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ABSTRACT

A triangle T (r) in an r-uniform hypergraph is a set of r+1 edges such that

r of them share a common (r−1)-set of vertices and the last edge contains

the remaining vertex from each of the first r edges. Our main result is

that the random greedy triangle-free process on n points terminates in

an r-uniform hypergraph with independence number O((n logn)1/r). As

a consequence, using recent results on independent sets in hypergraphs,

the Ramsey number r(T (r),K
(r)
s ) has order of magnitude sr/ log s. This

answers questions posed in [4, 10] and generalizes the celebrated results of

Ajtai–Komlós–Szemerédi [1] and Kim [9] to hypergraphs.
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1. Introduction

An r-uniform hypergraph H (r-graph for short) is a collection of r-element

subsets of a vertex set V (H). Given r-graphs G and H , the Ramsey number

r(G,H) is the minimum n such that every red/blue-edge coloring of the com-

plete r-graph K
(r)
n :=

(
[n]
r

)
contains a red copy of G or a blue copy of H (often

we will write Kn for K
(r)
n ). Determining these numbers for graphs (r = 2) is

known to be notoriously difficult, indeed the order of magnitude (for fixed t)

of r(Kt,Ks) is wide open when t ≥ 4. The case t = 3 is one of the celebrated

results in graph Ramsey theory:

(1) r(K3,Ks) = Θ(s2/ log s).

The upper bound was proved by Ajtai–Komlós–Szemerédi [1] as one of the

first applications of the semi-random method in combinatorics (simpler proofs

now exist due to Shearer [12, 13]). The lower bound, due to Kim [9], was

also achieved by using the semi-random or nibble method. More recently, the

first author [3] showed that a lower bound for r(K3,Ks) could also be ob-

tained by the triangle-free process, which is a random greedy algorithm. This

settled a question of Spencer on the independence number of the triangle-free

process. Still more recently, Bohman–Keevash [6] and Fiz Pontiveros–Griffiths–

Morris [8] have analyzed the triangle-free process more carefully and improved

the constants obtained so that the gap between the upper and lower bounds for

r(K3,Ks) is now asymptotically a multiplicative factor of 4.

Given the difficulty of these basic questions in graph Ramsey theory, one

would expect that the corresponding questions for hypergraphs are hopeless.

This is not always the case. Hypergraphs behave quite differently for asymmet-

ric Ramsey problems; for example, there exist K
(3)
4 -free 3-graphs on n points

with independence number of order logn, so r(K
(3)
4 ,K

(3)
s ) is exponential in s

unlike the graph case. Consequently, to obtain r-graph results parallel to (1),

one must consider problems r(G,Ks) where G is much sparser than a complete

graph. A recent result in this vein due to Kostochka–Mubayi–Verstraëte [10] is

that there are positive constants c1, c2 with

c1s
3/2

(log s)3/4
< r(C

(3)
3 ,K(3)

s ) < c2s
3/2

where C
(3)
3 is the loose triangle, comprising 3 edges that have pairwise intersec-

tions of size one and have no point in common. The authors in [10] conjectured
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that r(C
(3)
3 ,K

(3)
s ) = o(s3/2) and the order of magnitude remains open. An-

other result of this type for hypergraphs due to Phelps and Rödl [11] is that

r(P
(3)
2 ,K

(3)
s ) = Θ(s2/ log s), where P

(3)
t is the tight path with t edges. Recently,

the second author and Cooper [7] prove that for fixed t ≥ 4, the behavior of

this Ramsey number changes and we have r(P
(3)
t ,K

(3)
s ) = Θ(s2); the growth

rate for t = 3 remains open. These are the only nontrivial hypergraph results

of polynomial Ramsey numbers, and in this paper we add to this list with an

extension of (1).

Definition 1: An r-uniform triangle T (r) is a set of r+1 edges b1, . . . , br, a with

bi ∩ bj = R for all i < j where |R| = r − 1 and a =
⋃

i(bi −R). In other words,

r of the edges share a common (r− 1)-set of vertices, and the last edge contains

the remaining point in all these previous edges.

When r = 2, then T (2) = K3, so in this sense T (r) is a generalization of a graph

triangle. We may view a T (r)-free r-graph as one in which all neighborhoods are

independent sets, where the neighborhood of anR ∈
(
V (H)
r−1

)
is {x : R∪{x} ∈ H}.

Frieze and the first two authors [4] proved that for fixed r ≥ 2, there are positive

constants c1 and c2 with

c1
sr

(log s)r/(r−1)
< r(T (r),K(r)

s ) < c2s
r.

They conjectured that the upper bound could be improved to o(sr) and believed

that the log factor in the lower bound could also be improved. Kostochka–

Mubayi–Verstraëte [10] partially achieved this by improving the upper bound

to
r(T (r),K(r)

s ) = O(sr/ log r)

and believed that the log factor was optimal.

In this paper we verify this assertion by analyzing the T (r)-free (hyper)graph

process. This process begins with an empty hypergraph G(0) on n vertices.

Given G(i − 1), the hypergraph G(i) is then formed by adding an edge ei

selected uniformly at random from the r-sets of vertices which neither form

edges of G(i − 1) nor create a copy of T (r) in the hypergraph G(i − 1) + ei.

The process terminates with a maximal T (r)-free graph G(M) with a random

number M of edges. Our main result is the following:

Theorem 1: For r ≥ 3 fixed, the T (r)-free process on n points produces an

r-graph with independence number O
(
(n log n)1/r

)
with high probability.
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This result together with the aforementioned result of Kostochka–Mubayi–

Verstraëte give the following generalization of (1) to hypergraphs.

Corollary 2: For fixed r ≥ 3 there are positive constants c1 and c2 with

c1
sr

log s
< r(T (r),K(r)

s ) < c2
sr

log s
.

Graph processes that iteratively add edges chosen uniformly at random sub-

ject to the condition that some graph property is maintained have been used to

generate interesting combinatorial objects in a number of contexts. In addition

to the lower bound on the Ramsey number r(K3,Ks) given by the triangle-free

graph process (discussed above), the H-free graph process gives the best known

lower bound on the Ramsey number r(Kt,Ks) for t ≥ 4 fixed and the best

known lower bound on the Turán numbers for some bipartite graphs [5]. The

process that forms a subset of Zn by iteratively choosing elements to be mem-

bers of the set uniformly at random subject to the condition that the set does

not contain a k-term arithmetic progression produces a set that has interesting

properties with respect to the Gowers norm [2].

The T (r)-free (hyper)graph process can be viewed as an instance of the ran-

dom greedy hypergraph independent set process. Let H be a hypergraph. An

independent set in H is a set of vertices that contains no edge of H . The ran-

dom greedy independent set process forms such a set by starting with an empty

set of vertices and iteratively choosing vertices uniformly at random subject to

the condition that the set of chosen vertices continues to be an independent set.

