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ABSTRACT

We provide new characterizations of pseudo-Frobenius and quasi-Frobe-

nius rings in terms of tight modules. In the process, we also provide

fresh perspectives on FGF and CF conjectures. In particular, we propose

new natural extensions of these conjectures which connect them with the

classical theory of PF rings. Our techniques are mainly based on set-

theoretic counting arguments initiated by Osofsky. Several corollaries and

examples to illustrate their applications are given.

1. Introduction

A ringR is called right pseudo-Frobenius (PF, for short) when it is a right self-

injective right cogenerator ring. And a right PF ring is called quasi-Frobenius

(QF, for short) when it is, moreover, right (and left) artinian. The origin of

these rings can be drawn back to extensions of the concept of Frobenius algebras

associated to the modular representations of finite groups (see, e.g., [7]).

It is well known that a two-sided PF ring establishes a perfect duality in the

sense of [23, Chapter 12, pages 307–308] and that a left and right cogenerator

ring (in particular, a commutative cogenerator ring) is both-sided PF. The main

reason why left and right cogenerator rings induce a perfect duality is that they

are both-sided finitely cogenerated, that is, their left and right socles are finitely

generated and essential in the ring (see, e.g., [25, Theorem 19.18]). One-sided

PF rings were introduced and studied independently by Azumaya [2], Osofsky

[28] and Utumi [33]. It is known that a right PF ring does not need to be left

PF [8]. But a deep theorem of Osofsky showed that right PF rings still enjoy

the properties of being semiperfect and having finitely generated essential right

socle [28, Theorem 1].

On the other hand, it is easy to check that a ring in which any right module

embeds in a free module is QF. This fact suggested Faith to conjecture in [9]

that a ring is QF provided that any finitely generated right module embeds

in a free module, thus extending an older question of Levy for commutative

rings. And more generally, it is conjectured that a ring in which every cyclic

right module embeds in a free module is right artinian. Rings satisfying that

every cyclic (resp., finitely generated) right module embeds in a free module

are usually called in the literature right CF (resp., right FGF) rings. And the

question of whether any right CF (resp., right FGF) ring is right artinian (resp.,

QF) is nowadays known as the CF (resp., FGF) conjecture. Both conjectures



Vol. 214, 2016 PSEUDO-FROBENIUS RINGS 123

are still open, whereas it is known that the CF conjecture implies the FGF

conjecture and that they are true under many different additional hypothesis

(see, e.g., [9, 11, 13, 14, 17, 22]). Note that every right FGF ring is a right CF

ring, but the converse is not true. Björk [4] gave an example of a right CF ring

which is not right FGF.

Probably the most promising partial positive results to the CF and FGF

conjectures are based on using the set theoretical counting techniques developed

by Osofsky in her proof that a right PF ring has finitely generated essential socle.

This approach to the conjecture was initiated independently by Björk [5] and

Tolskaya [32] who proved that every right self-injective right CF ring is right

artinian. And it culminated in [11], where the authors proved that every ring

in which any cyclic (resp., finitely generated) right module essentially embeds

in a projective module is right artinian (resp., QF). They also proved in [12]

that a right CF and right extending ring has finitely generated essential socle.

In particular, any right cogenerator right extending ring is right PF. Note that

a ring is called right extending (or right CS) if every right ideal is essential in a

direct summand of the ring.

All the above results suggest that there might exist a deep relation between

the characterization obtained by Osofsky of right PF rings and the CF and FGF

conjectures. But surprisingly, it seems that there has not been any attempt in

the literature of connecting both situations. The main purpose of the present

paper is to highlight these connections, which allows us to obtain new nontrivial

characterizations of right PF rings, as well as new partial positive answers to

the CF and FGF conjectures.

Our approach is based on the notion of tight rings. Tight rings and modules

were introduced by Golan and López-Permouth in [16] in order to study QI-

filters and they have been later studied in [19, 21] in connection with weakly-

injective modules. Recall that a ring R is called right tight (resp., right R-

tight) if every finitely generated (resp., every cyclic) submodule of its injective

envelope E(RR) embeds in R. The definition of tightness is closely related to

the notion of embedding of finitely generated or cyclic modules in free modules.

Therefore, it seems natural to conjecture that they might play a role in the

characterization of right PF rings, as well as in answering the CF and FGF

conjectures. Moreover, any right PF ring is trivially right tight, and thus they

are the natural candidate to establish a link between both notions. And as a

byproduct, one may adapt, exploit and extend different deep techniques, which
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have been developed in order to solve these conjectures, to get nontrivial new

characterizations of PF and QF rings.

We begin by extending in Theorem 2.1 the techniques developed in [11]. This

allows us to obtain as corollaries the main results of [11, 12]. Next, we study

in Theorem 2.5 and Theorem 2.6 when a right tight cogenerator ring has a

finitely generated essential right socle. Both results are inspired by the above-

mentioned transfinite counting arguments introduced by Osofsky in [28] which,

in turn, were based on an old result of Tarski on almost disjoint partitions

of infinite sets [31]. The obtained results allow us to establish the following

conjecture:

Conjecture 1: Every right cogenerator right R-tight ring is right PF.

We finish this section by proving this conjecture under different additional

conditions and exhibiting several corollaries and examples which illustrate the

applications and limits of the developed theory.

We begin Section 3 by observing that the obtained results naturally lead

to establish the following new conjecture that encompasses the different open

questions and conjectures existing on the topic:

Conjecture 2: Every right Kasch generalized right (R-)tight ring has finitely

generated and essential right socle.

Recall that a ring R is called right Kasch when it cogenerates all simple right

modules. In particular, any right cogenerator ring is right Kasch. And R is

called generalized right (R-)tight if every finitely generated (resp., cyclic) sub-

module of E(RR) embeds in a free module. It may be noted here that a positive

solution to Conjecture 2 would imply affirmative answers to both Conjecture 1

and the CF and FGF conjectures. Note also that Osofsky’s characterization of

right PF rings can be seen as a particular solution to this conjecture when the

ring is assumed to be right self-injective.

We dedicate the rest of the paper to show that our new conjecture is satisfied

when we assume the different additional conditions under which the CF and

FGF conjectures are known to be true. This shows that this conjecture naturally

extends the CF and FGF conjectures, and it connects them to Osofsky’s work

on PF rings. Moreover, as a byproduct of these results, we obtain new partial

positive answers to the CF and FGF conjectures.
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Throughout this paper, all rings R will be associative and with identity, and

Mod-R will denote the category of right R-modules. We will use the notation

MR to stress the right R-module structure of a module M , when necessary.

We will denote by J(R) the Jacobson radical of a ring R, and by Z(RR) the

singular right ideal of R consisting of those elements of R which have essential

right annihilator. We refer to [1, 22, 25, 27, 30] for all undefined notions used

in the text.

2. New characterizations of PF rings

We begin by proving several extensions of [28, Theorem 1] which will be used

in our characterization of right PF rings. As a consequence, we will also deduce

the main results of [11, 12]. Recall that a ring R is called right Kasch if every

simple right module embeds in R.

