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ABSTRACT

Full residual finiteness growth of a finitely generated group G measures

how efficiently word metric n-balls of G inject into finite quotients of G.

We initiate a study of this growth over the class of nilpotent groups. When

the last term of the lower central series of G has finite index in the center

of G we show that the growth is precisely nb, where b is the product of

the nilpotency class and dimension of G. In the general case, we give a

method for finding an upper bound of the form nb where b is a natural

number determined by what we call a terraced filtration of G. Finally, we

characterize nilpotent groups for which the word growth and full residual

finiteness growth coincide.
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Introduction

Let G be a residually finite group endowed with a word metric given by a finite

generating set X . A subset S ⊆ G is fully detected by a group Q if there

exists a homomorphism ϕ : G → Q such that ϕ|S is injective. For a natural

number n, set ΦX
G (n) to be the minimal order of a group Q that fully detects

the ball of radius n in G (first studied in [4]). The full residual finiteness

growth of G with respect to X is the growth of the function ΦX
G , that is,

its equivalence class under the equivalence relation defined by f ≈ g if and only

if there is a constant C so that f(n) ≤ Cg(Cn) and g(n) ≤ Cf(Cn) for all

natural numbers n. The growth of ΦX
G is independent of choice of generating

set X (see Lemma 1.1). Therefore full residual finiteness growth is an invariant

of a finitely generated group, and can be denoted simply ΦG.

This article focuses on finitely generated nilpotent groups. While it is known

that word growth (defined below after Theorem 2) has precisely polynomial

growth over this class of groups [1], computing other growth functions for this

class has proved to be a serious task. Indeed, even computing the answer for

subgroup growth [13] in the two-generated free nilpotent case takes work; see

[16]. The main difficulty lies in that the structure of p-group quotients of a

fixed finitely generated nilpotent group can depend heavily on the choice of

the prime p. That is, it is difficult to draw global behavior (behavior over all

finite quotients) from local behavior (behavior over all finite quotients that are

p-groups). Moreover, comparisons between full residual finiteness growth and

word growth, which is to our knowledge the only nontrivial growth function

known to have precisely polynomial growth over the class of nilpotent groups,

do not allow one to immediately draw much information on ΦX
G . In fact, the

growth of ΦX
G is often, but not always, strictly larger than the word growth of

G (see Theorem 3). Obtaining sharp control of full residual finiteness growth

over this class requires new understanding of the structure theory of nilpotent

groups.

To present our findings, we begin with some basic examples. In §2, we show

that ΦG(n) = nk for G = Z
k and ΦG(n) = n6 for G equal to the discrete

Heisenberg group. The key property shared by these examples is that the
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center of G is equal to the last term of the lower central series of G. In fact,

we explicitly compute full residual finiteness growths for all groups satisfying

a slightly weaker condition. To make this precise we introduce notation: for a

nilpotent group G of class c we denote by γc(G) the last nontrivial term of its

lower central series, by Z(G) its center, and by dim(G) its dimension. (See §1.2
for more explicit definitions.)

Theorem 1: Let G be a finitely generated nilpotent group of class c with

[Z(G) : γc(G)] <∞. Then

ΦG(n) ≈ nc dim(G).

The conclusion of Theorem 1 does not generally hold when [Z(G) :γc(G)]=∞.

This is seen by taking G to be the direct product of the discrete Heisenberg

group with Z, which satisfies ΦG(n) ≈ n7 while c = 2 and dim(G) = 4. Groups

not satisfying the hypothesis of Theorem 1 are generally more complicated than

this example. For instance, in Proposition 3.1 we provide an example of a

nilpotent group Γ of class c = 3 with dim(Γ) = 8 and ΦΓ(n) ≈ n22 that does

not split as a direct product.

For general nilpotent group G of class c, we introduce methods to find an

upper bound on the polynomial degree of ΦG. Define a terraced filtration

of G to be a filtration 1 = H0 ≤ H1 ≤ · · · ≤ Hc−1 ≤ G where each Hi is a

maximal normal subgroup of G satisfying Hi ∩ γi+1(G) = 1. Every terraced

filtration of G gives an explicit polynomial upper bound on growth of ΦG.

Theorem 2: Let G be a finitely generated nilpotent group of class c. Suppose

1 = H0 ≤ H1 ≤ · · · ≤ Hc−1 ≤ G is a terraced filtration of G. Then

ΦG(n) � nc dim(G)−∑c−1
i=1 dim(Hi).

This upper bound generally depends on the choice of terraced filtration. See

the comments following the proof of Theorem 2 in §3 for an explicit example

demonstrating this dependence. It would be interesting to determine whether

the lowest upper bound obtained from a terraced filtration by Theorem 2 is

optimal.

Results on distortion in nilpotent groups from Osin [15] and Pittet [17] play

an important role in all of our proofs.

We also compare full residual finiteness growth to word growth. Recall that

the word growth, wG, of a finitely generated group G is the growth of the
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function wX
G (n) =

∣∣BX
G (n)

∣∣, which is independent of X . Gromov [9] has char-

acterized nilpotent groups in the class of finitely generated groups as those for

which wG is polynomial. By applying this theorem, it is shown in [4] (see The-

orem 1.3 there) that full residual finiteness growth enjoys the same conclusion.

In spite of this similarity, these two growths rarely coincide. Our final result

characterizes nilpotent groups for which full residual finiteness growth equals

word growth.

Theorem 3: Let G be a finitely generated nilpotent group. Then ΦG ≈ wG if

and only if G is virtually abelian.

In §1.1 we provide a geometric interpretation of ΦX
G . From this point of view,

Theorem 3 implies that virtually abelian groups are characterized in the class

of finitely generated nilpotent groups solely in terms of the asymptotic data of

the Cayley graph. A non-normal version of full residual finiteness growth, the

systolic growth, is studied in [8]. There it is shown that systolic growth matches

word growth if and only if the group is Carnot.

This paper is organized as follows: In §1 we present basic results on nilpotent

groups and full residual finiteness growth, including important lemmas on word

metric distortion of central subgroups of nilpotent groups following from work

of Osin [15] and Pittet [17]. In §2.1 we prove Theorem 3. In §2.2 we compute

the full residual finiteness growth of the Heisenberg group and prove Theorem 1.

In §3 we give an illustrative example showing that the conclusion of Theorem 1

does not hold in general, and prove Theorem 2.

We finish the introduction with a bit of history. The concept of full residual

finiteness growth was first studied by Ben McReynolds and K.B. in [4]. The full

residual finiteness growth of the discrete Heisenberg group is presented in [8].

