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ABSTRACT

We prove that the predual of any von Neumann algebra is 1-Plichko, i.e., it

has a countably 1-norming Markushevich basis. This answers a question

of the third author who proved the same for preduals of semifinite von

Neumann algebras. As a corollary we obtain an easier proof of a result

of U. Haagerup that the predual of any von Neumann algebra enjoys

the separable complementation property. We further prove that the self-

adjoint part of the predual is 1-Plichko as well.

1. Introduction and main results

An important tool for the study of nonseparable Banach spaces is a decompo-

sition of the space to some smaller pieces, for example separable subspaces. A

decomposition of this type can be done using various kinds of bases or systems
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of projections. One of the largest classes of Banach spaces admitting a rea-

sonable decomposition is that of Plichko spaces. The study of this class was

initiated by A. Plichko [16]; later it was investigated using different definitions,

for example in [19, 20, 4]. It appeared to be a common roof for the previous

search for decompositions of nonseparable spaces in [12, 13, 1, 14, 2] and else-

where. A detailed survey on this class and some related classes can be found in

[7]. It turned out that this class has several equivalent characterizations. Let

us name some of them. We will use the following theorem.

Theorem A: Let X be a (real or complex) Banach space and let D ⊂ X∗ be

a norming linear subspace. Then the following assertions are equivalent.

(1) There is a linearly dense set M ⊂ X such that

D = {x∗ ∈ X∗ : {m ∈ M : x∗(m) �= 0} is countable}.
(2) There is a Markushevich basis (xα, x

∗
α)α∈Γ ⊂ X ×X∗ such that

D = {x∗ ∈ X∗ : {α ∈ Γ : x∗(xα) �= 0} is countable}.
(3) There is a system of bounded linear projections (Pλ)λ∈Λ where Λ is an

up-directed set such that the following conditions are satisfied:

(i) PλX is separable for each λ and X =
⋃

λ∈Λ PλX ,

(ii) PλPμ = PμPλ = Pλ whenever λ ≤ μ,

(iii) if (λn) is an increasing sequence in Λ, it has a supremum λ ∈ Λ

and PλX =
⋃

n PλnX,

(iv) PλPμ = PμPλ for λ, μ ∈ Λ,

(v) D =
⋃

λ∈Λ P ∗
λX

∗.

Recall that a subspace D ⊂ X∗ is norming if

‖x‖D = sup{|x∗(x)| : x∗ ∈ D ∩BX∗}
defines an equivalent norm on X . If ‖ · ‖D = ‖ · ‖, the subspace D is called

1-norming. A subspace D satisfying one of the equivalent conditions from

Theorem A is called a Σ-subspace ofX∗. A Banach space admitting a norming

Σ-subspace is said to be Plichko. If it admits even a 1-norming subspace, it is

called 1-Plichko. If the dual X∗ itself is a Σ-subspace, X is weakly Lindelöf

determined (or, briefly, WLD).

Let us comment on Theorem A and its proof. The condition (1) is used as a

definition of a Σ-subspace, for example in [10]; the definition used in [7] is easily
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seen to be equivalent. The implication (2)⇒(1) follows from the definition of

a Markushevich basis; the implication (1)⇒(2) is proved in [7, Lemma 4.19].

The Markushevich basis from the condition (2) is called countably norming

(countably 1-norming if D is 1-norming). This kind of bases was studied

among others by A. Plichko in [16].

A family of projections satisfying the conditions (i)–(iii) from (3) is called a

projectional skeleton. This notion was introduced by W. Kubís in [11]. A

projectional skeleton fulfilling moreover the condition (iv) is said to be com-

mutative. The condition (v) says that D is the subspace induced by the

respective projectional skeleton. The implication (1)⇒(3) is proved in [11,

Proposition 21]; the converse implication follows from [11, Theorem 27]. There

are Banach spaces with a projectional skeleton but without a commutative one;

see [11, 3].

1-Plichko spaces naturally appear in many branches of analysis. Some ex-

amples were collected in [10]. They include spaces L1(μ) for an arbitrary non-

negative σ-additive measure μ, order-continuous Banach lattices, the spaces

C(G) where G is a compact abelian group and preduals of semifinite von Neu-

mann algebras. It was asked in [10, Question 7.5] whether the semifiniteness

assumption can be omitted. We prove that it is the case. It is the content of

the following theorem.

Theorem 1.1: Let M be any von Neumann algebra. Its predual M∗ is then

1-Plichko. Moreover, M∗ is weakly Lindelöf determined if and only if M is

σ-finite. In this case M∗ is even weakly compactly generated.

Recall that a von Neumann algebra is σ-finite if any orthogonal family of its

projections is countable. The basic setting of von Neumann algebras is recalled

in Section 3. As a corollary we get an alternative proof of the following result.