Theorem 2.1: Let R be a right Kasch ring such that each cyclic submodule

of the injective envelope E(RR) embeds in a free module. Assume that every

direct summand of E(RR) contains an essential projective module P such that

P/(P ·Z(RR)) is finitely generated. Then RR has a finitely generated essential

socle.

Proof. Let E=E(RR). As in [11, Lemma 2.4], we first show that if S=End(ER)

and {Ck}k∈K is an idempotent-orthogonal family of simple right S/J-modules

(with J = J(S)), then there exists an injective mapping from index set K to

the set Ω(R) of isomorphism classes of simple right R-modules.

Since idempotents of S/J lift modulo J , there exist idempotents {ek}k∈K of

S such that Ckek �= 0 for any k ∈ K and either Cjek = 0 or Ckej = 0 for

k �= j. Let ck ∈ Ck be such that ckek �= 0 for each k ∈ K, and let pk : SS → Ck

be the homomorphism defined as pk(1) = ckek. If ek∗ = HomR(E, ek) is the

endomorphism of SS given by left multiplication with ek, we have

(pk ◦ ek∗)(1) = cke
2
k = ckek = pk(1),

and so pk ◦ ek∗ = pk. Thus it follows that

(pk ⊗S E) ◦ ek = (pk ⊗S E) ◦ (ek∗ ⊗S E) = (pk ◦ ek∗)⊗S E = pk ⊗S E.
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Set Ek = Im(ek). We have by hypothesis that Ek = E(Pk), with Pk a pro-

jective module such that Pk/(Pk · Z(RR)) is finitely generated. By hypothe-

sis, each finitely generated submodule of Ek embeds in a free module. Then

(pk ⊗S E)(Pk) �= 0 by [10, Proposition 1.3]. Let hk : Pk → Ek, ik : Ek → E,

and tk = ik ◦ hk : Pk → E be the inclusions, and set Lk := Im((pk ⊗S E) ◦ tk),
with canonical projection qk : Pk → Lk and inclusion wk : Lk → Ck ⊗S E.

Note that Ck is a right S/J-module and thus, Lk is a right R/Z(RR)-module.

Therefore, (pk ⊗S E) ◦ tk factors through Pk/(Pk ·Z(RR)) ∼= Pk ⊗R (R/Z(RR))

and so Lk is finitely generated. This means that we can choose for each k ∈ K

a simple quotient Uk of Lk with canonical projection πk : Lk → Uk. We define

a map from index set K to the set Ω(R) by assigning k �→ [Uk], where [Uk]

denotes the isomorphism class of the simple module Uk. It may be checked that

this map is injective.

Now, since RR cogenerates the simple modules by hypothesis, we have, as

shown in [11], that |Ω(R)| ≤ |C(R)| where C(R) denotes a set of representatives

of the isomorphism classes of simple submodules of R. Let M represent the set

of isomorphism classes of minimal right ideals of S/J and assume |Ω(R)| = n.

We claim that |M| = n. Let C1, . . . , Cr be a set of representatives of the

elements of M. Suppose that there exists a simple right S-module C = Cr+1

which is not isomorphic to any of the Ci, for 1 ≤ i ≤ r. There exist idempotent

elements e1, e2, . . . , er ∈ S such that, if ēi = ei + J , then Ci = ēi(S/J) for each

1≤ i≤ r. Since ēi(S/J)ēj =HomS/J(ēj(S/J), ēi(S/J)), we have ēi(S/J)ēj =0

for i, j ≤ r, i �= j and ēi(S/J)ēi �= 0 for all i = 1, . . . , r. Thus the family {Ci},
i = 1, . . . , r+1 is an idempotent-orthogonal family of simple right S/J-modules

with respect to the idempotents {ē1, . . . , ēr, 1}. We have then r + 1 ≤ n, a

contradiction that shows that the simple module C cannot exist, and hence that

S/J is a semisimple artinian ring. Therefore S is a semiperfect ring and ER is

a finite-dimensional module. Thus ER is a finite direct sum of indecomposable

submodules. From the preceding argument it also follows that r ≤ n and

hence that r = n. Since there exists a bijection between the set of isomorphism

classes of indecomposable direct summands of ER and the setM of isomorphism

classes of minimal right ideals of S/J , the number of isomorphism classes of

indecomposable direct summands of ER is exactly n, and so each of them is an

injective envelope of a simple right R-module, so that ER, and hence RR, has

finite essential socle.
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As a consequence, we have the following.

Corollary 2.2 ([11, Corollary 3.3, Corollary 3.5]): Let R be a ring. If every

cyclic right R-module essentially embeds in a projective module, then R is right

artinian.

If, moreover, every finitely generated right R-module essentially embeds in a

free module, then R is QF.

Proof. Let us first show that Soc(RR) is finitely generated and essential. In

order to apply Theorem 2.1, we only need to show that any direct summand of

E=E(RR) contains an essential projective submodule P such that P/(P ·Z(RR))

is a finitely generated right module.

Let E′ be a nonzero direct summand of E. As RR is essential in E, E′ con-
tains an essential cyclic module xR. By hypothesis, there exists an essential

monomorphism u : xR → P , for some projective module P . And this essen-

tial monomorphism extends by injectivity to a monomorphism v : P → E′.
Therefore, E′ contains the essential projective submodule P .

Let us now check that P/(P ·Z(RR)) is finitely generated. As P is projective,

it is a direct summand of a free module, say R(I). Let w : P → R(I) and

p : R(I) → P be the canonical injection and projection. Now, as xR is cyclic,

there exists a finite subset I ′ of I such that w◦u|xR ⊆ R(I′). Let π : R(I) → R(I′)

and i : R(I′) → R(I) be the projection and injection, respectively. Then

p ◦ w|xR − p ◦ i ◦ π ◦ w|xR = 0

and therefore, as xR is essential in E′, this means that

Im(p ◦ w − p ◦ i ◦ π ◦ w) ∈ P · Z(RR).

Therefore, as p ◦ w = 1P , we deduce that

P/(P · Z(RR)) = (Im(π ◦ i ◦ π ◦ w) + P · Z(RR))/(P · Z(RR))

and therefore it is finitely generated as it is a homomorphic image of R(I′).

The proof now follows from the arguments used in [11, Corollary 3.3, Corollary

3.5].

Recall that a ring R is called right extending (or right CS) if every right ideal

essentially embeds in a direct summand of R.
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Corollary 2.3 ([12, Corollary 2.7]): Let R be a right Kasch ring. If RR is

extending, then it has finitely generated essential socle.

Proof. If RR is extending, then clearly any direct summand of E(RR) contains

an essential direct summand of R. So the result follows from Theorem 2.1.

Thus if R is right extending and each cyclic right R-module embeds in a free

module, then each cyclic right R-module has finitely generated essential socle

and consequently the ring is right artinian.

Corollary 2.4 ([12, Corollary 2.9]): If R is a right extending ring, then both

CF and FGF conjectures hold for R.

