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ABSTRACT

We construct and study fields F with the property that F has infinitely

many extensions of some fixed degree, but E×/(E×)n is finite for every

finite extension E/F and every n ∈ N.

1. Introduction

We study the following closely related algebraic conditions on a field F :

(F1) For every n ∈ N, the field F has only finitely many extensions of degree

n (sometimes referred to as F is bounded).

(F2) For every n ∈ N and every finite extension E of F , the subgroup of n-th

powers (E×)n has finite index in the multiplicative group E×.

Both conditions appear already in Serre’s Cohomologie Galoisienne [Ser65,

Ch. III §4] and have recently acquired importance in the model theory of fields:
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For example, it is known that every supersimple field satisfies (F1) (Pillay–

Poizat), and for perfect pseudo-algebraically closed fields also the converse holds

(Hrushovski). Condition (F2) is satisfied by every superrosy field and also by

every strongly2-dependent field, and it appears in a conjecture of Shelah–Hasson

on definable valuations in NIP fields, as well as in related results by Krupiński.

For details on all of this see [Kru15], [KS13, Cor. 2.7].

It is well-known (we recall this in Proposition 2.3 below) that for perfect fields

(F1) implies (F2); it was, however, an open question whether the converse holds.

For example, finite or pseudo-finite fields and local fields like R and Qp are

known to satisfy both (F1) and (F2), while global fields like Q or Fq(t) satisfy

neither of them. Similarly, it is obvious that (F1) is preserved under elementary

equivalence of fields, but it was an open question, asked by S. Kuhlmann in 2010,

whether so is (F2).

We answer both questions negatively:

Theorem 1.1: If a field F satisfies (F2) and F ∗ is a field elementarily equivalent

to F , then F ∗ need not satisfy (F2).

Theorem 1.2: Even if all fields elementarily equivalent to F satisfy (F2), F

need not satisfy (F1).

The theorems are proven by constructing counterexamples. These counterex-

amples are obtained by first translating the problem into group theory and

then realizing suitable profinite groups—the universal Frattini cover of prod-

ucts over certain finite groups derived from wreath products—as absolute Ga-

lois groups. The fields obtained by such a construction can be chosen either

pseudo-algebraically closed or henselian valued. In the last section we take a

closer look at the henselian case and relate (F1) and (F2) to the residue field.

2. Translation to group theory

We now explain the translation of (F1) and (F2) into properties of the absolute

Galois group GF of F and recall why (F1) implies (F2). For simplicity, we will

from now on always assume that F is of characteristic zero. Let G be a profinite

group and consider the following two conditions on G:

(G1) G is a small profinite group, i.e., for every n ∈ N there are only finitely

many open subgroups H ≤ G of index n.
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(G2) For every n ∈ N, every open subgroup H ≤ G has only finitely many

open normal subgroups N �H with H/N cyclic of order n.

For (F1) the translation follows directly from Galois correspondence:

Fact 2.1: F satisfies (F1) if and only if G = GF satisfies (G1).

Let E be a field of characteristic zero and let E be an algebraic closure of

E. For n ∈ N we denote by μn ⊆ E the group of n-th roots of unity, and let

μ∞ =
⋃

n∈N
μn.

Lemma 2.2: If G = GE is small, then E×/(E×)n is finite for any n ∈ N.

Proof. The short exact sequence

1 → μn → E
× ·n→ E

× → 1

gives rise to the long cohomology sequence

1 → μG
n → E× ·n→ E× → H1(G,μn) → H1(G,E

×
) → · · ·

where μG
n denotes the G-invariant subgroup of μn [GS06, Proposition 4.3.1].

