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ABSTRACT

We consider random polynomials whose coefficients are independent and

uniform on {−1, 1}. We prove that the probability that such a polynomial

of degree n has a double root is o(n−2) when n+1 is not divisible by 4 and

asymptotic to 8
√

3
πn2 otherwise. This result is a corollary of a more general

theorem that we prove concerning random polynomials with independent,

identically distributed coefficients having a distribution which is supported

on {−1, 0, 1} and whose largest atom is strictly less than 1/
√
3. In this

general case, we prove that the probability of having a double root equals

the probability that either −1, 0 or 1 are double roots up to an o(n−2)

factor and we find the asymptotics of the latter probability.

1. Introduction

A Littlewood polynomial is a polynomial whose coefficients are all in {−1, 1}.
By a random Littlewood polynomial of degree n we mean a Littlewood poly-

nomial chosen uniformly among all the 2n+1 Littlewood polynomials of degree

n. In this paper we investigate the probability that a random Littlewood poly-

nomial has a double root and show that it is O(n−2), and compute it up to an

error of order o(n−2).

Our result concerning random Littlewood polynomials is a corollary of a

more general theorem that we now state. Let (ξj), j ≥ 0, be an independent,

identically distributed sequence of random variables taking values in {−1, 0, 1}.
Let n ≥ 1 and define the random polynomial P by

P (z) :=

n∑
j=0

ξjz
j .

For a complex number z define the event

Dz := {z is a double root of P}.
Theorem 1.1: If

(1) max
x∈{−1,0,1}

P(ξ0 = x) <
1√
3

then

(2) P(P has a double root)=P(∪zDz)=P(D−1∪D0∪D1)+o(n−2) as n→∞.

Thus, up to a o(n−2) factor, the probability of having a double root is domi-

nated by the probability that either −1, 0 or 1 are double roots. Here and later
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in the paper we write o(an) to denote a term δn, where the sequence (δn) de-

pends only on the distribution of ξ0 and satisfies limn→∞ δn/an = 0. Similarly,

δn = O(an) means that lim supn→∞ |δn|/an < ∞.

Our next theorem calculates the asymptotics of the double root probability.

Theorem 1.2: Assume condition (1). First,

(3) lim
n→∞P(P has a double root) = P(ξ0 = 0)2.

Second, if

(4) P(ξ0 = 0) = 0

then

(5) P(P has a double root) =
Ln

n2
+ o(n−2) as n → ∞,

where Ln denotes the periodic sequence

(6) Ln :=

⎧⎪⎪⎨
⎪⎪⎩

8
√
3

πVar(ξ0)
if E(ξ0) = 0 and n+ 1 is divisible by 4,

4
√
3

πVar(ξ0)
if E(ξ0) �= 0 and n+ 1 is divisible by 4,

0 if n+ 1 is not divisible by 4.

We make a few remarks regarding the theorems.

(1) The event that P possesses a double root is the same as the event that

P and P ′ have a common root, which necessarily must lie in the annulus

A = {1/2 ≤ |z| ≤ 2} or at 0. Since the correlation coefficient between

P (z) and P ′(z) is bounded away from 1 as n → ∞ uniformly in A,

a natural heuristic is that the probability that P possesses a double

root is up to a multiplicative constant asymptotically the same as the

probability that P and an independent copy of P ′ possess a common

root, which by local CLT considerations and some analysis should be at

most of order n−2 when P(ξ0 = 0) = 0 (in case one considers P and an

independent copy P̃ of P , such an analysis was carried out in [KZ13]).

Directly carrying out this heuristic seems, however, challenging.

(2) We do not know if condition (1), or a condition of a similar kind, is

necessary for the conclusion (2) of Theorem 1.1 to hold; the theorem

does cover the interesting cases where the distribution of the coefficients

ξi is uniform on all three of {−1, 0, 1} or uniform on any two of these

values. See the open problems section for further information.
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(3) In case n + 1 is not divisible by 4, our results for P(ξ0 = 0) = 0 do

not yield the leading term in the asymptotic expansion of the left side

of (2); by parity consideration, in that situation, ±1 cannot be a dou-

ble root of P . In that situation, one needs to consider also roots of

unity of algebraic degree larger than 1. The asymptotics then depend

on further arithmetic properties of n. While our methods could in prin-

ciple be adapted to yield such results, we do not attempt to do so.

We note, however, that under certain number theoretic assumptions,

there exist infinitely many n for which the polynomial P is determinis-

tically irreducible, indeed, even the deterministic polynomial P mod 2

is irreducible mod 2; see [MO09].

(4) Our methods could also be used in evaluating the probability that P

possesses a root of multiplicity k. We expect that under the condition

(1), the probability of having a root of multiplicity k ≥ 2 (fixed) equals

P(either −1, 0 or +1 is a root of order of k)+o(n−k2/2). We have, how-

ever, not verified the details of this assertion. Note that, as described

in the next remark, it is known [FL99] that the probability that 1 is

a root of multiplicity k is of order O(n−k2/2) for random Littlewood

polynomials.