Compare full residual finiteness growth to the concept of residual finiteness

growth, which measures how well individual elements are detected by finite

quotients, appearing in [5], [7], [3], [11], [18], [6], [12]. Also compare this with

Sarah Black’s growth function defined and studied in [2]. Full residual finiteness

growth measures how efficiently the word growth function can be recovered

from Black’s growth function. See remarks in [2] on p. 406 before §2 for further

discussion.
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this pursuit. The authors acknowledge useful conversations with Moon Duchin,
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suggesting Proposition 1.5.

1. Some background and preliminary results

1.1. Full residual finiteness growth. In this subsection we give a geomet-

ric interpretation of full residual finiteness growth for finitely presented groups.

Write f � g to mean there exists C such that f(n) ≤ Cg(Cn). We write

f ≈ g if f � g and g � f . Recall that the growth of a function f is the

equivalence class of f with respect to ≈.

We first prove a lemma that implies that the growth of the function ΦX
G

defined in the introduction is independent of generating set X :

Lemma 1.1: LetG be finitely generated with finitely generated subgroupH≤G.
Fix finite generating sets X and Y for G and H . Then ΦY

H � ΦX
G .

Proof. Since H ≤ G, there exists C > 0 such that any element in Y can be

written in terms of at most C elements in X . Thus, BH(n) ⊆ BG(Cn) for any

n > 1. Because any homomorphism from G restricts to a homomorphism from

H , this gives

ΦX
G (Cn) ≥ ΦY

H(n),

as desired.

Lemma 1.1 in particular implies that if X and Y are two finite generating

sets of a group G, then ΦX
G ≈ ΦY

G. Let ΦG denote the equivalence class of ΦX
G

with respect to ≈ for any finite generating set X of G.

We now provide a geometric interpretation of ΦG in the case that G is a

finitely presented group. Let G be a residually finite group with Cayley graph

Γ with respect to a finite generating set S. Each edge of Γ is labeled by the

corresponding generator. For a subset X ⊆ Γ, we set ∂X to be the collection of

edges and vertices of X each of which has closure not contained in the interior

of X . Let {Ak} be an increasing sequence of finite connected subsets of Γ with

Ak+1 = ∂Ak+1 
 Ak.
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Then the sequence of subsets, {Ak}, is called a growing sequence. Let BS
G(n)

denote the closed ball of radius n in the Cayley graph of G with respect to

the word metric induced by S. We will omit the S from the notation when

the generating set is understood and there is no chance for confusion. The

prototypical example of a growing sequence is the sequence that assigns to each

positive integer k the metric ball BS
G(k) in the Cayley graph of G with respect

to S.

The geometric full residual finiteness growth of Γ with respect to {Ak}
is the growth of the function, Φ

{Ak}
Γ : N → N, given by

n �→ min{|Q| : Q is a group with An isometrically

embedding in one of its Cayley graphs}.
Our first lemma demonstrates that the growth of Φ

{Ak}
G does not depend on

the growing sequence.

Lemma 1.2: Let {Xk} and {Yk} be two growing sequences for a finitely gener-

ated group G. Then Φ
{Xk}
G ≈ Φ

{Yk}
G .

Proof. We first assume that {Xk} and {Yk} are growing sequences from the

same Cayley graph realization of G. Then there exists K ∈ N such that

Y1 ⊆ XK and X1 ⊆ YK .

Hence, C
{Yk}
G (n) ≤ C

{Xk}
G (K + i) and C

{Xk}
G (n) ≤ C

{Yk}
G (K + i). Thus, we can

assume that {Xk} and {Yk} are the word metric k-balls of G with respect to

two different generating sets. It is straightforward to see that there exists C > 0

such that Yn ⊆ XCn ⊆ YC2n for every natural number n. Hence

Φ
{Yk}
G (n) ≤ Φ

{Xk}
G (Cn) ≤ Φ

{Yk}
G (C2n),

as desired.

Next we show that the notions of full residual finiteness growth, given in the

introduction, and geometric full residual finiteness growth, given in this section,

agree in the case that the group G is finitely presented. It would be interesting

to determine if this equivalence holds for all finitely generated groups.

Lemma 1.3: Let G be a finitely presented group. For any generating set X

and growing sequence {Ak} we have

Φ
{Ak}
G ≈ ΦX

G .
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Proof. Let X be a finite generating set for G and let R be the set of finite

relations. It is clear that Φ
{Ak}
G � ΦX

G . We show the reverse inequality. We

can, by Lemma 1.2, suppose that the growing set {Ak} is simply the sequence

{BX
G (k)}. It suffices, then, to show that there exists N ∈ N such that for

any n > N and any finite group, Q, with BG(n) isometrically embedding in a

Cayley graph realization of Q, there exists a homomorphism φ : G → Q with

φ|BG(n) being injective. Select N to be the maximal word length of any element

in R. Then since Bn isometrically embeds in a Cayley graph of Q, we see that

there exists a generating set for Q such that each relator R is satisfied by this

generating set. This finishes the proof.

The next lemma controls some of the full residual finiteness growth of a direct

product of groups.

Lemma 1.4: Let G and H be finitely generated groups. Then

ΦG×H � ΦG ·ΦH .

Proof. Fix generating sets X and Y for G and H . Then (X ×{1})∪ ({1}× Y )

is a finite generating set for G×H . Note that

BG×H(n) ⊆ (BG(n)× {1})({1} ×BH(n)).

Thus, if Q1 is a quotient that fully detects BG(n) and Q2 a quotient that

fully detects BH(n), then Q1 × Q2 fully detects BG×H(n). We see then that

ΦG×H � ΦG ΦH , as desired.

Can the conclusion of Lemma 1.4 be improved to ΦG×H ≈ ΦG ΦH? This

can possibly be false: it is not even true that if ϕ : G → H is a surjective

homomorphism, then ΦG(n) � ΦH(n). Consider a free group mapping onto one

of Kharlampovich–Sapir’s solvable and finitely presented groups of arbitrarily

large residual finiteness growth [12].

Full residual finiteness growth is well-behaved under taking the quotient by

a finite normal subgroup:

Proposition 1.5: Let G be a finitely generated residually finite group. Let T

be a finite normal subgroup of G. Then ΦG ≈ ΦG/T .

Proof. Fix a generating set X for G, and let Y be the image of X under the

quotient map G→ G/T . Let K be the largest length, with respect to X , of an
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element in T . We first claim

ΦX
G (K + n) ≥ ΦY

G/T (n).