Since H1(G,E
×
) = 1 holds by Hilbert’s Theorem 90 [GS06, Lemma 4.3.7], we

conclude that E×/(E×)n ∼= H1(G,μn). Let N = GE(μn), which is an open

normal subgroup of G, and let μN
n denote the N -invariant subgroup of μn. The

inflation-restriction sequence [GS06, Corollary 4.3.5]

1 → H1(G/N, μN
n )

inf→ H1(G,μn)
res→ H1(N,μn)

shows that H1(G,μn) is finite, as H1(G/N, μN
n ) is finite (since G/N and μn

are finite) and H1(N,μn) = Hom(N,μn) is finite (since N is small and μn is

finite).

Proposition 2.3: If F satisfies (F1), then it satisfies (F2).

Proof. Since (F1) implies that GE is small for every finite extension E/F , the

claim follows from Lemma 2.2.

In the case where F contains all roots of unity, this follows more directly from

the following considerations.

Lemma 2.4: Suppose that μn ⊆ E. Then E×/(E×)n is finite if and only if E

has only finitely many cyclic extensions of degree dividing n.
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Proof. Let B ≤ E× be a subgroup containing (E×)n, and denote by EB the

field obtained from E by adjoining n-th roots of all elements of B. By Kummer

theory, the map B �→ EB gives a bijection between the set of such subgroups

B and the abelian extensions of E of exponent n, and if (B : (E×)n) < ∞,

then Gal(EB/E) ∼= B/(E×)n; cf. [Lan02, Ch. VI §8]. In particular, the cyclic

subgroups of E×/(E×)n correspond to cyclic extensions of E of degree dividing

n. Since E×/(E×)n has infinitely many cyclic subgroups if and only if it is

infinite, the claim follows.

Proposition 2.5: If μ∞ ⊆ F , then F satisfies (F2) if and only if G = GF

satisfies (G2).

Proof. This follows from Lemma 2.4 applied to the finite extensions E of F .

In order to deal with the fields elementarily equivalent to F we also need a

uniform variant of (G2). We denote by Cn the cyclic group of order n. We

write H ≤ G and H�G to denote that H is a closed respectively closed normal

subgroup of G.

Definition 2.6: For n,m ∈ N we let

IG(n) = |{N �G : G/N ∼= Cn}|

and

IG(n,m) = sup{IH(n) : H ≤ G, (G : H) ≤ m}.
With this definition, (G2) means that IH(n) < ∞ for all open H � G, and

the uniform variant of (G2) can now be formulated as follows:

(G2∗) For every n,m ∈ N, IG(n,m) < ∞.

In other words, GF satisfies (G2∗) if and only if there is a uniform bound on

the number of cyclic extensions of degree n of finite extensions E of F of degree

at most m.

Proposition 2.7: If μ∞ ⊆ F , then G = GF satisfies (G2∗) if and only if all

fields F ∗ ≡ F satisfy (F2).

Proof. For every m,n, k ∈ N, there is a sentence ϕm,n,k in the language of fields

such that F |= ϕm,n,k if and only if every extension E of F with [E : F ] ≤ m

has at most k cyclic extensions of degree n.
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If GF satisfies (G2∗), then F |= ϕm,n,IGF
(n,m) for every m,n, so if F ∗ ≡ F ,

then also F ∗ |= ϕm,n,IGF
(n,m), and therefore IGF∗ (n,m) ≤ IGF (n,m) < ∞

for all m,n. In particular, GF∗ satisfies (G2), so F ∗ satisfies (F2) by Proposi-

tion 2.5.

Conversely, if GF does not satisfy (G2∗), then there exist m,n such that

F |= ¬ϕm,n,k for every k. Let F ∗ be an ℵ1-saturated elementary extension of

F ; cf. [CK90, Lemma 5.1.4] or [FJ08, Lemma 7.7.4]. Since F ∗ ≡ F , for every

k we have F ∗ |= ¬ϕm,n,k, i.e., F
∗ has an extension Ek with [Ek : F ∗] ≤ m

which has more than k cyclic extensions of degree n. By saturation, F ∗ has an

extension E∗ with [E∗ : F ∗] ≤ m which has infinitely many cyclic extensions of

degree n. Therefore, F ∗ does not satisfy (F2), by Lemma 2.4.