(5) When dealing with random Littlewood polynomials and when n+ 1 is

divisible by 4, the asymptotic probability that −1 or 1 are double roots

of P is already known and has an interesting history which we briefly

sketch. It suffices, as one may check simply (see (24) and (25)), to show

that

(7) P(P (1) = P ′(1) = 0) =
4
√
3

πn2
+ o(n−2).

That is, one needs to count the number of ±1 sequences {ai}ni=0 such

that
∑n

i=0 ai = 0 and
∑n

i=1 iai = 0. Setting bi = ai−1, this is the

same as counting the number of solutions of the system of equations∑n+1
i=1 bi = 0 and

∑n+1
i=1 ibi = 0, with bi ∈ {−1, 1}. The latter is a

quantity appearing in coding theory, namely, the number of spectral-

null codes of second order and length n+1, denoted S(n+1, 2), which

was evaluated (non-rigorously, and with a slightly different motivation)

already in [SN86], and rigorously in [FL99]. Both derivations start

from the substitution Xi = (bi + 1)/2 to show that S(n + 1, 2) equals

the number of partitions with distinct parts of (n + 1)(n + 2)/4 into
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(n+ 1)/2 parts with largest part at most n+ 1. The authors in [FL99]

then derive a local CLT, which implies the required asymptotics. Our

proof proceeds with a somewhat different approach to the local CLT,

using some ideas from [KLP13].

1.1. Overview of the proof of Theorem 1.1. Recall that the minimal

polynomial of an algebraic integer α is the monic polynomial in Z[x] of least de-

gree such that α is a root of that polynomial. We denote by deg(α) the algebraic

degree of an algebraic integer α, i.e., the degree of its minimal polynomial.

The first and perhaps most crucial step of our argument is the following

lemma which allows us to discard the algebraic integers with sufficiently high

degrees. The proof of the lemma is based on an idea appearing in a work of

Filaseta and Konyagin [FK96].

Lemma 1.3 (High degree): Under the assumption (1) there exist constants

C, c > 0 such that for any 1 ≤ d ≤ n,

P(P has a double root α with deg(α) ≥ d) ≤ C exp(−cd).

As we are aiming for an error of size o(n−2), as in (2), the lemma allows us

to restrict attention to algebraic integers α with deg(α) = O(log n). We shall

then make use of Dobrowolski’s result on Lehmer’s conjecture [D79] to further

restrict attention to two cases: the case when α is a root of unity or α = 0 and

the case when there is a conjugate β of α such that β lies a bit far away from

the unit circle, more precisely

|β| > 1 +
c

logn

( log logn
logn

)3
.

The first case is addressed in the following lemma whose proof relies on a clas-

sical anti-concentration result of Sárközi and Szemerédi [SS65].

Lemma 1.4 (Roots of unity): Under the assumption (1) there exists a constant

C > 0 such that if α satisfies αk = 1 for some k ≥ 1 then

P(α is a root of P ′) ≤
( C


n
k �
) 3 deg(α)

2

.

Using Lemma 1.4, we will show that if α is a root of unity with

deg(α) = O(log n) and deg(α) ≥ 2, then

P(α is a root of P ′) ≤ O
(( logn log log logn

n

)3)
.
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Since there are not many such roots of unity, in fact O((log n log log logn)2) of

them, a simple union bound implies that

P(P ′ has a root α such that α is a root of unity and 2 ≤ deg(α) = O( logn))

=o(n−2).

Finally, we deal with the second case as follows. We will show that the proba-

bility that α is a root of P decreases very rapidly with the distance of α from

the unit circle.

Lemma 1.5 (Far from the unit circle): Under the assumption (1), for any alge-

braic integer α �= 0,

P(α is a root of P ) ≤ e−
n log 3

2�log 3/| log |α||� .

The proof of the above lemma is elementary and is based on a sparsification

argument. We shall apply the lemma for α satisfying

|α| > 1 +
c

logn

( log logn
logn

)3
.

Since there are only exp(O((log n)2)) potential roots of P with algebraic degree

O(log n) (see Lemma 5.1), a union bound yields an error estimate of o(n−2) for

the second case too. Therefore, we conclude that the probability that P has a

double root is the same as the probability that P has a double root at −1, 0 or

1 up to an error of o(n−2).

1.2. Structure of the paper. Section 2 is dedicated to handling roots of

high algebraic degrees, i.e., to the proof of Lemma 1.3. Section 3 treats roots

of unity and provides the proof of Lemma 1.4. Section 4 handles roots that are

far away from the unit circle, providing the proof of Lemma 1.5. Section 5 is

dedicated to the deduction of Theorem 1.1. Section 6 is dedicated to the local

CLT and proof of Theorem 1.2. The paper ends with a few open questions.

Acknowledgements. We are grateful to Van Vu for mentioning the relevance

of Lehmer’s conjecture and Hoi H. Nguyen for the reference to Filaseta and

Konyagin [FK96]. Also, AS is indebted to Manjunath Krishnapur for many

insightful discussions. We thank an anonymous referee for spotting an error in

our original proof of Proposition 6.1, and Mei–Chu Chang for correspondence

[Ch14] concerning Assumption (1).
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2. High algebraic degree

In this section we prove Lemma 1.3. We start with two preliminary claims.