The next theorem will be essential for obtaining our new characterizations of

right PF rings. Its proof is based on transfinite counting arguments inspired by

[28, Theorem 1] and [14, Theorem 6]. We will say that a ring R has completely

nil Jacobson radical if for any two-sided ideal N of R, any element in the

Jacobson radical of R/N is nilpotent.

Theorem 2.5: Let R be a right cogenerator right R-tight ring. If R/Z(RR)

has completely nil Jacobson radical, then Soc(RR) is finitely generated and

essential in RR.

Proof. Let us first fix our notation. We will denote the injective envelope of

RR by E = E(RR) with inclusion u : RR → E. Let us set S = EndR(E)

and J = J(S), where J(S) is the Jacobson radical of S. It is shown in [14,

Lemma 1] that there exists a homomorphism of rings Φ : R → S/J which

assigns any element r ∈ R to the element sr + J , where sr is an endomorphism

of E which extends the left multiplication by r. The kernel of Φ is the singular

ideal Z(RR) of RR. Therefore, we get an injective homomorphism of rings

Ψ : R/Z(RR) → S/J induced by Φ.

Let us now show that Soc(RR) is finitely generated and essential in RR. We

are going to prove it in three steps, as in [14, Theorem 6].

Step 1. We claim that Soc(RR) contains only finitely many homogeneous

components.

We will assume that Soc(RR) has infinitely many homogeneous components

and we will try to reach a contradiction. Let {Ci}i∈I be a representative set of

the isomorphism classes of simple modules in Soc(RR). By Tarski’s Lemma [31]
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(see also [28]), there exists a family K of almost disjoint subsets of I such that

|K| � |I| and I is the union of the sets in this family. In other words there

exists a family K of subsets of I satisfying that:

• I =
⋃

K∈KK and |K| � |I|.
• |K| is infinite for any K ∈ K.

• |K| = |K ′| � |K ∩K ′| for any K,K ′ ∈ K with K �= K ′.

We know that there exists an injective map from the index set I to the family

of isomorphism classes of minimal right ideals of S/J [14, Lemma 3]. This map

assigns any element i ∈ I to the minimal right ideal eiS/eiJ of S/J , where

ei ∈ S is an idempotent such that eiE = E(Ci).

Let us take any subset of I, say A, and set

XA = E

(∑
{D ≤ S/JS/J |D ∼= eCiS/eCiJ for some i ∈ A}

)
.

Since XA is a direct summand of E, there exists an idempotent eA ∈ S such

that XA = eAE. We know by [14, Lemma 4] that eA+J is a central idempotent

in S/J . In particular, ((1−eI)S+J)/J is a two-sided ideal of S/J when A = I.

For simplicity, ((1 − eI)S + J)/J will be denoted by NI/J . Since NI/J is a

two-sided ideal, its inverse image Ψ−1(NI/J) is a two-sided ideal of R/Z(RR)

and we will denote it by MI/Z(RR).

Let ℵ = |K| and let us set

N/J = NI/J +
∑

{(eAS + J)/J |A ⊆ I with |A| � ℵ}

and call M/Z(RR) = Ψ−1(N/J). By [14, Lemma 7], we know that

{eK +N |K ∈ K}
is an orthogonal family of nonzero central idempotents in S/N .

Let u be the inclusion of RR in its injective envelope E and call

xK = eK ◦ u(1) ∈ E.

Then eK ◦ u factors as

R

u

��

fK �� xKR

uK

��
E

eK
�� E
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where fK is an epimorphism and uK a monomorphism. There exists a mono-

morphism αK : xKR → R by our assumption that any cyclic submodule of

E(RR) embeds in R. By injectivity, αK extends to an sK : E → E such that

u ◦ αK = sK ◦ uK . Again, as sK |E(xKR) : E(xKR) → E is a monomorphism,

there exists an hK : E → E such that hK ◦ sK ◦ eK = eK .

R

u

��

fK �� xKR

uK

��

αK �� R

u

��
E

eK
�� E

sK
�� E

hK

�� E.

Call rK = sK ◦eK ◦u(1) ∈ R. Our claim is that rK +M /∈ J(R/M). Assume

otherwise that rK + M ∈ J(R/M). As we are assuming that J(R/Z(RR))

is completely nil, we deduce that any element in J(R/M) is nilpotent. Thus,

there exists a natural number m ≥ 1 such that rmK +M = 0 in R/M. But then,

smK ◦ eK +N = Φ(rmK +M) = 0. Therefore, we get that

0 = hm
K ◦ smK ◦ eK +N = hm−1

K ◦ (hK ◦ sK ◦ eK) ◦ sm−1
K +N

= hm−1
K ◦ eK ◦ sm−1

K +N = · · · = hK ◦ sK ◦ eK +N = eK +N .

But it is a contradiction since eK does not belong to N by construction.

As rK +M /∈ J(R/M), there exists a maximal right ideal LK/M of R/M
such that rK + M /∈ LK/M. Thus, R/LK is a simple right R-module which

satisfies R/LK · (rK +M) �= 0.

We finally claim that R/LK � R/LK′ whenK �= K ′ withK,K ′ ∈ K. Assume

that δ : R/LK → R/LK′ is an isomorphism. We get that

0 �= δ(rK + LK) = δ(1 + LK) · (rK +M).

In particular, δ(1 +LK) �= 0. On the other hand, δ(1 +LK) is a generator of

R/LK′, since it is simple. And we know that (R/L′
K) · (rK′ +M) �= 0, which

assures the existence of an r ∈ R such that 0 �= δ(1+LK) · (rKrrK′ +M). But

then, rKrrK′ +M �= 0 and thus Ψ((rKrrK′ +M)) �= 0, by the injectivity of Ψ.

We deduce that

sK ◦ hK ◦ eK ◦Ψ(r +M) ◦ sK′ ◦ hK′ ◦ eK′ +N �= 0.

But both idempotents are central in S/N and so eK ◦ eK′ /∈ N . And this

means that K = K ′, since otherwise eK ◦ eK′ ∈ N by construction.
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We have constructed then a family {R/LK}K∈K of nonisomorphic simple

right R-modules with |K| � |I| isomorphism classes of right simple modules.

This is a contradiction since we have assumed that RR has |I| nonisomorphic

classes of simple right modules. Therefore, Soc(RR) must have only finitely

many homogeneous components.

Step 2. We claim that any homogeneous component of Soc(RR) is finitely

generated.

We know by Step 1 that there are only finitely many homogeneous compo-

nents in Soc(RR). Let {C1, . . . , Cm} be a representative set of simple modules

belonging to them. As RR is a cogenerator, there exist sets of orthogonal

idempotents {ri ∈ R | i = 1, . . . ,m} and {ei ∈ E | i = 1, . . . ,m} such that

E(Ci) = riR = eiE for each i = 1, . . . ,m. In particular, this means that

Ψ(ri + Z(RR)) = ei + J.

And ri + Z(RR) does not belong to the Jacobson radical of R/Z(RR) for any

i = 1, . . . ,m, since they are idempotent. Moreover, E(Ci) is the projective

cover of a simple right module Di since they are indecomposable injective direct

summands of RR. Note also that Di � Dj when i �= j and Di · ri �= 0 for each

i ∈ I, by construction.