Remark 2.8: If G is small, then the supremum in the definition of IG(n,m) runs

over only finitely many H , so (G1) implies (G2∗). We thus have the following

implications for a profinite group G:

G is finitely generated =⇒ (G1) =⇒ (G2∗) =⇒ (G2).

For the first implication see [FJ08, 16.10.2]. It is well-known that the first

implication cannot be reversed (see [FJ08, 16.10.4]), and what we show in the

next section is that the same holds for the other two implications.

We mention here without proof that G satisfies (G2) if and only if every

open subgroup of G has only finitely many solvable quotients of given order n,

cf. [Ser65, p. III-30 Exercice], so if G is pro-solvable, then the last two arrows

are equivalences. Moreover, for pro-p groups, all four conditions are equivalent;

cf. [Ser65, p. III-28 Corollaire].

3. Constructing profinite groups

We now construct a profinite group that satisfies (G2∗) but not (G1), which is

relatively straightforward, and another one that satisfies (G2) but not (G2∗),
which requires more group theory.

Proposition 3.1: Let S be any non-abelian finite simple group, κ an infinite

cardinal number, and G = Sκ. Then G satisfies (G2∗) but not (G1).

Proof. Note that every open normal subgroup of G is isomorphic to G itself,

with quotient of the form Sk with k ∈ Z≥0; cf. [RZ00, Lemma 8.2.4]. In

particular, IG(n) = 0 for all n. If H ≤ G with (G : H) ≤ m, let N be
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the biggest normal subgroup of G contained in H . Then (G : N) ≤ m! and

IN (n) = 0 for all n. If M � H with H/M ∼= Cn, then M ∩ N � N and

N/(M ∩N) ∼= MN/M ≤ H/M ∼= Cn is cyclic, hence trivial. Thus, N≤M≤H ,

and so IH(n) is bounded by the number of subgroups of H/N . Therefore,

IG(n,m) ≤ 2m!. Since G has at least κ many quotients isomorphic to S, it is

not small.

Lemma 3.2: Let G be a profinite group and n ∈ N. Then we have IG(n) ≤ 2n
s

with s =
∑

p|n prime IG(p).

Proof. Let N1, . . . , Nr �G be distinct normal subgroups with G/Ni
∼= Cn. Let

N =
⋂r

i=1 Ni. Then A := G/N embeds into Cr
n, hence A ∼= Cd1 × · · · × Cdk

with k ∈ N and di|n for all i. If p|di is prime, then there is an epimorphism

ρi : Cdi → Cp, and the maps

δi : G → A
∼=→ Cd1 × · · · × Cdk

πi→ Cdi

ρi→ Cp

are surjective and mutually distinct (1 ≤ i ≤ k). Thus, if IG(p) < ∞ for all p|n,
then k ≤ s :=

∑
p|n IG(p). As N1/N, . . . , Nr/N are distinct subsets of A, we see

that r is bounded by the number of subsets of A. Hence, r ≤ 2|A| ≤ 2n
s

.

Remark 3.3: Let p be a prime number, and let Mp(G) be the intersection over

all N�G with G/N ∼= Cp. Then G/Mp(G) ∼= C
rp(G)
p , where rp(G) is the p-rank

of G; cf. [RZ00, Sec. 8.2]. Since V = C
rp(G)
p is an Fp-vector space of dimension

rp(G), and the Cp-quotients of V correspond to 1-dimensional subspaces of the

dual space V ∗, we see that

IG(p) = |PV ∗| = prp(G) − 1

p− 1

if rp(G) is finite, and IG(p) = ∞ otherwise. We also see that if F is a field of

characteristic zero with μp ⊆ F , then |F×/(F×)p| = |GF /Mp(GF )| = prp(GF );

cf. the proof of Lemma 2.4.