Claim 2.1: There exists a constant M such that for any n ≥ 1 and any non-

zero polynomial f of the form f(z) =
∑n

i=0 aiz
i with ai ∈ {−1, 0, 1} for all

0 ≤ i ≤ n, the number of z ∈ C for which f(z) = 0 and |z| ≥ 3
2 is at most M .

Proof. Assume, without loss of generality, that |an| = 1. Let

f̃(z) = znf(z−1) =

n∑
i=0

aiz
n−i

be the reciprocal polynomial of f . Denote by N(f) the number of z ∈ C for

which f(z) = 0 and |z| ≥ 3
2 . Then N(f) is also the number of z ∈ C for which

f̃(z) = 0 and |z| ≤ 2
3 . Noting that |f̃(0)| = 1 we may apply Jensen’s formula

(see, e.g., [A78, Chapter 5.3.1]) and obtain for any r > 2
3 that

max
0≤θ≤2π

log |f̃(reiθ)| ≥ 1

2π

∫ 2π

0

log |f̃(reiθ)|dθ

= log |f̃(0)|+
∑

z : f̃(z)=0, |z|≤r

log
( r

|z|
)

≥N(f) log
( r

2/3

)
.

Observe that when r < 1 we have |f̃(reiθ)| ≤ 1
1−r for all θ. Thus

N(f) ≤ 1

(1− r) log(3r/2)
,

2

3
< r < 1

and substituting r = 0.82, say, yields that N(f) ≤ 26, finishing the proof.

Claim 2.2: Let P be the random polynomial from Theorem 1.1 and assume

(1). There exist constants C, c > 0 such that for any B > 0 we have

P(P(3) is divisible by k2 for some integer k ≥ B) ≤ CB−c.

Proof. Let k ≥ 1 be an integer and let r be the integer satisfying 3r ≤ k2 < 3r+1.

By conditioning on ξr, ξr+1, . . . , ξn we have

(8) P(P (3) mod k2=0)≤max
m∈Z

P

( r−1∑
j=0

ξj3
j mod k2=m

)
=max

m∈Z

P

( r−1∑
j=0

ξj3
j=m

)
,



62 R. PELED, A. SEN AND O. ZEITOUNI Isr. J. Math.

where the last equality follows from the fact that∣∣∣∣
r−1∑
j=0

ξj3
j

∣∣∣∣ ≤ 1

2
(3r − 1)

deterministically and k2 ≥ 3r by the definition of r. Write

max
x∈{−1,0,1}

P(ξ0 = x) =
1√
3
− δ ∈ [

1

3
,
1√
3
)

by the assumption (1). Observe that

(9) the mapping (a0, . . . , ar−1) �→
r−1∑
j=0

aj3
j is one-to-one on {−1, 0, 1}r

as the ternary expansion of an integer is unique. Thus,

(10) max
m∈Z

P

( r−1∑
j=0

ξj3
j = m

)
≤
( 1√

3
− δ
)r

.

Combining (8) and (10) with the fact that r > 2 log k
log 3 − 1 we deduce that

P(P (3) mod k2 = 0) ≤ 3
( 1√

3
− δ
)2 log k

log 3
= 3k−γ,

where

γ := − log
( 1√

3
− δ
)
/ log

√
3 > 1.

Summing over k ≥ B we obtain

P(P(3) is divisible by k2 for some integer k ≥ B) ≤ CB−(γ−1),

for some suitable constant C > 0, as required.

We now complete the proof of Lemma 1.3. Let P be the random polynomial

from Theorem 1.1 and assume (1). Fix 1 ≤ d ≤ n. Let α be an algebraic

integer of degree d with (monic) minimal polynomial g. Denote by C(α) the

set of algebraic conjugates of α (i.e., the set of roots of g). Suppose that α is

a double root of P . Then, necessarily g divides P and therefore |β| ≤ 2 for all

β ∈ C(α) and, by Claim 2.1, all but at most M of the β ∈ C(α) satisfy |β| ≤ 3
2 .

We conclude that

|g(3)| =
∏

β∈C(α)

|3− β| ≥ (32 )
d−M ≥ c1(

3
2 )

d,
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where c1 := (32 )
−M > 0. In addition, the facts that α is a double root of P

and that α cannot be a multiple root of g, since in that case α is also a root

of g′ violating the minimality of g, imply that g2 divides P in Z[x] so that,

in particular, the integer P (3) is divisible by g(3)2. Putting the above facts

together we arrive at the inclusion of events

{α is a double root of P}
⊆ {P (3) is divisible by k2 for some integer k ≥ c1(

3
2 )

d}.
Lemma 1.3 now follows from Claim 2.2.

3. Roots of unity

In this section we prove Lemma 1.4. We make use of the following anti-

concentration result of Sárközi and Szemerédi [SS65].

Theorem 3.1: Let (εj), 1 ≤ j ≤ N , be independent random variables with

P(εj = 0) = P(εj = 1) = 1
2 . There exists a constant C > 0 such that for any

distinct integers (aj), 1 ≤ j ≤ N , we have

max
m∈Z

P

( N∑
j=1

εjaj = m

)
≤ C

N3/2
.

Clearly, by a linear change of variable, the theorem continues to hold when

P(εj = a) = P(εj = b) = 1
2 for any {a, b} ⊂ Z. The following corollary extends

this to our non-symmetric setting.