Now assume that some homogeneous component is not finitely generated.

Say that it is the homogeneous component associated to C1. Repeating the

arguments in Step 1, but replacing K by A = {i} and N by N ′ = Soc(S/JS/J),

we may construct a central idempotent eA + J ∈ S/J such that (eAS+ J)/J is

the injective envelope of the homogeneous component corresponding to e1S/e1J

inside S/J . And we can find an element rA +Ψ−1(N ′) which does not belong

to J(R/Ψ−1(N ′)) and Ψ(rA+J) = hA ◦ sA ◦ ◦eA /∈ Soc(S/JS/J). Let us choose

a maximal right ideal L/Φ−1(N ′) of R/Φ−1(N ′) satisfying that rA + L �= 0 in

R/Φ−1(N ′). Note that this maximal right ideal does exist since

rA +Φ−1(N ′) /∈ J(R/Φ−1(N ′)).

This means that, if we set D = R/L, this is a simple right R-module such that

D · (rA +R/Φ−1(N ′)) �= 0.

We claim that D is not isomorphic to Di for any i = 1, . . . ,m. Assume

on the contrary that δ : D → Di is an isomorphism for some i = 1, . . . ,m.

And fix a nonzero element x ∈ Di such that x · (ri + Z(RR)) �= 0. This

means that δ(x) · (ri + Z(RR)) �= 0 and so it is a generator of R/L. Since
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D · (rA + Φ−1(N ′)) �= 0, there exists an r ∈ R such that x · (rirrA + J) �= 0 in

D. And therefore, rArri /∈ Φ−1(N ′), because D is a right R/Φ−1(N ′)-module.

But then

ei ◦ Φ(r + J) ◦ hA ◦ sA ◦ eA + J = Φ(rirrA + Z(RR)) /∈ Soc(S/JS/J).

This is a contradiction since (ei+J)/J ∈ Soc(S/J) and Soc(S/J) is a two-sided

ideal.

We have shown that each homogeneous component of Soc(RR) is finitely

generated and so we proved that Soc(RR) is finitely generated.

Step 3. We finally claim that Soc(RR) is essential in RR.

Repeating the arguments of Step 2, we may construct sets of orthogonal idem-

potents {r1, . . . , rm} and {e1, . . . , em} in R and S associated to a representative

family {C1, . . . , Cm} of the isomorphism classes of the simple right ideals of R

such that E(Ci) = eiE = riR and Ψ(ri+Z(RR)) = ei+J for each i = 1, . . . ,m.

Let Di be a simple module such that E(Ci) is a projective cover of Di. We get

that Di
∼= Dj when i �= j and Di · ri �= 0 for each i = 1, . . . ,m.

Assume that Soc(RR) is not essential in RR. This means that

E(Soc(RR)) �= E(RR).

Let eI ∈ S be the idempotent such that E(Soc(RR)) = eIE. The arguments of

Step 1 show that eI + J is central in S/J .

Repeating the arguments used in Step 2, but by replacing the idempotent eA

by 1− eI and the ideal N ′ by J , we get an rI ∈ R such that

rI + Z(RR) /∈ J(R/Z(RR))

and elements sI , hI ∈ S such that hI ◦ sI ◦ (1− eI) /∈ J and

Φ(rI + Z(RR)) = sI ◦ (1− eI) + J.

Therefore, there exists a maximal right ideal L/Z(RR) of R/Z(RR) such that

rI + Z(RR) /∈ L/Z(RR) . In particular, if we call D = R/L, we get that

D · (rI + Z(RR)) �= 0.

We claim that D � Di for any i = 1, . . . ,m. Let us assume on the contrary

that δ : D → Di is an isomorphism and choose an x ∈ D such that

x · (rI + Z(RR)) �= 0.

We then obtain that δ(x) · (rI +Z(RR)) �= 0 as in Step 2. And thus there exists

an r ∈ R satisfying that δ(x) · (rIrri + Z(RR)) �= 0. Hence rIrri + Z(RR) �= 0
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and therefore hI ◦ sI ◦ (1 − eI) ◦ Ψ(r + Z(RR)) ◦ ei + J �= 0 in S/J . And, as

(1− eI) + J is central in S/J , we deduce that (1− eI) ◦ ei + J �= 0. But this is

not possible because eI ·ei = ei by construction of eI . So we get a contradiction

which shows Soc(RR) is essential in RR.

We can now state our new characterizations of right PF rings.

Theorem 2.6: Let R be a ring. Then the following conditions are equivalent:

(1) R is right PF.

(2) RR is a cogenerator and every cyclic submodule of E(RR) essentially

embeds in a projective module.

(3) R is a right (R-) tight cogenerator and J(R/Z(RR)) is completely nil.

(4) RR is tight, R is semilocal, and the injective envelopes of simple right

R-modules are finitely generated.

Proof. (1)⇒(2). This is straightforward.

(1)⇒(3). R is a right self-injective semiperfect ring. Therefore, J(R)=Z(RR)

and R/Z(J(R)) is von Neumann regular. Thus, any ring which is a homomor-

phic image of R/J(R) has zero Jacobson radical.

(2) or (3) ⇒ (4). By Theorem 2.1 and Theorem 2.5, we get that Soc(RR) is

finitely generated and essential in R. In particular, there exists a finite number

of isomorphism classes of simple modules, say {C1, . . . , Cm}. Moreover, as RR

is a cogenerator, the injective envelopes of simple right R-modules are direct

summands of R and thus they are projective and finitely generated. Since each

E(Ci) is projective, it is a local module and hence it is the projective cover

of the simple module E(Ci)/E(Ci)J(R). Note that E(Ci)/E(Ci)J(R) is not

isomorphic to E(Ci′ )/E(Ci′ )J(R) if i �= i′. Thus, each simple right module has

a projective cover and this means that R is semiperfect by [1, Theorem 27.6].

Therefore, R is semilocal.

(4)⇒(1). We first show that Soc(RR) is finitely generated. As we know

that R is semilocal, we may write R/J =
⊕n

i=1 Di with each Di a simple

module. Assume that Soc(RR) is not finitely generated and choose a direct

sum
⊕n+1

k=1 Ck of simple modules in Soc(RR). By hypothesis,
⊕n+1

k=1 E(Ck)

is a finitely generated submodule of E(RR) and thus it embeds in R. This

means that there exists a set {ek | k = 1, . . . , n + 1} of nonzero orthogonal

idempotents in R such that E(Ck) = ekR for each k = 1, . . . , n + 1. But this
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means that
⊕n+1

k=1 ekR/ekJ is a direct sum of n+1 nonzero submodules of R/J ,

a contradiction, since R/J is a semisimple ring of length n.

Now we claim that Soc(RR) is essential in R. We know that

Soc(RR) =

n⊕
k=1

Ck

is finitely generated. So
⊕n

k=1 E(Ck) is also finitely generated by hypothesis

and it embeds in R. Let ek ∈ R be an idempotent such that E(Ck) = ekR for

each k. Assume that
⊕n

k=1 E(Ck) is not essential in R and call

e = 1−
n∑

k=1

ek.

