,α determines a unique measure Uα modulo Uβ (α < β), and it follows

that we cannot form a normal projection of Uα × Uβ for more than a single α.

This problem is solved by first forcing with a Friedman–Magidor poset P0. The

forcing P0 splits each Uβ into κ many �-equivalent extensions. The different

extensions allow us to simultaneously deal with Uα × Uα for every α < β.

Sections 4 through 6 provide an analysis of the normal measures U1
(α,β) in

a P0 ∗ P1 generic extension V ′. It is shown that �(κ)V
′
embeds Rλ and
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that the normal measures are separated by sets. The analysis of the mea-

sures U1
(α,β) focuses on the iterated ultrapowers obtained from the restriction of

iU1
(α,β)

: V ′ → Ult(V ′, U1
(α,β)) to V = K(V ′). Finally, in Section 7, we introduce

the final cut iteration and apply it to V ′ to remove unwanted measures without

changing the � structure on the rest. This construction is used to prove the

main result in this paper, Theorem 7.5.

The notations in this paper obey the following conventions: A pair (S,<S)

will be called an order, if <S⊂ S × S is a relation which defines a partial

order (anti-symmetric and transitive relation) on S. When there is no danger

of confusion, we will use S to denote the entire order (S,<S). By a suborder

of (S,<S) we mean the restriction of (S,<S) to a subset X ⊂ S, and denote

it by (X,<S� X). We use the Jerusalem convention for the forcing order, in

which p ≥ q means that p is stronger than q. Thus the trivial condition of P
will be denoted by 0P . A name of a set x in a generic extension will be denoted

by ẋ, and a canonical name for an element x in the ground model V will be

denoted by x̌. In certain cases we will write V P to denote a generic extension

of V by a generic filter of P .

2. Tame orders

We define a family of orders called Tame Orders which is closely related to

the orders Rλ, λ ∈ On, introduced above. The relation between tame orders

and the orders Rλ is given in Proposition 2.10 and makes use of the notions of

reduced orders (Definition 2.3) and tame ranks (Definition 2.9).

Definition 2.1:

(1) (R2,2, <R2,2) is an order on a set of four elements R2,2 = {x0, x1, y0, y1},
defined by <R2,2= {(x0, y0), (x1, y1)}.

•x0

•y0

•x1

•y1

(2) (Sω,2, <Sω,2) is an order on a disjoint union of two countable sets

Sω,2 = {xn}n<ω � {yn}n<ω, defined by <Sω,2= {(xm, yn) | m ≥ n}.

•
x0

•
x1

•
x2

. . . . . . . . . •
xn

. . . . . .

•y0 •y1 •y2 . . . . . . . . . •yn . . . . . .
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Let (S,<S) and (R,<R) be two orders. An injection π : S → R is an embed-

ding of (S,<S) into (R,<R) if it compatible and incompatible preserving. We

say that (R,<R) embeds (S,<S).

Definition 2.2 (Tame Orders): An order (S,<S) is tame if it does not embed

R2,2 nor Sω,2.

The rest of this section is devoted to describing how tame orders relates to

the orders Rλ, λ ∈ On.

Definition 2.3: Let (S,<S) be an order.

(1) For x ∈ S let d(x) = {z ∈ S | z <S x} and u(x) = {z ∈ S | x <S z}.
(2) Let ∼S be the equivalence relation on S, defined by x ∼S y if and only

if (d(x), u(x)) = (d(y), u(y)).

(3) (S,<S) is reduced if and only if there are no distinct ∼S equivalent

elements in S.

(4) For any (S,<S) let ([S], <[S]) = (S,<S)/ ∼S be the induced order on

∼S equivalent classes. ([S], <[S]) is clearly reduced.

The main result in this section (Proposition 2.10) shows that a well-founded

reduced order (S,<S) is tame if and only if it embeds in Rλ for some λ < |S|+.
Lemma 2.4: Let (S,<S) be an order. The following are equivalent:

(1) (S,<S) does not embed R2,2.

(2) For every x, x′ ∈ S, the sets u(x),u(x′) are ⊆-comparable.

(3) For every x, x′ ∈ S, the sets d(x),d(x′) are ⊆-comparable.

Proof. In R2,2, the sets u(x0), u(x1) are ⊆-incomparable as y0 ∈ u(x0) \ u(x1)

and y1 ∈ u(x1) \ u(x0). If π : R2,2 → S is an embedding it follows that

u(π(x0)), u(π(x1)) are ⊆-incomparable. Therefore 2 implies 1. The fact that

d(y0) and d(y1) are ⊆-incomparable is similarly used to show that 3 implies 1.

Suppose now that (S,<S) does not embed R2,2, and let x, x′ ∈ S. If u(x)

and u(x′) were ⊆-incomparable, there would be some y, y′ so that

(1) x <S y, x′ ≮S y, and

(2) x′ <S y′, x ≮S y′.

This is impossible as it would imply that <S� {x, x′, y, y′} is isomorphic to R2,2.

It follows that 1 implies 2. The proof that 1 implies 3 is similar.
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Definition 2.5: Let (S,<S) be an order.

(1) For every x ∈ S define cu(x) = S \ u(x) = {y ∈ S | x ≮S y}.
(2) Define D(S) = {d(x) | x ∈ S} and CU(S) = {cu(x) | x ∈ S}.

For x, y ∈ S, u(x) ⊇ u(y) if and only if cu(x) ⊆ cu(y), hence

(CU(S),⊆) ∼= (U(S),⊇),

where U(S) = {u(x) | x ∈ S}. By Lemma 2.4, if (S,<S) does not embed R2,2

then (D(S),⊆), (CU(S),⊆) are linear.

Lemma 2.6: The following are equivalent for a well-founded order (S,<S)

which does not embed R2,2:

(1) (S,<S) does not embed (Sω,2, <Sω,2).

(2) (D(S),�) is well-founded.

(3) (CU(S),�) is well-founded.

Proof. In Sω,2, the sequence 〈d(yn) | n < ω〉 is ⊆-strictly decreasing as wit-

nessed by 〈xn | n < ω〉. Suppose that π : Sω,2 → S is an embedding

of (Sω,2, <Sω,2) into (S,<S). Then π(xn) ∈ d(π(yn)) \ d(π(ym)) for every

n < m < ω. ButD(π(yn)), D(π(ym)) are ⊆-comparable as (S,<S) does not em-

bed R2,2, so it must be that d(π(ym)) � d(π(yn)). Therefore 〈d(π(yn)) | n < ω〉
is ⊆-strictly decreasing. This shows 2 implies 1. Similarly, the fact that in Sω,2,

〈cu(xn) | n < ω〉 is a ⊆ strictly decreasing sequence, is used to show that 3

implies 1.

Suppose now that (S,<S) is a well-founded order which does not embed R2,2

and fails to satisfy 2. Let 〈yn | n < ω〉 be a sequence of distinct elements in

S such that 〈d(yn) | n < ω〉 is ⊆-strictly decreasing. Since S is well-founded

we may assume that ym ≮S yn for every n < m. Furthermore, we cannot have

yn <S ym as it would imply that yn ∈ d(yn). It follows that the elements in

〈yn | n < ω〉 are <S pairwise incomparable.

Next, for each n < ω pick xn ∈ d(yn) \ d(yn+1), thus xn ∈ d(yn) \ d(ym) for

every n < m. We can thin out the sequence 〈xn | n < ω〉 to get an infinite

subsequence so that xm ≮S xn whenever m > n and xn, xm are members of the

subsequence. For simplicity let us assume that xm ≮S xn for every n < m. We

claim that also xn ≮S xm for every n < m. For this, note that d(ym), d(xm)

are ⊆ compatible and xm ∈ d(ym) \ d(xm), so d(xm) ⊆ d(ym). Therefore

if xn <S xm, xn ∈ d(xm) ⊆ d(ym) which contradicts our choice of xn. We
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conclude that the elements in the sequence 〈xn | n < ω〉 are also <S pairwise

incomparable.

We claim that <S� ({xn}n<ω � {yn}n<ω) is isomorphic to Sω,2. It remains

to show that the sets {xn}n<ω, {yn}n<ω are disjoint. To this end, we have that

xn �= yn for all n < ω, as xn ∈ d(yn). Also, if m �= n then xn �= ym, as otherwise

yn, ym would be <S comparable in contradiction to the above. It follows that

1 implies 2. Using a similar argument one can show that 1 implies 3.

Definition 2.7: Let (S,<S) be an order.

(1) DefineD(S) to be the completion ofD(S) under ⊆ increasing sequences,

namely d ∈ D(S)\D(S) if and only if d = ∪C for some C ⊂ D(S) which

is �-downward closed, i.e., for all d1, d2 ∈ D(S), if d2 ∈ C and d1 ⊆ d2

then d1 ∈ C.

(2) For every x ∈ S let

• <D (x) = {d ∈ D(S) | d � d(x)}, and
• <CU (x) = {cu(y) ∈ CU(S) | cu(y) � cu(x)}.

Remarks 2.8:

(1) Note that D(S) ⊂ D(S). Indeed for every x ∈ S, d(x) = ∪Cx, where

Cx = {d ∈ D(S) | d ⊆ d(x)} is ⊆-downward closed.

(2) The elements d ∈ D(S) \ D(S) are ⊆-limits of D(S). Therefore, if

d ∈ D(S) has a ⊆ immediate successor d+ ∈ D(S), then d+ is not a

⊆-limit and therefore d+ ∈ D(S) is of the form d+ = d(z) for some

z ∈ S.

(3) If (S,<S) is a well order which does not embed R2,2 or Sω,2, then

(D(S),⊆) and (CU(S),⊆) are well orders. Since D(S) introduces only

⊆-limits to D(S), it follows that (D(S),⊆) is a well order.

(4) For every x ∈ S, the sets <D (x), <CU (x) are ⊆ initial segments of

D(S), CU(S) respectively. In particular, (<D (x),⊆) and (<CU (x),⊆)

are well orders.

Definition 2.9: Let (S,<S) be a tame order. We define the tame rank of

(S,<S) to be the ordertype of the well-ordered set (CU(S),⊂), and denote it

by Trank(S,<S)

It is not difficult to see that for every tame order (S,<S),

rank(S,<S) ≤ Trank(S,<S) < |S|+.
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Proposition 2.10: A well-founded reduced order (S,<S) is tame if and only

if it embeds in some Rλ. Moreover, λ = Trank(S,<S) < |S|+ is the minimal

embedding ordinal.

Proof of Proposition 2.10. Let λ ∈ On and X ⊆ Rλ. The order (X,<Rλ
� X) is

clearly well-founded and reduced. To show that it does not embed R2,2, Sω,2,

it is sufficient to check that Rλ does not embed these orders:

(1) (Rλ does not embed R2,2)

Let (a0, b0), (A0, B0), (a1, b1), (A1, B1) be four elements in Rλ and sup-

pose that (ai, bi) <Rλ
(Ai, Bi) for i ∈ {0, 1} (i.e., they satisfy all

R2,2 relations). We claim that <Rλ
must satisfy an additional rela-

tion which is not compatible with R2,2. Indeed if i ∈ {0, 1} satisfies

Ai = max(A0, A1) then b0, b1 < Ai. Hence both (a0, b0), (a1, b1) are

<Rλ
smaller than (Ai, Bi).