Corollary 3.2: Let (ξj) be as in Theorem 1.1. There exists a constant C > 0

such that for any distinct integers (aj), 1 ≤ j ≤ N , we have

max
m∈Z

P

( N∑
j=1

ξjaj = m

)
≤ C

N3/2
.

Proof. Using the assumption (1) there exists some p>(1− 1√
3
), a �=b∈{−1, 0, 1}

and a random variable η supported in {−1, 0, 1} such that if we let ε be uniform

on {a, b} then the distribution of ξ1 has the distribution of the mixture obtained

by sampling ε with probability p and sampling η with probability 1 − p. Let

(εj), (ηj), j ≥ 1, be independent identically distributed sequences with the

distributions of ε and η respectively. Independently, couple each ξj to (εj , ηj)
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as the above mixture. Let T be the random set of indices 1 ≤ j ≤ N in which

we sampled εj to obtain ξj . Thus |T | is distributed as a binomial with N trials

and success probability p. Using Theorem 3.1 we have

max
m∈Z

P

( N∑
j=1

ξjaj = m

)
=max

m∈Z

EP

( N∑
j=1

ξjaj = m
∣∣∣T, (ξj)j /∈T

)

≤Emax
m∈Z

P

(∑
j∈T

ξjaj = m
∣∣∣T)

=Emax
m∈Z

P

(∑
j∈T

εjaj = m
∣∣∣T) ≤ E

(
min

(
1,

C

|T |3/2
))

.

It remains to note that by standard concentration estimates for binomial random

variables there exists some universal constant c > 0 for which

P

(
|T | ≤ 1

2
Np
)
≤ exp(−cNp).

Thus

E

(
min

(
1,

C

|T |3/2
))

≤ exp(−cNp) +
C

(12Np)3/2
.

We complete now the proof of Lemma 1.4. Let α be such that αk = 1 for

some k ≥ 1. Observe that necessarily deg(α) ≤ k. Set

J :={j : 1 ≤ j ≤ n and 0 ≤ (j − 1) mod k ≤ deg(α)− 1},
J̄ :={1, . . . , n} \ J.

Define the random variables (Sr), 0 ≤ r ≤ deg(α)− 1, by

Sr :=
∑
j∈J

j−1 mod k=r

ξjjα
j−1 = αr

∑
j∈J

j−1 mod k=r

ξjj

and

S̄ :=
∑
j∈J̄

ξjjα
j−1.

Observe that

P ′(α) =
n∑

j=1

ξjjα
j−1 =

∑
j∈J

ξjjα
j−1 +

∑
j∈J̄

ξjjα
j−1 =

deg(α)−1∑
r=0

Sr + S̄.

Now, by definition, (Sr), 0 ≤ r ≤ deg(α) − 1, are independent and also inde-

pendent of S̄. In addition, (αr), 0 ≤ r ≤ deg(α) − 1, are linearly independent
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over the rational numbers, and therefore the equation
∑deg(α)−1

i=0 aiα
i = z has

at most one integral solution (a0, . . . , adeg(α)−1) for a given z ∈ C. Hence

P(P ′(α) = 0) =EP

( deg(α)−1∑
r=0

Sr = −S̄
∣∣∣ S̄)

≤max
z∈C

P

( deg(α)−1∑
r=0

Sr = z

)

=

deg(α)−1∏
r=0

max
z∈C

P(Sr = z)

=

deg(α)−1∏
r=0

max
m∈Z

P

( ∑
j∈J

j−1 mod k=r

ξjj = m

)
.

Applying Corollary 3.2 and the fact that |J | ≥ 
n/k� we conclude that

P(P ′(α) = 0) ≤
( C


n
k �
) 3 deg(α)

2

.

4. Roots off the unit circle

In this section we prove Lemma 1.5. Let α �= 0 be an algebraic integer. We

assume |α| �= 1 as otherwise the lemma is trivial. We note also that the proba-

bility that α is a root of P is the same as the probability that 1/α is a root of

P since P (α) has the same distribution as αnP (1/α). Thus we assume without

loss of generality that |α| > 1. Define j0 as the minimal positive integer for

which

(11) |α|j0 ≥ 3.

Write P (z) = P1(z) + P2(z) with

P1(z) :=

	n/j0
∑
k=0

ξkj0z
kj0 and P2(z) := P (z)− P1(z).

The assumption (11) implies that the mapping T : {−1, 0, 1}	n/j0
+1 → C

defined by

(a0, . . . , a	n/j0
) �→
	n/j0
∑
k=0

akα
kj0
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is one-to-one (similarly to (9)). Thus, as P1(α) and P2(α) are independent,

P(α is a root of P ) = E[P(α is a root of P |P2(α))]

= E[P(P1(α) = −P2(α) |P2(α))]

≤
(

max
x∈{−1,0,1}

P(ξ0 = x)
)	n/j0
+1

.

Finally, assumption (1) and the definition of j0 imply that

P(α is a root of P ) <
( 1√

3

)	n/j0
+1

≤ e
−n log 3

2j0 = e−
n log 3

2�log 3/ log |α|� .

5. Probability of double root

In this section we prove Theorem 1.1.