Then R/J = (
⊕n

k=1 ekR/ekJ)⊕ eR/eJ . Again a contradiction since the length

of R/J is n.

Therefore, R =
⊕n

k=1 ekR
∼= ⊕n

k=1 E(Ck) is a right self-injective ring and

thus R/J =
⊕n

k=1 ekR/ekR. Let us note that if ekR/ekJ � ek′R/ek′J , then

ekR � ek′R either, as they are their projective covers. And thus, Ck � Ck′ . This

means that R must contain all isomorphism classes of simple right R-modules

and so it is a right cogenerator.

Motivated by the above theorem, we would like to propose the following

conjecture.

Conjecture 2.7: If R is a right cogenerator right R-tight ring, then R is right

PF.

We are now going to obtain several corollaries of Theorem 2.6 which will give

partial answers to the above proposed conjecture. Recall that a ring R is called

right automorphism-invariant if it is invariant under any automorphism of

its injective envelope E(RR) (see, e.g., [15]).

Corollary 2.8: Let R be a right R-tight, right automorphism-invariant ring

such that RR is a cogenerator. Then R is right PF.

Proof. It is shown in [15] that R is semiregular and Z(RR) is the Jacobson

radical of R. Therefore, R/Z(RR) is von Neumann regular and this means that

the Jacobson radical of R/Z(RR) is completely nil. The result now follows from

Theorem 2.6
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It is clear that if R is a right extending ring, then every cyclic submodule of

E(RR) essentially embeds in a projective module if and only if RR is R-tight.

Therefore, we have:

Corollary 2.9: Let R be a ring. Then the following conditions are equivalent:

(1) R is right PF.

(2) RR is R-tight, extending and a cogenerator.

(3) RR is R-tight, extending and the injective envelopes of simple right

R-modules are projective.

Proof. The implications (1)⇒(2)⇒ (3) are clear.

(3)⇒(1) Clearly RR is a cogenerator. Using the results of [11] it is possible to

show that every cyclic submodule of E(RR) essentially embeds in a projective

module, for if RR is R-tight and extending, then every cyclic submodule of

E(RR) is essentially embeddable in a projective module and so we may apply

[11, Theorem 3.1]. The implication now follows from Theorem 2.6.

Our first example shows that we cannot drop from Theorem 2.6 and Corol-

lary 2.9 the hypothesis that RR is a cogenerator.

Example 2.10: The ring of rational integers Z is both tight and extending but

it is not self-injective. Therefore, it is not PF.

The next example shows that a right R-tight ring does not need to be right

extending.

Example 2.11: The ring R of upper triangular matrices over a field F is right R-

tight. Furthermore, since E(RR) is projective, every direct summand of E(RR)

has an essential finitely generated projective submodule. However, R is not a

right extending ring, for the right ideal {( 0 x
0 x )|x ∈ F} is not essential in a direct

summand of RR.

Note that the ring constructed in the above example is not right tight since

otherwise it would be quasi-Frobenius as it is right artinian. Next, we give

example of a ring R such that every finitely generated submodule of its injective

envelope E(RR) embeds in a free module but R is not right extending.

Example 2.12: Let R be a right noetherian ring such that the injective envelope

of any flat module is flat. For instance, a commutative noetherian domain
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(see [6, Theorem 3]). As this property is clearly Morita invariant, any flat

right module over Mn(R) has a flat injective envelope for any n ≥ 1. Let

E = E(Mn(R)Mn(R)) and let p : Mn(R)(I) → E be an epimorphism. As E

is flat, p is a pure epimorphism. Let N be any finitely generated submodule

of E. As R is right noetherian, N is finitely presented and thus the inclusion

i : N → E lifts to a monomorphism v : N → Mn(R)(I). Therefore, Mn(R) is a

ring such that every finitely generated submodule of its right injective envelope

embeds in a free module. However, if R is a commutative noetherian domain

which is not semihereditary, then Mn(R) is not right (nor left) extending (see

[3, Example 2.3.13]) .

Finally, we exhibit an example of a commutative ring R which is tight, but it

does not have the property that every direct summand of E(RR) has an essential

finitely generated projective submodule, nor is every cyclic submodule of E(RR)

essentially embeddable in a projective. In particular, R is not extending.

Example 2.13: Let R = {(m,n) ∈ Z × Z|m ≡ n (mod 2)} ⊆ Z × Z. Then R

is a semiprime Goldie ring and, in fact, R is an order in the semisimple ring

Q×Q, so that E(RR) ∼= Q×Q. Using [17, Proposition 4.2] one can easily see

that as R is a semiprime (two-sided) Goldie ring, then RR is tight; cf. [19].

On the other hand, the principal ideal KR = R(2, 0) = 2Z × 0 ⊆ R is an

essential submodule of Q × 0 = {(q, 0)|q ∈ Q} and, since the latter module is

divisible, it is injective and hence E(KR) ∼= Q × 0. Assume then that KR is

essentially embeddable in a projective module PR. Then PR embeds in Q× 0.

On the other hand, if we set L = R(0, 2) ⊆ R, then it is easily checked that

R/L ∼= Z and that P = P/LP is also a projective R/L-module. Thus P can be

viewed as a Z-projective submodule of Q× 0 and this implies that P is cyclic

as R/L-module and hence as R-module. Thus there exists 0 �= (q, 0) ∈ Q × 0

such that P = R(q, 0). The map K → P defined by (2n, 0) �→ (qn, 0) is

easily seen to be an isomorphism, and so we must have PR
∼= KR. But, since

RR is indecomposable, it is clear that KR is not projective, which gives a

contradiction and shows that KR is not essentially embeddable in a projective

module. Observe also that, in particular, R cannot be a extending ring.

It is well known that a ring R is right PF if and only if it is right self-injective

and has finite essential socle (i.e., RR is finitely cogenerated). The following

result extends this fact.
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Proposition 2.14: Let R be a ring such that RR is tight and E(RR) is both

finitely generated and finitely cogenerated. Then R is right PF.

Proof. Since RR is tight and E(RR) is finitely generated, E(RR) embeds in RR

and so there exists X ⊆ RR such that RR
∼= E(RR)⊕X . Then

Soc(RR) ∼= Soc(E(RR))⊕ Soc(X) ∼= Soc(RR)⊕ Soc(X)

(since Soc(RR) is essential in RR). Now, since Soc(RR) is finitely generated,

we see by Krull–Remak–Schmidt that Soc(X) = 0. Since Soc(RR) is essential

in RR, this implies that X = 0 and so R is right self-injective and hence right

PF by [23, 12.5.2].

Recall that a module M is said to be finite dimensional if it does not contain

an infinite direct sum of nonzero submodules.

Theorem 2.15: Let R be a ring such that each indecomposable injective right

R-module is projective and every projective right R-module is R-tight. Then

R is a QF ring.