We study the random greedy independent set process for the hypergraph HT (r)

which has vertex set
(
[n]
r

)
and edge set consisting of all copies of T (r) on vertex

set [n]. Note that, since an independent set in HT (r) gives a T (r)-free r-graph on

point set [n], the random greedy independent set process on HT (r) is equivalent

to the T (r)-free process. Our analysis of the T (r)-free process is based on recent

work on the random greedy hypergraph independent set process due to Bennett

and Bohman [2].

The remainder of the paper is organized as follows. In the following Section

we establish some notation and recall the necessary facts from [2]. The proof

of Theorem 1 is given in the Section that follows, modulo the proofs of some

technical lemmas. These lemmas are proved in the final Section by application

of the differential equations method for proving dynamic concentration.
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2. Preliminaries

Let H be a hypergraph on vertex set V = V (H). For each set of vertices

A ⊆ V , let NH(A) denote the neighborhood of A in H, the family of all

sets Y ⊆ V \ A for which A ∪ Y ∈ H. We then define the degree of A in H
to be dH(A) = |NH(A)|. For a nonnegative integer a, we define Δa(H) to be

the maximum of dH(A) over all A ∈
(
V
a

)
. Next, for a pair of (not necessarily

disjoint) sets A,B ⊆ V , we define the codegree of A and B to be the number

of sets X ⊆ V \ (A ∪B) for which A ∪X,B ∪X both lie in H.

Recall that we define G(i) to be the r-graph produced through i steps of

the T (r)-free process. We let Fi denote the natural filtration determined by

the process (see [3], for example). We also simplify our notation somewhat

and write Ni(A) in place of NG(i)(A), di(A) in place of dG(i)(A), etc., when

appropriate.

The r-graph G(i) partitions
(
[n]
r

)
into three sets E(i), O(i), C(i). The set E(i)

is simply the set of i edges chosen in the first i steps of the process. The set

O(i) consists of the open r-sets: all e ∈
(
n
r

)
\E(i) for which G(i)+e is T (r)-free.

The r-sets in C(i) :=
(
[n]
r

)
\ (E(i) ∪ O(i)) are closed. Finally, for each open

r-set e ∈ O(i), we define the set Ce(i) to consist of all open r-sets f ∈ O(i) such

that the graph G(i)+ e+ f contains a copy of T (r) using both e and f as edges.

(That is, Ce(i) consists of the open r-sets whose selection as the next edge ei+1

would result in e ∈ C(i+ 1).)

We now introduce some notation in preparation for our application of the

results in [2]. Set

N :=

(
n

r

)
, D := (r + 1) ·

(
n− r

r − 1

)
, s :=

N

D1/r
.

Note that N is the size of the vertex set of the hypergraph HT (r) and D is the

vertex degree of HT (r) (in other words, every r-set in [n] is in D copies of T (r)).

The parameter s is the ‘scaling’ for the length of the process. This choice is

motivated by the heuristic that E(i) should be pseudorandom; that is, E(i)

should resemble in some ways a collection of r-sets chosen uniformly at random

(without any further condition). If this is indeed the case, then the probability

that a given r-set is open would be roughly

(
1−

( i

N

)r)D

≈ exp
{
−
( i

N

)r

D
}
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and a substantial number of r-sets are closed when roughly s edges have been

added. In order to discuss the evolution in more detail, we pass to a limit by

introducing a continuous time variable t where t = t(i) = i/s.

The evolution of key parameters of the process closely follows trajectories

given by the functions

q(t) := exp{−tr} and c(t) := −q′(t) = rtr−1q(t).

We introduce small constants ζ, γ such that ζ � γ � 1/r. (The notation α � β

here means that α is chosen to be sufficiently small relative to β.) The point

where we stop tracking the process is given by

imax := ζ ·ND−1/r(log1/r N) and tmax := imax/s = ζ log1/r N.

For i∗ ≥ 0, let Ti∗ denote the event that the following estimates hold for all

steps 0 ≤ i ≤ i∗:

(2) |O(i)| = (q(t)±N−γ)N,

and for every open r-set e ∈ O(i)

(3) |Ce(i)| = (c(t) ±N−γ)D1/r.

It follows from the results of Bennett and Bohman that Timax holds with high

probability. We now recall the results of [2] in order to verify that this is indeed

the case.

Bennett and Bohman studied the random greedy independent set process

applied to an r̂-uniform, D-regular hypergraph H. As we discuss above, the

T (r)-free process is identical to the random greedy independent set process

on the hypergraph HT (r) . Note that HT (r) is (r + 1)-uniform, and so in our

application of Bennett–Bohman we have r̂ = r+1. Define the (r̂−1)-codegree

of a pair of distinct vertices v, v′ in the hypergraph H to be the number of edges

e, e′ ∈ H such that v ∈ e \ e′, v′ ∈ e′ \ e and |e∩ e′| = r̂− 1. We let Γ(H) be the

maximum (r̂ − 1)-codegree of H.

Theorem 3 (Theorem 1.1 of [2]): Let r̂ and ε > 0 be fixed. Let H be an

r̂-uniform, D-regular hypergraph on N vertices such that D > N ε. If

(4) Δ�(H) < D
r̂−�
r̂−1−ε for � = 2, . . . , r̂ − 1
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and Γ(H) < D1−ε; then the random greedy independent set algorithm produces

an independent set I in H with

(5) |I| = Ω
(
N ·

( logN
D

) 1
r̂−1

)

with probability 1− exp{−NΩ(1)}.

Note that Δ�(HT (r)) = Θ(nr−�) = Θ(nr̂−1−�) and Γ(HT (r)) = 0, and there-

fore the work of Bennett–Bohman applies to the T (r)-free process. We require

more detailed information from [2]. Theorem 3 is proved by tracking key pa-

rameters of the process. These include the following, where we let I(i) be the

independent set that has been formed through i steps of the random greedy

independent set algorithm:

• The size of the set V (i) of vertices of H that remain available for in-

clusion in the independent set after i vertices have been added to the

independent set. Note that for the T (r)-free process, the set of vertices

that remain available for inclusion in the independent set in HT (r) is

precisely the collection of open edges O(i).

• For every vertex v available at step i, the number d2(v, i) of available

vertices u 
= v with the property that there is some edge e ∈ H such

that u, v ∈ e and |e∩ I(i)| = r̂− 2. Note that such an available vertex v

in the vertex set of HT (r) is an open edge in the T (r)-free process, and

the collection of vertices u that satisfy these conditions in HT (r) is the

set of open edges in the T (r)-free process in the set Ce(i).

Bounds on |V (i)| and d2(v, i) are given in equations (8) and (9), respectively,

of [2]. These bounds immediately give the estimates (2) and (3) quoted above.

Note that s2 = s+2 − s−2 , d2 = d+2 − d−2 , and the error functions fv, f2 can be

bounded above by D to an arbitrarily small constant, uniformly in t. More-

over, s2 (defined on page 11 of [2] and translated to our notation) is equal to

rD1/rtr−1q, which matches the main term in (3) as c(t) = rtr−1q(t).