(2) (Rλ does not embed Sω,2)

Let X = {(mx
n,M

x
n ) | n < ω} ∪ {(my

n,M
y
n) | n < ω} ⊂ Rλ. Let

π : Sω2 → Rλ be defined by π(xn) = (mx
n,M

x
n ) and π(yn) = (my

n,M
y
n),

n < ω. We claim that π cannot be an embedding of (Sω,2, <Sω,2) into

(Rλ, <Rλ
). Otherwise setting m∗ = min({my

n | n < ω}) < λ and

n∗ = min({n < ω | my
n = m∗}), we get that π(xn∗) <Rλ

π(yn∗), i.e.,

Mx
n∗ < my

n∗ = m∗. It follows that for every n > n∗, Mx
n∗ < m∗ ≤ my

n

thus π(xn∗) <Rλ
π(yn). But this is incompatible with <Sω,2 .

It follows that (Rλ, <Rλ
) is tame, and it is easy to see that Trank(Rλ) = λ.

Therefore if (S,<S) is tame and embeds in Rλ then Trank(S,<S) ≤ λ.

Next, suppose that (S,<S) is a reduced well-founded order which does not

embed R2,2 or Sω,2, and let λ = Trank(S,<S). Define functions m,M : S → λ

by

m(x) = otp(<D (x),⊆) and M(x) = otp(<CU (x),⊆).

We claim that the map π : S → Rλ, defined by π(x) = (m(x),M(x)), is an

embedding of (S,<S) into (Rλ, <Rλ
).

We have that (S,<S) is reduced, therefore for every distinct x, y ∈ S,

(d(x), cu(x)) �= (d(y), cu(y)). We get that one of <D (x), <D (y) is a ⊆-strict

initial segment of the other, or one of <CU (x), <CU (y) is a ⊆-strict initial seg-

ment of the other. Hence m(x) = otp(<D (x),⊆) �= otp(<D (y),⊆) = m(y), or

M(x) = otp(<CU (x),⊆) �= otp(<CU (y),⊆) = M(y). Therefore π is injective.

The next three claims show that π is order preserving:
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Claim 1: For every x ∈ S there exists a ⊆-order preserving injection

f :<D (x) →<CU (x), thus m(x) ≤ M(x).

Let d ∈<D (x) and define f(d) as follows: Let d+ ∈ D(S) be the ⊆ immediate

successor of d, i.e., d � d+ ⊆ d(x). Pick an element yd ∈ d+ \ d and set

f(d) = cu(yd).

To show that f(d) belongs to <CU (x), note that yd ∈ d+ ⊂ d(x), so yd <S x

and x ∈ cu(x) \ cu(yd). As cu(x) and cu(yd) are ⊆ comparable it must mean

that cu(yd) � cu(x).

As pointed out in Remarks 2.8, we have that d+ = d(z) for some z ∈ S.

Therefore yd <S z. Let d′ ∈<D (x) so that d � d′; d+ = d(z) ⊂ d′ � (d′)+

implies that yd′ ≮S z and therefore z ∈ cu(yd′) \ cu(yd), so

f(d) = cu(yd) � cu(yd′) = f(d′).

Hence f is �-order preserving.

Claim 2: For every x <S y there is a ⊆-order preserving injection

g :<CU (x) →<D (y), witnessing that M(x) < m(y).

Let cu(z) ∈<CU (x) and define g(cu(z)) as follows: Let z+ ∈ S so that cu(z+)

is the ⊆ immediate successor of cu(z). Let

Γcu(z) = {d(w) | w ∈ cu(z+) \ cu(z)}

and let g(cu(z)) ∈ Γcu(z) be a ⊆ minimal set in Γz (it is actually unique).

Also pick wcu(z) ∈ cu(z+) \ cu(z) so that g(cu(z)) = d(wcu(z)). We get that

wcu(z) ≮S x as wcu(z) ∈ cu(z+) ⊆ cu(x), and z <S wcu(z) as w �∈ cu(z).

For everyw′∈S, if w′<Swcu(z) then w′ <S y as otherwise<S� {wcu(z), w
′, x, y}

would be isomorphic to R2,2. It follows that g(cu(z)) = d(wcu(z)) ⊆ d(y). More-

over, d(wcu(z))�d(y) since x∈d(y)\d(wcu(z)). This shows that g(cu(z))∈<D(y).

Let z′∈S so that cu(z) � cu(z′) ∈<CU (x). We havewcu(z) ∈ cu(z+) ⊆ cu(z′),
i.e., z′ ≮S wcu(z) and therefore z′ ∈ d(wcu(z′)) \ d(wcu(z)). It follows that

g(cu(z)) = d(wcu(z)) � d(wcu(z′)) = g(cu(z′)). Therefore g is ⊆-order preserv-

ing.

Suppose that otp(<D (y),⊆) = ρ + n where ρ is a limit ordinal and n < ω.

Let 〈di | i < ρ + n〉 be a ⊆-continuous increasing enumeration of <D (y). In

order to prove M(x) < m(y) it is sufficient to verify that dρ =
⋃

i<ρ di �∈ rng(g).

We consider the following three cases which address the identity of dρ:
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(1) If ρ = 0 then dρ = ∅, as ∅ = d(t) ∈<D (x) for every <S minimal element

t <S x. We saw that x ∈ d(wcu(z)) = g(cu(z)) for every cu(z) ∈<CU (x),

therefore g(cu(z)) �= ∅ for every cu(z) ∈ dom(g).

(2) If dρ ∈ D(S)\D(S) then dρ �∈ rng(g), since g(cu(z)) = d(wcu(z)) ∈ D(S)

for every cu(z) ∈<CU (x).

(3) Suppose that dρ = d(w) for some w ∈ S. Recall that for every

cu(z) ∈<CU (x), g(cu(z)) is a ⊆ minimal set in

Γcu(z) = {d(w) | w ∈ cu(z+) \ cu(z)}.

Therefore to show dρ �∈ rng(g), it is sufficient to verify dρ is not

⊆-minimal in Γcu(z) for any cu(z) ∈<CU (x). For this, note that

dρ = d(w) ∈ Γcu(z) implies z ∈ dρ =
⋃

i<ρ di. Let i < ρ be a suc-

cessor ordinal such that z ∈ di = d(wi). Since z+ �∈ dρ and d(wi) ⊆ dρ,

we get that wi ∈ cu(z+) \ cu(z), witnesses that dρ is not ⊆-minimal.

Claim 3: For every x≮S y there is a⊆-preserving injection h :<D(y)→<CU (x),

thus m(y) ≤ M(x).

Let d ∈<D (y) and define h(d) as follows: Let d+ ∈ D(S) be the ⊆ immediate

successor of d, i.e., d � d+ ⊆ d(y). Pick an element wd ∈ d+ \ d and set

h(d) = cu(wd). Since cu(wD), cu(y) are ⊆ comparable, and y ∈ cu(x) \ cu(wd)

(as x ≮S y), we get h(d) = cu(wd) � cu(x), i.e., h(d) ∈<cu (x). Let d′ ∈<D (y)

so that d � d′; d+ = d(z) for some z ∈ S. We have d(z) ⊂ d′ and wd′ �∈ d′, so
z ∈ cu(wd′) \ cu(wd) and thus h(d) = cu(wd) � cu(wd′) = h(d′). Therefore h is

�-order preserving.

Remark 2.11:

(1) Definition 2.2 (of tame orders) is slightly different from the author’s

original (equivalent) definition, where S is tame, if it does not embed

R2,2 and the linear ordered sets (D(S),⊂), (CU(S),⊂) are well-orders.

The author would like to thank the referee for pointing out that the last

property is equivalent to the fact that S does not embed Sω,2 as well.

(2) In [5], James Cummings constructed a model in which �(κ) is divided

into blocks {M(α, β) | α < o(κ), β ∈ (α, o(κ)) ∪ {∞}}. The blocks

determine the � structure in this model, where for every U ′ ∈ M(α′, β′)
and U ∈ M(α, β), U ′ � U if and only if β′ ≤ α. It is not difficult to see

that this order is tame.



Vol. 214, 2016 THE STRUCTURE OF THE MITCHELL ORDER 955

3. The posets P0 and P1

The purpose of this section is to introduce the main poset P = P0 ∗ P1, com-

prised of P0, a Friedman–Magidor forcing, introduced in [7], and of P1, a Magi-

dor iteration of Prikry-type forcings. The Magidor iteration of Prikry-type

forcings was introduced by Magidor in [13] (see [9] for an extensive survey).

The definitions of P0 and P1 rely on certain parameters, chosen relative to

λ = oV (κ). To simplify the presentation we restrict the presentation of P0,P1

in this section to when λ ≤ κ. The more general case, λ < κ+, will be treated

in Section 7.

Suppose that the ground model is a Mitchell model, V = L[U ], so that

U = 〈Uν,τ | ν ≤ κ, τ < o(α)〉 is a coherent sequence of normal measures.

When ν = κ we write Uτ to denote Uκ,τ , for every τ < λ. For every τ < λ

let Δτ = {ν < κ | o(ν) = τ}. The sets {Δτ | τ < λ} are pairwise disjoint

as λ ≤ κ. For every α < λ, let jα : V → Mα
∼= Ult(V, Uα) be the induced

ultrapower embedding. Therefore Uα ∈ Mβ if and only if α < β < λ. Let

j
Mβ
α : Mβ → Mα,β

∼= Ult(Mβ , Uα), and jα,β = j
Mβ
α ◦ jβ : V → Mα,β . Now

jα,β is known to be equivalent to the ultrapower embedding induced by the

product measure Uα × Uβ ; jα,β can also be formed using a normal iteration.

Taking jα(Uβ) ∈ Mα, if iMα

β : Mα → Mα,β
∼= Ult(Mα, jα(Uβ)) denote the

induced ultrapower embedding of Mα by jα(Uβ); then jα,β = iMα

β ◦ jα. The

iteration is normal since the sequence of critical points 〈κ0, κ1〉 = 〈κ, jα(κ)〉
is increasing. The fact that jβ(κ) > κ is inaccessible in Mβ implies that

jα,β(κ) = j
Mβ
α (jβ(κ)) = jβ(κ).

3.1. The poset P0
. The forcing P0 used here was introduced by Friedman and

Magidor in [7]. Now P0 = P0
κ+1 = 〈P0

ν ,Q0
ν | ν ≤ κ〉 is a non-stationary support

iteration. Conditions p ∈ P0
ν are denoted by p = 〈ṗμ | μ < ν〉. Non-stationary

support means that for every limit ν ≤ κ, every p ∈ P0
ν belongs to the inverse

limit of the posets 〈P0
μ | μ < ν〉, with the restriction that if ν is inaccessible

then the set of μ < ν such that pμ is non-trivial is a non-stationary subset

of ν. For every ν ≤ κ, if ν is non-inaccessible then �P0
ν
Q0

ν = ∅, otherwise
�P0

ν
Q0

ν = Sacksλ(ν)(ν) ∗ Code(ν), where for every ν < κ we set

λ(ν) =

⎧⎨
⎩
λ if λ < κ,

ν if λ = κ.
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Conditions in Sacksν(ν) are trees T ⊂ <νν for which there is a closed unbounded

C ⊂ ν so that whenever s ∈ T , if len(s) ∈ C then s
〈i〉 ∈ T for all i < λ(len(s)).