Proof. By [19, Theorem 2.6], since each direct sum of indecomposable injective

modules is projective and hence R-tight, R has the property that each finitely

generated rightR-module is finite dimensional. Then, ifX is a finitely generated

right R-module, X contains an essential submodule of the form
⊕n

i=1 Ui, where

the Ui’s are uniform modules. Thus E(C) ∼= ⊕n
i=1 E(Ui) is a finite direct sum of

indecomposable injective modules and thus projective. Each E(Ci) has a local

endomorphism ring and hence it is a projective local module and, in particular,

cyclic. Thus, we see that X is essentially embeddable in a finitely generated

projective module and, by Corollary 2.2, R is QF.

Remark 2.16: Observe that the hypothesis of the above theorem is weaker than

in [20, Theorem 5.1], since the assumption that R is semiperfect (together with

the other things in the hypothesis) implies that every indecomposable injective

is projective.

Our next proposition is a simple yet useful observation.

Proposition 2.17: Any left perfect and right tight ring is right self-injective.

Proof. Assume that, on the contrary, R �=E(RR), so that there exists x∈E(RR)

such that x /∈ R. Then RR + xR is a finitely generated submodule of E(RR)
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and, as R is right tight, there is an embedding RR + xR ⊆ RR. But, since RR

embeds, as a proper submodule, in RR +xR, we get a proper embedding of RR

into itself, which gives an infinite descending chain of principal right ideals of

R, a contradiction.

Corollary 2.18: If R is right artinian and right tight, then R is QF.

Remark 2.19: Note that, however, a right noetherian, right extending and right

tight ring does not need to be QF, even in the commutative case, as the example

R = Z shows.

3. An extension of the FGF conjecture

We have studied in the above section different new characterizations of PF

rings in terms of (R-)tight conditions and we have outlined the strong relation

existing between these characterizations and both CF and FGF conjectures.

Our purpose in this section is to establish a general problem such that all the

existing partial results on CF and FGF conjectures can be included as partial

positive answers of this new problem. In order to do so, we are going to define

that a ring R is generalized right (R-)tight if every finitely generated (resp.,

cyclic) submodule of E(RR) embeds in a free module. The results in the above

section naturally suggest to propose the following conjecture:

Conjecture 3.1: If R is a right Kasch right generalized (R-)tight ring, then

RR has finitely generated essential socle.

We would like to remark that Conjecture 2.7 is a consequence of this other

conjecture, since if Conjecture 3.1 is true, then every right cogenerator right

R-tight ring has finitely generated essential right socle. One can then use the

same arguments as in Theorem 2.6 to show that R is right PF. On the other

hand, Theorem 2.1 shows that Conjecture 3.1 is true if we assume that every

cyclic submodule of E(RR) essentially embeds in a projective module or that R

is right extending. Moreover, Osofsky’s pioneering characterization of right PF

rings [28, Theorem 1] is a positive solution to the conjecture when R is right

self-injective. Indeed, it is not difficult to check that most additional conditions

which are known to force a right CF ring to be right artinian, also force the

above conjecture to be true. We are going to show examples of them.
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Proposition 3.2: Let R be a right Kasch right generalized R-tight ring. If

RR is noetherian, then Soc(RR) is finitely generated and essential in R.

Proof. Assume that R is a right generalized right R-tight ring. Then every

right ideal is a right annihilator. The result now follows from [9, 3.5B Johns’

Lemma] (see also [27, Theorem 8.9]).

Proposition 3.3: Let R be a right Kasch right generalized tight ring. If R

is also left Kasch, then Soc(RR) is finitely generated and essential in R. In

particular, any commutative Kasch generalized tight ring has finitely generated

essential socle.

Proof. Note that, as RR is Kasch and generalized tight, any finitely generated

right module embeds in a free module. And, as RR is also Kasch, R is an

S-ring in the sense of [24]. The result now follows from [24, Theorem 1, (3) ⇒
(1)].

One may note that the assumption that RR is R-tight is critical in the proof

of Theorem 2.5. We do not know if this theorem is still valid under the weaker

assumption that RR is generalized R-tight, and thus give a positive solution

to Conjecture 3.1 when the Jacobson radical of R/Z(RR) is completely nil.

However, our next theorem shows that the arguments can be adapted if we

assume the slightly stronger assumption that the Jacobson radical of R/Z(RR)

is completely right T-nilpotent. Recall that an ideal I of a ring R is called right

T-nilpotent if for any infinite sequence r1, . . . , rn, . . . of elements in I, there

exists an n0 ≥ 1 such that rn0 · · · r1 = 0 (see [30, p. 183, Definition before

Proposition 2.5]). And we are going to say that the Jacobson radical of a ring

S is completely right T-nilpotent if every ring S′ which is a homomorphic

image of S has right T-nilpotent Jacobson radical.

Theorem 3.4: Let R be a right Kasch ring such that any cyclic submodule

of E(RR) embeds in a free module. If the Jacobson radical of R/Z(RR) is

completely right T-nilpotent, then Soc(RR) is finitely generated and essential

in RR.

Proof. The general scheme of the proof is quite similar to that of Theorem 2.5.

Therefore, we will only elaborate on the part where the proof is different and

otherwise we will just refer to the relevant part of the proof of Theorem 2.5.

We will follow the same notations as in Theorem 2.5.
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Step 1. We claim that Soc(RR) contains only finitely many homogeneous

components.

Let us assume on the contrary that Soc(RR) has infinitely many homogeneous

components and let {Ci}i∈I be a representative set of the isomorphism classes of

simple modules in Soc(RR). Proceeding exactly as in the proof of Theorem 2.5,

we get {eK +N |K ∈ K}, an orthogonal family of nonzero central idempotents

in S/N .

Let u : R → E be the inclusion of RR in its injective envelope and call

xK,1 = eK ◦ u(1) ∈ E. Then eK ◦ u factors as

R

u

��

fK,1�� xK,1R

uK,1

��
E

eK
�� E

where fK,1 is an epimorphism and uK,1 a monomorphism. As we are assuming

that any cyclic submodule of E(RR) embeds in a free module (of finite rank),

there exists a monomorphism αK,1 : xK,1R → R(nK,1), for some nK,1 ≥ 1, that

extends by injectivity to an sK,1 : E → E(nK,1) such that

u(nK,1) ◦ αK,1 = sK,1 ◦ uK,1,

where we are denoting by u(nK,1) : R(nK,1) → E(nK,1) the inclusion. Again, as

sK,1|E(xK,1R) : E(xK,1R) → E is injective, there exists an hK,1 : E(nK,1) → E

such that hK,1 ◦ sK,1 ◦ eK = eK

R

u

��

fK,1�� xK,1R

uK,1

��

αK,1 �� R(nK,1)

u(nK,1)

��
E

eK
�� E

sK,1

�� E(nK,1)

hK,1

�� E.

Let πK,1,t : E(nK,1) → E and vK,1,t : E → E(nK,1), for t = 1, . . . , nK,1, be

the canonical projections and injections. Then
∑nK,1

t=1 vK,1,t ◦ πK,1,t = 1
E(nK,1) .



Vol. 214, 2016 PSEUDO-FROBENIUS RINGS 141

Therefore, we have that

eK = hK,1 ◦ sK,1 ◦ eK

= hK,1 ◦
( nK,1∑

t=1

vK,1,t ◦ πK,1,t

)
◦ sK,1 ◦ eK

=

nK,1∑
t=1

(hK,1, ◦ vK,1,t ◦ πK,1,t ◦ sK,1 ◦ eK).