Lemma 3.4: If a profinite group G has, for every prime p, a basis of neigh-

borhoods of 1 consisting of open normal subgroups U with rp(U) < ∞, then it

satisfies (G2).

Proof. Let H ≤ G be an open subgroup and let p be a prime number. By

assumption, H contains an open normal subgroup U of G with rp(U) < ∞.
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Thus,

U/(U ∩Mp(H)) ∼= Mp(H)U/Mp(H) ≤ H/Mp(H) ∼= Crp(H)
p ,

so Mp(U) ≤ U ∩Mp(H), which implies that

(H : Mp(H)) ≤ (G : U) · (U : Mp(U)) < ∞,

and hence rp(H) is finite. Since this holds for every p, Lemma 3.2 shows that

G satisfies (G2).

Recall that a profinite group G is perfect if G′ = G, where G′ = [G,G]

denotes the closed subgroup of G generated by the commutators

[x, y] = x−1xy = x−1y−1xy.

Thus, G is perfect if and only if rp(G) = 0 for all primes p.

Lemma 3.5: Every direct product G =
∏

i∈I Gi of finite perfect groups Gi

satisfies (G2).

Proof. Note that the open normal subgroups GJ =
∏

i∈I�J Gi, J ⊆ I finite,

form a basis of neighborhoods of 1 of G. Moreover, each GJ is perfect as a direct

product of perfect groups. Thus, the claim follows from Lemma 3.4.

Lemma 3.6: Let S be a non-abelian finite simple group and p a prime number.

For every k0 there exists k ≥ k0 and a group extension of S by Ck
p which is

perfect.

Proof. Let A = Ck0
p and let Γ = A � S be the wreath product, which is defined

as the semidirect product B � S, where S acts on the group B of functions

f : S → A from the right by fσ(τ) = f(τσ), where σ, τ ∈ S. Then

Γ′′ = Γ′ = B0 � S,

where

B0 =

{
f ∈ B :

∏
σ∈S

f(σ) = 1

}
∼= A|S|−1,

so Γ′ is a perfect extension of S by Ck
p , where k = (|S| − 1)k0 ≥ k0. This

fact can be found in the literature (see, e.g., [Mel95, Ch. I §4], [Isa77, bottom
of p. 721], [Gur10]), but we briefly recall the proof for the convenience of the

reader:
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Note that Γ = BS. Since B � Γ, we have [B,S] ≤ B and [B,S] � Γ (for

the last statement see [Isa08, Lemma 4.1]). Since Γ/[B,S] ∼= B/[B,S] × S

we conclude that Γ/[B,S]S ∼= B/[B,S] is abelian, hence Γ′ ⊆ [B,S]S, which

together with the obvious inclusions [B,S] ⊆ Γ′ and S = [S, S] ⊆ Γ′ gives that
Γ′ = [B,S]S.

For x ∈ S and g ∈ B, we have
∏

σ∈S gx(σ) =
∏

σ∈S g(σx) =
∏

σ∈S g(σ), so

we get
∏

σ∈S(g
−1gx)(σ) = 1, hence [B,S] ⊆ B0. Conversely, if f ∈ B0, write

f =
∏

σ∈S fσ with fσ ∈ B defined by fσ(τ) = f(τ) if τ = σ and fσ(τ) = 1

otherwise. Define g :=
∏

σ∈S(fσ)
σ. Then g = 1. Indeed,

g(1) =
∏
σ∈S

fσ(σ) =
∏
σ∈S

f(σ) = 1

since f ∈ B0, and for 1 �= τ ∈ S, we have g(τ) =
∏

σ∈S fσ(στ) =
∏

σ∈S 1 = 1.

But each (fσ)
−1(fσ)

σ ∈ [B,S], hence f [B,S] = g[B,S] = [B,S] and therefore

B0 ⊆ [B,S]. It follows that [B,S] = B0. Therefore,

Γ′ = [B,S]S = B0S = B0 � S.