By definition, any root of a monic polynomial with integer coefficients is

an algebraic integer. Thus, unless all coefficients of P are zero, the equation

P (z) = 0 is satisfied only by algebraic integers z. We note this explicitly for

later reference,

(12) P(P has a root which is not an algebraic integer)=P(ξ0=0)n+1<3−n/2

by assumption (1).

Let c be the constant appearing in Lemma 1.3 and note first that this lemma

implies that

(13) P

(
P has a double root α with deg(α) ≥ 3 logn

c

)
≤ Cn−3.

Thus we may restrict attention to the following set of potential roots,

A :=
{
α ∈ C : α is a root of a monic polynomial

with coefficients in {−1, 0, 1} and deg(α) <
3 logn

c

}
.

We now use use another argument of Filaseta and Konyagin [FK96] to bound

the cardinality of A.

Lemma 5.1: There exists a constant C > 0 such that

|A| ≤ C(log n)2 .
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Proof. Let α ∈ A and denote by C(α) the set of its algebraic conjugates (in-

cluding α itself). Since α is a root of a monic polynomial with coefficients in

{−1, 0, 1} it follows immediately that

(14) |β| < 2 for each β ∈ C(α).

Now suppose deg(α) = d, let g be the minimal polynomial of α and denote

g(z) = zd +

d−1∑
j=0

ajz
j =

∏
β∈C(α)

(z − β).

From this representation and (14) we deduce that |aj | ≤ 4d for each j, whence

the integral vector (a0, . . . , ad−1) has at most 4d
2

possibilities. We conclude that

the number of α ∈ A with deg(α) = d is at most 4d
2

and the lemma follows by

summing over d.

We continue by recalling the Mahler measure of an algebraic integer. If α is

an algebraic integer having minimal polynomial

g(z) =
∏

β∈C(α)

(z − β),

where C(α) is the set of algebraic conjugates of α, then the Mahler measure

M(α) of α is

M(α) :=
∏

β∈C(α)
|β|≥1

|β|.

In particular, if α is an algebraic integer then M(α) = 1 if and only if α = 0

or |β| = 1 for all β ∈ C(α). Moreover, it follows from a classical theorem of

Kronecker [K57] that if α is an algebraic integer with |β| = 1 for all β ∈ C(α)

then α is a root of unity. Finally, Lehmer’s conjecture [L33] states that there

exists some absolute constant μ > 1 such that

M(α) = 1 or M(α) ≥ μ for all algebraic integers α.

We will make use of Dobrowolski’s result on Lehmer’s conjecture [D79] which

says that

M(α) = 1 or log(M(α)) ≥ c′
( log log(deg(α) + 2)

log(deg(α) + 2)

)3
for some c′ > 0 and all algebraic integers α.
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We remark that earlier weaker results on Lehmer’s conjecture such as those of

Blanksby and Montgomery [BM71] or Stewart [S78] would also have sufficed for

our purposes.

Now let α ∈ A and denote d := deg(α). Assume that α is neither 0 nor a

root of unity. It follows from the preceding discussion that

log(M(α)) ≥ c′
( log log(d+ 2)

log(d+ 2)

)3
and hence, using that ex ≥ 1 + x for x ≥ 0, one concludes that α has some

algebraic conjugate β satisfying

|β| ≥ 1 +
c′

d

( log log(d+ 2)

log(d+ 2)

)3
.

Since P (α) = 0 if and only if P (β) = 0 we may apply Lemma 1.5 to deduce

that

P(α is a root of P ) ≤ e−
n log 3

2�log 3/ log |β|� ≤ e
−c′′ n(log log(d+2))3

d(log(d+2))3

for some c′′ > 0. Putting this estimate together with Lemma 5.1 and the fact

that deg(α) < 3 logn
c for α ∈ A yields that

(15)

P(P has a root α ∈ A with α �= 0 and α not a root of unity)

≤C(log n)2e
−c′′′ n(log log log n)3

log n(log log n)3

for some c′′′ > 0. It remains to consider the probability that P has a root which

is a root of unity. Let α be a root of unity with k being the minimal positive

integer for which αk = 1 and d := deg(α). By Lemma 1.4,

(16) P(α is a double root of P ) ≤
( C


n
k �
) 3d

2

.

Since the minimal polynomial of α is given by the kth cyclotomic polynomial

Φk(x) :=
∏

1≤j≤k,
gcd(j,k)=1

(1 − e2πij/k)

(see, for example, Lemma 7.6 and Theorem 7.7 of [M96]), we have that

d = deg(Φk) = ϕ(k) where ϕ is Euler’s totient function, i.e.,

ϕ(k) = |{1 ≤ j ≤ k : gcd(j, k) = 1}|.
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By standard estimates (see [MV07, Theorem 2.9]) there exists some constant

c1 > 0 for which

d = ϕ(k) ≥ c1k

log log(k + 2)
.

Thus if α ∈ A, so that in particular deg(α) < 3 log n
c , then

(17) k ≤ C1 logn log log logn

for some C1 > 0. Substituting back in (16) yields

P(α is a double root of P ) ≤
(C2 logn log log logn

n

) 3d
2

for some C2 > 0. In particular, since there are at most k numbers α for which

k is the minimal positive integer such that αk = 1, we conclude from the last

two inequalities that

(18)

P(P has a double root α ∈ A \ {−1, 1} which is a root of unity)

≤ (C1 logn log log logn)2
(C2 logn log log logn

n

)3
= o(n−2).