As eK + J /∈ N/J , there exists a t0 such that

(hK,1 ◦ vK,1,t0 ◦ πK,1,t0 ◦ sK,1 ◦ eK) + J /∈ N/J.

Call

s′K,1 =πK,1,t0 ◦ sK,1,

h′
K,1 =hK,1 ◦ vK,1,t0

and

rK,1 =s′K,1 ◦ eK ◦ u(1) ∈ R.

And let

xK,2 = h′
K,1 ◦ u(rK,1) = h′

K,1 ◦ s′K,1 ◦ eK ◦ u(1) ∈ E.

Again, as any cyclic submodule of E(RR) embeds in a free module, there exists

a monomorphism αK,2 : xK,2R → R(nK,2), for some nK,2 ≥ 1, that extends by

injectivity to an sK,2 : E → E(nK,2) such that

u(nK,2) ◦ αK,2 = sK,2 ◦ uK,2.

And, as sK,2|E(xK,2R) : E(xK,2R) → E(nK,2) is injective, there exists an

hK,2 : E(nK,2) → E such that hK,2 ◦ sK,2|E(xK,2R) = 1|E(xK,2R). Moreover,

as by construction,

hK,2 ◦ sK,2 ◦ h′
K,1 ◦ s′K,1 ◦ eK ◦ u = h′

K,1 ◦ s′K,1 ◦ eK ◦ u,
we get that hK,2 ◦ sK,2 ◦ h′

K,1 ◦ s′K,1 ◦ eK − h′
K,1 ◦ s′K,1 ◦ eK ∈ J(S). Therefore,

hK,2 ◦ sK,2 ◦ h′
K,1 ◦ s′K,1 ◦ eK + J /∈ N/J,

as neither is h′
K,1 ◦ s′K,1 ◦ eK + J /∈ N/J .

Let πK,2,t : E
(nK,2) → E and vK,2,t : E → E(nK,2), for t = 1, . . . , nK,2, be the

canonical projections and injections. As before, there exists a t0 such that

(hK,2 ◦ vK,2,t0 ◦ πK,2,t0 ◦ sK,2 ◦ h′
K,1 ◦ s′K,1 ◦ eK) + J /∈ N/J.
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Call now

s′K,2 =πK,2,t0 ◦ sK,2,

h′
K,2 =hK,2 ◦ vK,2,t0

and

rK,2 =s′K,2 ◦ hK,1 ◦ u(1) ∈ R.

Repeating the same arguments, we can define s′K,l, h
′
K,l ∈ S and rK,l ∈ R,

for each l ≥ 1, such that:

• (h′
K,l ◦ s′K,l ◦ . . . ◦ h′

K,1 ◦ s′K,1 ◦ eK) + J /∈ N/J for any l ≥ 1.

• Ψ(rK,1 +M) = s′K,1 ◦ eK +N .

• Ψ(rK,l+1 +M) = s′K,l+1 ◦ h′
K,l +N for each l ≥ 1.

We claim that there exists some l ≥ 1 such that rK,l +M /∈ J(R/M). Assume

on the contrary that rK,l +M ∈ J(R/M) for each l ≥ 1. As we are assuming

that the Jacobson radical of R/Z(RR) is completely right T-nilpotent, there

exists an l0 such that rK,l0+1 · . . . · rK,1 +M = 0 in R/M. But this means that

(s′K,l0+1 ◦ h′
K,l0 ◦ . . . ◦ s′K,1 ◦ eK) +N = Ψ((rK,l0+1 · . . . · rK,1 +M)) = 0

in S/N , a contradiction. This proves our claim.

Call rK = rK,l0 , s
′
K = s′K,l0+1 and h′

K = h′
K,l0

. As eK+J is central in S/J , we

deduce that s′K ◦h′
K ◦eK+J /∈ S/N . On the other hand, as rK+M /∈ J(R/M),

there exists a maximal right ideal LK/M of R/M such that rK +M /∈ LK/M
and thus R/LK is a simple right R/M-module such that R/LK · (rK +M) �= 0.

Now as in the proof of Theorem 2.5, we show that eK ◦ eK′ /∈ N . But this is

a contradiction, since eK ◦ eK′ ∈ N by construction.

We have constructed then |K| isomorphism classes of simple right R-modules.

This yields a contradiction, since |K| � |I|.
Step 2. We claim that any homogeneous component of Soc(RR) is finitely

generated.

Assume on the contrary that there exists a homogeneous component which

is not finitely generated. We already know that there are only finitely many

homogeneous components in Soc(RR). Let {C1, . . . , Cm} be a representative

set of simple modules belonging to them.

Let us fix a simple module Ci, for i=1, . . . ,m, and call Ci,1=Ci. Let ei,1∈S

be an idempotent such that E(Ci,1) = ei,1E and let us repeat the reasonings

made in Step 1, in order to decompose ei,1◦u = ui,1◦fi,1, where fi,1 : R → xi,1R
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is an epimorphism and ui,1 : xi,1R → E a monomorphism. As each cyclic

submodule of E(RR) embeds in a free module, there exists a monomorphism

α : xi,1R → Rn, for some n ≥ 1. So there exists a projection π : Rn → R such

that π ◦ α|Ci,1 �= 0. And, as the simple module Ci,1 is essential in xi,1R, we

deduce that π◦α is a monomorphism. Call it αi,1. This monomorphism extends

by injectivity to an endomorphism si,1 : E → E such that si,1 ◦ ui,1 = u ◦ αi,1.

Note that si,1 ◦ ei,1 /∈ J(S) since si,1 ◦ ei,1|Ci,1 is a monomorphism and thus

si,1 ◦ ei,1 does not have essential kernel.

Let us call

Ci,2 = si,1 ◦ ei,1(Ci,1).

Then Ci,2 is a simple right R-module isomorphic to Ci,1, and therefore we can

repeat the above construction to obtain ei,2, si,2 ∈ S such that (si,2 ◦ ei,2)|Ci,2

is injective and therefore (si,2 ◦ ei,2 ◦ si,1 ◦ ei,1)|Ci,1 is also injective. So

si,2 ◦ ei,2 ◦ si,1 ◦ ei,1 /∈ J(S).

Repeating this construction, we can find by recurrence idempotents ei,n ∈ S and

elements si,n ∈ S such that (si,n ◦ ei,n ◦ · · · ◦ si,1 ◦ ei,1)|Ci,1 is a monomorphism,

and therefore, si,nei,n ◦ · · · ◦ si,1 ◦ ei,1 /∈ J(S).

Let ri,n = si,n ◦ ei,n ◦ u(1) ∈ R for each n ≥ 1. We claim that

ri,n + Z(RR) /∈ J(R/Z(RR))

for some n ≥ 1. Assume on the contrary that ri,n + Z(RR) ∈ J(R/Z(RR))

for every n ≥ 1. As we are assuming that J(R/Z(RR)) is completely right

T-nilpotent, there exists an n0 such that ri,n0 · · · ri,1+Z(RR) = 0 in R/Z(RR).