Corollary 1.2 (U. Haagerup, Theorem IX.1 of [5]): The predual of any von

Neumann algebra enjoys the 1-separable complementation property, i.e., any

separable subspace is contained in a 1-complemented separable superspace.

Let us remark that the original proof used very advanced areas of the theory

of von Neumann algebras. Our proof is more elementary; it follows immediately

from the characterization of 1-Plichko spaces using the condition (3) of Theorem

A, together with the observation that the projections can have norm one if D

is 1-norming [11, Theorem 27].
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Since the dual of any C∗-algebra is a predual of a von Neumann algebra by

[18, Theorem III.2.4], we get also positive answers to [10, Questions 7.6 and 7.7]

contained in the following corollary.

Corollary 1.3: The dual of any C∗-algebra is 1-Plichko.

Further, the following theorem gives a positive answer to [10, Question 7.3].

Theorem 1.4: Let M be any von Neumann algebra and denote by M∗sa the

self-adjoint part of its predual. Then M∗sa is 1-Plichko. Moreover, M∗sa is

weakly Lindelöf determined if and only if M is σ-finite. In this case M∗sa is

even weakly compactly generated.

The paper is organized as follows. In Section 2 we collect some facts on

Plichko spaces and related classes of Banach spaces (WLD spaces, weakly com-

pactly generated spaces). Section 3 contains basic facts on von Neumann al-

gebras and their preduals and, moreover, several auxiliary results used in the

proof of the main theorems. The final section contains the proofs of the main

results and some remarks.

2. Some facts on Plichko spaces

In this section we collect several facts on Plichko spaces and related classes of

Banach spaces which will be needed to prove our main results.

The key tool is a result on 1-unconditional sums of WLD spaces. Let us first

define this kind of sums. Let X be a Banach space and (Xλ)λ∈Λ be an indexed

family of closed subsets of X . The space X is said to be the 1-unconditional

sum of the family (Xλ)λ∈Λ if the following three conditions are satisfied:

(1) Xλ ∩Xμ = {0} whenever λ, μ ∈ Λ are distinct;

(2) ‖∑λ∈F xλ‖ ≤ ‖∑λ∈G xλ‖ whenever F ⊂ G are finite subsets of Λ and

xλ ∈ Xλ for λ ∈ G;

(3) the linear span of
⋃

λ∈ΛXλ is dense in X .

Note that the condition (1) follows from the condition (2). However, we prefer

to formulate it explicitly, as usually the validity of (1) is used in the proof of

(2). The promised result is the following one.

Proposition 2.1: Let X be a Banach space which is the 1-unconditional sum

of a family (Xλ)λ∈Λ of its closed subspaces. If each Xλ is WLD, then X is
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1-Plichko. Moreover,

{x∗ ∈ X∗ : {λ ∈ Λ : x∗|Xλ
�= 0} is countable}

is a 1-norming Σ-subspace of X∗.

Proof. This result is due to A. Plichko [15]. A proof can be found in [10, Step

3 of the proof of Theorem 6.3].

An important subclass of Plichko spaces is that of weakly compactly gen-

erated spaces. Let us recall that a Banach space X is said to be weakly

compactly generated (or, briefly, WCG) if there is a weakly compact subset

of X whose linear span is dense in X . The following proposition summarizes

some properties of WCG spaces which we will use in the sequel.

Proposition 2.2:

(i) Any reflexive space (in particular, any Hilbert space) is WCG.

(ii) Let X be a complex Banach space. Then X is WCG if and only if the

real version of X (i.e., the same space considered as a real space) is

WCG.

(iii) Let X and Y be two Banach spaces. Suppose that X is WCG and

that there is a continuous real-linear operator T : X → Y with dense

range. Then Y is WCG.

(iv) LetX be a Banach space and Yn, n ∈ N, a sequence of closed subspaces

of X . If each Yn is WCG and the linear span of
⋃

n∈N Yn is dense in

X , then X is WCG as well.

(v) Any WCG space is WLD.

Proof. The assertion (i) is well known and trivial. The assertion (ii) easily

follows from the well-known fact that the weak topology of X as a complex

space coincides with the weak topology of X as a real space. The assertion (iii)

is then a consequence of (ii).

(iv) This is well known and easy to see. We include an easy proof for com-

pleteness. Let Kn be a weakly compact subset of Yn whose linear span is dense

in Yn. By the uniform boundedness principle the set Kn is bounded, hence we

can fix Cn > 0 such that ‖x‖ ≤ Cn for x ∈ Kn. Set K = {0} ∪⋃
n∈N

1
nCn

Kn.

Then K is weakly compact in X and its linear span is dense in X .