Let φ : G → Q be a finite quotient of minimal cardinality that fully detects

BX
G (K + n). That is |Q| = ΦX

G (K + n). Define ψ : G/T → Q/φ(T ) by

gT �→ φ(g)φ(T ). Let g ∈ BY
G/T (n) ∩ kerψ. By construction, we may lift g to

an element g̃ ∈ G such that g̃ ∈ BX
G (n) and φ(g̃) ∈ φ(T ). That is, there exists

t ∈ T such that φ(g) = φ(t), which gives

φ(g̃t−1) = 1.

If g̃t−1 �= 1, then this contradicts that φ fully detects BG(K + n). Hence g̃ = t,

and so kerψ ∩BY
G/T (K + n) is trivial. It follows that ψ fully detects BY

G/T (n),

and so ΦX
G (K + n) ≥ ΦY

G/T (n), as claimed.

Since G is residually finite and T is finite, there exists a normal subgroup, H ,

such that T ∩ H = 1. To finish, we claim that ΦX
G (n) ≤ [G : H ]ΦY

G/T (n). Let

ψ : G/T → Q be a quotient that fully detects BY
G/T (n), with |Q| = ΦY

G/T (n).

Let φ : G→ Q be the natural map G→ G/T → Q. Set N = kerφ∩H . Clearly,

[G : N ] ≤ [G : kerφ][G : H ] = |Q|[G : H ]. Moreover, if g ∈ BX
G (n) ∩ N , then

g /∈ T . Hence, by the construction of Y , we have that φ(g) �= 1. It follows that

G/N fully detects BX
G (n), and so ΦX

G (n) ≤ [G : H ]ΦY
G/T (n), as desired.

We finish the section with a lemma that, in some restrictive cases, allows us

to pass to finite-index subgroups.

Lemma 1.6: Let G andH be finitely generated nilpotent groups with H normal

subgroup in G of finite index. If every normal subgroup of H is normal in G,

then ΦG ≈ ΦH .

Proof. By Lemma 1.1, it suffices to show that ΦG � ΦH . Fix generating sets

for G and H so that BH(n) ⊆ BG(n) for all n > 0. Because H is of finite index

in G and thus quasi-isometric to G, there exists C > 0 such that

H ∩BG(2n) ⊆ BH(Cn).

Let H/K be a quotient of H that fully detects BH(Cn). By our assumption, K

is normal in G so G/K is well-defined. Then any element in BG(2n) not in H

is mapped nontrivially onto G/K. And since H ∩BG(2n) ⊆ BH(Cn), it follows

that BG(2n) is mapped nontrivially onto G/K. Thus, BG(n) is fully detected

by G/K, and so we are done.
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1.2. Nilpotent groups. In this subsection we fix basic notation and present

several lemmas that play important roles in our proofs. Let G be a group.

The lower central series γk(G) of G is the sequence of subgroups defined by

γ1(G) = G and

γk(G) = [γk−1(G), G].

For any group H , let Z(H) denote the center of H . The upper central series

ζk(G) of G is given by ζ0(G) = {e} and the formula

ζk(G)/ζk−1(G) = Z(G/ζk−1(G)).

The group G is said to be nilpotent if γk(G) = 1 for some natural number

k. Equivalently, G is nilpotent if and only if it is an element of its upper

central series. Moreover, G is said to be nilpotent of class c if γc(G) �= 1 and

γc+1(G) = 1.

If G is a finitely generated nilpotent group, then the successive quotients of

the upper central series of G are abelian groups of finite-rank. Thus, the upper

central series has a refinement

G = G1 ≥ G2 ≥ · · · ≥ Gn+1 = 1,

such that Gi/Gi+1 is cyclic for all i = 1, . . . , n. The number of infinite cyclic

factors in this series does not depend on the series and is called the dimension

of G, denoted by dim(G) [19, p. 16, Exercise 8]. Let this series be chosen so

that n is minimal. An n-tuple of elements (g1, g2, . . . , gn) ∈ Gn is a basis for

G if gi ∈ Gi and Gi/Gi−1 = 〈giGi−1〉 for each i = 1, . . . , n. In the case when

Gi/Gi+1 is infinite for all i = 1, . . . , n we call the n-tuple a Malcev basis for

G.

The set of torsion elements T in a finitely generated nilpotent group G is a

finite normal subgroup, and the quotient G/T is a torsion-free nilpotent group

[19, p. 13, Corollary 10]. A corollary of Proposition 1.5 is that G/T has the

same full residual finiteness growth as G.

Corollary 1.7: If G is a finitely generated nilpotent group and T is the

subgroup of torsion elements, then ΦG ≈ ΦG/T .

We recall a folklore result, used in the proof of the following lemmas.
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Lemma 1.8: Suppose G is a finitely generated nilpotent group of class c. The

assignment (x, y) �→ [x, y] defines a homomorphism

(ζk(G)/ζk−1(G)) × (ζ�(G)/ζ�−1(G)) → ζk+�−c−1(G)/ζk+�−c−2(G).

Proof. This follows immediately from [14, Theorem 2.1], noting that the upper

central series is a central filtration of G when indexed so that the ith term of

the filtration is ζc+1−i(G).

If G is a group generated by a finite set X , for g ∈ G we use ‖g‖X to

denote the word length of g with respect to X . Let G be a finitely generated

nilpotent group. The following lemma is a consequence of well-known distortion

estimates.

Lemma 1.9: Let G be a nilpotent group of class c generated by a finite set X .

Fix a positive integer i and a generating set Xi for Z(G) ∩ γi(G). Then there

exists C > 1 such that for all g ∈ Z(G) ∩ γi(G),

(1) ‖g‖X ≤ C‖g‖1/iXi
.

Proof. We first assume G is torsion-free. First consider the case that g = xm

for some x ∈ Xi and m ∈ Z \ {0}. Assume without loss of generality that Xi is

a basis for the free abelian group Z(G) ∩ γi(G), so that ‖g‖Xi = |m|. Embed

G as a cocompact lattice in a simply-connected nilpotent Lie group N , which

identifies Z(G) ∩ γi(G) with a lattice in a simply-connected central subgroup

Z ≤ N . Fix any left-invariant Riemannian metric on N , which gives a norm

‖ · ‖n on n, the Lie algebra of N . Consider the path γ : [0, |m|] → Z defined so

that γ(|m|) = g and γ(t) = exp(tz) for some z ∈ n. Note that exp(z) = x if

m > 0 and exp(z) = x−1 if m < 0. In particular, z does not depend on m. By

[17, Prop. 4.1(1)], the length of γ is ‖z‖n‖g‖Xi . Then applying [17, Prop. 4.1(2)]

to the curve γ, there is a constant C > 0 depending on z so that

(2) dN (e, g) ≤ C‖g‖1/iXi
.