Code(ν) is a coding poset which adds a club set to ν+ coding the Sacksλ(ν)(ν)

generic function sν : ν → ν by destroying stationary subsets of Cof(ν) ∩ ν+ in

V (see [7]). Let G0 ⊂ P0 be a generic filter over V , and for every ν ≤ κ let

G0(Q0
ν) =

⋃{ṗνG0�ν | p ∈ G0} be the induced Q0
ν-generic over V [G0 � ν]. For

every non-trivial stage ν ≤ κ in the iteration P0, let sν : ν → λ(ν) denote the

generic Sacks function specified by G0(Q0
ν). For every η < λ define

Δ(η) = {ν < κ | sν = sκ � ν, and sκ(ν) = η}.

The sets in {Δ(η) | η < λ} are clearly pairwise disjoint. According to Friedman

and Magidor [7], V [G0] satisfies the following properties:

Fact 3.1:

(1) V [G0] agrees with V on all cardinals and cofinalities.

(2) For every normal measure U on κ and η < λ, there is a unique normal

measure, U(η) ∈ V [G0] containing U ∪ {Δ(η)}. Furthermore, these are

the only normal measures on κ in V [G0].

(3) For every η < λ, let jU(η) : V [G0] → M0
U(η)

∼= Ult(V [G0], U(η)) be the

induced ultrapower embedding of V [G0] by U(η). We have:

(a) jU(η) � V = jU : V → MU
∼= Ult(V, U) is the induced ultrapower

embedding of V by U .

(b) M0
U(η) = MU [G

0
U(η)] where G0

U(η) ⊂ jU (P0) is MU generic.

(c) G0
U(η) � κ+ 1 = G0.

(d)
⋃
jU“(G

0�κ) completely determinesG0
U(η) �jU (κ)⊂jU (P0)�jU (κ).

In particular, G0
U(η) � jU (κ) is independent of η < λ.

(e) For every p ∈ G0 let jU (p)(η) be the condition obtained from jU (p)

by reducing its Sacks tree at level κ, T = (jU (p))κ, to the set of

functions s ∈ Levκ+1(T ) which satisfy s(κ) = η. For every dense

open set D ⊂ jU (P0), there exists p ∈ G0 so that jU (p)(η) ∈ D.

Definition 3.2:

(1) Let U0
(α,η) denote the V [G0] extension U(η) described above, for U =

Uα.

(2) Let j0(α,η) : V [G0] → Mα[G
0
α(η)] denote the ultrapower embedding of

V [G0] by U0
(α,η).
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We write G0
α(η) = j0(α,η)(G

0) to denote the jα(P0) generic filter G0
U(η) de-

scribed above with U = Uα. It is clear that j
0
(α,η) � V = jα.

Definition 3.3:

(1) For every α < o(κ) let Δα = {ν < κ | o(ν) = α}.
(2) For α < o(κ) and η < λ let Δα(η) = Δ(η) ∩Δα.

Based on the above definition, it immediately follows that:

(1) {Δα(η) | α, η < λ} are pairwise disjoint.

(2) Δα(η) ∈ U0
(α,η) for every α, η < λ.

We can easily describe the iterated ultrapowers using U0
(α,η), α, η < λ. Ac-

cording to [7], jα,β“G
0 determines a unique generic filter in jα,β(P0) up to the

following values:

(1) a tuning fork at the value sjα(κ)(κ) < λ, and

(2) a tuning fork at the value sjα,β(κ)(jα(κ)) < jα(λ).

For every ηα < λ and ηβ < jα(λ) there exists a unique extension of jα,β to an

embedding of V [G0], which determines sjα(κ)(κ) = ηα and sjα,β(κ)(jα(κ)) = ηβ .

In this paper we are only interested in values ηα, ηβ < λ.

Notations 3.4:

(1) Denote V [G0] by V 0.

(2) For every α < o(κ) = λ and η < λ, let j0(α,η) : V
0 → M0

(α,η) denote the

ultrapower induced embedding

j0(α,η) : V [G0] → Mα[G
0
α(η)]

∼= Ult(V 0, U0
(α,β)).

(3) For every ηα, ηβ < λ, let

i
0,M(α,ηα)

(β,ηβ)
: M0

(α,ηα) → M0
(α,ηα),(β,ηβ)

∼= Ult(M0
(α,ηα), j

0
(α,ηα)(U

0
(β,ηβ)

))

denote the ultrapower of M0
(α,ηα) by j0(α,ηα)(U

0
(β,ηβ)

), and let

j0(α,ηα),(β,ηβ)
= i

0,M(α,ηα)

(β,ηβ)
◦ j0(α,ηα) : V [G0] → M0

(α,ηα),(β,ηβ)
.

The following summarizes the connections between iterated ultrapowers of V

and V 0:

(1) j0(α,ηα) � V = jα,

(2) i
0,M(α,ηα)

(β,ηβ)
� Mα = iMα

β ,

(3) j0(α,ηα),(β,ηβ)
� V = jα,β ,
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(4) s
M0

(α,ηα),(β,ηβ )

jα(κ) (κ) = ηα,
1

(5) s
M0

(α,ηα),(β,ηβ )

jα,β(κ)
(jα(κ)) = ηβ .

Suppose that α < o(κ) = λ and η < λ. The definition of U0
(α,η) requires

knowledge of Uα and G0. For every β > α and η′ < λ, Uα ∈ Mβ ⊂ M0
(β,η′) and

G0 = G0
β(η

′) � (κ+ 1) ∈ M0
(β,η′). We conclude the following:

Corollary 3.5: For every α < β < o(κ) and η, η′ < λ, U0
(α,η) � U

0
(β,η′).

2

The description of the normal measures on κ in a P0 extension applies to all

measurable cardinals ν < κ: Let

Uν = 〈Uν,α | α < o(ν)〉
be an �-increasing sequence of the normal measures on ν in the coherent se-

quence U ∈ V = L[U ]. Each normal measure Uν,α ∈ V extends to λ(ν) normal

measures in V [G0 � (ν + 1)], denoted {U0
ν,(α,η) | η < λ(ν)}. No measures on

ν are added or removed by the rest of the iteration since P0 \ (ν + 2) is 2(2
ν)-

distributive. Furthermore, we get that U0
ν,(α,η) �U

0
ν,(β,η′) for every α < β < o(ν)

and η, η′ < λ(ν).

3.2. The poset P1
. The poset P1 = 〈P1

ν , Q̇1
ν | ν < κ〉 is a Magidor iteration

of one-point Prikry forcings. See [9] for a comprehensive survey of Magidor

iteration of Prikry-type forcings. One-point Prikry forcing is a simplified ver-

sion of the well known Prikry forcing. The one-point version at a measurable

cardinal ν chooses a single (indiscernible) ordinal d(ν) < ν, instead of a cofinal

ω sequence.

Let U be a normal measure on ν. The one-point Prikry forcing Q(U) consists

of elements p ∈ U ∪ ν. For every q, q′ ∈ Q(U) we set:

(1) q ≥∗
Q(Uν)

q′ (i.e., q is a direct extension of q′) if and only if either

q, q′ ∈ U and q ⊂ q′, or q, q′ ∈ ν and q = q′.
(2) q ≥Q(Uν) q

′ if and only if q ≥∗
Q(Uν)

q′ or q ∈ ν, q′ ∈ U , and q ∈ q′.

(Q(Uν),≥Q(Uν),≥∗
Q(Uν)

) is a Prikry-type forcing notion ([9]).

Let us describe the way P1 is formed from certain one-point Prikry forc-

ings. Let ν ≤ κ be a measurable cardinal in V . Suppose P1
ν has been defined

1 Here sν(μ) denotes the value of the generic ν-Sacks at μ.
2 It is not difficult to verify that U0

(α,η)
� U0

(β,η′) if and only if α < β.
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and U1
ν = 〈U1

ν,(α,β) | β < o(ν), α < λ(ν)〉 is a given sequence of normal measures

on ν in a P1
ν generic extension of V 0.

Definition 3.6 (recipe for Q1
ν): Let α, β < λ be the unique ordinals so that

ν ∈ Δα(β) (i.e., o(ν) = α and sκ(ν) = β). Define Q1
ν by

Q1
ν =

⎧⎨
⎩
Q(U1

ν,(α,β)) if β < α,

0—the trivial forcing otherwise.

To complete the definition of Q1
ν , we need to define the normal measures in

U1
ν = 〈U1

ν,(α,β) | β < o(ν), α < λ(ν)〉. These are given in Definitions 3.8 and

3.10. Note, however, that Definition 3.8 is the only one which applies to Q1
ν .

To simplify the notations, let us assume that ν = κ and use the abbrevia-

tions U0
(α,β) for U0

κ,(α,β), and U1
(α,β) for U1

κ,(α,β). Our definitions make use of

the embeddings j0(α,η), i
0,M(α,ηα)

(β,ηβ)
, and j0(α,ηα),(β,ηβ)

, introduced in Notations 3.4

above.

Definition 3.7 (Prikry function):

(1) Let Δ′ = {ν ∈ Δ | 0P1
ν
� Q1

ν is not trivial }.
(2) Let ḋ : Δ′ → κ, be the P1 name for the generic Prikry function, so

that for every V 0 generic filter G1 ⊂ P1, d(ν) < ν is the Q1
ν generic

point given by G1.

Let G1 ⊂ P1 be generic over V 0.

Definition 3.8 (U1
(α,β) for α ≥ β): Suppose that α ≥ β, where β < o(κ) and

α < λ(κ) = λ. Let X be a subset of κ in V 0[G1] and Ẋ be a P1 name of X .

Set X ∈ U1
(α,β) if and only if there are p ∈ G1 and q ≥∗ j0(β,α)(p) \ κ so that

p
q ≥∗ j0(β,α)(p) is a condition in j0(β,α)(P1) and

(1) p
q �j0
(β,α)

(P1) κ̌ ∈ j0(β,α)(Ẋ).

Definition 3.8 implies that U1
(α,β) extends U0

(β,α) in V 0. In particular,

Δβ(α) ∈ U1
(α,β). It is not difficult to verify that U1

(α,β) is a normal measure

on κ. For proof see [9] or the description of U∗
0 in [3].3

3 To verify the normality of U1
(α,β)

, note that κ ∈ j0
(β,α)

(Δβ(α)), so by Definition 3.6,

stage κ of j0
(β,α)

(P1) is trivial.
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Remark 3.9: Suppose that X ∈ U1
(α,β), α ≥ β, and let p ∈ G1 and q ≥∗

j0(β,α)(p) \ κ as in Definition 3.8 above. Essentially, one can assimilate q into

j0(β,α)(p), and use it to produce a simpler characterization for the sets in U1
(α,β):

LetQ be a function representing q inM0
(β,α) whereQ(α) ≥∗ p\α for every α < κ.

Let t ≥∗ p be the condition obtained from p by reducing each pν , ν �∈ supp(p) to

tν = pν ∩Δα<νQ(α)ν . It follows that for every α < κ, t−α ≥∗ Q(α), where t−α

is the condition obtained from t by replacing each set tν , ν > α, with tν \α+1.

By a standard density argument it follows that for every X ∈ U1
(α,β), α ≥ β,

there is some p ∈ G1 so that

j0(β,α)(p)
−κ � κ̌ ∈ j0(β,α)(Ẋ).

We proceed to define U1
(α,β) when α < β. We first introduce the following

auxiliary definitions.