The assertion (v) is nontrivial but well known. It follows from [1, Proposi-

tion 2].
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The following proposition is a special case of the assertion (v) of the previous

proposition (due to assertions (i) and (iii)). But we include it since its proof is

short and elementary (unlike the proof of (v)) and we will need only this case.

Proposition 2.3: Let X be a Hilbert space, Y a Banach space and T : X → Y

a bounded real-linear operator with dense range. Then Y is WLD.

Proof. Let us first suppose that T is linear. Fix an orthonormal basis (eλ)λ∈Λ

of X and set

M = {T (eλ) : λ ∈ Λ}.
Then M is clearly linearly dense in Y . Moreover, let y∗ ∈ Y ∗ be arbitrary. For

each λ ∈ Λ we have y∗(Teλ) = T ∗y∗(eλ). Hence

{λ ∈ Λ : y∗(Teλ) �= 0} = {λ ∈ Λ : T ∗y∗(eλ) �= 0}
is countable. This shows that Y ∗ is a Σ-subspace of itself (it satisfies the

condition (1) from Theorem A).

Now, suppose that T is just real-linear. Consider X and Y as real spaces.

Since the real version of a complex Hilbert space is a real Hilbert space, by

the linear case we get that Y is WLD as a real space. Fix a set M witnessing

the validity of condition (1) from Theorem A. If Y is complex, the same set M

witnesses that it is WLD also as a complex space. Indeed, for any y∗ ∈ Y ∗ we

have

{m ∈ M : y∗(m) �= 0} ⊂ {m ∈ M : Re y∗(m) �= 0 or Im y∗(m) �= 0}
which is a countable set.

3. Auxilliary results on von Neumann algebras

In this section we collect basic definitions and some results on von Neumann

algebras and their preduals which we will use in the proof of the main results.

We start by fixing the basic notation.

Let H be a complex Hilbert space. By B(H) we denote the algebra of

all bounded linear operators on H . For a subset A ⊂ B(H) we denote by

A ′ its commutant, i.e., the set of all the operators commuting with all the

elements of A . Further, M ⊂ B(H) is a von Neumann algebra if it is a

∗-subalgebra (i.e., a linear subspace which is closed with respect to composition

and taking the adjoint) which is equal to its double-commutant M ′′. Any von
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Neumann algebra M admits a unique predual (see, e.g., [18, Theorem II.2.6(iii)

and Corollary III.3.9]) which we denote by M∗.
In the sequel we suppose that H is a fixed complex Hilbert space and

M ⊂ B(H) a fixed von Neumann algebra.

We will need certain standard operators on M ∗ (the Banach-space dual of

M ) which we will denote A, S, La and Ra for a ∈ M . They are defined as

follows:

Aϕ(x) = ϕ(x∗),

Sϕ(x) =
1

2
(ϕ(x) +Aϕ(x)) =

1

2
(ϕ(x) + ϕ(x∗)),

Laϕ(x) = ϕ(ax),

Raϕ(x) = ϕ(xa)

for ϕ ∈ M ∗ and x ∈ M . Note that Aϕ = ϕ if and only if Sϕ = ϕ. Such

functionals are called self-adjoint (or hermitian). The real Banach space of

all the self-adjoint functionals on M is denoted by M ∗
sa; the self-adjoint part

of M∗ is denoted by M∗sa.
The following lemma summarizes the basic properties of the above-defined

operators:

Lemma 3.1:

(i) The operator A is a conjugate-linear isometry; the operator S is a

real-linear projection of norm one.

(ii) The operators La and Ra are linear and ‖La‖ ≤ ‖a‖, ‖Ra‖ ≤ ‖a‖ for

any a ∈ M .

(iii) LaRb = RbLa, LaLb = Lab, RaRb = Rba for each a, b ∈ M .

(iv) ALa = Ra∗A and ARa = La∗A for each a ∈ M .

(v) The predual M∗ is invariant for operators A, S, La and Ra, a ∈ M .

Proof. The assertions (i)–(iii) are trivial. Let us prove the first equality from

assertion (iv). So, for any a ∈ M , ϕ ∈ M ∗ and x ∈ M we have

ALaϕ(x) =Laϕ(x∗) = ϕ(ax∗) = ϕ((xa∗)∗)

=Aϕ(xa∗) = Ra∗Aϕ(x).

The second equality is analogous.

Finally, the assertion (v) follows directly from [17, Theorem 1.7.8].
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An element p of a von Neumann algebra M is said to be a projection if

p = p∗ and p2 = p. It is the case if and only if p is an orthogonal projection.

If p ∈ M is a projection, then the operators Lp and Rp are clearly linear

projections of norm one.

Following [6, Definition 5.5.8] we call a projection p ∈ M cyclic if there is

ξ ∈ H such that M ′ξ = {aξ : a ∈ M ′} is dense in pH . Such a vector ξ is then

said to be a generating vector for p.