The quantity dN (e, g) is uniformly comparable to ‖g‖X , so this proves the

desired inequality for g of the form xm.

Now for any g ∈ Z(G)∩γi(G), write g =
∏k

j=1 x
mj

j where Xi = {x1, . . . , xk}.
Let C be the largest constant appearing in equation (2) as x ranges over
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x1, . . . , xk. Then there is some D > 0 so that

‖g‖X ≤
k∑

j=1

‖xmj

j ‖X

≤ C

k∑
j=1

‖xmj

j ‖1/iXi

≤ C
k∑

j=1

|mj |1/i

≤ Ck

( k∑
j=1

|mj |
)1/i

≤ CkD‖g‖1/iXi
.

The last step follows because Z(G) ∩ γi(G) is abelian. The penultimate step

follows from the general fact that (m
1/i
1 + · · ·+m1/i

k )i ≤ ki(m1+ · · ·+mk) when

mj ≥ 1 for all j. This completes the proof in the case that G is torsion-free.

Now suppose G is an arbitrary finitely generated nilpotent group. There is

a torsion-free normal subgroup H of finite index in G. Fix a generating set Y

for H . The map i : H → G is a quasi-isometry because H is finite index in G.

In fact, because distinct points in each of G and H are distance at least 1 and

i is injective, it is easy to check that i is bi-Lipschitz. This means that there is

some C ≥ 1 so that:

(1) For g, h ∈ H ,

1

C
‖gh−1‖Y ≤ ‖gh−1‖X ≤ C‖gh−1‖Y .

(2) For every element g ∈ G, there exists h ∈ H such that

‖hg−1‖X ≤ C.

Fix generating sets Xi for Z(G) ∩ γi(G) and Yi for Z(H) ∩ γi(H). We claim

that Z(H) ≤ Z(G). Indeed, if not then there exists h ∈ Z(H), an integer r ≥ 1,

and elements x1, . . . , xr ∈ G such that h ∈ ζr+1(G) \ ζr(G) and
[h, x1, . . . , xr] ∈ Z(G) \ {1}.

Since H has finite index in G there exists n ∈ N such that xn1 ∈ H . By Lemma

1.8 we have

[h, xn1 , . . . , xr] = [h, x1, . . . , xr]
n.
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Since H is normal we have [h, x1, . . . , xr] ∈ H . This implies [h, xn1 , . . . , xr] �= 1

because H is torsion-free. Therefore [h, xn1 ] cannot be trivial, which contradicts

the fact that h ∈ Z(H). By the aforementioned claim, Z(G) ∩ γi(G) contains

Z(H)∩ γi(H) as a subgroup. In fact, it is not hard to show that Z(H) ≤ Z(G)

and γi(H) ≤ γi(G) are, in both cases, subgroups of finite index. Hence, the

inclusion i2 : Z(H) ∩ γi(H) → Z(G) ∩ γi(G) is a bi-Lipschitz quasi-isometry

with constant D ≥ 1.

Now select C′ > 1 such that inequality (1) holds for all g ∈ G that are finite

order (again, there are only finitely many of them). Next, let g be an infinite

order element in G with

g ∈ Z(G) ∩ γi(G).
We can suppose, without loss of generality, that X contains Xi. Then since i2

is a D-quasi-isometry, there exists h ∈ Z(H) ∩ γi(H) such that

‖hg−1‖X ≤ ‖hg−1‖Xi ≤ D.

Since H is torsion-free, by enlarging C if necessary we have

‖h‖Y ≤ C‖h‖1/iYi
.

Thus

(3) ‖g‖X = ‖gh−1h‖X ≤ ‖gh−1‖X + ‖h‖X ≤ C + ‖h‖X .
And, further,

(4) ‖h‖X ≤ C‖h‖Y ≤ C2‖h‖1/iYi
.

To finish,

(5) ‖h‖Yi ≤ D‖h‖Xi = D‖gg−1h‖Xi ≤ D(‖g‖Xi +D).

The desired inequality follows from equations (3)–(5), as all additive constants

can be absorbed into the multiplicative constants.

Next, we show a technical lemma that will be important in our main proofs:

Lemma 1.10: Let G be a nilpotent group of class c generated by a finite set

X . Fix a number 0 < i ≤ c, and fix generating sets Y0 for ζi(G) and Y for

Z(G). There exists Ci > 0 such that for any g ∈ ζi(G) \ ζi−1(G), there exists

x1, . . . , xi−1 ∈ X such that for any γ ∈ ζi−1(G),

0 < ‖[gγ, x1, . . . , xi−1]‖Y ≤ Ci‖g‖Y0.
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In fact, there is some Fi > 0 so that

0 < ‖[gγ, x1, . . . , xi−1]‖X ≤ Fi‖g‖1/tY0
,

where t is the minimal k satisfying [gγ, x1, . . . , xi−1] /∈ γk+1(G).

Proof. Let g ∈ ζi(G) \ ζi−1(G) be given. Since G is nilpotent, there exists

x1, . . . , xi−1 ∈ X so that

[g, x1, . . . , xi−1] ∈ Z(G) \ {1}.

Note that for any x ∈ ζi(G) we have that

[x, x1, . . . , xi−1] ∈ Z(G).

Write g =
∏n

i=1 gi where gi ∈ Y0 and n is the word length of g with respect to

Y0. Applying Lemma 1.8 repeatedly gives

[g, x1, . . . , xi−1] =[g1g2 · · · gn, x1, . . . , xi−1]

=[g1, x1, . . . , xi−1][g2, x1, · · ·xi−1] · · · [gn, x1, . . . , xi−1].

Set Y ′ to be Y union the set of all elements of the form [β, α1, α2, . . . , αi−1]

where β ∈ Y0 and αi ∈ X . Notice that Y ′ does not depend on g. Further, by

our above computation, we have

‖[g, x1, . . . , xi−1]‖Y ′ ≤ n.

Because Y ′ is finite, (Z(G), dY ) is bi-Lipschitz equivalent to (Z(G), dY ′). This

gives Ci > 0, depending only on Y ′, such that

(6) 0 < ‖[g, x1, . . . , xi−1]‖Y ≤ Ci‖[g, x1, . . . , xi−1]‖Y ′ ≤ Cin = Ci‖g‖Y0 .