We will also make use of the following fact regarding r-graphs that appear as

subgraphs of the T (r)-free process.

Lemma 4 (Lemma 5.1 of [2]): Fix a constant L and suppose e1, . . . , eL ∈
(
[n]
r

)
form a T (r)-free hypergraph. Then for all steps j ≤ imax,

P[{e1, . . . , eL} ⊆ E(j)] = (j/N)L · (1 + o(1)).
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Note that the fact that Timax holds with high probability does not prove that

the independence number of G(M) is O((n logn)1/r) with high probability.

This is the main result in this work; it is proved below. Before commencing

with the details of the proof, we briefly observe that the desired bound on

the independence number of G(M) can be viewed as a pseudorandom property

of the r-graph G(i). Indeed, if G(i) resembles a collection of r-sets chosen

uniformly at random, then the expected number of independent sets of size k

would be (
n

k

)(
1−

(
k
r

)
(
n
r

)
)i

= exp
{
Θ(k logn)−Θ

(
i
kr

nr

)}
.

If the process lasts through i = Θ(ND−1/r(log1/r N)) = Θ(nr−1+1/r log1/r n)

steps, then we would anticipate an independence number of O((n log n)1/r). In

the remainder of the paper we make this heuristic calculation rigorous.

3. Independence number: Proof of Theorem 1

We expand the list of constants given in the previous section by introducing

large constants κ and W , and small constant ε such that

(6)
1

κ
� ζ � 1

W
� ε � γ.

In the course of the argument we introduce dynamic concentration phenomena

that will be stated in terms of the error function

f(t) := exp{W (tr + t)}.

Define the constant λ := κ−γ
2 , and then let

k := κ(n logn)1/r and � := λ(n log n)1/r,

noting that as γ is small, k ≈ 2�. Our aim is to show that the independence

number of G(imax) is at most k with high probability. To do so, we will show

that, provided κ is suitably large, w.h.p. for every step 0 ≤ i ≤ imax, every

k-element set of vertices has at least Ω(q(t)
(
k
r

)
) open r-sets. As equation (2)

establishes (1+o(1))q(t)N open r-sets in total w.h.p., the probability that Timax

holds and a given k-set remains independent over all imax steps is then at most

imax∏
i=1

(
1−Ω

(q(t)kr
q(t)N

))
=

(
1−Ω

(κr logn

nr−1

))imax

= exp{−ζκr·Ω(n1/r log1+1/r n)},



Vol. 214, 2016 THE INDEPENDENT NEIGHBORHOODS PROCESS 341

where our O(·),Ω(·),Θ(·) notation does not suppress any constant that appears

in (6). Since

nk = exp{κ ·O(n1/r log1+1/r n)},

this suffices by the union bound, provided κ is suitably large with respect to r

and ζ.

There is a significant obstacle to proving that every set of k vertices contains

the ‘right’ number of open r-sets. Since the forbidden r-graph T (r) consists

of an (r − 1)-set (R) along with an edge (a) contained in its neighborhood, it

follows that all r-sets within the neighborhood of an (r − 1)-set in G(i) must

be closed. (That is, if A ∈
(
[n]
r−1

)
then

(
Ni(A)

r

)
⊆ C(i).) So a set of k vertices

that has a large intersection with the neighborhood of an (r − 1)-set does not

have the ‘right’ number of open r-sets. To overcome this obstacle, we extend

the argument in [3] for bounding the independence number of the triangle-free

process. Our argument has two steps:

(1) We apply the differential equations method for establishing dynamic

concentration to show that unless a certain ‘bad’ condition occurs, a

pair of disjoint �-sets will have the ‘right’ number of open r-sets that

are contained in the union of the pair of �-sets and intersect both �-sets,

that is about q(t)·[
(
2�
r

)
−2

(
�
r

)
] open r-sets. Note that

(
2�
r

)
−2

(
�
r

)
> 1

3

(
k
r

)
,

say, as γ is small.

(2) We then argue that w.h.p., every k-set contains a (disjoint) pair of �-sets

which is ‘good’, i.e., for which the bad condition does not occur.

We formalize this with the notion of r-sets which are open ‘with respect to’ a

pair of disjoint �-sets.

Definition 2: Fix a disjoint pair A,B ∈
(
[n]
�

)
. The stopping time τA,B is the

minimum of imax and the first step i for which there exists a (r− 1)-set X such

that

Ni(X) ∩ A 
= ∅, Ni(X) ∩B 
= ∅, and |Ni(X) ∩ (A ∪B)| ≥ k/n2ε.

Definition 3: For each step i ≥ 0, we say that an r-set e ⊆ A∪B is open with

respect to the pair A,B in G(i) if e ∩ A 
= ∅, e ∩B 
= ∅, and either

• e ∈ O(i) or

• e ∈ O(i − 1) ∩ C(i) and i = τA,B.
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Let QA,B(i) count the number of r-sets which are open with respect to the pair

A,B in G(i).

Lemma 5: With high probability, for every disjoint pair A,B ∈
(
[n]
�

)
and all

steps 0 ≤ i ≤ τA,B,

(7) QA,B(i) =

(
q(t) ± f(t)

nε

)
·
[(

2�

r

)
− 2

(
�

r

)]
.

Lemma 6: With high probability, for every step 0 ≤ i < imax and every set

K ∈
(
[n]
k

)
, there exists a pair of disjoint �-sets A,B contained in K for which

τA,B > i.

Lemmas 5 and 6, respectively, complete steps 1 and 2 of the proof outlined

above. The ‘bad’ condition for a pair A,B of disjoint �-sets is the event that

we have reached the stopping time τA,B; that is, the bad condition is that there

is some (r − 1)-set whose neighborhood intersects both A and B and has large

intersection with A∪B. Note that if i < τA,B, then QA,B is equal to the number

of open r-sets that are contained in A ∪ B and intersect both A and B. Thus,

Lemma 5 says that if we do not have the ‘bad’ condition then we have the

‘right’ number of such sets. Lemma 6 then says that every k-set contains a pair

disjoint pair A,B of �-sets for which the ‘bad’ condition does not hold. Taken

together, Lemmas 5 and 6 yield that w.h.p., for every step 0 ≤ i < imax, every

k-set contains at least q(t)(1 + o(1))[
(
2�
r

)
− 2

(
�
r

)
] = Ω(q(t)

(
k
r

)
) open r-sets, as

required. We now prove Lemma 6 modulo the proof of Lemma 7 which bounds

the maximum degree of an (r − 1)-set. Lemmas 5 and 7 are proved in the next

Section.

Proof of Lemma 6. We require a bound on the maximum degree of (r− 1)-sets

of vertices. For each step i ≥ 0 let Di denote the event that

Δr−1(G(i)) ≤ ε(n logn)1/(r−1).

Lemma 7: Timax ∧Dimax holds with high probability.