Finally, write [X,Y, Z] for [[X,Y ], Z]. We claim that N := [B,S, S] is nor-

mal in Γ. Note that N is normal in 〈[B,S], S〉 (see again [Isa08, Lemma

4.1]) and thus invariant under conjugation with elements from S. Further-

more, [B,S]� Γ implies N ⊆ [B,S] ⊆ B. Thus, as B is abelian, we also get

that N is invariant under conjugation with elements from B. As Γ = BS,

we conclude that N is normal in Γ. This proves the claim. Moreover, we

have [B,S, S] = [S,B, S]. Therefore, the ‘three-subgroups lemma’ [Isa08, Corol-

lary 4.10] gives that [S, S,B] ⊆ N . We conclude that

[Γ′,Γ′] ⊇ [B,S, S] ⊇ [S, S,B] = [S,B] = [B,S].

Together with the trivial inclusion [Γ′,Γ′] ⊇ [S, S] = S we conclude that

Γ′′ = [B,S]S = Γ′.

Proposition 3.7: Let S be a non-abelian finite simple group and p a prime

number. Let G be the direct product over all perfect extensions of S by Ck
p for

all k ∈ N. Then G satisfies (G2) but not (G2∗).

Proof. By Lemma 3.6, for every k0 there exists k ≥ k0 and a perfect extension P

of S by Ck
p , which by definition is a quotient ofG. Since P has an open subgroup

Q of index m = |S| with rp(Q) ≥ k, the group G has an open subgroup H of



Vol. 214, 2016 FIELDS WITH ALMOST SMALL ABSOLUTE GALOIS GROUP 201

index m with rp(H) ≥ k. Therefore, IG(p,m) ≥ k ≥ k0. Since this holds for

every k0, G does not satisfy (G2∗). On the other hand, Lemma 3.5 implies that

G satisfies (G2).

4. Constructing fields

We saw that the desired properties of fields are reflected by the properties (G1),

(G2) and (G2∗) of their absolute Galois groups and we already constructed

suitable profinite groups. However, the groups we constructed do not occur as

absolute Galois groups of fields—they have too much torsion. Instead, we want

to construct fields using the following result; cf. [FJ08, 23.1.2]:

Proposition 4.1 (Lubotzky–van den Dries): For every field K and every pro-

jective profinite group G there is a perfect pseudo-algebraically closed field

F ⊇ K with GF
∼= G.

In order to apply this result, we have to replace the profinite groups we con-

structed by projective ones with similar properties, for which we will make use

of the universal Frattini cover G̃ of a profinite group G; cf. [FJ08, Chapter

22]. We do not give the full definition but rather list the properties of G̃ that

we need:

(1) G̃ is a projective profinite group and there is an epimorphism φ : G̃ → G;

see [FJ08, 22.6.1].

(2) For each quotient Δ of G̃ there is an epimorphism Δ → Γ onto some

quotient Γ of G such that rk(Δ) = rk(Γ); see [FJ08, 22.6.3, 22.5.3].

Here, rk(G) denotes the profinite rank of G, cf. [FJ08, Chapter 17.1], which for

finite G is just the minimal cardinality of a set of generators. We now show that

the properties (G2) and (G2∗) are preserved by taking the universal Frattini

cover, which is the technical heart of our construction.

Lemma 4.2: For every prime p and every H ≤ G̃ with (G̃ : H) = m there

exists G0 ≤ G with (G : G0) ≤ m! such that rp(H) ≤ (m!)2(rp(G0) + 2).

Proof. If H0 is the biggest normal subgroup of G̃ contained in H , then

(G̃ : H0) ≤ m!. Furthermore, we have

rp(H) ≤ rp(H0) + rp(H/H0) ≤ rp(H0) + logp(m!)

with the first inequality following from [RZ00, 8.2.5(d)].