Definition 3.10 (k0α,β and p+(μ,ν)):

(1) For α < β < λ = o(κ), let k0α,β : V 0 → N0
α,β denote the iterated

ultrapower j0(α,β),(β,α) :V
0→M0

(α,β),(β,α) (introduced in Notations 3.4).

(2) For every condition p ∈ P1, ν < κ so that p � ν � ṗν ∈ Q(U̇∗
ν ), and

μ < ν, let p+(μ,ν) denote the condition obtained from ṗ by replacing ṗν

with ˇ{μ}, i.e., p+(μ,ν) � μ̌ = ḋ(ν̌).

Note that p+(μ,ν) is not necessarily an extension of p. If p � ν � μ̌ ∈ ṗν then

p+(μ,ν) is an extension of p.

Definition 3.11 (U1
(α,β) for α < β): Let α < β < λ. In V 0[G1] define U1

(α,β) to

be the set of all X = ẊG1 ⊆ κ for which there are p ∈ G1 and q ≥∗ k0α,β(p) \ κ
such that (p
q)+(κ,j0(α,β)(κ)) ≥ p
q, and

(2) (p
q)+(κ,j0(α,β)(κ)) � κ̌ ∈ k0α,β(Ẋ).

For proof that U1
(α,β) is a normal measure on κ, see [3].4 It follows that U1

(α,β)

extends U0
(α,β) and, in particular, Δα(β) ∈ U1

(α,β).

Remark 3.12: Similar to Remark 3.9, one can show that for every X ∈ U1
(α,β)

there exists a condition p ∈ G1 so that

k0α,β(p)
+(κ,j0(β,γ)(κ))−κ−j0(β,γ)(κ) � κ̌ ∈ k0α,β(Ẋ).

See [3] for further details.

4 See the proof for the normality of U×
1 .
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3.3. Separation by sets. Let G1 ⊂ P1 be a generic filter over V 0 = V [G0].

Let us denote V 0[G1] by V 1. The normal measures {U1
(α,β) | α ≤ β < λ} will be

used to realize Rλ. As mentioned in the introduction, we would like the normal

measure on κ in V 1 to be separated by sets.

Definition 3.13 (Γ, X(α,β)): Define sets in V 1:

(1) Γ = d“Δ′, the set of Prikry generic points.

(2) For every α, β < λ,

X(α,β) =

⎧⎨
⎩
Δβ(α) \ Γ if α ≥ β,

Δα(β) ∩ Γ if α < β.

A simple inspection of Definitions 3.8 and 3.11 shows that X(α,β) ∈ U1
(α,β)

for every α, β < λ.

Corollary 3.14: The sets in {X(α,β) | α, β < λ} are pairwise disjoint, and

X(α,β)∈U1
(α,β) for all α, β < λ. In particular, the measures in {U1

(α,β) | α, β < λ}
are separated by sets.

4. The restriction j1(α,β) � V

For every α, β < λ, let j1(α,β) : V
1 → M1

(α,β)
∼= Ult(V 1, U1

(α,β)). The purpose of

this section is to describe the restriction j1(α,β) � V 0 as an iterated ultrapower of

the measures in V 0. For every α, β < λ, we first define an iterated ultrapower

T 0 resulting in an embedding π0
α,β : V 0 → Z0

α,β. The main proposition in this

section (Proposition 4.3) states that π0
α,β = j1(α,β) � V 0. While the definition

of π0
α,β makes the statement natural, its proof requires preliminary technical

results. For simplicity, we assume that the ground model V is a Mitchell model

V = L[U ] with V = K(V ), where U is the coherent sequence of normal measures

and o(κ) = λ. In particular, V does not contain an overlapping extender. Let

α, β < o(κ) = λ. Our ground model assumption V = K(V ) = L[U ] and the fact

V 1 = V [G0 ∗G1] imply the following:

(1) V = K(V 1),

(2) j1(α,β) � V : V → Zα,β is an iterated ultrapower of V ,

(3) if j1(α,β) : V 1 → M1
α,β then M1

α,β = Zα,β [G
0
α,β ∗ G1

α,β ], where

G0
α,β ∗G1

α,β ⊂ j1(α,β)(P0 ∗ P1) is generic over Zα,β.
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We refer to [19] for these results. The definition of π0
α,β for α, β < λ makes

use of the ultrapower embedding j0(α,β) : V
0 → M0

(α,β) defined in Definition 3.2,

and the iterated ultrapower embedding k0α,β : V 0 → N0
α,β defined in Definition

3.10. Let Δ = 〈Δα(η) | α < o(κ), η < λ〉.
Definition 4.1 (π0

α,β): Here π0
α,β results from a linear iteration

T 0 = 〈Z0
i , σ

0
i,j | 0 ≤ i < j ≤ θ〉,

with critical points νi = cp(σ0
i,i+1) of length θ. Here Z0

i are the intermediate

models (iterands) of the iteration, and σ0
i,j : Z0

i → Z0
j are the connecting

iterations. For every i < θ we denote the image of the i-th critical point νi,

σ0
i,i+1(νi), by ν1i . We set Z0

0 = V 0, σ0
0,0 = idZ0

0
, Z0

1 = N0
α,β, and

σ0
0,1 =

⎧⎨
⎩
j0(β,α) if β ≤ α,

k0α,β if α ≥ β.

We define ν0 = κ, and set ν10 = j0(α,β)(κ) < σ0
0,1(κ) if α < β, and leave ν10

undefined otherwise.

Successor stage: Suppose that T 0 � i has been defined up to stage 1≤ i<θ;

define Z0
i+1 and σ0

i,i+1 as follows: Let ν∗i be the supremum of {νj | j < i} (the

set of critical points in T 0 � i), and take νi to be the minimal ordinal ν ≥ ν∗i
which satisfies:

(1) the forcing of σ0
0,i(P1) at stage ν is not trivial, i.e., ν ∈ σ0

0,i(Δ
′), and

(2) ν does not belong to σ0
0,i“{ν1j | j < i}.

These two requirements imply that the critical points of the iteration T 0 are

strictly increasing (i.e., the iteration is normal). Since νi ∈ σ0
0,i(Δ

′), then there

are unique βi < αi so that νi ∈ σ0(Δ′)αi(βi). We define

σ0
i,i+1 = j0νi,(βi,αi)

: Z0
i → Z0

i+1

and set ν1i = j0νi,(βi,αi)
(νi).

Limit stage: If δ < θ is a limit ordinal, then we take Z0
δ to be the direct limit

of T 0 � δ.
The iteration terminates at stage θ, when σ0

0,θ(Δ
′) ⊂ {ν1i | i < θ} ∪ ν∗θ . Note

that

σ0
0,1(κ) =

⎧⎨
⎩
j0(β,α)(κ) if β ≤ α,

k0α,β(κ) if α ≥ β.
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By induction on i < θ, it is not difficult to verify that σ0
0,1(κ) is a fixed point

of σ0
1,i. It follows that the iteration must terminate after at most σ0

0,1(κ) many

steps as each νi < σ0
1,i(σ

0
0,1(κ)) = σ0

0,1(κ), and the iteration is normal.

The following facts summarize the main properties of π0
α,β , and can be easily

proved by induction on 1 ≤ i < θ.

Corollary 4.2:

(1) For every α ≥ β we have:

• σ0
0,1 = j0(β,α), ν0 = κ, and ν10 is not defined,

• for every 1 ≤ i ≤ θ both κ = ν0 and j0(β,α)(κ) are not moved by

σ0
1,i, and νi ∈ (κ, j0(β,α)(κ)),

• σ0
0,i(Δ

′) ∩ [κ, νi) = {ν1j | j < i} for every 1 ≤ i < θ.

(2) For every α < β we have:

• σ0
0,1 = k0α,β, ν0 = κ, ν10 = j0(α,β) < k0α,β(κ);

• for every 1 ≤ i ≤ θ, neither ν0, ν10 , nor k0α,β(κ) are moved by

σ0
1,i; furthermore, each critical point νi either belongs to (ν0, ν

1
0)

or (ν10 , k
0
α,β(κ));

• for every i < θ with νi ∈ (ν0, ν
1
0) we have

σ0
1,i(Δ

′) ∩ [κ, νi) = {ν1j | 1 ≤ j < i};
• for every i < θ with νi ∈ (ν10 , k

0
α,β(κ)),

σ0
1,i(Δ

′) ∩ [κ, νi) = {ν1j | 0 ≤ j < i}.
Proposition 4.3: For every α, β < λ, π0

α,β is the restriction of

j1(α,β) : V
1 → M1

(α,β)
∼= Ult(V 1, U1

(α,β))

to V 0.

4.1. Structural results for dense open sets in P1
. In this section we

prove several preliminary results, which will be used in the proof of Proposition

4.3. We focus on a specific family of finite subiterations of T 0 named structural

iterations for U1
(α,β), and use them to describe a criterion for meeting dense

open sets in π0
α,β(P1).

Definition 4.4 (structural function, and structural extension): We define by in-

duction on n < ω a structural function f of degree n, avoiding b ⊂ κ.

For n = 0, a structural function of degree 0 is the trivial function f0 = ∅. A
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function f = fn+1 is a structural function of degree n+ 1, avoiding b, if there

is a unique ordinal νf < κ, and a P1
νf name Ẋf so that the following holds:

(1) νf ∈ Δ′ \ b.
(2) 0P1

νf
� Ẋf ∈ ˙U∗

νf
.

(3) dom(f) is the set of all P1
νf names for ordinals in Ẋf .

(4) For every name τ ∈ dom(f), f(τ) is a structural function g of degree n

avoiding b, and νg < νf .

We say that f is a structural function if there exists some n < ω so that f is

a structural function of degree n.

Let p be a condition, and f be a structural function avoiding supp(p). We say

that a condition q is a structural extension of p by f if the following holds:

(1) If f has degree 0, then q is a structural extension of p by f if q ≥∗ p.

(2) If f has degree n + 1, then q is a structural extension of p by f if

there are r ≥∗ p � νf and τ ∈ dom(f) so that r � τ ∈ pνf , and q is

a structural extension of r
(p \ νf )+(τ,νf ) by (the degree n structural

function) f(τ). Note that r
(p \ νf )+(τ,νf ) ≥ p.

Lemma 4.5: For every open dense set D ⊂ P1 and p ∈ P1 there exists a

structural function f , avoiding supp(p), so that every structural extension of p

by f has a direct extension in D.

Proof. We prove by induction on ν ≤ κ that the above holds for every dense

open set D ⊂ P1
ν and p ∈ P1

ν . Suppose the claim holds for every dense open set

D ⊂ P1
ν and p ∈ P1

ν . We have P1
ν+1 = P1

ν ∗ Q̇ν . If ν �∈ Δ′, then Q̇ν is trivial

and there is nothing to prove. If ν ∈ Δ′, then Q̇ν = Q(U̇∗
ν ). Let D ⊂ P1

ν+1 be

an open dense set, and p = p � ν
pν ∈ P1
ν+1. If ν ∈ supp(p), then the forcing

P1
ν over p is equivalent to P1

ν .