Let γ ∈ ζi−1(G) be arbitrary. Then as [g, x1, . . . , xi−1] and [γ, x1, . . . , xi−1] are

central,

[g, x1, . . . , xi−1] = [gγ, x1, . . . , xi−1],

so the proof of the first assertion is complete.

Fix generating sets Xj for γj(G) ∩ Z(G) for each 1 ≤ j ≤ c. These sets can

be chosen independently of g and i. By Lemma 1.9, for each j we have that

there exists Dj > 1 such that for all w ∈ γj(G) ∩ Z(G),

‖w‖X ≤ Dj‖w‖1/jXj
.
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Set D to be the maximal such Dj. Notice that D only depends on X and G.

Since γt(G) ∩ Z(G) is a subset of the abelian group, Z(G), we have that there

exists E > 1, depending only on Y and the selection of Xj , such that

‖[gγ, x1, . . . , xi−1]‖Xt ≤ E‖[gγ, x1, . . . , xi−1]‖Y ≤ E2‖[gγ, x1, . . . , xi−1]‖Xt .

Combining these inequalities with inequality (6) gives

0 < ‖[gγ, x1, . . . , xi−1]‖X ≤D‖[gγ, x1, . . . , xi−1]‖1/tXt

≤ED‖[gγ, x1, . . . , xi−1]‖1/tY

≤EDCi‖g‖1/tY0
= Fi‖g‖1/tY0

,

for some constant Fi that depends only on i and our choice of generating sets,

as desired.

For any g ∈ G of infinite order, the weight νG(g) of g in the group G is

the maximal k such that 〈g〉 ∩ γk(G) �= {1}. If G is a group and m a natural

number, let Gm denote the normal subgroup of G generated by all mth powers

of elements of G. When G is nilpotent we have [G : Gm] < ∞ for any m (see,

for instance, [10, p. 20, Lemma 4.2]). We need the following technical result for

Lemma 1.12.

Lemma 1.11: Let G be a nilpotent group generated by a finite set X . Fix a

positive integer i. Then there exists a constant C > 1 such that, for all m ∈ N

and all g ∈ (Z(G) ∩ γi(G))m with νG(g) = i, we have

m ≤ C‖g‖iX .
Proof. Select Y = {x1, . . . , xr} so that the image of Y under

π : (Z(G) ∩ γi(G)) → (Z(G) ∩ γi(G))/γi+1(G)

generates a free abelian group of rank r, where r is the rank of

(Z(G) ∩ γi(G))/γi+1(G).

Select N to be the order of π(Z(G) ∩ γi(G))/π(〈Y 〉).
Let f be the projection G→ G/γi+1(G). We apply [15, Theorem 2.2] to the

torsion-free subgroup Π = f(〈x1, . . . , xr〉) ≤ G/γi+1(G) to get D > 1 such that

sup
h∈Π∩Bf(X)(n)

‖h‖f(Y ) ≤ Dni.
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Thus, if ‖h‖f(X) = n, then ‖h‖f(Y ) ≤ Dni = D(‖h‖f(X))
i. That is,

(7) ‖h‖f(Y ) ≤ D‖h‖if(X).

Now suppose g is an element of (Z(G) ∩ γi(G))
m with νG(g) = i. Since

νG(g) = i, we have that π(g) is infinite order. Thus, we can write gN = hγ

where h ∈ 〈Y 〉 and π(γ) is trivial. Thus γ ∈ γi+1(G). The map f |〈Y 〉 is an

injection, thus

‖f(h)‖f(Y ) = ‖h‖Y .
Finally, by the fact that gN ≡ h mod γi+1(G) and inequality (7), we have

N‖g‖X ≥‖gN‖X ≥ ‖f(gN)‖f(X)

=‖f(h)‖f(X) ≥ D1/i‖f(h)‖1/if(Y ).

Notice that for any abelian group, A, and � ∈ N we have

A� = 〈{x� : x ∈ A}〉.
Using additive notation, this becomes

A� := 〈{�x : x ∈ A}〉 = �{x : x ∈ A} = �A.

So we have

mNA = m(NA) = m{nx : x ∈ A}.
To apply this, note that A = (Z(G) ∩ γi(G)) is an abelian group, as it is

contained in the center. For any element y ∈ NA, by the definition of N , we

have f(y) is an element of Π. Thus f(my) = mf(y) is an element of Πm, and

so it follows that

f(AmN ) ≤ Πm.

In particular, gN ∈ (Z(G) ∩ γi(G))Nm, so we have

f(gN) ∈ Πm.

Since mf(Y ) is a free basis for Πm, f(Y ) is a free basis for Π, and f(h) = f(gN),

we conclude that

‖f(h)‖f(Y ) = ‖f(gN)‖f(Y ) ≥ m,

so we are done.

With the previous lemmas in hand, we finish with a proof that gives some

control on the word lengths of elements in Gm.
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Lemma 1.12: Let G̃ be a finitely generated nilpotent group of nilpotence c.

There exists f ∈ N such that G = G̃f is a torsion-free characteristic subgroup

of G̃ of finite index. Let g ∈ G, X , and t ∈ N be as in Lemma 1.10. Then there

exists C > 1, M ∈ N, depending only on G, such that if g ∈ GMm, we have

that

‖g‖X ≥ Cm1/t.

Proof. Set τ(G̃) to be the set of all elements of finite order in G̃. By [19, p. 13,

Chapter 1, Corollary 10], this is a finite characteristic subgroup of G̃. Since G

is residually finite and τ(H) is finite, there exists a finite Q that fully detects

τ(G̃). Set f to be the exponent of Q and set G to be the characteristic finite-

index subgroup G̃f [10, p. 20, Lemma 4.2]. Then the map G̃ → Q factors

through G̃/G, and thus τ(G̃) is fully detected by G̃/G. Since τ(G̃) contains all

the torsion elements in G̃, it follows that G is torsion-free.

We will show by induction on d that for all n > c,

(8) (ζd(G))
(d)!···2!n ∩ Z(G) ≤ Z(G)n.

The base case ζ1(G) = Z(G) is immediate. For the inductive step, set

M = (d)!(d− 1)! · · · 2!
and let H = ζd(G) ≤ G. Let h ∈ HMn ∩Z(G). Since h is in HMn we can write

h = gMn
1 gMn

2 · · · gMn
k ∈ Z(G),

where g1, . . . , gk are elements in H .