Theorem 1.1 now follows by putting together (12), (13), (15) and (18).

6. Asymptotics of the double root probability

In this section we find asymptotics in many cases for the probability that the

random polynomial P has a double root, proving Theorem 1.2.

We start with the proof of (3). By Theorem 1.1 we may focus on the proba-

bility that either −1, 0 or 1 are double roots of P . We have

(19) P(0 is a double root of P ) = P(ξ0 = 0)2

since 0 is a double root of P if and only if the free coefficients of P and P ′

vanish. Thus, (3) follows by noting that the probability that either −1 or 1 are

double roots of P tends to zero with n by Lemma 1.4.

In the rest of the section we assume (4) and proceed to prove (5). By Theo-

rem 1.1 it suffices to find the asymptotics of the probability that either −1 or 1

are double roots of P .

We start with some simple observations. Note that

(20)
P (1) ≡ P (−1) ≡ n+ 1 mod 2,

P ′(1) ≡ P ′(−1) ≡
⌈n
2

⌉
mod 2.
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Thus,

(21) P(−1 or 1 are double roots of P ) = 0 if n+ 1 is not divisible by 4.

Together with Theorem 1.1 this establishes the case Ln = 0 in (5) and (6). We

henceforth make the assumption that

(22) n+ 1 is divisible by 4.

Next we note that P (1) = 0 if and only if exactly half of the (ξj)0≤j≤n are 1.

Thus, by standard large deviation estimates for binomial random variables,

(23) if E(ξ0) �= 0 then P(P (1) = 0) ≤ C exp(−cn)

for some constants C, c > 0. Additionally, it is straightforward to check that

(24) if E(ξ0) = 0 then (P (1), P ′(1)) d
=(P (−1), P ′(−1)).

Lastly, since we have the equality of events

{P ′(1) = P ′(−1) = 0} =

{ �n
2 ∑

k=1

(2k − 1)ξ2k−1 =

	n
2 
∑

k=1

2kξ2k = 0

}
,

it follows from Corollary 3.2 that

(25)

P(P ′(1) =P ′(−1) = 0)

=P

( �n
2 ∑

k=1

(2k − 1)ξ2k−1 = 0

)
P

( 	n
2 
∑

k=1

2kξ2k = 0

)
≤ C

n3

for some constant C > 0. Putting together Theorem 1.1, (23), (24) and (25) we

see that the remaining parts of Theorem 1.2 will follow by showing that

(26)
∣∣∣P(−1 is a double root of P )− 4

√
3

πVar(ξ0)n2

∣∣∣ = o(n−2).

These asymptotics will be established via a local central limit theorem. We rely

on some ideas from [KLP13], but aim to give a short proof tailored for our case

rather than a general statement.

We wish to compare the probability distribution of (P (−1), P ′(−1)) to the

density of a Gaussian random vector with the same expectation and covariance

matrix. To this end we denote

(27) X :=(P (−1), P ′(−1))=
( n∑

j=0

ξj(−1)j,

n∑
j=0

jξj(−1)j−1

)
=

n∑
j=0

(1,−j)ξj(−1)j .
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A short calculation, using our standing assumption (22), yields the expectation

μ and covariance matrix Σ of X ,

(28)

μ =

(
0,

n+ 1

2
E(ξ0)

)
,

Σ =

(
Var(ξ0)(n+ 1) −Var(ξ0)

2 n(n+ 1)

−Var(ξ0)
2 n(n+ 1) Var(ξ0)

6 n(n+ 1)(2n+ 1)

)
.

We also let Y denote a Gaussian random vector in R2 having expectation μ and

covariance matrix Σ. By standard facts regarding Gaussian random vectors,

the characteristic function Ŷ : R2 → C of Y is

(29) Ŷ (θ) = Ee2πi〈θ,Y 〉 = e2πi〈θ,μ〉−2π2θtΣθ

and the density fY : R2 → R of Y is

(30) fY (y) =
1

2π
√
det(Σ)

e−
1
2 (y−μ)tΣ−1(y−μ) =

∫
R2

e−2πi〈θ,y〉Ŷ (θ)dθ.

The characteristic function X̂ : R2 → C of X is also simple to calculate, as X

is given in (27) as a sum of independent random vectors,

(31)

X̂(θ) =Ee2πi〈θ,X〉

=

n∏
j=0

(pe2πi((−1)jθ1+j(−1)j−1θ2) + (1 − p)e−2πi((−1)jθ1+j(−1)j−1θ2)).

where we denote θ = (θ1, θ2) and let

p := P(ξ0 = 1).

In addition, we note that by the parity restrictions (20) the values of X lie in

the lattice 2Z2 (again, using our standing assumption (22)). Therefore we have

the representation

(32) P(−1 is a double root of P ) = P(X = (0, 0)) = 4

∫
[− 1

4 ,
1
4 ]

2
X̂(θ)dθ.

The following proposition relates X̂ to Ŷ near zero and shows that both are

small away from zero.