For every ν �∈ supp(p) the name pν is a P1
ν name of a set in U∗

ν . For every

Gν ⊂ P1
ν generic, the set D(Gν) = {(qν)Gν | q ∈ D} is a dense open set in

Q(U∗
ν ). It follows that there is some Yν ⊂ (pν)Gν with Yν ∈ U∗

ν so μ ∈ D(Gν)

for every μ ∈ Yν . Let Ẏν be a name for Yν in P1
ν . For every name τ of an

ordinal in Ẏν , the set Dτ = {q ≥ p � ν | q
〈τ〉 ∈ D} is dense open in P1
ν . The

inductive assumption guarantees that there is some n(τ) < ω and a structural

function f(τ) of degree n(τ), such that every structural extension of p � ν by

f(τ) has a direct extension in Dτ . For every n < ω, let Ẋn
ν be the P1

ν name of
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the set {τ ∈ Yν | n(τ) = n}, and let σ0
n be the P1

ν statement

σ0
n : Ẋn

ν ∈ U∗
ν .

Since P1
ν satisfies the Prikry condition, there exists a unique n < ω and some

r ≥∗ p � ν so that r � Ẋn
ν ∈ U̇∗

ν . Let us denote Xn
ν by Xν . We conclude that

for every name of an ordinal in Xν , τ , there is a structural tree f(τ) of degree

n such that every f(τ) structural extension of r+(τ,ν)〉 has a direct extension

in D. It follows that the function f mapping every such name τ to f(τ) is a

structural function of degree n + 1, and the claim of the Lemma holds with

respect to p, f .

Let δ ≤ κ be a limit ordinal, and suppose that the claim holds in every P1
ν for

ν < δ. Fix some p ∈ P1
δ and a dense open D ⊂ P1

δ . In order to prove the result

it is sufficient to show that for some ν < δ and a P1
ν name ṫ, p � ν � ṫ ≥∗ p \ ν

and Dṫ = {r ≥ p � ν | r
 ṫ ∈ D} ⊂ P1
ν is dense open. Suppose otherwise, and

let us construct a direct extension of p, p∗ = 〈p∗ν | ν < δ〉 so that for every

ν < δ, p∗ � ν � σ0
ν where

(3) σ0
ν : ∀t ≥∗ (p \ ν). t �∈ D(Ġν).

Note that the existence of p∗ would contradict the fact that D is dense.

Suppose p∗ � ν = 〈p∗μ | μ < ν〉 has been defined and satisfies (3). Fix a P1
ν

generic Gν with p∗ � ν
p \ ν ∈ Gν , and consider the forcing

P1 \ ν = Q1
ν+1 ∗ P1 \ (ν + 1).

Since Q1
ν+1 satisfies the Prikry property, there exists some rν ≥∗ (pν)Gν which

decides σ0
ν+1.

5 If rν � ¬σ0
ν+1, there would be q>ν ≥∗ p \ (ν + 1) and r∗ν ≥∗ rν

so that r∗ν
q>ν ∈ D(Gν). This is impossible as r∗ν
q>ν ≥∗ p \ ν while σ0
ν holds

in V [Gν ] as p
∗ � ν ∈ Gν .

We conclude that rν forces σ0
ν+1 in V [Gν ]. Back in V , let p∗ν be a P1

ν name

for rν , so p∗ � ν � p∗ν ≥∗ pν , and p∗ � ν
p∗ν � σ0
ν+1.

Let δ′ < δ be a limit ordinal. Suppose p∗ � δ′ = 〈p∗μ | μ < δ′〉 has been

constructed, and let us show that p∗ � δ′ � σ0
δ′ . Otherwise, there would be

conditions, t ∈ P1 \ δ′ and r ≥ p∗ � δ′, so that p∗ � δ′ � t ≥∗ p \ δ′ and

r � t ∈ D(Ġδ′ ). Thus there exists some r′ ≥ r so that r′
t ∈ D. As δ′

is a limit ordinal and supp(r′) is finite, it follows there is some ν < δ′ with

r′ \ ν ≥∗ (p∗ � δ′ \ ν). Let s = r′ � ν; we get (r′ \ ν)
t ≥∗ p \ ν and

s � (r′ \ ν)
t ∈ D(Ġν). This is absurd as s ≥ p∗ � ν and must force σ0
ν .

5 Considered as a Q1
ν -statement.
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Definition 4.6 (structural iteration and compatible conditions): For α, β < λ a

structural iteration for U1
(α,β) is a finite iterated ultrapower

M = 〈Mm, jk,m | k < m ≤ n〉
of length n < ω, satisfying the following properties:

M0 = V 0,

j0,1 =

⎧⎨
⎩
j0(β,α) : V

0 → M0
(β,α) if β ≤ α,

k0α,β : V 0 → M0
(α,β),(β,α) if α > β.

Define ν0 = κ, set ν10 = j0(α,β)(κ) < k0α,β(κ) if α < β, and leave ν10 undefined

otherwise. For every 1≤k<n, suppose that M �k + 1=〈Mm, ji,m | i < m ≤ k〉
and 〈(νi, ν1i ) | i < k〉 have been defined. Then there is an ordinal νk < j0,k(κ)

so νk ∈ j0,k(Δ
′) \ (κ∪ {ν1i | i < k}) and unique αk, βk with ν ∈ j0,k(Δ)αk

(βk).
6

(1) jk,k+1 : Mk → Mk+1
∼= Ult(Mk, U

0
νk,(βk,αk)

),

(2) ν1k = jk,k+1(νk).

We say that a condition p ∈ j0,n(P1) is compatible with the structural

iteration M , if there exists a sequence p = 〈pk | k ≤ n〉 with the following

properties:

(1) p0 ∈ P1 in V 0.

(2) p1 =

⎧⎨
⎩
j0,1(p

0) = j0(β,α)(p
0) if β ≤ α,

(p
q)+(κ,j0(α,β)(κ)) as in Definition 3.11 if α < β.

(3) For every 1 ≤ k < n,

pk+1 = (p
q
(jk,k+1(p) \ ν1k))+(νk,ν
1
k),

where

• q ≥∗ jk,k+1(p) � [νk, ν1k),
• p
q � νk ∈ jk,k+1(pνk) = jk,k+1(p)ν1

k
. Note that the existence of

such q is guaranteed by Definition 3.8.

(4) p ≥∗ pn.

Comparing the last definition with the definition of the iteration T 0 for U1
(α,β),

it clear that structural iterations are all finite subiterations of T 0 and that the

T 0-resulting limit, π0
α,β : V 0 → Z0

α,β, is also the limit of the directed system of

all structural iterations for U1
(α,β).

Before proceeding, we point out the following simple facts:

6 Note that we must have αk < βk since ν ∈ j0,k(Δ
′).
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Remarks 4.7: Let M = 〈Mm, jk,m | k < m ≤ n〉 be a structural iteration for

U1
(α,β).

(1) The embedding j0,1 coincides with the ultrapower embedding used for

the definition of U1
(α,β) in Definitions 3.8 and 3.11 for U1

(α,β).

(2) For every k < n− 1, νk, ν
1
k are not moved by jk+1,n.

(3) For every k, 1 ≤ k < n, νk ∈ j0,k(Δ
′) implies that ν1k ∈ j0,k+1(Δ

′).
Furthermore, since U0

(βk,αk)
(the measure generating jk,k+1) does not

include j0,k(Δ
′) ∩ νk we get that νk �∈ j0,k+1(Δ

′). Similarly, we have

that κ �∈ k0α,β(Δ
′) when α < β, and κ �∈ j0(β,α)(Δ

′) when α ≥ β.

Therefore νk �∈ j0,n(Δ
′) for every k < n.

(4) If p ∈ j0,n(P1) is compatible with the iteration M which is witnessed

by a sequence 〈pi | i ≤ n〉, then pk+1 � j0,k+1(ḋ)(ν
1
k) = νk for every

k < n. Both νk, ν
1
k are not moved by the rest of the iteration, hence

p � j0,n(ḋ)(ν
1
k) = νk

whenever ν1k is defined.

(5) Suppose that p0, p1 ∈ j0,n(P1) are compatible with M . Let 〈pk0 | k ≤ n〉,
〈pk1 | k ≤ n〉 be witnessing sequences for p0, p1 respectively. It is easy

to see by induction on k ≤ n that if p00, p
0
1 ∈ P1 are compatible in P1,

then pk0 , p
k
1 are compatible in j0,k(P1).

Lemma 4.8: Let M0 = 〈Mm, jk,m | k < m ≤ n0〉 be a structural iteration

of length n0 and p ∈ j0,n0(P1) compatible with M0. We have that for every

structural function f = fn of degree n which avoids supp(p) ∪ κ, there exists

a structural iteration M = 〈Mm, jk,m | k < m ≤ n0 + n〉 of length n0 + n,

extending M0, and q ∈ j0,n0+n(P1) so that:

(1) q is compatible with M , and

(2) q is a structural extension of jn0,n0+n(p) by jn0,n0+n(f).

Proof. Let us denote n0 + n by n∗. For every k, n0 ≤ k < n∗, we choose

jk,k+1 : Mk → Mk+1, p
k+1 ∈ j0,k+1(P1), and gn

∗−k of degree n∗ − k, so that

pk+1 is compatible with M � (k + 1), and gn
∗−k avoids supp(pk+1) ∪ κ. Let

Mn0 be the last model in M0, p
n0 = p, and gn

∗−n0 = gn = f . Suppose that
M � k+1, pk, gn

∗−k have been defined. Note that {ν1i | i < k} ⊂ supp(pk) and

νk ∈ j0,k(Δ
′) \ (κ ∪ supp(pk)). Suppose that νk ∈ Δαk

(βk), and let

jk,k+1 : Mk → Mk+1
∼= Ult(Mk, U

0
νk,(βk,αk)

).
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Let Xgn∗−k be the name associated with gn
∗−k, and let Yk be a name for

Xgn∗−k ∩ pkνk . Since Yk is a name of a set in U1
(αk,βk)

, then by the definition of

U1
(αk,βk)

there is some q ≥∗ jk,k+1(p
k) � [νk, ν1k), so that pk
q � ν̌k ∈ jk,k+1(Yk).

Define pk+1 =
(
pk
q
(jk,k+1(p

k) \ ν1k)
)+(νk,ν

1
k).

Let ν̇k be an ordinal in Yk which is interpreted as ν̌k by every condition which

forces ν̌k ∈ jk,k+1(Xgn∗−k). Clearly ν̇k ∈ dom(jk,k+1(g
n∗−k)) so we can define

gn
∗−(k+1) = jk,k+1(g

n∗−k)(ν̇k). The inductive hypothesis implies that pk+1 is

compatible with M � k + 2 and that gn
∗−(k+1) avoids κ ∪ supp(pk+1).

The construction terminates after n = n∗ − n0 steps. We obtain an iteration
M = 〈Mm, jk,m | k < m ≤ n∗〉, 〈pi | i ≤ n∗〉 and a structural function of degree

0, g0 = gn
∗−n∗

= ∅. For every k ≤ n∗, νk, ν1k are fixed by jk+1,n, hence g0 can

also be described as follows:

(1) h0 = jn0,n∗(f) is of degree n,

(2) hi+1 = hi( ˙νn0+i) is of degree n− i− 1 for all i < n,

(3) g0 = hn.

We conclude that the sequence 〈jk,n∗(pk) ∈ jn0,n∗(P1)〉 is a witness for the

fact that q = pn
∗
= jn∗,n∗(pn

∗
) is a structural extension of jn0,n0+n(p) by

jn0,n0+n(f).