Lemma 3.2: Let M be a von Neumann algebra and p ∈ M be a cyclic projec-

tion with generating vector ξ. If x ∈ M is such that xξ = 0, then xp = 0.

Proof. For any a ∈ M ′ we have 0 = axξ = xaξ. Since M ′ξ is dense in pH , we

get that x|pH = 0, i.e., xp = 0.

Lemma 3.3: Let M be a von Neumann algebra and p ∈ M be a cyclic projec-

tion. Then the spaces LpM∗ and RpM∗ are weakly compactly generated.

Proof. We will prove the statement for Lp. Note that Lp is a linear projection

of norm one. Fix a generating vector ξ ∈ H for p and define ω(x) = 〈xξ, ξ〉 for
x ∈ M . Then clearly ω ∈ M∗ and, moreover, ω ∈ LpM∗. Indeed,

Lpω(x) = ω(px) = 〈pxξ, ξ〉 = 〈xξ, ξ〉 = ω(x),

where we used that p∗ = p and pξ = ξ.

Further, for a, b ∈ M set [[a, b]] = ω(b∗a), the semi-inner product from the

GNS construction. LetHξ be the resulting Hilbert space (after factorization and

completion). Due to Proposition 2.2(iii), to show that LpM∗ is WCG, it suffices

to prove that there exists a bounded linear mapping T : Hξ → LpM∗ with dense

range; and for this, it suffices to construct a linear map Φ : M → LpM∗ with

dense range such that ‖Φ(a)‖ ≤ [[a, a]]1/2 for a ∈ M .

The operator Φ will be defined by the formula

Φ(a) = Raω, a ∈ M .

Then Φ(a) ∈ M∗ for any a ∈ M . Moreover, Φ(a) ∈ LpM∗. Indeed,

LpΦ(a) = LpRaω = RaLpω = Raω = Φ(a).

It is hence clear that Φ is a linear mapping from M to LpM∗. Further, for any
a, x ∈ M we have

|Φ(a)(x)|2 = |Raω(x)|2 = |ω(xa)|2 ≤ |ω(xx∗)| · |ω(a∗a)| ≤ ‖x‖2 · [[a, a]].
Hence ‖Φ(a)‖ ≤ [[a, a]]1/2.
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It remains to show that the range of Φ is dense in LpM∗. We use the Hahn–

Banach theorem. Suppose that x ∈ M is such that x restricted to the range of

Φ is zero. It means that for each a ∈ M we have

0 = Φ(a)(x) = Raω(x) = ω(xa) = 〈xaξ, ξ〉.
In particular, by setting a = x∗ we get

0 = 〈xx∗ξ, ξ〉 = 〈x∗ξ, x∗ξ〉 = ‖x∗ξ‖2.
Hence x∗ξ = 0, so by Lemma 3.2, x∗p = 0, hence px = (x∗p)∗ = 0. Hence,

given any ϕ ∈ LpM∗ we have

ϕ(x) = Lpϕ(x) = ϕ(px) = 0.

Hence x restricted to LpM∗ is zero. This completes the proof.

The proof that RpM∗ is WCG is analogous. Or, alternatively, it follows using

Proposition 2.2(iii) from the fact that the operator A is a real-linear isometry

which maps LpM∗ onto RpM∗. Indeed, for any ϕ ∈ LpM∗ we have

RpAϕ = ALpϕ = Aϕ,

hence Aϕ ∈ RpM∗ and, similarly, Aϕ ∈ LpM∗ whenever ϕ ∈ RpM∗.

We will use the following known result several times.

Proposition 3.4 ([6], Proposition 5.5.9): Let M be a von Neumann algebra

and q ∈ M be a projection. Then there is a family (pλ)λ∈Λ of mutually orthog-

onal cyclic projections such that
∑

λ∈Λ pλ = q. In particular, there is such a

family with sum equal to 1 (the unit of M ).

Lemma 3.5: Let (pλ)λ∈Λ be a family of mutually orthogonal cyclic projection

in M . Then for each x ∈ M and λ ∈ Λ the sets

{μ ∈ Λ : pλxpμ �= 0} and {μ ∈ Λ : pμxpλ �= 0}
are countable.

Proof. Since (pμxpλ)
∗ = pλx

∗pμ, it is enough to prove that the first set is

countable for each x ∈ M and each λ ∈ Λ. So, fix x ∈ M and λ ∈ Λ. Let ξλ

be a generating vector for pλ such that ‖ξλ‖ = 1. Suppose that

A = {μ ∈ Λ : pλxpμ �= 0}
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is uncountable. Let μ ∈ A be arbitrary; then there is ημ ∈ pμH such that

pλxημ �= 0. Since this vector belongs to pλH and M ′ξλ is dense in pλH , there

is aμ ∈ M ′ with 〈pλxημ, aμξλ〉 �= 0. Hence

0 �= 〈pλxημ, aμξλ〉 = 〈a∗μpλxημ, ξλ〉 = 〈pλxa∗μημ, ξλ〉.
Since a∗μημ ∈ pμH (as pμH is invariant for any element of M ′) and it is a

nonzero vector, one can find θμ ∈ pμH such that ‖θμ‖ = 1 and 〈pλxθμ, ξλ〉 > 0.