Proposition 6.1: Denote

D := [−n−5/12, n−5/12]× [−n−17/12, n−17/12].
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There exists an absolute constant C > 0 and constants Cp, cp > 0 depending

only on p such that:

(1) For every θ ∈ D we have |X̂(θ)− Ŷ (θ)| ≤ Cn−1/4.

(2) For every θ ∈ [−1/4, 1/4]2 \D we have |X̂(θ)| ≤ C exp(−cpn
1/6).

(3)
∫
R2\D |Ŷ (θ)|dθ ≤ Cp exp(−cpn

1/6).

Proof. We start with the proof of part 1. Define a function f : R → C by

f(x) := peix + (1 − p)e−ix.

A simple calculation using the Taylor expansion of the logarithm (see [KLP13,

Claim 4.10] for a similar claim) shows that for 0 ≤ p ≤ 1 and |x| ≤ π
4 we have

f(x) = e(2p−1)ix−2p(1−p)x2+δ(p,x)

where |δ(p, x)| ≤ C′|x|3 for some absolute constant C′ > 0. Plugging this into

(31) for θ ∈ D yields

X̂(θ) = exp

(
2π(2p− 1)i

n∑
j=0

((−1)jθ1 + j(−1)j−1θ2)

− 8π2p(1− p)

n∑
j=0

((−1)jθ1 + j(−1)j−1θ2)
2 + δ′

)

=exp(2πi〈θ, μ〉 − 2π2θtΣθ + δ′) = Ŷ (θ)eδ
′
,

where the error term δ′ =
∑n

j=0 δ(p, 2π((−1)jθ1 + j(−1)j−1θ2)) satisfies

|δ′| ≤ C′′
n∑

j=0

|(−1)jθ1 + j(−1)j−1θ2|3 ≤ C′′′n−1/4

and C′′, C′′′ > 0 denote absolute constants. This finishes the proof of part 1.

We now continue with the proof of part 3. It is useful to proceed by finding

a diagonal matrix which Σ dominates. Since, for all (θ1, θ2) ∈ R
2,

nθ1θ2 =
(√7

2
θ1

)( 2n√
7
θ2

)
≤ 1

2

(7
4
θ21 +

4n2

7
θ22

)
≤ 7

8
θ21 +

1

7
n(2n+ 1)θ22 ,

we conclude that

θtΣθ =Var(ξ0)(n+ 1)
(
θ21 +

1

6
n(2n+ 1)θ22 − nθ1θ2

)
≥Var(ξ0)(n+ 1)

(1
8
θ21 +

n(2n+ 1)

42
θ22

)
.
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Thus, by (29), we have∫
R2\D

|Ŷ (θ)|dθ =

∫
R2\D

e−2π2θtΣθdθ

≤
∫
R2\D

e−2π2 Var(ξ0)(n+1)( 1
8 θ

2
1+

n(2n+1)
42 θ2

2)dθ.

Now, letting G1, G2 be independent centered normal random variables with

Var(G1) = σ2
1 := 2

π2 Var(ξ0)(n+1) and Var(G2) = σ2
2 := 21

2π2 Var(ξ0)n(n+1)(2n+1) we

have that∫
R2\D

|Ŷ (θ)|dθ ≤2πσ1σ2P((G1, G2) /∈ D)

≤2πσ1σ2(P(|G1| > n−5/12) + P(|G2| > n−17/12))

≤ C

Var(ξ0)2
e−cVar(ξ0)n

1/6

for some absolute constants C, c > 0. This finishes the proof of part 3.

Finally we turn to part 2. By taking the constant C sufficiently large we may

assume that n is large. Fix θ ∈ [− 1
4 ,

1
4 ]

2. Write

xj := 2((−1)jθ1 + j(−1)j−1θ2), 0 ≤ j ≤ n.

For a real number x, denote by d(x,Z) its distance to the nearest integer. Let

J = J(θ) :=
{
0 ≤ j ≤ n : d(xj ,Z) ≤ 1

8
n−5/12

}
.

Using (31), if |J | ≤ 9(n+ 1)/10 then

|X̂(θ)| =
n∏

j=0

|pe2πixj + (1− p)| =
n∏

j=0

√
1− 2p(1− p)(1− cos(2πxj))

≤
(
1− 2p(1− p)

(
1− cos

(π
4
n−5/12

)))n+1−|J|
2

≤(1− 20cpn
−5/6)

n+1
20 ≤ exp(−cpn

1/6)

for some constant cp > 0 depending only on p. Hence it suffices to show that if

(33) |J | ≥ 9(n+ 1)/10

then θ ∈ D.

Assume (33). We claim that there necessarily exist j1, j2 such that j1, j2,

j1 + j2 ∈ J . Indeed, we may take j1 := min J ≤ n+1
10 and we then have
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J ∩ (j1 + J) �= ∅ by (33) and the pigeonhole principle since both J and j1 + J

are contained in [0, n+1
10 + n]. Thus,

(34)

d(2θ1,Z) = d((−1)j1+j2−1xj1+j2 + (−1)j1xj1 + (−1)j2xj2 ),Z)

≤ d(xj1+j2 ,Z) + d(xj1 ,Z) + d(xj2 ,Z) ≤
3

8
n−5/12,

whence, as |θ1| ≤ 1
4 ,

|θ1| = 1

2
d(2θ1,Z) ≤ 3

16
n−5/12.