The following concludes the findings of Lemmata 4.5 and 4.8.

Corollary 4.9: Let M0 be a structural iteration of length n0, and D be

a P1-name of a dense open set in j0,n0(P1) \ κ. For every M0 compatible

condition p ∈ j0,n0(P1) there is a structural iteration M extending M0 and a
M compatible condition q ∈ j0,n∗(P1) so that:

(1) q ≥ jn0,n∗(p) (here n∗ = | M |),
(2) q � κ = jn0,n∗(p) � κ = p � κ, and
(3) q � κ � (q \ κ) ∈ D.

4.2. A proof for Proposition 4.3. Let α, β < λ and

T 0 = 〈Z0
i , σ

0
i,j | 0 ≤ i < j < θ〉

be the iteration associated with U1
(α,β) (Definition 4.1), and let π0

α,β : V 0 → Z0
α,β

be the resulting elementary embedding; π0
α,β is also the limit of the directed

system which consists of all structural iterations of U1
(α,β).
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Definition 4.10:

(1) For every structural iteration M = 〈Mk, jk,m | k ≤ m ≤ n〉 with respect

to U1
(α,β), let j �M : V 0 → Mn denote j0,n and k �M : Mn → Z0

α,β denote

the direct limit embedding of Mn in Z0
α,β .

(2) Let G1 ⊂ P1 be a V 0 generic. We say that a condition p ∈ j �M (P1)

is compatible with both M and G1 if there is a witnessing sequence

〈pk | k ≤ n〉 so that p0 ∈ G1.

(3) Let F �M,G1 ⊂ j �M (P1) be the set of all the conditions p ∈ j �M (P1) which

are compatible with M and G1.

Proof of Proposition 4.3. Define G1
α,β ⊂ π0

α,β(P1),

G1
α,β =

⋃
{k �M“F �M,G1 | M is a structural iteration }.

It is clear that π0
α,β“G

1 ⊂ G1
α,β . Furthermore, the last remark in Remarks 4.7

implies that every two conditions in G1
α,β are compatible.

We show that G1
α,β is generic over Z0

α,β. Clearly, G1
α,β � κ = G1 is

P1 = π0
α,β(P1) � κ generic over Z0

α,β . Let D
′ be a P1 name for a dense open set

in π0
α,β(P1)\κ. Let M0 be a structural iteration for which there is D ⊂ j �M0

(P1)

such that k �M (D) = D′. Fix a condition p ∈ F �M0,G1 . By Corollary 4.9, there is

a structural iteration M extending M0 and a compatible condition q ∈ j �M (P1),

so that q � κ = p � κ and q � κ � q \ κ ∈ D. This implies that q ∈ F �M,G1 , which

in turn implies that q′ = k �M (q) ∈ D′ ∩G1
α,β . It follows that G

1
α,β ∩D �= ∅.

We can therefore extend π0
α,β : V 0 → Z0

α,β to an elementary embedding

P1
α,β :V

0[G1]→Z0
α,β [G

1
α,β ] so that for every set x=(ẋ)G1 , π1

α,β(x)=(π
0
α,β(ẋ))G1

α,β
.

Let U denote the normal measure on κ in V 0[G1] defined by X ∈ U if

κ ∈ π1
α,β(X). We first show that U = U1

(α,β), and then prove that π1
α,β co-

incides with the ultrapower embedding of U . Let X ∈ U1
(α,β). By the definition

of U1
(α,β) (Definitions 3.8 and 3.11) there is a G1 name Ẋ for X and a j9,1

compatible condition t ∈ j0,1“G
1 so that t �j0,1(P1) κ̌ ∈ j0,1(Ẋ). It follows that

t is compatible with G1, i.e., t ∈ FZ0
1 ,G

1. Let k : Z0
1 → Z0

α,β be the direct limit

embedding of the iteration. We get that k(t) ∈ G1
α,β . As k does not move κ

(the iteration T after Z0
1 is above κ) it follows that k(t) � κ̌ ∈ π0

α,β(Ẋ), thus

X ∈ U . We conclude that U1
(α,β) ⊆ U . U = U1

(α,β) as both are ultrafilters.

It follows that the ultrapower embedding of V 1 by U is

j1(α,β) : V
1 → M1

(α,β)
∼= Ult(V 1, U1

(α,β))
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and that π1
α,β can be factored into e1α,β ◦ j1(α,β), where e1α,β : M1

α,β → Z0
α,β[G

1
α,β ]

maps [f ]U1
(α,β)

to π1
α,β(f)(κ). Therefore, in order to show

(j1(α,β),M
1
α,β) = (π1

α,β , Z
0
α,β[G

1
α,β ])

it suffices to prove e1α,β is surjective. Suppose x ∈ Z0
α,β[G

1
α,β ] and let ẋ be a

π1
α,β(P1) name for x, i.e., x = (ẋ)G1

α,β
since G1

α,β = π1
α,β(G

1) ∈ rng(e1α,β).

Let us show that ẋ ∈ rng(e1α,β). To this end, ẋ ∈ Z0
α,β implies there is

a structural iteration M and a j �M (P1) name ẏ so that ẋ = k �M (ẏ). Let

〈νk | k < n〉 be the list of critical points of M = 〈Mk, jk,m | k < m ≤ n〉. Thus

ẏ = j0,n(h)(ν0, . . . , νn−1) for some h :κn→∈V 0 in V 0. For every k < n let ik < θ

such that νik = k �M (νk). By applying k �M we get ẋ = π0
α,β(h)(νi0 , . . . , νik). It

remains to show that νim ∈ rng(e1α,β) for each m < n. This is proved by induc-

tion. The case m = 0 is trivial as ν0 = κ and k �M (κ) = κ. Let 0 < m < n and

suppose that the claim holds for every m′ < m; νm is the critical point of the m-

stage of the iteration M . As a member of Mm (the m-th iterand in M) we can

write νm = j0,m(h)(ν0, . . . , νm−1) in Mm, where h : κm → V 0 belongs to V 0.

By applying jm,m+1 we get ν1m = j0,m+1(h)(ν0, . . . , νm−1) in Mm+1. As jm+1,n

does not move ν0, . . . , νm−1, νm, ν1m, ν1m = j0,n(h)(ν0, . . . , νm−1) in Mn. Now

for every p ∈ F �M,G1 we have p � ν̌m = j0,n(ḋ)(ν̌1m) = j0,m(ḣ′)(ν0, . . . , νm−1),

where ḋ is the name of the generic Prikry function and h′ = d◦h. It follows that
if q = k �M (p), then q ∈ G1

α,β and q � ˇνim = π0
α,β(h

′)(νi0 , . . . , νim−1). The result

is therefore a consequence of the inductive assumption for νi0 , . . . , νim−1 .

Corollary 4.11 (j1α,β � V ): The restriction j1α,β � V results from the following

iteration T = 〈Zi, σi,j | 0 ≤ i < j < θ〉:
(1) Z0 = V . For σ0,1 = σ0

0,1 � V : Z0 → Z1, i.e.,

σ0,1 =

⎧⎨
⎩
j0(β,α) � V = jβ if α ≥ β,

k0α,β � V = j0(α,β),(β,α) � V = jα,β if α > β.

(2) Given T � i and σj,i : Zj → Zi for j < i, so that Zj = K(Z0
j ) (i.e., the

core of Zj), and σj,i = σ0
j,i � Zj, we have

σi,i+1 = j0νi,(βi,αi)
� Zi = jνi,βi : Zi → Zi+1.
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5. The structure of �(κ) in V 1

We prove that in V 1, the restriction of � to {U1
(α,β) | α ≤ β < λ} is isomorphic

to Rλ.

Proposition 5.1: Suppose that α′ ≤ β′, α ≤ β are ordinals below λ = o(κ).

In V 0[G1], U1
(α′,β′) � U

1
(α,β) if and only if β′ < α.

Note that while V 1 contains normal measures U1
(α,β) for α > β, Proposition

5.1 refers only to U1
(α,β) for α ≤ β < λ. These additional measures are omitted

from Proposition 5.1 since they do not add any essential structure to �(κ)V
1

.

More precisely, the proof of Proposition 5.1 shows that for every α > β, U1
(α,β)

is equivalent to U1
(α,α) in the order �(κ) � U1, where

U1 = {U1
(α,β) | α, β < o(κ)}.

As Section 6 proves that the measures in U1 are all the normal measures on

κ in V 1, we conclude that Rλ is isomorphic to the reduction of �(κ)V
1

. We

separate the proof of Proposition 5.1 to “if” and “only if” claims.

Claim 5.2: If β′ < α then U1
(α′,β′) � U

1
(α,β).

Proof. Suppose that α′ ≥ β′. It is clear from Definitions 3.8 and 3.11 that

U1
(α′,β′) is defined in every inner model of V 1 which containsG0, G1, and U0

(β′,α′).

Similarly, if α′ < β′ then U1
(α′,β′) is defined in every inner model containing G0,

G1, U0
(β′,α′), and U0

(α′,β′).

For every α, β,

Ult(V 1, U1
(α,β))

∼= Z0
α,β [G

1
α,β ] = Zα,β[G

0
α,β ∗G1

α,β ],

where Z0
α,β results from the iterated ultrapower T 0. Furthermore,

G0 = G0
α,β � (κ+ 1) and G1 = G1

α,β � κ.

By Corollary 3.5 we have that U0
(α′,β′) � U0

(α,β) whenever α′ < α. Also, by

Definition 4.1 we know that the embedding π0
α,β factors into σ0

1,θ ◦ σ0
0,1, where

σ0
0,1 =

⎧⎨
⎩
j0(β,α) if β ≤ α,

k0α,β if α ≥ β,

and that cp(σ0
1,θ) > κ. Therefore, if U0

(α′,β′) ∈ M0
(α,β) then U0

(α′,β′) ∈ Z0
α,β. We

can now conclude the desired result by a simple case-by-case inspection:
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(1) When α′ = β′ and α = β, we get that

β′ < α =⇒ U0
(β′,β′) ∈ M0

(α,α) =⇒ U0
(β′,β′) ∈ Z0

α,α.

(2) When α′ = β′ and α < β, we have

β′ < α =⇒ U0
(β′,β′) ∈ M0

(α,β) =⇒ U0
(β′,β′) ∈ Z0

α,α.

(3) When α′ < β′ and α = β, then

β′ < α =⇒ U0
(α′,β′), U

0
(β′,α′) ∈ M0

(α,α) =⇒ U0
(α′,β′), U

0
(β′,α′) ∈ Z0

α,α.

(4) Finally, when α′ < β′ and α < β, then

β′ < α =⇒ U0
(α′,β′), U

0
(β′,α′) ∈ M0

(α,β) =⇒ Uzα′β′, U0
(β′,α′) ∈ Z0

α,α.

This concludes the “if” part of the proof. Before proceeding to the second

part, let us first list several corollaries of inner model theory ([19]).

Suppose that U1
(α′,β′) ∈ M1

α,β; let j
′
α′,β′ : M1

α,β → M ′
α′,β′ ∼= Ult(M1

α,β , U
1
(α′,β′))

be the ultrapower embedding.

(a)

(1) By the uniqueness of the core model, K(M1
α,β) = Zα,β (Zα,β is described

in Corollary 4.11).

(2) The restriction π′
α′,β′ = j′α′,β′ � Zα,β can be realized as the limit of a

normal iteration T ′ of Zα,β.