Hence there is δ > 0 such that

A1 = {μ ∈ A : 〈pλxθμ, ξλ〉 > δ}
is uncountable. Let n ∈ N be arbitrary and μ1, . . . , μn ∈ A1 be distinct. Then

nδ ≤
〈
pλx

( n∑
j=1

θμj

)
, ξλ

〉
≤ ‖pλx‖ · ‖

n∑
j=1

θμj‖ = ‖pλx‖ ·
√
n.

Since n ∈ N is arbitrary it is a contradiction, completing the proof.

A projection q ∈ M is called σ-finite if the algebra qM q is σ-finite, i.e., if

any orthogonal family of projections smaller that q is countable. (In [6] such

projections are called countably decomposable.)

Proposition 3.6: Let x ∈ M . Then there is an orthogonal family of σ-finite

projections (qj)j∈J such that

x =
∑
j∈J

qjxqj

in the strong operator topology.

Proof. Let (pλ)λ∈Λ be a family of mutually orthogonal cyclic projections in M

with sum equal to 1 provided by Proposition 3.4. For any λ ∈ Λ let

A1(λ) = {λ} ∪ {μ ∈ Λ : pλxpμ �= 0 or pμxpλ �= 0}.
By Lemma 3.5 this set is countable. Further, define for n ∈ N by induction sets

An+1(λ) = An(λ) ∪
⋃

{A1(μ) : μ ∈ An(λ)}
and, finally,

A(λ) =
⋃
n∈N

An(λ).

Then A(λ) is countable. Moreover, λ ∈ A(λ) and for λ1, λ2 ∈ Λ either

A(λ1) = A(λ2) or A(λ1) ∩ A(λ2) = ∅. Let us introduce on Λ the equivalence

λ1 ∼ λ2 if A(λ1) = A(λ2) and let J be the set of all the equivalence classes. For
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j ∈ J fix λ ∈ j and set qj =
∑

μ∈A(λ) pμ. Then (qj)j∈J is a family of mutually

orthogonal projections with sum equal to 1. Moreover, each qj is σ-finite by

[6, Proposition 5.5.19]. Hence x =
∑

j∈J qjx. Further, qjx = qjxqj by the

construction. This completes the proof.

4. Proofs of the main results

In this section we give the proofs of Theorems 1.1 and 1.4 using the results of

the previous two sections.

Proof of Theorem 1.1. Let M be any von Neumann algebra. By Proposition 3.4

there is a family (pλ)λ∈Λ of mutually orthogonal cyclic projections with sum

equal to 1 (the unit of M ). By Lemma 3.3 we know that Lpλ
M∗ is WCG for

each λ ∈ Λ. We claim that M∗ is the 1-unconditional sum of the family Lpλ
M∗,

λ ∈ Λ. This fact will be proved in three steps:

1. If λ �= μ, then Lpλ
M∗ ∩ LpμM∗ = {0}. Indeed, if ϕ is in the intersection,

then

ϕ = Lpλ
ϕ = Lpλ

Lpμϕ = 0.

2. Let F1 and F2 be finite subsets of Λ such that F1 ⊂ F2 and ωλ ∈ Lpλ
M∗

for λ ∈ F2. Then∥∥∥∥
∑
λ∈F1

ωλ

∥∥∥∥ =

∥∥∥∥
∑
λ∈F1

Lpλ

( ∑
μ∈F2

ωμ

)∥∥∥∥ =

∥∥∥∥
( ∑

λ∈F1

Lpλ

)( ∑
μ∈F2

ωμ

)∥∥∥∥
=

∥∥∥∥L∑
λ∈F1

pλ

( ∑
μ∈F2

ωμ

)∥∥∥∥ ≤ ‖L∑
λ∈F1

pλ
‖ ·

∥∥∥∥
∑
μ∈F2

ωμ

∥∥∥∥ =

∥∥∥∥
∑
μ∈F2

ωμ

∥∥∥∥.
3. The linear span of

⋃
λ∈Λ Lpλ

M∗ is dense in M∗. This follows from the

Hahn–Banach theorem since, given any nonzero element x ∈ M , we can find

λ ∈ Λ such that pλx �= 0 and hence there is ω ∈ M∗ with ω(pλx) �= 0. Then

Lpλ
ω(x) = ω(pλx) �= 0.