Now, if |θ2| ≤ n−17/12 then θ ∈ D and we are done. Assume, in order to obtain

a contradiction, that |θ2| > n−17/12.

Let I := {0 ≤ j ≤ n : d(2jθ2,Z) >
1
2n

−5/12}. We claim that |I| ≥ n/3. To

see this let k be the minimal positive integer for which 2k|θ2| > n−5/12. Since

|θ2| ≤ 1/4 it follows that 2k|θ2| ≤ 1/2. Thus, if j �∈ I and j ≤ n − k then

necessarily j + k ∈ I. In addition, k ≤ 1
2n5/12|θ2| + 1 < n/2 + 1. In particular,

|I| ≥ k which shows the claim when k ≥ n/3. Otherwise, assume k < n/3 and

define

T := {j ∈ [0, n− k] ∩ Z : 
j/k� is even}.
We have that T and T + k are disjoint subsets of {0, . . . , n} and for each j ∈ T ,

either j or j+k belong to I. Hence |I| ≥ |T | ≥ (n−k+1)/2 > n/3, as claimed.

Now the assumption (33) and the above claim imply that there exists some

j3 ∈ J for which d(2j3θ2,Z) >
1
2n

−5/12, whence by (34), d(xj3 ,Z) >
1
8n

−5/12,

contradicting the fact that j3 ∈ J .

The asymptotics (26) are an immediate consequence of Proposition 6.1. In-

deed, by (30) and (32), and the proposition,

|P(−1 is a double root of P )− 4fY ((0, 0))|

=4

∣∣∣∣
∫
[− 1

4 ,
1
4 ]

2

X̂(θ)dθ −
∫
R2

Ŷ (θ)dθ

∣∣∣∣
≤4

(∫
D

|X̂(θ)− Ŷ (θ)|dθ +
∫
[− 1

4 ,
1
4 ]

2\D
|X̂(θ)|dθ +

∫
R2\D

|Ŷ (θ)|dθ
)

≤4Cn−1/4Area(D) + C exp(−cpn
1/6) +

4C

Var(ξ0)2
e−cVar(ξ0)n

1/6

= o(n−2).
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In addition, by (30) and (28) we have

fY ((0, 0)) =
1

2π
√
det(Σ)

e−
1
2μ

tΣ−1μ

=

√
12

2πVar(ξ0)(n+ 1)
√
n(n+ 2)

e
− 3(n+1)2

2n(n2+3n+2)

=

√
3

4πp(1− p)n2
+ o(n−2).

This finishes the proof of (26) and completes the proof of Theorem 1.2.

7. Open questions

We conclude the paper by listing several open questions.

(1) As mentioned in the introduction, we do not know if the assumption (1)

or any similar condition is necessary for Theorem 1.1 to hold. Recall

that the assumption enters into the proof mainly through Claim 2.2

which, in turn, is used to obtain the crucial Lemma 1.3.

Remark: Mei-Chu Chang [Ch14] has kindly pointed out to the

authors that for Claim 2.2 to hold, in Assumption (1) the constant

1/
√
3 = 0.5774 . . . can be replaced by the supremum of ρs so that there

exists q ∈ (1,∞) such that 3(q−1)/2q < ρq + (1 − ρ)q, leading to the

value 0.7615 . . .. This still leaves open the question of whether any

assumption of the type (1) is needed for Theorem 1.1 to hold.

(2) It is natural to try and extend Theorem 1.1 to more general coefficient

distributions. This would require a non-trivial modification of our ap-

proach as we relied in several places on the fact that the potential roots

of our random polynomial are algebraic integers rather than the more

general algebraic numbers. A significant issue is to deal with potential

roots of high degree, providing an analogue of Lemma 1.3.

Remark added during galley proofs: This question is partially answered

in the subsequent work [FS16]. The latter deals with a general coeffi-

cient distribution on the integers that has bounded support with max-

imum atom at most 1/2.
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(3) The following question does not involve any probability. Are there

examples of Littlewood polynomials with at least one non-cyclotomic

double root? The same question had been asked by Odlyzko and Poonen

[OP93] for polynomials with 0/1 coefficients with the constant term

equal to one. That question was later answered by Mossinghoff [M03]

who found examples of several such polynomials with non-cyclotomic

repeated roots.

(4) Another interesting question is to bound the probability that a random

Littlewood polynomial is reducible. This is somewhat related to our

original question regarding double roots—note that the probability of

having a double root is dominated by the probability of being reducible.

But handling irreducibility seems to be much harder. To the best of

our knowledge, it is open whether this probability goes to zero as n

increases. On the related question of estimating the probability that a

uniformly picked polynomial of degree d with 0, 1 coefficients is reducible

it seems that the state-of-the-art is the result of Konyagin [KO99] who

proves that the probability that the polynomial has a factor of degree

at most cd/ log(d) is at most C/
√
d. See the thread [MO09] for some

partial results on this question.
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de la Société Mathématique de France 106 (1978), 169–176.

[SN86] N. R. Saxena and J. P. Robinson, Accumulator compression testing, IEEE Transac-

tions on Computers C-35 (1986), 317–321.