The proof of Lemma 7 is given in the next Section.

Fix a step 0 ≤ i < imax, and a set K ∈
(
[n]
k

)
. Note that, by Lemma 7, we

may assume that Di holds. We also note that the maximum co-degree of a

pair of sets A,B ∈
(
[n]
r−1

)
is at most 5r with high probability. This follows from
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Lemma 4 and the union bound:

(8)
Pr

(
∃A,B∈

(
[n]

r − 1

)
with co-degree 5r

)
≤
(

n

r − 1

)(
n

r − 1

)
n5r

(
i

N

)10r

=n8−3r+o(1) = o(1).

Given these two facts (i.e., these degree and co-degree bounds for (r− 1)-sets),

the remainder of the proof is deterministic.

To begin, define the set

X :=

{
X ∈

(
[n]

r − 1

)
: |Ni(X) ∩K| ≥ k/n2ε

}
.

Claim 1: |X | < 2n2ε.

Proof. Suppose ∃Y ⊆ X with |Y| = 2n2ε. Let N =
⋃

Y ∈Y(Ni(Y ) ∩ K). By

inclusion-exclusion,

k ≥ |N | ≥ |Y| · (k/n2ε)− |Y|25r ≥ 2k − 20rn4ε,

a contradiction as ε is small and k = n1/r+o(1).

Next, we ‘discard’ from K the vertices which are common neighbors of (r−1)-

sets in X : let

Kbad := {v ∈ K : ∃X,Y ∈ X with X 
= Y and v ∈ Ni(X) ∩Ni(Y )}

and Kgood := K \Kbad. Then

|Kbad| ≤ |X |25r ≤ 20rn4ε <
γ

2
· (n logn)1/r,

say, for large n.

We find disjoint �-subsets A,B of Kgood as follows, noting

|Kgood| ≥ 2�+ (γ/2)(n logn)1/r.

For each subset Y ⊆ X , let

N(Y) =
⋃
Y ∈Y

Ni(Y ) ∩Kgood.

Now, choose a maximal subset X ∗ ⊆ X subject to |N(X ∗)| ≤ �. If X ∗ = X ,

then let A,B be �-sets satisfying N(X ∗) ⊆ A ⊆ Kgood and B ⊆ Kgood \A.
Otherwise, pick any set X∗ ∈ X \ X ∗, so

� < |N(X ∗ ∪ {X∗})| < �+ ε(n logn)1/r;

let A ⊆ N(X ∗ ∪ {X∗}) and B ⊆ Kgood \N(X ∗ ∪ {X∗}) be �-sets.
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Observe now that if X ∗ = X , then Ni(X)∩B = ∅ for all X ∈ X . Otherwise, if

X ∈ X ∗∪{X∗}, Ni(X)∩B = ∅, but if X ∈ X \(X ∗∪{X∗}), then Ni(X)∩A = ∅
as we are working within Kgood. In either case, for every (r−1)-set X for which

|Ni(X)∩ (A∪B)| ≥ k/n2ε holds, either Ni(X)∩A = ∅ or Ni(X)∩B = ∅, and
τA,B > i follows.

4. Dynamic Concentration

In this section we prove Lemmas 5 and 7. Both of these statements assert

dynamic concentration of key parameters of the T (r)-free process. We apply

the differential equations method for proving dynamic concentration, which we

now briefly sketch.

Suppose we have a combinatorial stochastic process based on a ground set of

size n that generates a natural filtration F0,F1, . . . . Suppose further that we

have a sequence of random variables A0, A1, . . . and that we would like to prove

a dynamic concentration statement of the form

(9) Ai ≤ Ti + Ei for all 0 ≤ i ≤ m(n) with high probability,

where T0, T1, . . . is the expected trajectory of the sequence of random variables

Ai and E0, E1, . . . is a sequence of error functions. (One is often interested in

proving a lower bound on Ai in conjunction with (9). The argument for proving

this is essentially the same as the upper bound argument that we discuss here.)

We often make this statement in the context of a limit that we define in terms

of a continuous time t given by t = i/s where s is the time scaling of the

process. The limit of the expected trajectory is determined by setting

Ti = f(t)S(n)

where S = S(n) is the order scaling of the random variable Ai. Given these

assumptions we should have

E [Ai+1 −Ai | Fi] = Ti+1 − Ti = [f(t+ 1/s)− f(t)]S ≈ f ′(t) · S
s
.

Thus the trajectory is determined by the expected one-step change in Ai.

We prove (9) by applying facts regarding the probability of large deviations in

martingales with bounded differences. In particular, we consider the sequence

Di = Ai − Ti − Ei.
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Note that if we set T0 = A0 (which is often the natural initial condition), then

D0 = −E0. If we can establish that the sequence Di is a supermartingale and

E0 is sufficiently large, then it should be unlikely that Di is ever positive, and

(9) follows. In order to complete such a proof we show that the sequence Di is

a supermartingale, a fact that is sometimes called the trend hypothesis (see

Wormald [14]). The trend hypothesis will often impose a condition that the

sequence of error functions Ei is growing sufficiently quickly (i.e., the derivative

of the limit of the error function is sufficiently large). We then show that the

one-step changes in Di are bounded in some way (this is sometimes called the

boundedness hypothesis). This puts us in the position to apply a martingale

inequality. In order to get good bounds from the martingale inequality one

generally needs to make E0 large.

In this section we appeal to the following pair of martingale inequalities

(see [3]). For positive reals b, B, the sequence A0, A1, . . . is said to be (b, B)-

bounded if Ai − b ≤ Ai+1 ≤ Ai +B for all i ≥ 0.

Lemma 8: Suppose b ≤ B/10 and 0 < a < bm. If A0, A1, . . . is a (b, B)-bounded

submartingale, then P[Am ≤ A0 − a] ≤ exp{−a2/3bmB}.

Lemma 9: Suppose b ≤ B/10 and 0 < a < bm. If A0, A1, . . . is a (b, B)-bounded

supermartingale, then P[Am ≥ A0 + a] ≤ exp{−a2/3bmB}.

Our applications of these Lemmas make use of stopping times. Formally

speaking, a stopping time is simply a positive integer-valued random variable

τ for which {τ ≤ n} ∈ Fn. In other words, τ is a stopping time if the event

τ ≤ n is determined by the first n steps of the process. We consider the stopped

process (Di∧τ ), where x ∧ y := min{x, y}, in place of the sequence D0, D1, . . . .

Our stopping time τ is the first step in the process when any condition on some

short list of conditions fails to hold, where the condition Di ≤ 0 is one of the

conditions in the list. Note that, since the variable (Di∧τ ) does not change once

we reach the stopping time τ , we can assume that all conditions in the list hold

when we are proving the trend and boundedness hypotheses. Also note that if

the stopping time τ ′ is simply the minimum of imax and the first step for which

Di > 0, then {Dimax∧τ ′ > 0} contains the event {∃i ≤ imax : Di > 0}.