Hence, being a 1-unconditional sum of WCG spaces, M∗ is 1-Plichko by

Proposition 2.2(v) and Proposition 2.1. Further, if M is σ-finite, then Λ is

countable and hence M∗ is WCG by Proposition 2.2(iv).

Finally, suppose that M is not σ-finite. Then the index set Λ is uncountable

due to [6, Proposition 5.5.19]. For each λ ∈ Λ fix a unit vector ξλ ∈ pλH and

define

ωλ(x) = 〈xξλ, ξλ〉, x ∈ M .
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Then ωλ ∈ Lpλ
M∗ (see the beginning of the proof of Lemma 3.3) and clearly

‖ωλ‖ = 1 (the norm is attained at pλ). For any finite set F ⊂ Λ and any choice

of scalars cλ, λ ∈ F , we have∥∥∥∥
∑
λ∈F

cλωλ

∥∥∥∥ =
∑
λ∈F

|cλ|.

Indeed, the inequality “≤” follows from the triangle inequality. To prove the

converse fix complex units αλ such that αλcλ = |cλ| and set x =
∑

λ∈F αλpλ.

Then x ∈ M , ‖x‖ = 1 and
( ∑

λ∈F

cλωλ

)
(x) =

∑
λ∈F

cλωλ(x) =
∑
λ∈F

cλ〈xξλ, ξλ〉 =
∑
λ∈F

cλαλ =
∑
λ∈F

|cλ|.

Hence, M∗ contains an isometric copy of �1(Λ) and thus is not WLD. (Indeed,

�1(Λ) is not WLD, and WLD spaces are stable to taking closed subspaces [7,

Example 4.39].)

The following proposition provides an explicit description of a 1-norming Σ-

subspace of M = (M∗)∗. It provides a better insight to the structure of M∗
and, moreover, it will be used in the proof of Theorem 1.4.

Proposition 4.1: Let M be a von Neumann algebra and (pλ)λ∈Λ be a family

of mutually orthogonal cyclic projections with sum equal to 1. Then

(1)
D = {x ∈ M : {λ ∈ Λ : pλx �= 0} is countable}

= {x ∈ M : {λ ∈ Λ : xpλ �= 0} is countable}
is a 1-norming Σ-subspace of M = (M∗)∗. Moreover, D is a ∗-subalgebra and

a two-sided ideal in M and it can be expressed as

(2)

D = {x ∈ M : ∃q ∈ M a σ-finite projection such that x = qx}
= {x ∈ M : ∃q ∈ M a σ-finite projection such that x = xq}
= {x ∈ M : ∃q ∈ M a σ-finite projection such that x = qxq},

hence it does not depend on the concrete choice of the system (pλ)λ∈Λ.

Proof. By the proof of Theorem 1.1 the space M∗ is the 1-unconditional sum

of WCG subspaces Lpλ
M∗, λ ∈ Λ. Therefore, Proposition 2.1 yields that

D1 = {x ∈ M : {λ ∈ Λ : pλx �= 0} is countable}
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is a 1-norming Σ-subspace of M = (M∗)∗. Similarly, M∗ is the 1-unconditional

sum of WCG subspaces Rpλ
M∗, λ ∈ Λ, hence

D2 = {x ∈ M : {λ ∈ Λ : xpλ �= 0} is countable}
is also a 1-norming Σ-subspace of M . Moreover,D1 = D2 by Lemma 3.5, which

completes the proof of the first part.

It is clear that x∗ ∈ D2 whenever x ∈ D1. Further, if x ∈ D1 and a ∈ M ,

clearly xa ∈ D1, hence D1 is a right ideal. Similarly, D2 is a left ideal. Since

D = D1 = D2 we conclude that D is a ∗-subalgebra and a two-sided ideal in

M .

We continue by proving (2). Denote the sets appearing on the right-hand side

consecutively D3, D4, D5. Let x ∈ D = D1. Then C = {λ ∈ Λ : pλx �= 0} is

countable and hence the projection pC =
∑

λ∈C pλ is σ-finite by [6, Proposition

5.5.19]. Moreover, clearly pCx = x, hence x ∈ D3. This proves the inclusion

D ⊂ D3.

To show the converse observe first that any σ-finite projection belongs to

D. Indeed, suppose that q ∈ M is a σ-finite projection. By Proposition 3.4

there is a sequence (qn) of mutually orthogonal cyclic projections such that

q =
∑

n∈N qn. Let ξn be a generating vector for qn. If λ ∈ Λ is such that

pλq �= 0, then there is n ∈ N such that pλqn �= 0. By Lemma 3.2 it follows that

pλξn �= 0. Since the projections pλ are mutually orthogonal, for given n ∈ N

there can be only countably many λ with pλξn �= 0. Therefore, pλq �= 0 only

for countably many λ ∈ Λ. In other words, q ∈ D. Since D is an ideal, qx ∈ D

whenever x ∈ M . It follows that D3 ⊂ D, hence D = D3.