To proceed, let τn(x1, x2, . . . , xk) = τn(x) be the nth Petresco word [10,

p. 40], which is defined by the recursive formula

xn1x
n
2 · · ·xnk = τ1(x)

nτ2(x)
(n2) · · · τn(x)(

n
n−1).

By the Hall–Petresco Theorem [10, p. 41, Theorem 6.3], we have that

τn(H) ⊂ γn(H)

for all n ∈ N. Thus, replacing n withMn and using the Hall–Petresco Theorem,

we get

gMn
1 gMn

2 · · · gMn
k = τ1(g)

Mnτ2(g)(
Mn
2 ) · · · τd(g)(

Mn
d ).

By the Hall–Petresco Theorem, τk(g) ∈ ζd−1(G) for all k > 1, and by definition

h = gMn
1 gMn

2 · · · gMn
k ∈ ζd−1(G). Therefore, because G/ζd−1(G) is torsion-

free, τ1(g) is in ζd−1(G). We conclude that, for each 1 ≤ k ≤ d, there exists
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zk ∈ ζd−1(G) such that

τk(g)
(Mn

k ) = (zk)
M
(d)!n ∈ ζd−1(G)

M
(d)! .

Further,

M

d!
= (d− 1)! · · · 2!.

Hence h ∈ (ζd−1(G))
(d−1)!(d−2)!···2!, so by the inductive hypothesis we must have

h ∈ Z(G)n, which completes the proof of equation (8).

Let D be the product of all finite order elements in G/γn(G) for all

n = 1, . . . , c. Selecting d = c in equation (8) we get, forM = (c)!(c−1)! · · · 2!D,

and n > c,

(9) GMn ∩ Z(G) ≤ Z(G)Dn.

Now suppose g ∈ GMm. By Lemma 1.10, there exists x1, . . . , xi−1 ∈ X such

that [g, x1, . . . , xi−1] ∈ γt(G) ∩ Z(G). Thus, as GMm is normal, we have, by

equation (9), [g, x1, . . . , xi−1] ∈ Z(G)Dm. Hence, by our choice of D and the

fact that Z(G) is a free abelian group, we have νG([g, x1, . . . , xi−1]) = t. Thus,

applying Lemma 1.11 gives C1 > 0, depending only on G, such that

‖[g, x1, . . . , xi−1]‖X > C1m
1/t.

A simple counting argument gives a C2 > 0, depending only on G, such that

‖g‖X ≥ C2‖[g, x1, . . . , xi−1]‖X .

Thus, we have C > 0, depending only on G, such that

‖g‖X > Cm1/t,

as desired.

2. Some examples and basic results

2.1. Abelian groups. In this section we discuss some facts concerning abelian

groups and present a proof of Theorem 3. This begins with the simplest torsion-

free group. Fix {1} as the generating set Z. Then

BZ(n) = {−n,−n+ 1, . . . , n− 1, n}.
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Clearly, BZ(n) is fully detected by Z/(2n + 1)Z. Further, any quotient fully

detecting BZ(n) has cardinality greater than 2n. So we get ΦZ(n) ≈ n. This re-

sult generalizes immediately to all torsion-free finitely generated abelian groups,

and more generally to all finitely generated abelian groups.

Corollary 2.1: Let A be a finitely generated abelian group. Then

ΦA(n) ≈ ndim(A).

Proof. By Corollary 1.7, we may assume A is torsion-free. The computation in

this case is straightforward.

One salient consequence of Corollary 2.1 is that an abelian group’s full resid-

ual finiteness growth ΦA matches its word growth wA. We now prove The-

orem 3, which shows that this property characterizes abelian groups in the

class of nilpotent groups. It also demonstrates that although ΦG and wG share

properties, they are seldom the same.

Proof of Theorem 3. By Corollary 1.7, we may assume that G is torsion-free.

Let’s further assume G is not abelian. Fix a Malcev basis x1, . . . , xk for G. For

every n, let Qn be a quotient fully detecting BG(n). Let c be the nilpotent

class of G. Fix a tuple (x1, . . . , xm) consisting of all the basis elements not in

ζc−1(G). We claim that there exists C > 0 such that, for any γ ∈ ζc−1(G),

the image of xk1
1 x

k2
2 · · ·xkm

m γ in QCn is nontrivial in QCn for any |ki| ≤ n2

with
∑m

i=1 |ki| > 0. Indeed, by the second assertion of Lemma 1.10 there exists

C > 0 with [xk1
1 x

k2
2 · · ·xkm

m , y1, y2, . . . , yc−1] being nontrivial and having word-

length at most Cn2/c ≤ Cn in G. Thus, as nontrivial elements of BG(Cn)

are nontrivial in QCn, the image of xk1
1 x

k2
2 · · ·xkm

m γ in QCn is nontrivial, so the

claim is shown.

Consider the set

B+(n) := {xk1
1 x

k2
2 · · ·xkm

m γ : 1 ≤ ki ≤ n2, γ ∈ BG(n) ∩ ζc−1(G)}.
Given any x, y ∈ B+(n), the above claim implies that y−1x has nontrivial image

in QCn. It follows that B
+(n) is fully detected by QCn. On the other hand, by

comparing with the explicit calculations for word growth in [1] and the appendix

of [9] we see that the set B+(n) has cardinality at least nmwG(n). Thus we

have

ΦG(n) � nmwG(n),

as desired.
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2.2. Some non-abelian groups. We begin this section with the simplest non-

abelian example. Recall that the discrete Heisenberg group is given by

H3 = 〈x, y, z : [x, y] = z, z is central〉.
Proposition 2.2: We have ΦH3(n) ≈ n6.

Proof. Let BH3(n) be the ball of radius n in H3 with respect to the generating

set {x, y, z}. An exercise in the geometry of H3 shows that there is some D > 0

so that if xα1yα2zα3 ∈ BH3(Dn) then |αi| ≤ n for i = 1, 2 and |α3| ≤ n2. There-

fore there is some C > 0 so that BH3(n) injects into the quotient H3/H
Cn2

3 ,

and so ΦH3(n) � n6.

Now note that BH3(5n) contains z
i for −n2 ≤ i ≤ n2, as

[xn, yj ]zk = znj+k

has word length at most 5n for each 1 ≤ j, k ≤ n. Let Qn be a quotient

detecting BH3(5n). Consider w = xaybxc. Then [w, y] = za and [w, x] = z−b.

If w is trivial in Qn then both [w, y] and [w, x] are also trivial. It follows that

w has nontrivial image in Qn for any values 0 < a, b, c ≤ n2. Thus |Qn| ≥ n6,

as desired.