4.1. Proof of Lemma 7. For each set A ∈
(
[n]
r−1

)
and step i ≥ 0, let

OA(i) := {e ∈ O(i) : A ⊆ e}, and QA(i) = |OA(i)|.
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We define sequences of random variables

Y +
A (i) := q(t) · n−QA(i) + f(t) · n1−ε,

Y −
A (i) := q(t) · n−QA(i)− f(t) · n1−ε,

ZA(i) := di(A) − t ·D−1/rn− f(t)q(t)−1 · n1/r−ε.

Finally, we define the stopping time τ to be the minimum of
(
n
r

)
, the first step

i where Ti fails, or where any of Y +
A (i) < 0, Y −

A (i) > 0, or ZA(i) > 0 holds for

some A ∈
(
[n]
r−1

)
.

To prove Lemma 7, we show that for each A ∈
(
[n]
r−1

)
,

P[Y +
A (imax ∧ τ) < 0] = o(n−(r−1)),(10)

P[Y −
A (imax ∧ τ) > 0] = o(n−(r−1)), and(11)

P[ZA(imax ∧ τ) > 0] = o(n−(r−1)).(12)

Consider the event τ ≤ imax. This event is the union of the event that Timax

fails and the event that there exists A ∈
(
[n]
r−1

)
such that Y +

A (imax ∧ τ) < 0 or

Y −
A (imax∧τ) > 0 or ZA(imax∧τ) > 0. Since Timax holds with high probability, it

follows from (10)–(12) and the union bound that w.h.p. τ > imax. In particular,

ZA(i) ≤ 0 for all (r − 1)-sets A and steps 0 ≤ i ≤ imax. It then follows—since

ζ � min{1/W, ε} implies that we may bound f(tmax) < nε/2, say—that we

have

Δr−1(G(imax)) ≤tmaxD
−1/rn+ f(tmax)n

1/r−ε/2

=ζ ·O((n log n)1/r) ≤ ε(n logn)1/r,

for n sufficiently large. (We remark in passing that the bounds on Y ±
A (i) given

when i < τ are necessary for our proof of the bounds on ZA(i).)

For the remainder of this argument, fix a set A ∈
(
[n]
r−1

)
. We first prove (10)

and (11).

Claim 2: For n sufficiently large, the variables Y +
A (0), . . . , Y +

A (imax ∧ τ)

form an (O(n/s), O(n1− 1
2r ))-bounded submartingale, and the variables

Y −
A (0), . . . , Y −

A (imax∧τ) form an (O(n/s), O(n1− 1
2r ))-bounded supermartingale.

Proof. We begin by fixing a step 0 ≤ i ≤ imax, and we assume that i < τ .

Throughout we write t = t(i), and note that t(i + 1) = t + s−1 and that

s−1 = D1/r/N = Θ(n1−1/r−r).
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To aid the calculations to follow, we begin by estimating the quantity

Ξ := f(t+ s−1)− f(t).

Since f(t) = exp(Wtr +Wt), f ′(t) and f ′′(t) are products of f(t) with polyno-

mials in t. As ζ � max{1/W, ε}, tmax is polylogarithmic in n, and n is large,

we have the crude bounds f(t) ≤ nε/2 and f ′′(t) ≤ no(1)f ′(t). Thus, by Taylor’s

Theorem,

(13)
∣∣∣Ξ− f ′(t)

s

∣∣∣ = O
(maxt∗≤tmax f

′′(t∗)
s2

)
= o

(f ′(t)
s

)
.

Observe now that we may write

Y ±
A (i+ 1)− Y ±

A (i) = (q(t+ s−1)− q(t)) · n− (QA(i + 1)−QA(i))± Ξ · n1−ε.

(Note that this stands for the pair of equations in which each ± is replaced with

+ or with −, respectively.) We begin by establishing the boundedness claims:

it is routine to verify that c(t) and c′(t)
are bounded over the reals, implying

(14) |q(t+ s−1)− q(t)− c(t) · s−1| = O(s−2),

and so

0 ≥ (q(t+ s−1)− q(t)) · n ≥ −O
(n
s

)
.

As we have the bound |f ′(t)| = nε/2+o(1) and (13), we have |Ξ| · n1−ε = o(n/s),

and the lower bound in the boundedness claims follows. To establish the upper

bounds, it remains to bound QA(i) − QA(i + 1). Consider the ‘next’ edge

ei+1 ∈ O(i) and observe that

QA(i)−QA(i+ 1) = |({ei+1} ∪ Cei+1(i)) ∩OA(i)|.

We bound |Cei+1(i) ∩OA(i)| by considering five cases depending on |ei+1 ∩A|:
Case 1: |ei+1 ∩ A| = 0. Let f ∈ OA(i) ∩ Cei+1 (i): then f = A ∪ {v} for

some vertex v, and since G(i) + ei+1 + f contains a copy of T (r), v ∈ ei+1 must

hold. (Recall that every pair of edges in T (r) either shares exactly one or r − 1

vertices.) In this case, |Cei+1(i) ∩OA(i)| ≤ |ei+1| = r.

Case 2: |ei+1 ∩A| = r − 1. In this case, we may write ei+1 = A ∪ {u1}. Now,
let f = A ∪ {v} ∈ OA(i) ∩ Cei+1(i): since f ∩ ei+1 = A and f ∈ Cei+1(i), there

must exist vertices u2, . . . , ur−1 ∈ Ni(A) so that {u1, . . . , ur−1, v} ∈ E(i). As

then v ∈ Ni({u1, . . . , ur−1}), we may bound the number of such choices of v
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(and hence of f) in this case above by Δr−1(G(i))r−1 ≤ ζr−1(n logn)(r−1)/r.

(Note that the bound on the maximum degree follows as ZA(i) ≤ 0 since i < τ .)

Case 3: |ei+1∩A|=1. Write A={x1, . . . , xr−1}, where we take ei+1 ∩ A={x1}.
Let f = A∪ {v} ∈ Cei+1(i)∩OA(i), and suppose v /∈ ei+1 (as there are at most

r − 1 such v), so f ∩ ei+1 = {x1}. Consider a copy of T (r) in G(i) + ei+1 + f

using both ei+1 and f as edges: without loss of generality, we may assume that

one of ei+1, f maps to the edge b1 of T (r), the other to the edge a.

If ei+1 maps to b1, then the (r − 1)-set ei+1 \ {x1} maps to the common

intersection B of b1, . . . , br. Consequently v ∈ Ni(ei+1 \ {x1}) must hold, and

so there are at most Δr−1(G(i)) such r-sets f ∈ Cei+1(i) ∩OA(i).