We continue by observing that x ∈ D4 if and only if x∗ ∈ D3. Since D3 = D

and D is a ∗-subalgebra, we infer D = D4.

To complete the proof it is enough to observe that D3 ∩ D4 = D5. Indeed,

the inclusion ⊃ is obvious. To show the converse one, fix x ∈ D3 ∩D4. Then

x = q1x = xq2 for some σ-finite projections q1, q2. Let q = q1 ∨ q2 be the

projection whose range is the closed linear span of q1H ∪ q2H . Then q is σ-

finite (cf. [6, Exercise 5.7.45]) and x = qxq, hence x ∈ D5.

The main part of Theorem 1.4 follows from the following proposition.

Proposition 4.2: Let M be a von Neumann algebra and Msa denote its self-

adjoint part. The operator Ψ : Msa → (M∗sa)∗ defined by

Ψ(x)(ω) = ω(x), x ∈ Msa, ω ∈ M∗sa
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is an onto isometry. Moreover, if we set

Dsa = {x ∈ Msa : ∃q ∈ M a σ-finite projection such that x = qxq},
then Ψ(Dsa) is a 1-norming Σ-subspace of (M∗sa)∗.

Proof. It is clear that Ψ is a linear operator between the real Banach spaces

Msa and (M∗sa)∗ and that ‖Ψ(x)‖ ≤ ‖x‖ for each x ∈ Msa. Moreover, Ψ is an

isometry due to the facts that

‖x‖ = sup{|〈xξ, ξ〉| : ξ ∈ H, ‖ξ‖ ≤ 1}, x ∈ Msa,

and that the functional a �→ 〈aξ, ξ〉 belongs to M∗sa and has norm at most ‖ξ‖2.
It remains to show that Ψ is onto. So, let ϕ ∈ (M∗sa)∗. By the Hahn–Banach

theorem it can be extended to a continuous real-valued real-linear functional

ϕ1 on M∗. Then there is a complex linear functional ϕ2 on M∗ such that

ϕ1(ω) = Reϕ2(ω) for ω ∈ M∗. Since the dual to M∗ is M , ϕ2 is represented

by some a ∈ M . Then a = x + iy for x, y ∈ Msa. Then for any ω ∈ M∗sa we

have

ϕ(ω) = ϕ1(ω) = Reϕ2(ω) = Reω(a) = ω(x),

in other words ϕ = Ψ(x).

Further, recall that

M∗sa = {ω ∈ M∗ : ω(x) ∈ R for each x ∈ Msa}.
It follows from Proposition 3.6 that

(3)
M∗sa = {ω ∈ M∗ :ω(qxq) ∈ R for each x ∈ Msa

and each σ-finite projection q ∈ M }.
Let D be the 1-norming Σ-subspace of M = (M∗)∗ described in Proposi-

tion 4.1. Let (M∗)R denote the Banach space M∗ considered as a real space

and let (M∗)∗R denote its dual. Let

DR = {ω �→ Reω(x) : x ∈ D}.
ThenDR is a 1-norming Σ-subspace of (M∗)∗R by [9, Proposition 3.4]. Moreover,

if ω ∈ M∗, x ∈ Msa and q is a projection, then ω(qxq) ∈ R if and only if

Reω(iqxq) = 0. Thus

M∗sa = {ω ∈ M∗ : Reω(iqxq) = 0 for each x ∈ Msa

and each σ-finite projection q ∈ M }.
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Since iqxq = q(ix)q ∈ D for each x ∈ M and each σ-finite projection q ∈ M ,

the functional ω �→ Reω(iqxq) belongs in this case to DR. It follows that M∗sa
is a σ(M∗sa, DR)-closed linear subspace of (M∗)R. (σ(M∗sa, DR) denotes the

weak topology on M∗sa induced by DR.) It follows from [7, Theorem 4.38] that

D0 = {ϕ|M∗sa : ϕ ∈ DR}
is a 1-norming Σ-subspace of (M∗sa)∗. It remains to verify that D0 = Ψ(Dsa).

Let x ∈ Dsa. Then x ∈ D ∩ Msa. In particular, for any ω ∈ M∗sa we have

Reω(x) = ω(x) = Ψ(x)(ω),

hence Ψ(x) ∈ D0. Conversely, let ϕ ∈ D0. Then there is ϕ1 ∈ DR with

ϕ = ϕ1|M∗sa . Further, there is a ∈ D such that ϕ1(ω) = Reω(a) for ω ∈ M∗.
Then a = x+ iy with x, y ∈ Msa. Since a

∗ ∈ D as well, clearly x, y ∈ D. Hence

x, y ∈ Dsa. Moreover, for ω ∈ M∗sa we have

ϕ(ω) = Reω(a) = ω(x) = Ψ(x)(ω),

hence ϕ ∈ Ψ(Dsa). This completes the proof.