(3) Let G = G0
α,β ∗G1

α,β ; then:

(a) G′ = j′α′,β′(G) ⊂ π′
α′,β′(P0 ∗ P1) is π′

α′,β′(P0 ∗ P1) generic over

Z ′
α′,β′ ,

(b) M ′
α′,β′ = Z ′

α′,β′ [G′], and
(c) for every x ∈ M1

(α,β) = Zα,β [G], if x = (ẋ)G then

j′α′,β′(x) = π′
α′,β′(ẋ)G′ .

(b) The models M ′
α′,β′ ∼= Ult(M1

α,β, U
1
(α′,β′)) and M1

(α′,β′)
∼= Ult(V 1, U1

(α′,β′))

have the same initial segment of the cumulative hierarchy, V(j1
α′,β′ (κ)). Indeed,

M1
(α,β) ∩ (V 1)κ+1 = (V 1)κ+1 because M1

(α,β) is an ultrapower of V 1 by a κ

complete ultrafilter Therefore, when applying a U1
(α′,β′) ultrapower to V 1 and

M1
(α,β), we find that

j1α′,β′ � (κ+ + 1) = j′α′,β′ � (κ+ + 1)

and

M ′
α′,β′ ∩ Vj1

α′,β′ (κ) = M1
(α′,β′) ∩ Vj1

α′ ,β′(κ).
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It follows that:

(1) π′
α′,β′ � κ+ = π1

α′,β′ � κ+,

(2) Z ′
α′,β′ � j1α′,β′(κ) = Zα′,β′ � j1α′,β′(κ), and

(3) the following normal iterations agree up to jα′,β′(κ+) = πα′,β′(κ+):

• T which generates πα′,β′ : V → Mα′,β′ , and

• T ′, generating π′
α′,β′ : Mα,β → M ′

α′,β′ .

Claim 5.3: If U1
(α′,β′) � U

1
(α,β) then β′ < α.

Proof. We use the notations and results listed above. Since Z ′
α′,β′ and Zα′,β′

agree up to j1(α′,β′)(κ), we get that o
Zα′,β′ (ν)=oZ

′
α′ ,β′ (ν) for every ν<j1(α′,β′)(κ).

The first step of the iteration T ′ coincides with the first step of the iteration

T . According to Corollary 4.11, the first step of T is an ultrapower by Uα′ ; thus

Uα′ ∈ Zα,β. Since oZα,β (κ) = α it follows that α′ < α. Therefore, if α′ = β′

then β′ < α, as desired.

Suppose now that α′ < β′. Since π′
α′,β′ is the embedding generated by T ′,

it factors into π′
α′,β′ = k′ ◦ jα′ , where jα′ : Zα,β → N ′ and k′ : N ′ → Z ′

α′,β′ ,

with cp(k′) > κ. We have that jα′,β′(κ) > jα′(κ), therefore the iterations T

and T ′ agree at jα′(κ). We also know that jα′(κ) is a critical point in T via

the ultrapower by U = jα′(Uβ′). Note that o(U) = jα′(β′). Therefore the same

holds for T ′, and we must have that U ∈ N ′. It follows that

jα′(β′) = o(U) < oN
′
(jα′(κ)).

Finally, oZα,β (κ) = α and we get that oN
′
(jα′(κ)) = jα′(oZα,β (κ)) = jα′(α). We

conclude that jα′(β′) < jα′(α), therefore β′ < α.

6. The normal measures on κ in V 1

Proposition 6.1: The measures U1
(α,β), α, β < λ are the only measures on κ

in V 1.

Proof. Let W be a normal measure on κ in V 1, and

jW : V 1 → MW
∼= Ult(V 1,W ).

There is a normal iteration TW of V such that the resulting embedding π :V→M

coincides with jW � V . Moreover, if V 1 = V [G] and

G = G0 ∗G1 ⊂ P0 ∗ P1,
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then jW (G) = jW (G0)∗jW (G1) is π(P0∗P1) generic overMW . Denote jW (G0),

jW (G1) by G0
W , G1

W respectively. For every MW -inaccessible τ < jW (κ), let

s
G0

W
τ be the G0

W -induced generic Sacks function at τ .

According to Friedman–Magidor ([7]), π“G0 determines the values of every

G0
W Sacks function, s

G0
W

τ , with the exception of the values s
G0

W

γ1 (γ), where γ is a

critical point in TW and γ1 is its image.7 In particular, κ = cp(π) and π factors

into π = k◦jβ , where β < o(κ) and cp(k) > κ. Let T 0
W be the lift of the iteration

TW to V 0 = V [G0], and determined by G0
W , and let π0 : V [G0] → MW [G0

W ] be

its induced embedding.

Let γ = s
G0

W

jβ(κ)
(κ), and G0

U0
(β,γ)

= j0(β,γ)(G
0) be the jβ(P1)-generic filter over

Mβ , associated with U0
(β,γ). It follows that π

0 = k0 ◦ j0(β,γ), where
k0 : Mβ[G

0
U0

(β,γ)
] → MW [G0

W ]

is an extension of k.

Subclaim 1: γ ≥ β.

oMβ (κ) = β and sGW

jW (κ)(κ) = γ, therefore κ ∈ jW (Δβ(γ)). If γ was smaller

than β, we would get that Δβ(γ) ⊂ Δ′, i.e., W concentrates on the set of non-

trivial iteration stages in P1. Yet this contradicts the normality of W , as the

generic Prikry function d : Δ′ → κ is regressive and injective outside a bounded

set.

Recall that we have defined Γ to be the set of all generic Prikry points, i.e.,

Γ = rng(d) = d“Δ′.

Subclaim 2: If Γ �∈ W then W = U1
(γ,β).

It is sufficient to show that U1
(γ,β) ⊂ W . Suppose that X ∈ U1

(γ,β), and let

Ẋ be a G1 name for X in V 0. According to Remark 3.9 there is a condition

p ∈ G1 so that j0(β,γ)(p)
−κ � κ̌ ∈ j0(β,γ)(Ẋ). By applying k0 we get that

π0
W (p)−κ � κ̌ ∈ π0(Ẋ)

Let Σ ⊂ κ be the set of closure points of d−1 (namely, ν ∈ Σ if and only if

d−1(ν) ⊂ ν). Using the Magidor iteration support, it is not difficult to verify

that Σ is closed unbounded in κ (also, see [3]). Since Γ �∈ W , it follows that the

set {ν < κ | p−ν ∈ G1} belongs to W , thus π0(p)−κ ∈ G1
W and X ∈ W .

7 Namely, if γ = cp(πi,i+1) is the critical point of the i-th stage of TW then γ1 = πi,i+1(γ).
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Subclaim 3: If Γ ∈ W then γ < β and W = U1
(β,γ).

Suppose now that Γ ∈ W . Let Γ′ = {α < κ : |d−1(α)| = 1}. It is not difficult

to verify that Γ \ Γ′ is bounded in κ.8 Therefore, if Γ ∈ W then there exists a

unique μ < jW (κ) such that jW (d)(μ) = κ.

According to the results in [3],9, there is a finite subiteration of TW , by which

π = k ◦ jβ factors into π = e ◦ jU ′ ◦ jβ so that:

(1) jU ′ is an ultrapower embedding by a normal measure U ′ on jβ(κ),

(2) U ′ = jβ(Uβ′) for some β′ < o(κ),

(3) μ = e(jβ(κ)),

(4) cp(e) > κ.

Let π0 = e0 ◦ jU0 ◦ j0(β,γ) be the corresponding factorization of the exten-

sion π0 of π. In particular, U0 ∈ M0
(β,γ) extends U ′ = jβ(Uβ′) ∈ Mβ , and

μ = e0 ◦ j0(β,γ)(κ).
We have κ ∈ jW (Δβ(γ)). If follows from the definition of P1 that β < γ and

that μ = jW (d−1)(κ) ∈ π0(Δγ(β)), i.e.,

e0 ◦ j0(β,γ)(κ) ∈ e0 ◦ jU0 ◦ j0(β,γ)(Δγ(β)).

Therefore, it must mean that U0 = j0(β,γ)(Uγ(β)), so we can rewrite π0 as

π0 = e0 ◦ k0β,γ (i.e., k0β,γ in Definition 3.11).

According to Remark 3.12, there is a condition p ∈ G1 so that

(4) k0β,γ(p)
+(κ,j0(β,γ)(κ))−κ−j0(β,γ)(κ) � κ̌ ∈ k0β,γ(Ẋ).

Let

Π = {ν ∈ Γ′ | for every μ < κ if μ > d−1(ν) then (d(μ) �∈ [ν, d−1(ν)])}.

It is not difficult to verify that Γ\Π is bounded in κ (see [3]), and that for every

p ∈ G1 and μ < κ, p(+μ,d−1(μ))−μ−d−1(μ) ∈ G1 whenever μ ∈ Π ∩ Σ.

Since Γ ∈ W and Σ ⊂ κ is a club, it follows that Π ∩ Σ ∈ W . We conclude

that π0(p)+(κ,μ)−κ−μ ∈ G1
W . By Applying e0 to equation (4) we conclude that

π0(p)+(κ,μ)−κ−μ � κ̌ ∈ π0(Ẋ).

Therefore X ∈ W

8 Also, see [3].
9 Namely, the proofs of Proposition 3.2 and Lemma 3.6 in [3]
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7. A final cut

According to Friedman and Magidor ([7]), there is a sequence Xκ=〈Xκ
i | i<κ+〉

of pairwise disjoint stationary subsets of κ+ ∩ Cof(κ) in V 1 and a function

f : κ → V 1, so that j(f)(κ) = Xκ for every elementary embedding j in V 1 with

cp(j) = κ.10 We may assume that f(ν) = 〈Xν
i | i < ν+〉 is a ν+-sequence of

disjoint stationary subsets of ν+ ∩ Cof(ν) for each ν < κ.

Definition 7.1 (Code∗(ν), ν < κ): A condition in Code∗(ν) is a closed, bounded

subset c of ν+ which is disjoint from Xν
0 . For conditions c, d ∈ Code∗(ν), d ≥ c,

if and only if:

(1) d end extends c,

(2) for i ≤ max(c): if i belongs to c then d \ c is disjoint from Xν
1+2i; if i

does not belong to c then d \ c is disjoint from Xν
1+2i+1.

For a set X ⊂ κ in V 1, let PX be a variation of the Friedman–Magidor

iteration, PX = PX
κ = 〈PX

ν ,QX
ν | ν < κ〉, where

QX
ν =

⎧⎨
⎩
Code∗(ν) if ν ∈ X is inaccessible,

The trivial poset otherwise.

Lemma 7.2: Let X ⊂ κ be a set in V 1, and GX ⊂ PX be a generic filter over

V 1. For every normal measure U on κ in V 1, if X �∈ U then U has a unique

extension UX in V 1[GX ]. Furthermore, these are the only normal measures on

κ in V 1[GX ].