We now prove Theorem 1 from the introduction, which generalizes the con-

clusion of Proposition 2.2 to a large class of nilpotent groups.

For a finite k-tuple of elements X = (x1, . . . , xk) from a group, we will use

B+
X(n) to denote the set

B+
X(n) = {xα1

1 · · ·xαk

k : 0 ≤ αi ≤ n} ⊆ G.

Note that this is not generally the same as the semigroup ball of radius n.

Proof of Theorem 1. Lemma 1.12 demonstrates that BG(n) is fully detected by

a quotient of the form G/GMnc

for some M > 0. We therefore have

ΦG(n) �
( c∏

i=1

ndim(ζi(G)/ζi−1(G))

)c

= ndim(G)c.

To show the reverse inequality, we will show that for any positive integer n,

there exists a set of cardinality approximately ndim(G)c that is fully detected by

any finite quotient of G that realizes ΦG(n). To this end, for each i, equip γi(G)

with a fixed generating set Xi. Let Q be a quotient of G that realizes ΦG(n).
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By [15, Theorem 2.2], for any generating set of γc(G) there is a constant C > 0

such that for every h, h′ in γc(G), we have

dγc(G)(h, h
′) ≤ C[dG(h, h

′)]c.

Thus, the set Bγc(G)(n
c/C) must inject into Q as it is contained in BG(n).

To continue, fix a basis B = (g1, . . . , gk) obtained from the upper central

series. For any i, let

Bi = {gj ∈ B | gj ∈ ζi(G) \ ζi+1(G), gj nontorsion in G/ζi(G)}.
Set Bt to be the tuple consisting of elements from Bi respecting the ordering

of the basis. That is,

Bt = (ga1 , . . . , gak
),

where each entry is in some Bi and ai < ai+1. We claim that B+
Bt(Dnc) is fully

detected by Q for some D > 0. To prove this claim, we will use the fact that

if any element in the normal closure of some g ∈ G has nontrivial image in Q,

then g has nontrivial image in Q. Let x, y ∈ B+
Bt(nc) be elements with x �= y.

There is some i ≤ c so that y−1x ∈ ζi(G) \ ζi−1(G). Set

E = max{|Bj|} ·max{‖γ‖Xj : γ ∈ Bj}.
There is some γ ∈ ζi−1(G) so that ‖y−1xγ‖Xi ≤ Enc. This statement follows

by reducing the word y−1x to normal form with respect to the basis. Let E0

be the largest constant Ci output by Lemma 1.10 for i = 1, . . . , c. By Lemma

1.10,

‖[y−1x, x1, . . . , xr]‖Xc ≤ E0‖xy−1γ‖Xi ≤ E0En
c.

It follows then that the set B+
Bt(nc/(CE0E)) is fully detected by Q. Set

D = 1/(CE0E). By the definition of a basis we have |B+
Bt(Dnc)| ≥ (Dn)c dim(G),

so we get the desired inequality.

3. A general upper bound

The example H3×Z, which has full residual finiteness growth n7, demonstrates

that the conclusion of Theorem 1 does not hold for any finitely generated nilpo-

tent group. In this section we prove Theorem 2, providing a technique that

provides for any finitely generated nilpotent group an explicit upper bound

of ΦG(n) of the form nd. We first illustrate the technique in an example in
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Proposition 3.1, where we show moreover that the upper bound is sharp in this

example.

Let Un denote the group of upper triangular unipotent matrices in SLn(Z).

For i �= j, let ei,j denote the elementary matrix differing from the identity

matrix only in that its ij-entry is 1. We define the coordinates of the tuple

(x1, . . . , xk) to be the set {x1, . . . , xk}. Recall that a terraced filtration of G

is a filtration 1 = H0 ≤ H1 ≤ · · · ≤ Hc−1 ≤ G where each Hi is a maximal

normal subgroup of G satisfying Hi ∩ γi+1(G) = 1.

Proposition 3.1: Consider elementary matrices x = e1,4 and y = e1,5 in U5.

Define a normal subgroup N = 〈x, y〉 ≤ U5 and set Γ = U5/N . Then

ΦΓ(n) ≈ n22.

Proof. Set H3 = Γ and H2 = 〈e1,2, e1,3〉, and let H0 = H1 = 1. Note that

1 = H0 ≤ H1 ≤ H2 ≤ Γ forms a terraced filtration of Γ. Define two tuples

of elements of Γ by X3 = (e1,3, e1,2) and X2 = (e2,5, e2,4, e3,5, e2,3, e3,4, e4,5).

For each i = 2, 3, let Yi be the set of coordinates of Xi. Clearly Y = Y2 ∪ Y3
generates Γ.

To establish the upper bound, let Q be a quotient of Γ detecting BΓ(n). Each

of Hn3

3 and Hn2

2 is normal in Γ, so we can define a normal subgroup

N = Hn3

3 Hn2

2 ≤ Γ.

A simple induction shows that if g ∈ BΓ(n) then |gij | ≤ nj−i. In particular,

this implies that there is some C > 0 so that BΓ(Cn) is fully detected by G/N .

Since |G/N | ≈ n22, this establishes the desired upper bound on ΦΓ(n).

To establish the lower bound, define the depth of an element γ ∈ Γ to be

the maximal i with γ /∈ ζi(Γ). Order the elements Y in a tuple (y1, y2, . . . , y8)

of non-increasing depth. Set B+(n) to be

{ 8∏
i=1

yαi

i : 0 ≤ αi ≤ n2 if yi ∈ Y2 and 0 ≤ αi ≤ n3 otherwise

}
.

We claim that there exists C > 0 such that any quotient Q in which BΓ(Cn)

embeds restricts to B+(n) as an injection. This gives the desired lower bound,

as |B+(n)| ≥ n22. To see this claim, let x, y be distinct elements in B+(n). Set

i to be the depth of y−1x. We break up the rest of the proof of this claim into

cases depending on i.
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If i = 0, then y−1x is in the center of Γ and we have

y−1x = ea1
1,2e

a2
2,5,

where |a1| ≤ n2 and |a2| ≤ n3. Note that e1,2 ∈ γ2(Γ) and e2,5 ∈ γ3(Γ).

Applying Lemma 1.9 twice, we have that

‖y−1x‖Γ ≤ ‖ea1
1,2‖Γ + ‖ea2

2,5‖Γ ≤ Cn,

for some C > 0, independent of n. Thus y−1x cannot vanish in any quotient

that fully detects B+(Cn).