Thus, Φ(ri,n0 . . . ri,1 + Z(RR)) = 0 in S/J . But, as by construction,

Φ(ri,n + Z(RR)) = si,n ◦ ei,n + J,

we deduce that (si,n0 ◦ei,n0 ◦· · ·◦si,1◦ei,1) ∈ J(S), a contradiction. This proves

our claim.

Let us choose an n such that ri,n + Z(RR) /∈ J(R/Z(RR)) and set ri = ri,n,

ei = ei,n, si = si,n. Replacing, if necessary, Ci by its isomorphic image Ci,n, we

get that E(Ci) = eiE. Moreover, as ri + Z(RR) /∈ J(R/Z(RR)), there exists a

maximal right ideal Li/Z(RR) of R/Z(RR) such that

ri + Z(RR) /∈ Li/Z(RR).
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Call Di = R/Li. Then Di is a simple R/Z(RR)-module such that

Di · (ri + Z(RR)) �= 0.

We claim that Di � Dj if i �= j. Assume on the contrary that δ : Di → Dj

is an isomorphism. As Di · (ri + Z(RR)) �= 0, we can choose an 0 �= x ∈ Di

such that x · (ri +Z(RR)) �= 0 and thus δ(x) · (ri +Z(RR)) is a generator of Dj.

Again, as Dj · (rj + Z(RR)) �= 0, there exists an r ∈ R such that

δ(x)(rirrj + Z(RR)) �= 0.

In particular, rirrj /∈ Z(RR). And thus

(si ◦ ei + J) ◦ Φ(r + Z(RR)) ◦ (sj ◦ ej + J) = Φ(rirrj + Z(RR)) �= 0.

Let

g = (si + J) ◦ (ei + J) ◦ Φ(r + Z(RR)) ◦ (sj + J) : S/J −→ S/J.

Then, as Im((ei + J) ◦Φ(r+Z(RR)) ◦ (sj + J)) is contained in the simple right

ideal (eiS + J)/J , we deduce that Im(g) is contained in a simple right ideal of

S/J , say Y , isomorphic to (eiS + J)/J . But then, as

(si ◦ ei + J) ◦ Φ(r + Z(RR)) ◦ (sj ◦ ej + J) �= 0,

we deduce that the homomorphism (sj + J) ◦ (ej +J) ◦Φ(r+Z(RR)) ◦ (si + J)

is not zero either, when restricted to the simple right ideal (ejS + J)/J . And

this means that

(ejS + J)/J ∼= Y ∼= (eiS + J)/J.

Therefore, eiS ∼= ejS, since they are the projective covers of (eiS + J)/J and

(ejS+J)/J , respectively. But this means that E(Ci) ∼= E(Cj) and so Ci
∼= Cj ,

a contradiction. This proves our claim.

Lets us now assume that some homogeneous component is not finitely gener-

ated. Say that it is the homogeneous component associated to C1. Then, as in

the proof of Theorem 2.5, we arrive at a contradiction. This shows that each

homogeneous component of Soc(RR) is finitely generated and thus Soc(RR) is

finitely generated.

Step 3. We finally claim that Soc(RR) is essential in RR.

The proof of this part is identical to step 3 of Theorem 2.5 and this completes

the proof.

We can now state the following partial answer to the CF and FGF conjectures.
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Corollary 3.5: Let R be a right CF ring. If the Jacobson radical of R/Z(RR)

is completely right T-nilpotent, then R is right artinian. In particular, if R is

right FGF, then it is QF.

Proof. By Theorem 3.4, we know that R has a finitely generated essential right

socle and thus any cyclic right R-module also has a finitely generated essential

socle, since it embeds in a (finitely generated) free module. Therefore, R is right

artinian (see, e.g., [1, Theorem 10.4] and [1, Proposition 10.10]).

Our next corollary shows that the main result of [14] is a consequence of our

Corollary 3.5.

Corollary 3.6: Let R be a ring and assume that R/Z(RR) is a von Neumann

regular ring. Then:

(1) If R is right CF, then it is right artinian.

(2) If R is right FGF, then it is QF.

Proof. If R/Z(RR) is von Neumann regular, then every ring which is a ho-

momorphic image of R/Z(RR) has zero Jacobson radical. We may now apply

Corollary 3.5.

We close the paper by extending [29, Theorem 2].

Corollary 3.7: Let R be a right CF ring such that R/J(R) is von Neumann

regular and J(R) is right T-nilpotent. Then R is right artinian. In particular,

if R is right FGF, then it is QF.

Proof. As J(R) is right T-nilpotent, idempotents lift modulo J(R) (see, e.g.,

[30, Proposition 4.2]). So the ring is semiregular. We claim that Z(RR) ⊆ J(R).

Choose any r ∈ Z(RR) and call f : R → R the homomorphism given by left

multiplication by r. As rR is finitely generated, there exists an idempotent

e ∈ R such that eR ⊆ xR and xR ∩ (1 − e)R is superfluous in R (see [26,

Theorem 1.6]). But, as Ker(f) is essential in R, e = 0, and this means that

xR = xR ∩ (1− e)R is superfluous in R. So r ∈ J(R).

Now, let M/Z(RR) be any two-sided ideal of R/Z(RR). As Z(RR) ⊆ J(R),

we have a surjective homomorphism of rings ϕ : R/M → R/(M+J). And then,

ϕ(J(R/M)) ⊆ J(R/(J +M)) (see [1, Corollary 15.8]). Therefore, any element

r +M ∈ J(R/M) is of the form j +M with j ∈ J(R). Thus, J(R/M) is right

T-nilpotent. The result now follows from Corollary 3.5.
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We close the paper by extending two results of [14].

Corollary 3.8 (see [14, Theorem 16]): Let R be a right CF ring. Then the

following conditions are equivalent:

(1) J(R/Z(RR)) is completely right T-nilpotent.

(2) Every cyclic right R-module essentially embeds in a projective module.

(3) RR is continuous.

Moreover, in this case Z(RR) = J(R) and R is right artinian.

Proof. (1) ⇒ (2) is a consequence of Theorem 3.5 and [14, Corollary 13]. The

other implications follow from [14, Theorem 16].

Corollary 3.9: Let R be a ring. Then the following conditions are equivalent:

(1) Every cyclic right R-module embeds in R and J(R/Z(RR)) is com-

pletely right nil.

(2) Every cyclic right R-module essentially embeds in a direct summand of

R.

(3) R is a direct sum of rings which are either right uniserial or finite matrix

rings over two-sided uniserial rings.

Proof. (1) ⇒ (2) is a consequence of Theorem 2.5 and the proof of [14, Theorem

17]. The other implications follow from [14, Theorem 17].
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[19] S. K. Jain and S. R. López-Permouth, A survey on the theory of weakly injective mod-

ules, in Computational Algebra (Fairfax, VA, 1993), Lecture Notes in Pure and Applied

Mathematics, Vol. 151, Marcel Dekker, New York, 1994, pp. 205–232.
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