Otherwise, if ei+1 maps to the edge a and f maps to b1, then {x2, . . . , xr−1, v}
maps to the common intersection B. Thus, for each u ∈ ei+1 \ {x1} we have

{u, x2, . . . , xr−1, v} ∈ E(i), implying v ∈ Ni({u, x2, . . . , xr−1}) and (as ei+1 is

fixed) there are again at most Δr−1(G(i)) such choices of f . Thus, in this case

we have |Cei+1(i) ∩OA(i)| ≤ 2 + 2Δr−1(G(i)) = n1/r+o(1).

Case 4: 1 < |ei+1 ∩ A| = r − 2. Let f = A ∪ {v} ∈ OA(i) ∩ Cei+1(i). Since

|f ∩ ei+1| ≥ |A ∩ ei+1| > 1, |f ∩ ei+1| = r− 1 must hold, implying v ∈ ei+1 and

so |OA(i) ∩ Cei+1(i)| ≤ r as in Case 1.

Case 5: 2 ≤ |ei+1 ∩ A| ≤ r − 3. In this case, |Cei+1(i) ∩ OA(i)| = 0, as every

f ∈ OA(i) satisfies 1 ≤ |f ∩ ei+1| ≤ r − 2.

From the cases above it follows that

QA(i)−QA(i+ 1) ≤ n(r−1)/r+o(1),

and combining the above bounds, it follows that the sequences

Y ±
A (0), . . . , Y ±

A (imax ∧ τ)

are (O(n/s), O(n1− 1
2r ))-bounded.

We turn now to the sub- and supermartingale claims: all expectation calcu-

lations to follow are implicitly conditioned on the history of the process up to

step i, and we recall that we assume i < τ . For each open r-set f ∈ OA(i), we

have f /∈ OA(i + 1) if and only if ei+1 ∈ Cf (i) ∪ {f}. Thus,

E
[
Y ±
A ((i+ 1))− Y ±

A (i)
]
= (q(t+s−1)− q(t)) ·n+

∑
f∈OA(i)

|Cf (i)|+ 1

|O(i)| ±Ξ ·n1−ε.
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To establish the submartingale claim, consider the following chain of inequal-

ities:

∑
f∈OA(i)

|Cf (i)|+ 1

|O(i)| ≥ (q(t)− f(t)n−ε) · n · (c(t)−N−γ) ·D1/r

(q(t) +N−γ) ·N

=
(
1− N−γ + f(t)n−ε

q(t) +N−γ

)
(c(t)−N−γ) · n

s
.

≥ (1− 2q(t)−1f(t)n−ε)(c(t) −N−γ) · n
s

≥ (c(t)− 2c(t)q(t)−1f(t)n−ε −N−γ) · n
s

≥ (c(t)− (2c(t)q(t)−1 + 1) · f(t)n−ε) · n
s
.

The first inequality follows from the bounds given by (2) and (3) on the event

Ti and as Y −
A (i) ≤ 0, since i < τ . In the second and fourth inequalities we

bounded N−γ < f(t)n−ε, valid as f(t) ≥ 1 and ε � γ. Thus, applying this

bound and (14) gives

E
[
Y +
A (i+ 1)− Y +

A (i)
]
≥ Ξ · n1−ε − (2c(t)q(t)−1 + 1)f(t)

n1−ε

s
−O

( 1

s2

)

≥ Ξ · n1−ε − (2c(t)q(t)−1 + 2)f(t)
n1−ε

s

= ((1 + o(1))f ′(t)− (2c(t)q(t)−1 + 2)f(t)) · n
1−ε

s

by (13). Since f ′(t) = (Wrtr−1 + W )f(t) and 2c(t)q(t)−1 = 2rtr−1, this final

bound is nonnegative for large n as W is large, and so Y +
A (0), . . . , Y +

A (imax ∧ τ)

forms a submartingale.

We similarly bound E [QA(i)−QA(i+ 1)] above to establish the supermartin-

gale claim: as 1 < N−γD1/r for large n, and as Ti holds and Y +
A (i) ≥ 0,

∑
f∈OA(i)

|Cf (i)|+ 1

|O(i)| ≤ (q(t) + f(t)n−ε) · n · (c(t) + 2N−γ) ·D1/r

(q(t)−N−γ) ·N

=
(
1 +

N−γ + f(t)n−ε

q(t)−N−γ

)
(c(t) + 2N−γ) · n

s

≤ (1 + 4q(t)−1f(t)n−ε)(c(t) + 2N−γ) · n
s

≤ (c(t) + (4c(t)q(t)−1 + 4)f(t)n−ε) · n
s
.
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In addition to the bound N−γ ≤ f(t)n−ε used above, in the second inequality,

we bounded q(t)−N−γ ≥ q(t)/2, and in the final we bounded

2N−γ(1 + 4q(t)−1f(t)n−ε) ≤ 4f(t)n−ε

as

q(t)−1f(t)n−ε ≤ 1

which holds as 2Wζr < ε and n is large.

Thus,

E
[
Y −
A (i+ 1)− Y −

A (i)
]
≤ −Ξ · n1−ε + (4c(t)q(t)−1 + 4)f(t)

n1−ε

s
+O

( 1

s2

)

≤ −Ξ · n1−ε + (4c(t)q(t)−1 + 5)f(t)
n1−ε

s

= (−(1 + o(1))f ′(t) + (4c(t)q(t)−1 + 5)f(t)) · n
1−ε

s
,

and again, as W is large, this is strictly negative for n sufficiently large. Thus,

the sequence Y −
A (0), . . . , Y −

A (imax ∧ τ) forms a supermartingale, completing the

proof.

Since QA(0) = n− r + 1, Y +
A (0) = r − 1 + n1−ε and Y −

A (0) = r − 1 − n1−ε.

Applying Lemmas 8 and 9, respectively, we have

P[Y +
A (imax ∧ τ) < 0] ≤ exp

{
− Ω

( n2−2ε

n
s · ζs log1/r N · n1− 1

2r

)}

= exp{−n
1
2r−2ε+o(1)}

< exp{−n
1
4r }

(valid for large n as ε is small), and an identical calculation yields

P[Y −
A (imax ∧ τ) > 0] ≤ exp{−n

1
4r }.

We have established (10) and (11).

It remains to prove (12).

Claim 3: The variables ZA(0), . . . , ZA(imax∧ τ) form a (2n/N, 2)-bounded su-

permartingale.

Proof. We begin by fixing a step 0 ≤ i ≤ imax, and we assume that i < τ .

Throughout we write t = t(i). Let f1(t) = f(t)q(t)−1 = exp((W + 1)tr +Wt),

and let Ξ1 := f1(t+ s−1)− f1(t).
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By the same reasoning given in Claim 2, we may bound |f1(t)| < nε/2, say,

for large n, and f ′′
1 (t) ≤ no(1)f ′

1(t), and so

(15)
∣∣∣Ξ1 −

f ′
1(t)

s

∣∣∣ = O
(maxt∗<tmax f

′′
1 (t

∗)
s2

)
= o

(f ′
1(t)

s

)
.

Next, we observe that

ZA(i+ 1)− ZA(i) = di+1(A)− di(A)−
n

N
− Ξ1 · n1/r−ε.