Proof of Theorem 1.4. The space M∗sa is 1-Plichko by Proposition 4.2. Fur-

ther, if M is σ-finite, M∗ is WCG by Theorem 1.1. Moreover, M∗sa is the

image of M∗ by the real-linear projection S, hence M∗sa is WCG by Proposi-

tion 2.2(iii).

Finally, suppose that M is not σ-finite. Let (ωλ)λ∈Λ be the uncountable

family in M∗ constructed at the end of the proof of Theorem 1.1. It is clear

that ωλ ∈ M∗sa for any λ ∈ Λ and that the closed linear span of this family in

the real Banach space M∗sa is isometric to the real version of the space �1(Λ)

and hence M∗sa is not WLD.

Remark 4.3: (1) We proved that M∗ is 1-Plichko since it is the 1-unconditional

sum of WCG subspaces. To get the result we used the classical but highly non-

trivial assertion (v) of Proposition 2.2. It is possible to give a more elementary

proof using Proposition 2.3. Indeed, by the proof of Lemma 3.3 the spaces

Lpλ
M∗ and Rpλ

M∗ satisfy the assumptions of Proposition 2.3 in place of Y ,

hence it easily follows that they are WLD.

(2) Proposition 4.1 shows that there is a canonical 1-norming Σ-subspace of

M = (M∗)∗. However, there can be many different (non-canonical) 1-norming

Σ-subspaces, cf. [7, Example 6.9] where this is studied for the space �1(Γ).
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However, there is a unique 1-norming Σ-subspace which is a two-sided ideal.

This is proved in the following proposition.

Proposition 4.4: Let S be a 1-norming Σ-subspace of M = (M∗)∗ which is

a two-sided ideal in M . Then S = D where D is the Σ-subspace described in

Proposition 4.1.

Proof. Being a Σ-subspace, S is countably weak∗-closed, i.e.,

(4) A
w∗

⊂ S for each A ⊂ S countable.

Indeed, it easily follows from the condition (1) of Theorem A. In particular, S

is norm-closed, hence it is a C∗-subalgebra of M [6, Corollary 4.2.10]. In par-

ticular, the continuous functional calculus works in S, i.e., f(x) ∈ S whenever

x ∈ S is self-adjoint and f : R → R is a continuous function with f(0) = 0.

Further, we even have

(5)
f(x) ∈ S whenever x ∈ S ∩ Msa and f : R → R is a bounded function

of the first Baire class with f(0) = 0.

Indeed, let f be such a function. Then there is a uniformly bounded sequence

of continuous functions fn : R → R with fn(0) = 0 pointwise converging to

f . Given any self-adjoint x ∈ S, we have fn(x) ∈ S as well and, moreover,

fn(x) → f(x) in the weak operator topology. This topology coincides with the

weak∗-one on bounded sets, hence fn(x) → f(x) in the weak∗ topology, hence

f(x) ∈ S as well by (4).

We continue by showing that any cyclic projection belongs to S. So, let

p ∈ M be a cyclic projection and ξ ∈ H a generating vector for p of norm one.

Set ω(x) = 〈xξ, ξ〉 for x ∈ M . Then ω is a normal state on M . In particular,

ω ∈ M∗sa and ‖ω‖ = 1. Since S is 1-norming and S ∩ BM is weak∗ countably

compact (by (4)), there is some a ∈ S ∩ BM with ω(a) = 1. Since ω is self-

adjoint, we have ω(a∗) = 1 as well, hence b = 1
2 (a+a∗) is a self-adjoint element

of S ∩BM with ω(b) = 1.

Set q = χR\{0}(b). Since χR\{0} is of the first Baire class, q ∈ S by (5).

Further, q is clearly a projection. It follows from the properties of the function

calculus that q commutes with b and that

qb = χR\{0}(b) id(b) = (χR\{0} · id)(b) = id(b) = b,
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hence b = qbq. Since

1 = ω(b) = 〈bξ, ξ〉,
necessarily bξ = ξ, hence ξ belongs to the range of b and so also to the range

of q. Thus qξ = ξ, hence (1 − q)ξ = 0, so (1 − q)p = 0 by Lemma 3.2, hence

p = qp and we conclude p ∈ S (since S is an ideal).

It follows that S contains all cyclic projections and hence all σ-finite projec-

tions (by (4) and Proposition 3.4). Since S is an ideal, it follows from the de-

scription ofD in Proposition 4.1 thatD⊂S. HenceD=S by [8, Lemma 2].
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