202 A. FEHM AND F. JAHNKE Isr. J. Math.

Let N = Mp(H0). Since H0 � G̃ and N is characteristic in H0, we conclude

that N � G̃. Let Δ = G̃/N and Δ0 = H0/N ∼= C
rp(H0)
p . By (2), there exist

epimorphisms φ : Δ → Γ, π : G → Γ with rk(Γ) = rk(Δ). Let

Γ0 = φ(Δ0)� Γ and G0 = π−1(Γ0)�G

and note that (G : G0) = (Γ : Γ0) divides (Δ : Δ0) = (G̃ : H0) ≤ m!.

Trivially, rp(G0) ≥ rp(Γ0). Since Γ0 is an elementary abelian p-group, we

have rk(Γ0) = rp(Γ0) and so the inequality

rk(Γ) ≤ rk(Γ0) + rk(Γ/Γ0) ≤ rp(Γ0) +m!

holds. By the Nielsen–Schreier formula [FJ08, 17.6.3], we get

rk(Δ0) ≤ 1 + (Δ : Δ0)(rk(Δ)− 1).

Thus,

rp(H0) =rk(Δ0) ≤ 1 +m! · (rk(Γ)− 1) ≤ 1 +m! · (rp(Γ0) +m!− 1)

≤m! · rp(G0) + (m!)2,

which gives

rp(H) ≤ logp(m!) +m! · rp(G0) + (m!)2 ≤ (m!)2(rp(G0) + 2).

Proposition 4.3: The universal Frattini cover G̃ ofG satisfies (G2) resp. (G2∗)
if and only if G does.

Proof. If G̃ satisfies (G2) or (G2∗), then so does its quotient G.

Conversely, assume that G satisfies (G2) and let H ≤ G̃ with (G̃ : H) ≤ m.

By Lemma 4.2 there exists G0 ≤ G with (G : G0) ≤ m! such that rp(H) is

bounded in terms of rp(G0) and m. In particular, IH(p) is finite. By Lemma

3.2 we get for every n that IH(n) is finite, so G̃ satisfies (G2).

If G satisfies even (G2∗) then IG0(p) ≤ IG(p,m!) is uniformly bounded just

in terms of m and p, hence so is rp(G0), and therefore also IH(p). Thus, by

Lemma 3.2, IH(n) is bounded in terms of m and n, so IG̃(n,m) < ∞, which

means that G̃ satisfies (G2∗).

We now have all the ingredients to construct the counterexamples that prove

Theorem 1.1 and Theorem 1.2:
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Proposition 4.4: There exists a pseudo-algebraically closed field F of char-

acteristic zero such that every F ∗ ≡ F satisfies (F2), but F does not satisfy

(F1).

Proof. Let S be a non-abelian finite simple group, for example S = A5, and

let G = Sℵ0 . By Proposition 3.1, G satisfies (G2∗) but not (G1). Thus, by

Proposition 4.3, also G̃ satisfies (G2∗), and, since it has G as a quotient, it does

not satisfy (G1). Let K be any field of characteristic zero that contains all roots

of unity, for example K = C. By Proposition 4.1 there exists a field F ⊇ K

which is pseudo-algebraically closed and has absolute Galois group GF
∼= G̃, so

all F ∗ ≡ F satisfy (F2) by Proposition 2.7, but F does not satisfy (F1) (Fact

2.1).

Proposition 4.5: There exists a pseudo-algebraically closed field F of char-

acteristic zero that satisfies (F2), but some F ∗ ≡ F does not satisfy (F2).