The boundedness claim then follows for n sufficiently large as

0 ≤ dA(i+ 1)− dA(i) ≤ 1

and as

|Ξ1| · n1/r−ε ≤ nε/2+o(1) · n1/r−ε · s−1 < n/N

as

s−1 = D1/r/N = Θ(n1−1/r/N).

Turning to the supermartingale condition, observe that di+1(A) = di(A) + 1

if and only if ei+1 lies in the set of open r-sets counted by QA(i). Conditioned

on the history of the process up to step i, it follows that

(16)

E [ZA(i + 1)− ZA(i)] =
QA(i)

|O(i)| −
n

N
− Ξ1 · n1/r−ε

≤ (q(t) + f(t)n−ε) · n
(q(t)−N−γ) ·N − n

N
− Ξ1 · n1/r−ε

=
N−γ + f(t)n−ε

(q(t)−N−γ)
· n

N
− Ξ1 · n1/r−ε

≤ (N−γ + f(t)n−ε) · 2q(t)−1 · n

N
− Ξ1 · n1/r−ε

= (2q(t)−1N−γ + 2f1(t)n
−ε) · n

N
− Ξ1 · n1/r−ε

≤ 4f1(t) · n−ε · n

N
− Ξ1 · n1/r−ε

Note that the first inequality holds as Ti and Y +
A (i) ≥ 0 since i < τ , the

second as q(t)−N−γ ≥ q(t)/2 since ζ � γ, and the final as N−γ ≤ f(t) · n−ε,

since f(t) ≥ 1 and ε � γ. Noting that for large n, D ≥ nr−1/rr and so



352 T. BOHMAN, D. MUBAYI AND M. PICOLLELLI Isr. J. Math.

s−1 ≥ n1−1/r/(rN), by (15) we have

Ξ1 · n1/r−ε = (1 + o(1)) · f
′
1(t)

s
· n1/r−ε

≥ (1 + o(1)) · Wf1(t) · n1−1/r

rN
n1/r−ε

>
W

2r
· f1(t) · n−ε · n

N
.

Thus, since we assume W is large, the supermartingale condition follows now

from (16).

Finally, to show (12), we apply Lemma 9 to yield

P[ZA(imax ∧ τ) > 0] ≤ exp
{
− Ω

( n2/r−2ε

n
N · ζs log1/r N

)}

= exp
{
− n2/r−2ε

n1−(r−1)/r+o(1)

}

= exp{−n1/r−2ε−o(1)}

which suffices as ε is small. This completes the proof of Lemma 7.

4.2. Proof of Lemma 5. We begin by letting

S = S(n) =

(
2�

r

)
− 2

(
�

r

)
,

and we note that S = Θ(kr).

We fix a pair A,B of disjoint �-element subsets of [n], and define the following

sequences of random variables: for each step i ≥ 0, let

X+(i) = q(t) · S −QA,B(i) + f(t) · Sn−ε, and

X−(i) = q(t) · S −QA,B(i)− f(t) · Sn−ε.

We next define the stopping time τ∗ to be the minimum of τA,B and the first

step i for which X+(i) ≤ 0, X−(i) ≥ 0, or the event Ti fails to hold.

Claim 4: The sequence

X+(0), . . . , X+(imax ∧ τ∗)

forms a (O(kr/s), O(kr−1/n4ε))-bounded submartingale, and the sequence

X−(0), . . . , X−(imax ∧ τ∗)

forms a (O(kr/s), O(kr−1/n4ε))-bounded supermartingale.
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Proof. We fix a step 0 ≤ i ≤ imax, and we suppose that i < τ∗. Throughout we
write t = t(i), and note that t(i+ 1) = t+ s−1 and that

s−1 = D1/r/N = Θ(n1−1/r−r).

To aid the calculations to follow, we begin by estimating the quantity

Ξ := f(t+ s−1)− f(t). Recall equation (13):∣∣∣Ξ− f ′(t)
s

∣∣∣ = O
(maxt∗≤tmax f

′′(t∗)
s2

)
= o

(f ′(t)
s

)
.

Observe that we may write

X±(i+1)−X±(i) = (q(t+s−1)− q(t)) ·S− (QA,B(i+1)−QA,B(i))±Ξ ·Sn−ε.

(As above, this stands for the pair of equations in which each ± is replaced with

+ or with −, respectively.) We begin by establishing the boundedness claims:

by (14) and as S = Θ(kr), we have

0 ≥ (q(t+ s−1)− q(t)) · S ≥ −O
(kr
s

)
.

Next, bounding |f ′(t)| ≤ nε/2+o(1),

|Ξ| · Sn−ε ≤ n−ε/2+o(1) · k
r

s
.

In order to establish the boundedness part of the claim, it remains to bound

the quantity QA,B(i + 1)− QA,B(i). Let OA,B(i) denote the set of r-sets that

are open with respect to the pair A,B in G(i), and let Oτ denote the set of all

open r-sets whose selection as ei+1 would result in τA,B = i+ 1.

Now, if ei+1 ∈ Oτ , then QA,B(i + 1) − QA,B(i) = 0 by definition, and,

otherwise, we have

QA,B(i+ 1)−QA,B(i) = −|OA,B(i) ∩ (Cei+1 (i) ∪ {ei+1})|.

It suffices, then, to bound the quantity |Ce(i)∩OA,B(i)| for all e ∈ O(i)\Oτ : fix

such an open r-set e. Now, for any f ∈ Ce(i) ∩OA,B(i), there is a copy Tr,f of

T (r) in the graph G(i)+ e+ f using both e and f as edges. Up to isomorphism,

there are only three possibilities for the pair (e, f) in that copy: (e, f) maps to

(b1, b2), or to (b1, a), or to (a, b1). We treat these three cases separately.

Case 1: (e, f) maps to (b1, b2). In this case, the r − 1 vertices that map to

the set R lie entirely in e, and f is the union of those r − 1 vertices along with

another vertex lying in A ∪ B. Thus, we may bound the total number of such

f above by rk.
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Case 2: (e, f) maps to (b1, a). Let R′ = e − f , the set of r − 1 vertices

shared by all edges bj in this copy of T (r). Since f maps to a, it follows that

f ⊆ Ni(R
′), and as f ∈ OA,B(i), we know that f ⊆ A ∪ B, f ∩ A 
= ∅, and

f ∩ B 
= ∅. Consequently, Ni(R
′) intersects both A and B: since e /∈ Oτ , it

follows that |Ni(R
′) ∩ (A ∪B)| ≤ (k/n2ε) must hold.

Thus, by first selecting R′ ⊆ e, which then identifies the sole vertex in e ∩ f ,

and then selecting the r−1 vertices comprising f−e fromNi(R
′)∩(A∪B), we can

therefore bound the total number of such open r-sets f above by r(k/n2ε)r−1.