If i = 1, then by definition we may write

y−1x = ea1
1,2e

a2
2,4e

a3
3,5γ,

where γ ∈ ζi(Γ), |a1| ≤ n2, |a2| ≤ n3, and |a3| ≤ n3. Since this y−1x is not in

the center, there exists z ∈ Y such that

[ea1
1,2e

a2
2,4e

a3
3,5γ, z] �= 1.

This element is now in the center. Thus, by Lemma 1.8, we have

[ea1

1,2e
a2

2,4e
a3

3,5γ, z] = [e1,2, z]
a1[e2,4, z]

a2 [e3,5, z]
a3.

Now by Lemma 1.9 applied three times, we see that the word length of

[ea1
1,2e

a2
2,4e

a3
3,5γ, z]

is less than a constant multiple of n, where the constant does not depend on n.

Thus y−1x cannot vanish in any quotient that fully detects B+(Cn) for some

C > 0 independent of n.

If i = 2, then by definition we may write

y−1x = ea1
2,3e

a2
3,4γ,

where γ ∈ ζi(Γ), |a1|, |a2| ≤ n3. Suppose, without loss of generality, that a1 �= 0.

Then, using Lemma 1.8, we have that there exists γ′ ∈ γ1(Γ) such that

[y−1x, e3,4] = [e2,3, e3,4]
a1 [e3,4, e3,4]

a2γ′ = ea1
2,4γ

′.

Now it is clear that there exists z ∈ Γ such that

[[y−1x, e3,r], z] = [ea1

2,4γ
′, z] �= 1.

We can proceed as in case i = 1 to achieve the desired conclusion. Indeed,

Lemma 1.9 applies, giving that y−1x is detected if B(Cn) is fully detected for
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some constant C > 0 independent of n. That is, we cannot have y−1x = 1 in

Q, if Q detects BΓ(Cn). The claim then follows, ending the proof.

We now prove Theorem 2.

Proof of Theorem 2. Let G be a finitely generated nilpotent group and suppose

1 = H0 ≤ H1 ≤ · · · ≤ Hc−1 ≤ G is a terraced filtration. Set Hc = G.

Choose a basis X1 of H1. Inductively construct tuples X2, . . . , Xc by setting

Xi to be a pull-back of a basis forHi/Hi−1. Set Yi to be the set of all coordinates

of Xi and Y =
⋃

i Yi. It is clear from the construction that Y is a generating

set for G. Note also that for any n ∈ N, the subgroup

N(n) =
c∏

i=1

〈ynk

: y ∈ 〈Y1 ∪ Y2 ∪ · · · ∪ Yk〉〉

is normal in G.

We now claim that there exists a constant D ∈ N so that for any n ∈ N, the

ball BY (n) is detected by G/N(Dn). To prove the claim, let f,M ∈ N be as in

Lemma 1.12. Then GfM is torsion-free; let K = GfM . Fix a finite generating

set T for K. For each i and any n ∈ N, Lemma 1.12 gives that any element

g ∈ Kn ∩Hi has word length at least Cin
1/ti with respect to T . Thus we have

that there exists D0 > 0 such that BT (D0n) is fully detected by K/N(fMn).

Further, sinceK is of finite index in G, we haveD1 > 1 such that for any g ∈ K,

‖g‖T ≤ D1‖g‖Y ≤ D2
1‖g‖T .

Therefore, as N(fMn) is contained in K, any singleton contained in BY (n/D1)

is fully detected by G/N(fMn) and so BY (n/(2D1)) is fully detected by

G/N(fMn). This proves the claim, as we can select D = 2D1fM .

We will now demonstrate that the order of G/N(Dn) is dictated by a single

polynomial of the form nb for

b =
c∑

k=1

k · dim(Hk/Hk−1).

Set Gk = Hk/Hk−1. It is apparent from the definition of N(Dn) that the index

of N(Dn) in G is bounded above by

c∏
k=1

|Gk/G
Dknk

k |.
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By the construction of D, the subgroup GD
k is torsion-free in Gk. Thus it is

clear that |GD
k /G

Dknk

k | has order Ddim(Gk)(k−1)nk dim(Gk). This gives an upper

bound for the index of N(Dn) in G of the form C0n
∑c

k=1 k dim(Gk), where C0 > 0

does not depend on n.

One can check that b = c dim(G)−∑c−1
i=1 dim(Hi) using the general fact that

dim(G/H) = dim(G) − dim(H) for any finitely generated nilpotent group G

with normal subgroup H . This completes the proof since G/N(Dn) detects

BY (Cn).

We conclude with an example that shows that the upper bound to ΦG given by

Theorem 2 generally may depend on the choice of terraced filtration. Consider

the group G̃ = U3 × U4 × U5, which is nilpotent of class c = 4. There is an

isomorphism

Z(G̃) ∼= Z(U3)× Z(U4)× Z(U5).

Under identifications

Z(U3) ∼= Z(U4) ∼= Z(U5) ∼= Z,

define an infinite cyclic subgroup

Z = {(x, y, z) ∈ Z(U3)× Z(U4)× Z(U5) | x = y = z} ≤ Z(G̃).

Let G = G̃/Z and let π : G̃ → G be the quotient map. Then π restricts to an

isomorphism Z(U3) × Z(U4) ∼= Z(G). Under this identification, the last term

of the lower central series of G is

γ4(G) = {(x, y) ∈ Z(U3)× Z(U4) | x = y}.
Since γ3(G) contains the image of Z(U4), we see that Z(G) ≤ γ3(G). Since

H ∩ Z(G) is nontrivial for any nontrivial normal subgroup H ≤ G, it follows

that H2 is trivial for any terraced filtration of G.

Now define H0 = H1 = H2 = 1 and H3 = π(U3), and H ′
0 = H ′

1 = H ′
2 = 1

and H ′
3 = π(U4). It is easy to see that both π(U3) and π(U4) are maximal

normal subgroups of G whose intersection with γ4(G) is trivial. It follows from

the above comments that

H0 ≤ H1 ≤ H2 ≤ H3 ≤ G and H ′
0 ≤ H ′

1 ≤ H ′
2 ≤ H ′

3 ≤ G

are terraced filtrations of G. However, these filtrations give different upper

bounds for ΦG because dim(π(U3)) = 3 while dim(π(U4)) = 6.
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(2009), no. 4, 765–771.

[8] Y. Cornulier, Gradings on Lie algebras, systolic growth, and cohopfian properties of

nilpotent groups. http://arxiv.org/abs/1403.5295.

[9] M. Gromov, Groups of polynomial growth and expanding maps, Institut des Hautes
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