Proof. Let S be a non-abelian finite simple group, for example S = A5, let

p be any prime number, for example p = 2, and let G be the direct product

over all perfect extensions of S by Ck
p for all k ∈ N. By Proposition 3.7, G

satisfies (G2) but not (G2∗). Thus, by Proposition 4.3, also G̃ satisfies (G2)

but not (G2∗). Let again K be any field of characteristic zero that contains all

roots of unity and apply Proposition 4.1 to get a field F ⊇ K which is pseudo-

algebraically closed and has absolute Galois group GF
∼= G̃. By Proposition

2.5, F satisfies (F2), but by Proposition 2.7 there is some F ∗ ≡ F that does

not satisfy (F2).

Remark 4.6: We remark that much more concrete realizations of projective

profinite groups are known. For example, since the groups we constructed have

countable rank, they could be realized as absolute Galois groups of algebraic

extensions of Q. For instance, if Qtr denotes the field of totally real algebraic

numbers—the maximal Galois extension of Q in R—then one can find algebraic

extensions of Qtr(μ∞) with the properties of Proposition 4.4 or Proposition 4.5;

cf. [Jar11, Example 5.10.7].

5. Henselian fields

Since (F1) and (F2) are essentially properties of the absolute Galois group,

and every absolute Galois group occurs as the absolute Galois group of a
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henselian valued field, it is clear that one can also construct such examples

with F henselian:

Proposition 5.1: There exists a henselian valued field F of characteristic zero

that satisfies (F2) but not (F1).

Proof. Let F be the field constructed in Proposition 4.4, and let F ′ = F ((Q))

be the field of generalized power series over F with exponents in Q; cf. [Efr06,

§4.2]. Then F ′ is henselian valued with residue field F and divisible value group

Q; see [Efr06, 18.4.2]. Thus, GF ′ ∼= GF , as follows from [EP05, 5.2.7 and 5.3.3].

Since F ′ contains all roots of unity, it satisfies (F2) but not (F1), as above.

In this construction, the property that F ′ satisfies (F2) but not (F1) is in-

herited from the residue field. We now show that, at least in characteristic 0,

this is in fact the only way to construct henselian fields with this property, or,

more generally, with properties like in Proposition 4.4 and Proposition 4.5. In

order to do that, we need the following lemmas.

Lemma 5.2: Let (F, v) be a henselian valued field with residue field Fv of

characteristic 0 and value group Γ, and let n ∈ N. Then

|F×/(F×)n| = |Γ/nΓ| · |Fv×/(Fv×)n|
holds. In particular, if μn ⊆ F , then IGF (n) is finite if and only if both [Γ : nΓ]

and IGFv (n) are finite.

Proof. Take A = {ai}i∈I ⊆ Ov such that {v(ai)}i∈I form a system of represen-

tatives for Γ/nΓ and B = {bi}i∈J ⊆ O×
v such that {bi}i∈J form a system of

representatives for Fv×/(Fv×)n.
We first show

|F×/(F×)n| ≥ |Γ/nΓ| · |Fv×/(Fv×)n|
for any valued field (F, v): Consider (a, b), (a′, b′) ∈ A × B. Assume that we

have ab ≡ a′b′ mod (F×)n. Without loss of generality, ab = rna′b′ for some

r ∈ Ov. Then

v(a) = v(ab) = nv(r) + v(a′b′) = nv(r) + v(a′),

so a = a′, since the values of A form a system of representatives for Γ/nΓ.

Thus, b = rnb′ holds, so we get b ≡ b′ mod (Fv×)n and hence b = b′, which
proves the claim.
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On the other hand, take any x ∈ F×. We want to show that there is some

(a, b) ∈ A×B such that we have xab ∈ (F×)n. Choose a ∈ A with v(xa) ∈ nΓ

and take some u ∈ F× with v(un) = v(xa). Then for c = xa
un we get v(c) = 0, so

there is some b ∈ B with t
n
= cb for some t ∈ F×. By henselianity (see [EP05,

4.1.3]), f(X) = Xn − cb
tn has a zero α ∈ F×, as char(Fv) = 0. This implies

xab = αntnun ∈ (F×)n. Thus |F×/(F×)n| ≤ |Γ/nΓ| · |Fv×/(Fv×)n| holds.
The last part now follows immediately from Lemma 2.4.