Proof. Let U ∈ V 1 be a normal measure on κ such that X �∈ U , and

j : V 1 → M1 ∼= Ult(V 1, U)

be its ultrapower embedding. We have j(PX) � κ = PX . Also, stage κ in

j1(PX) is trivial as κ �∈ j(X). Like the Friedman–Magidor poset, PX satisfies

that for every dense open set D ⊂ j(PX), there is some g ∈ GX so that j(g)

reduces D to a dense open set in j(PX) � (κ + 1) = PX , which is intersected

by GX . Thus j“GX determines a unique generic filter HX ⊂ j(PX) \ κ over

M1[GX ]. Setting G∗ = GX ∗HX , we get that G∗ ⊂ j(PX) is the unique generic

filter over M1 for which j“GX ⊂ G∗. It follows that j∗ : V 1[GX ] → M1[G∗] is

10 Namely, we can use a ♦κ+ sequence in V = K(V 1) which is definable from H(κ+)V .
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the only extension of j : V 1 → M1 to V 1[GX ] and that

UX = {Y ⊂ κ | κ ∈ j∗(Y )}
is the only extension of U in V 1[GX ]. For α, β < o(κ) such that X �∈ U1

(α,β), we

denote (U1
(α,β))

X by UX
(α,β).

Suppose now that W ∈ V 1[GX ] is a normal measure on κ and let

jW : V 1[GX ] → MW

be the resulting ultrapower embedding. Then j = jW � V : V → M is an

iteration of V and GW = jW (G) ⊂ j(P0 ∗ P1 ∗ PX) is generic over M . We

first claim X �∈ W . Otherwise, κ ∈ jW (X), so κ is a non-trivial forcing stage in

jW (PX), and QX
κ = Code∗(κ). It follows that GW introduces a club D ⊂ κ+,

disjoint from jW (f)(κ)0 = Xκ
0 . Note that D is a club in V 1[GX ] since MW

is closed under κ-sequences. This is absurd as Xκ
0 is stationary in V 1 and

|PX | = κ.

To show that W = UX
(α,β) for some α, β < o(κ) = λ, it is sufficient to verify

that U1
(α,β) ⊂ W . This is an immediate consequence of the proof of Proposition

6.1: Considering the restrictions

π : j � V : V → MW and π0 : jW � V 0 : V [G0] → MW [G0
W ],

we get that α, β are determined from the values oMW (κ), sG
W

jW (κ)(κ), and whether

Γ ∈ W . The proof of Proposition 6.1 relies solely on the analysis of the iterations

of π, π0, and therefore applies here as well.

Suppose UX
(α,β) ∈ V 1[GX ] is a normal measure on κ, and let

jX(α,β) : V
1[GX ] → MX

(α,β)

be its ultrapower embedding. We have that jX(α,β) � V 1 = j1(α,β), thus

jX(α,β) � V 0 = π0
α,β : V 0 → Z0

α,β.

Note that π0
α,β , Z

0
α,β were used to determine the Mitchell order on U1

(α,β), in

Proposition 5.1. It follows that the proof of this Proposition applies to UX
(α,β)

as well.

Corollary 7.3: Suppose that UX
(α′,β′), U

X
(α,β) ∈ V 1 where α′ ≤ β′ and α ≤ β.

We have that UX
(α′,β′) � U

X
(α,β) if and only if β′ < α.
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Lemma 7.4 (The final cut): Let κ be a measurable cardinal in a transitive

model of set theory V so that the normal measures on κ are separated by sets.

Suppose that for every X ⊂ κ there is a poset PX ∈ V so that:

(1) The normal measures on κ which extend in a PX generic extension are

exactly the normal measures U ∈ V which do not contain X . Further-

more, if X �∈ U then U has a unique extension UX ∈ V PX

.

(2) PX preserves the Mitchell order in V 1. Namely, for every U,W ∈ V

which extend to UX ,WX respectively, UX �WX if and only if U �W .

Then for every W ⊂ �(κ)V of cardinality ≤ κ there is a set X ⊂ κ such that

�(κ)V
PX ∼= �(κ)V � W .

Proof. Let 〈Ui | i < ρ〉 be an enumeration of W , where ρ ≤ κ is a cardinal. For

every i < ρ let Xi ⊂ κ be a set which separates Ui from the rest of the normal

measures on κ. Let XW = �i<ρXi, where �i<ρ is the diagonal union if ρ = κ,

and an ordinary union otherwise. It follows that the set X = κ \XW belongs

to a normal measure U ∈ V , if and only if U �∈ W . Thus, it follows from the

rest of the assumptions that �(κ)V
PX ∼= �(κ)V � W .

Theorem 7.5: Suppose that V = L[U ] is a Mitchell model and (S,<S) is a

tame order so that |S| ≤ κ and Trank(S) ≤ oU (κ). Then there is a cofinality

preserving generic extension V ∗ of V such that �(κ)V
∗ ∼= (S,<S).

Proof. If λ ≤ κ and (S,<S) is reduced, then (S,<S) embeds into Rλ for every

λ ≥ Trank(S,<S) (Proposition 2.10). We verify that the claim is an immediate

consequence of the results established in Sections 5 and 6. We may assume that

S ⊂ Rλ, and force with P0 ∗ P1 over V = L[U ] to obtain a generic extension

V 1 of V , so that:

• the normal measures on κ are separated by sets (Proposition 6.1 and

Corollary 3.14), and

• there are distinguished normal measures U1
(α,β), α ≤ β < λ, so that

�(κ)V
1 � {U1

(α,β) | α ≤ β} ∼= Rλ (Proposition 5.1).

Let W = {U1
(α,β) | (α, β) ∈ S}; |W| ≤ κ since |S| ≤ κ, and by Lemma 7.4 there

is a set X ⊂ κ so that in a generic extension of V 1 by PX ,

�(κ) ∼= �(κ)V
1 � S ∼= (S,<S).
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Next, we describe how to modify P0 and P1 to deal with arbitrary tame

orders (S,<S) of cardinality ≤ κ. Let 〈ρτ | τ < κ+〉 be a sequence of canonical

functions on κ, so that each ρτ has Galvin–Hajnal norm τ . If j : V → M with

cp(j) = κ, then j(ρτ )(κ) = τ for every τ < κ+. Also, for every α < β < κ+ the

set {ν < κ | ρα(ν) �< ρβ(ν)} is bounded in κ. Since λ < κ+, we may choose the

functions 〈ρτ | τ < λ〉 so that {ν < κ | ρα(ν) ≥ ρβ(ν)} = ∅ for every α < β ≤ λ.

For each α < λ let Δα = {ν < κ | o(ν) = ρα(ν)}. It follows that the sets Δα,

α < λ, are pairwise disjoint. We proceed as follows:

1. It is not difficult to verify that there is a set Δ ∈ ⋂
α<λ Uκ,α, so that each

ν ∈ Δ is an inaccessible cardinal, a closure point of ρλ, and satisfies that ρλ � ν
has a Galvin–Hajanl rank ρλ(ν) < ν+. Also, P0 = 〈P0

ν ,Q0
ν | ν ≤ κ〉 is a

Friedman–Magidor iteration where, for each ν < κ, Q0
ν is non-trivial if and only

if ν ∈ Δ ∪ {κ}, where Q0
ν = Sacksρλ�ν(ν) ∗ Code(ν) is defined by:

• Conditions T ∈ Sacksρλ�ν(ν) are the trees T ⊂ <νν × ν for which there

is a club C ⊂ ν, so that if s ∈ T and len(s) ∈ C then s
〈(η, μ)〉 ∈ T

for every η < ρλ(len(s)) and μ < len(s).

The forcing Sacksρλ�ν(ν) introduces a generalized Sacks function

sν : ν → ρλ(ν) × ν.

• Code(ν) is a Friedman–Magidor coding poset, which introduces a club

Cν ⊂ ν+ coding both sν and itself.

Let V 0 = V [G0] where G0 ⊂ P0 is a V -generic filter. For each (η, μ) ∈ λ× κ

and α < o(κ), define

Δα(η, μ) = {ν ∈ Δ ∩Δα | sν = sκ � ν and sκ(ν) = (ρη(ν), μ)}.
We get that

{Δα(η, μ) | α < o(κ), η < λ, μ < κ}
are pairwise disjoint. The description of the normal measures on κ in Section 3

shows that each normal measure Uα in V extends in V 0 to

{U0
(α,η,μ) | η < λ, μ < κ}

and that Δ(η, μ) ∈ U0
(α,η,μ).

The parameters α, η<λ in U0
(α,η,μ) will be associated with elements (α, η)∈Rλ.

The additional parameter μ < κ will guarantee that there are κ �-equivalent

copies of each (α, η) ∈ Rλ, thus allowing us to realize non-reduced orders (S,<S)

where each ∼S equivalent class has cardinality ≤ κ.
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2. Next, we force over V 0 with a Magidor iteration of Prikry forcings,

P1 = 〈P1
ν ,Q1

ν | ν < κ〉. The recipe for choosing the normal measure on ν

to be used at non-trivial iteration stages is similar to the recipe used in Section

3 (Definition 3.6), i.e., if ν ∈ Δα(β, μ) for some β < λ and μ < κ, then

Q1
ν =

⎧⎨
⎩
Q(U1

ν,(α,β,μ)) if β < α,

0—the trivial forcing otherwise.

Here, U1
ν,(α,β,μ) is a normal measure on ν in V 0[G1 � ν] which extends the

measure U0
ν,(β,α,μ) ∈ V 0 (thus extending Uν,β ∈ V ). The definitions of U1

(α,β,μ)

(α ≥ β and α < β) are similar to those of U1
α,β. Here, for α ≥ β, the U0

β,α

ultrapower in Definition 3.8 is replaced with an ultrapower by U0
β,α,μ; for α < β,

the ultrapower by U0
α,β ×U0

β,α in Definition 3.10 is replaced with an ultrapower

by U0
α,β,μ × U0

β,α,μ.

Therefore, a V 0-generic filter G1 ⊂ P1 introduces a Prikry (partial) function

d : Δ → κ, where:

• ν ∈ dom(d) if and only if there are α < β < λ and μ < ν so that

ν ∈ Δβ(α, μ), and then

• d(ν) ∈ Δα(β, μ) ∩ ν (for all but finitely many ν).

It follows that for every α < β < λ and μ < κ, the function ν → (ν, d−1(ν))

introduces a projection of U1
(α,β,μ) ∈ V 1 to an extension of the product

U0
(α,β,μ) × U0

(β,α,μ) ∈ V 0

(thus extending Uα × Uβ ∈ V ). When α = β, U1
(α,α,μ) extends U0

(α,α,μ) ∈ V 0.

The obvious modification of the proof of Proposition 5.1 implies that for every

U1
(α′,β′,μ′),U

1
(α,β,μ) in V 1, where α ≤ β and α′ ≤ β′, we have that

U1
(α′,β′,μ′) � U

1
(α,β,μ) ⇐⇒ β′ < α.

In particular, when restricting � to these measures, we see that for every

α ≤ β < λ the normal measures in {U1
(α,β,μ) | μ < κ} are � equivalent.

3. Let ([S], <[S]) be the reduction of (S,<S); ([S], <[S]) is reduced and

Trank([S], <[S]) = Trank(S,<S) = λ. Proposition 2.10 implies that ([S], <[S])

embeds in (Rλ, <Rλ
). Since each equivalent class in [S] has size at most κ,

it follows that there is a subset W ∈ V 1 of normal measures on κ such that

�(κ)V
1 � W ∼= (S,<S). By Lemma 7.4 there is a set X ⊂ κ so that, in a generic

extension of V 1 by PX , �(κ) ∼= �(κ)V
1 � W ∼= (S,<S).
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