Case 3: (e, f) maps to (a, b1). There exists an (r − 1)-set R′ ⊆ A ∪B and a

vertex v ∈ e so that f = R′ ∪ {v} and so that e \ {v} ⊆ Ni(R
′). To bound the

number of such f , it suffices to bound the number of (r − 1)-sets R′ ⊆ A ∪ B

for which Ni(R
′) contains (r − 1) vertices from e.

To that end, fix a vertex v ∈ e and let Hv denote the (r − 1)-uniform

hypergraph on (A ∪ B) \ e whose edges are the (r − 1)-subsets X for which

Ni(X) ⊇ e \ {v}. We claim that

Δr−2(Hv) < 4r.

Suppose to the contrary that this does not hold: then there exist an (r− 2)-set

Y ⊆ (A ∪ B) \ e and vertices x1, x2, . . . , x4r ∈ (A ∪ B) \ (Y ∪ e) so that for

each vertex u ∈ e \ {v}, {u} ∪ Y ∪ {xj} ∈ E(i) for 1 ≤ j ≤ 4r. It follows from

Lemma 4 that such a configuration does not appear in G(i). Indeed, as this

configuration spans 6r− 3 vertices and has 4r(r− 1) edges, the probability that

such a configuration appears is at most

n6r−3
( i

N

)4r(r−1)

= n6r−3−4(r−1)2+o(1) = o(1).

It follows that |Hv| < 4r
(

k
r−2

)
, and thus the total number of such open r-sets f

as above is less than 4r2kr−2.

As ε is small and as k = n1/r+o(1), it follows that for large n we have

|Ce(i) ∩OA,B(i)| ≤ rk + r · (k/n2ε)r−1 + 4r2kr−2 = O(kr−1/n2ε(r−1)),

and as r ≥ 3 we conclude that

0 ≥ QA,B(i+ 1)−QA,B(i) = −O(kr−1/n4ε).

Thus, it follows that the sequences X±(0), . . . , X±(imax ∧ τ∗) are

(O(kr/s), O(kr−1/n4ε))-bounded as claimed.
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We now turn to the sub- and supermartingale claims, and we remark that all

expectation and probability calculations to follow are implicitly conditioned on

the history of the process up to step i. We begin by bounding the expected value

of QA,B(i + 1)−QA,B(i). Recall that we assume i < τA,B and that Oτ ⊆ O(i)

consists of the open r-sets whose selection as ei+1 would yield τA,B = i+1. We

claim that

(17) |Oτ | ≤ 4n2ε · k

To see this, let

R :=

{
X ∈

(
[n]

r − 1

)
: |Ni(X) ∩ (A ∪B)| ≥ k/(2n2ε)

}
.

Then |R| < 4n2ε, which can be argued as follows. Suppose by way of contra-

diction that ∃S ⊆ R with |S| = 4n2ε. Let N =
⋃

Y ∈S(Ni(Y ) ∩ (A ∪ B)). By

inclusion-exclusion and the fact that Lemma 4 implies that the co-degree of any

pair of (r − 1)-sets is at most 5r (see (8)), we have

k ≥ 2� = |A ∪B| ≥ |N | ≥ |S| · k/(2n2ε)− |S|25r ≥ 2k − 80rn4ε,

a contradiction as ε is small and k = n1/r+o(1). To deduce (17) it suffices to

observe that each open r-set e ∈ Oτ can be written e = {v}∪X for some vertex

v ∈ A∪B and (r− 1)-set X satisfying |Ni(X)∩ (A∪B)| ≥ k/n2ε− 1 (and thus

X ∈ R).

Conditioning on the event ei+1 /∈ Oτ then yields

E [QA,B(i+ 1)−QA,B(i)] = −
∑

e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)|

by linearity of expectation. Consequently,

E
[
X±(i + 1)−X±(i)

]
= (q(t+s−1)−q(t))·S+

∑
e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)| ±Ξ·Sn−ε.

To establish the submartingale claim, we note first that as r ≥ 3 and

ε � γ � 1/r, from (17) we have

|Oτ | = n1/r+2ε+o(1) < N−γ ·D1/r.
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Now, as i < τ∗, Ti and X−(i) ≤ 0 hold, we have

∑
e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)| ≥

(
q(t)− f(t)

nε

)
· S · (c(t) − 2N−γ)D1/r

(q(t) +N−γ)N

=
(
1− N−γ + f(t)n−ε

q(t) +N−γ

)
(c(t)− 2N−γ) · S

s

≥ (1 − 2q(t)−1f(t)n−ε)(c(t) − 2N−γ) · S
s

≥ (c(t) − 2c(t)q(t)−1f(t)n−ε − 2N−γ) · S
s

≥ (c(t) − (2c(t)q(t)−1 + 1)f(t)n−ε) · S
s
.

Note that these bounds follow for large n since f(t) ≥ 1 and ε � γ imply

N−γ ≤ f(t)n−ε/2. Applying this and (14) gives

E
[
X+(i+ 1)−X+(i)

]
≥ Ξ · Sn−ε − (2c(t)q(t)−1 + 1)f(t)

Sn−ε

s
−O

( 1

s2

)

≥ Ξ · Sn−ε − (2c(t)q(t)−1 + 2)f(t)
Sn−ε

s

=
(
(1 + o(1))f ′(t)− (2c(t)q(t)−1 + 2)f(t)

)
· Sn

−ε

s

by (13). Since f ′(t) = (Wrtr−1 + W )f(t) and 2c(t)q(t)−1 = 2rtr−1, this final

bound is nonnegative for large n as W is large, and so X+(0), . . . , X+(imax∧ τ)

forms a submartingale.

Turning to the supermartingale claim, we take a similar approach and begin

by noting that as Ti holds and X+(i) ≥ 0,

∑
e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)| ≤

(
q(t) +

f(t)

nε

)
· S · (c(t) +N−γ)D1/r

(q(t)−N−γ)N

=
(
1 +

N−γ + f(t)n−ε

q(t)−N−γ

)
(c(t) +N−γ) · S

s

≤ (1 + 2q(t)−1f(t)n−ε)(c(t) +N−γ) · S
s

≤ (c(t) + (2c(t)q(t)−1 + 1)f(t)n−ε) · S
s
.

The supermartingale condition then follows in essentially the same way as the

submartingale condition above.
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Now, as X+(0) = Sn−ε, X−(0) = −Sn−ε, S = Θ(kr) and imax = s · no(1), it

follows from Claim 4 and Lemmas 8 and 9 that

P[X+(imax ∧ τ∗) ≤ 0] ≤ exp
{
− Ω

( S2n−2ε

kr

s · kr−1

n4ε · sno(1)

)}
= exp{−k · n2ε−o(1)}.

Similarly, we have

P[X−(imax ∧ τ∗) ≥ 0] ≤ exp{−k · n2ε−o(1)}.

Since there are fewer than n2k = exp{2k logn} choices of the pair of sets A and

B, Lemma 5 follows from the union bound.
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