Lemma 5.3: Let G be a profinite group and assume that there are subgroups

H and K of G with G = K �H . If both K and H are small, then so is G.

Proof. Consider a continuous epimorphism f from G onto a finite group of order

n. Note that the restriction fK (respectively fH) of f to K (respectively H)

induces an epimorphism of K (respectively H) onto a group of order at most

n. Since G = KH holds by assumption, the map f is completely determined

by its restrictions fK and fH . Hence, if both K and H have only finitely

many continuous quotients of order at most n, then G has only finitely many

continuous quotients of order n. Thus, if both K and H are small, then so

is G.

Proposition 5.4: Let (F, v) be a henselian valued field with residue field Fv

and value group Γ. Assume that char(Fv) = 0 and μ∞ ⊆ F .

(1) If [Γ : pΓ] = ∞ for some prime p, then F satisfies neither (F1) nor (F2).

(2) If [Γ : pΓ] is finite for all primes p, then

(a) (F1) holds for F if and only if it holds for Fv,

(b) (F2) holds for F if and only if it holds for Fv, and

(c) (F2) holds for every K ≡ F if and only if it holds for every k ≡ Fv.

Proof. (1) Note that since (F, v) is henselian of characteristic (0, 0) and F con-

tains all roots of unity, Lemma 5.2 applies. Thus, [Γ : pΓ] = ∞ for some prime

p implies |F×/(F×)p| = ∞ and so neither (F1) nor (F2) hold for F .

(2) For the remainder of the proof, assume that ip := [Γ : pΓ] is finite for all

primes p. By [EP05, 5.2.6 and 5.3.3] and [Neu68, Satz 2], we have

GF
∼=

( ∏
p prime

Zip
p

)
�GFv.

(a) Since
∏

p Z
ip
p is small, Lemma 5.3 implies that GF is small if and only

if GFv is small, i.e., F satisfies (F1) if and only if Fv does (Fact 2.1).
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(b) If GF satisfies (G2) then so does its quotient GFv.

Conversely, assume that (G2) holds for GFv. Let E be a finite ex-

tension of F , say [E : F ] = m. Let Δ denote the value group and

Ev the residue field of the unique prolongation of v to E. Define

f := [Ev : Fv] and e = [Δ : Γ]. Then—by [EP05, 3.3.4]—we have

ef ≤ m. For every prime p, IGEv (p) and thus Ev×/(Ev×)p is finite,

and [Δ : pΔ] ≤ [Γ : pΓ] · e < ∞, so by applying Lemma 5.2 to E, we

get |E×/(E×)p| < ∞ for every p, which by Remark 3.3 and Lemma 3.2

implies that GF satisfies (G2).

(c) Again, if GF satisfies (G2∗), then so does its quotient GFv. For the

other direction, assume that GFv satisfies (G2∗). Fix any prime p and

let E be a finite extension of F with [E : F ] ≤ m and define Ev, Δ and

e = [Δ : Γ] as before. Then, making repeated use of Remark 3.3, we

see that

IGE (p) =
prp(GE) − 1

p− 1
=

1

p− 1
· (|E×/(E×)p| − 1)

5.2≤ 1

p− 1
· ([Δ : pΔ] · |Ev×/(Ev×)p|)

≤ 1

p− 1
([Γ : pΓ] · e · prp(GEv))

≤ [Γ : pΓ] ·m · (IGEv (p) + 1)

≤ [Γ : pΓ] ·m · (IGFv (p,m) + 1).

Now Lemma 3.2 implies that for any subgroup H ≤ GF of index

at most m, IH(n) is uniformly bounded in terms of m and n, i.e.,

IGF (n,m) < ∞. Thus, (G2∗) holds also for GF , so any K ≡ F satisfies

(F2) (Proposition 2.7).
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