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ABSTRACT

Let δ > 1 and β > 0 be some real numbers. We prove that there are

positive u, v, N0 depending only on β and δ with the following property:

for any N,n such that N ≥ max(N0, δn), any N × n random matrix

A = (aij ) with i.i.d. entries satisfying supλ∈R P{|a11 − λ| ≤ 1} ≤ 1 − β

and any non-random N × n matrix B, the smallest singular value sn of

A + B satisfies P{sn(A + B) ≤ u
√
N} ≤ exp(−vN). The result holds

without any moment assumptions on the distribution of the entries of A.

1. Introduction

In the last years, spectral properties of random matrices with fixed dimensions

(the corresponding theory is often called non-asymptotic) have attracted con-

siderable attention of researchers, whose efforts have been mostly concentrated

on studying distributions of the largest and the smallest singular values. For

detailed information on the development of the subject, we refer the reader to

surveys [12], [22].

Let N ≥ n. Given an N × n random matrix A, we employ a usual notation

s1(A) := maxy∈Sn−1 ‖Ay‖; sn(A) := infy∈Sn−1 ‖Ay‖, where ‖ · ‖ is the standard

Euclidean norm in R
n. A limiting result of Z. D. Bai and Y. Q. Yin [3] suggests

that for an N × n matrix with i.i.d. mean zero entries with unit variance and
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a finite fourth moment, its largest and smallest singular values should “con-

centrate” near
√
N +

√
n and

√
N − √

n, respectively. In the non-asymptotic

setting one is interested, in particular, in finding the weakest possible conditions

on random matrices that would imply s1 �
√
N +

√
n and sn �

√
N −√

n with

a large probability.

For a randomN×nmatrix A with i.i.d. mean zero subgaussian entries, an ele-

mentary application of the standard ε-net argument yields s1(A)≤C(
√
N+

√
n)

with an overwhelming probability. Distribution of the smallest singular value

when N ≈ n requires a more delicate analysis. A. Litvak, A. Pajor, M. Rudelson

and N. Tomczak-Jaegermann showed in [7] that if N and n satisfy

N/n ≥ 1 + c1(lnN)−1 then P{sn(A) ≤ c2
√
N} ≤ exp(−c3N), where c1, c3 de-

pend only on the variance and the subgaussian moment, and c2 on the moments

and the aspect ratio N/n. The approach initiated in [7] was further developed

by M. Rudelson and R. Vershynin who combined it with certain Littlewood–

Offord-type theorems. In [15], Rudelson and Vershynin treated square matri-

ces and later, in [14], rectangular matrices with an arbitrary aspect ratio and

i.i.d. mean zero subgaussian entries, thereby sharpening and generalizing the

result of [7]. We note that the Littlewood–Offord theory has gained an impor-

tant role in the study of random matrices primarily due to T. Tao and V. Vu

(see, in particular, [19]).

Various estimates for the extremal singular values were obtained when study-

ing the problem of approximating the covariance matrix of a random vector by

the empirical covariance matrix. Answering a question of R. Kannan, L. Lovász

and M. Simonovits, the authors of [1] treated log-concave random vectors.

Later, the log-concavity was replaced by weaker assumptions (see, in partic-

ular, [2], [18], [9], [4]).

Recently, it has become apparent that different conditions are required to

bound the largest and the smallest singular value, and these two questions

should be handled separately. One of the results proved by N. Srivastava

and R. Vershynin in [18] provides a lower estimate for the second moment of

sn(A), where A is an N×n matrix with independent isotropic rows satisfying a

(2 + ε)-moment condition and certain assumptions on the aspect ratio N/n.

It is important to note that the conditions imposed on A are too weak to

imply the “usual” upper bound s1(A) �
√
N with a large probability [8].

This result of [18] was strengthened by V. Koltchinskii and S. Mendelson in

[5] under similar assumptions on the matrix. Another theorem of [5] states



Vol. 212, 2016 SMALLEST SINGULAR VALUE OF RANDOM MATRICES 291

the following: given an n-dimensional isotropic random vector X satifying

infy∈Sn−1 P{|〈X, y〉| ≥ α} ≥ β for some α, β > 0, there are C1, c2, c3 > 0

depending only on α, β such that for N ≥ C1n and the N × n random matrix

A with i.i.d. rows distributed like X , one has

P{sn(A) ≥ c2
√
N} ≥ 1− exp(−c3N).

We note that a closely related question of bounding random quadratic forms

from below was considered by R. I. Oliveira in [10].

The isotropy of a random vector or, more generally, boundedness of variances

of its coordinates is quite a natural assumption which appears as part of require-

ments on rows of a matrix in all of the aforementioned papers. However, for a

deeper understanding of non-asymptotic characteristics of random matrices, an

important question is whether any moment assumptions on entries are really

necessary in order to get satisfactory lower estimates for the smallest singular

value.

Unlike in [18] and [5] where the matrix entries within a given row are not

necessarily independent, in our paper we consider the classical setting when a

rectangular matrix has i.i.d. entries. However, in contrast with all the mentioned

results, the lower estimate for the smallest singular value that we prove does

not use any moment assumptions; the only requirement is that the distribution

of the entries satisfies a “spreading” condition given in terms of the Lévy con-

centration function. Moreover, compared to [18] and [5], we significantly relax

the assumptions on the aspect ratio of the matrix.

Given a real random variable ξ, the concentration function of ξ is defined

as

Q(ξ, α) = sup
λ∈R

P{|ξ − λ| ≤ α}, α ≥ 0.

The notion of the concentration function was introduced by P. Lévy [6] in the

context of studying distributions of sums of random variables. Note that for a

random variable ξ with zero median satisfying E|ξ|p ≥ m and E|ξ|q ≤ M for

some 0 < p < q and m,M > 0, we have Q(ξ, α) ≤ 1 − β for some α, β > 0

depending only on p, q,m,M . At the same time, the condition Q(ξ, α) ≤ 1− β

for some α, β > 0 does not imply any upper bounds on positive moments of ξ.

The main result of our paper is the following theorem:

Theorem 1: For any real β > 0 and δ > 1 there are u, v > 0 and N0 ∈ N

depending only on β and δ with the following property: Let N,n ∈ N satisfy
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N ≥ max(N0, δn); A = (aij) be an N × n random matrix with i.i.d. entries,

such that for some α > 0 the concentration function of the entries satisfies

(1) Q(a11, α) ≤ 1− β.

Then for any non-random N × n matrix B we have

(2) P{sn(A+B) ≤ αu
√
N} ≤ exp(−vN).

Adding the non-random component B in the theorem does not increase com-

plexity of the proof; on the other hand, it demonstrates “shift-invariance” of

the lower estimate. Note that the problem of estimating the smallest singular

value of non-random shifts of square matrices is important in the analysis of

algorithms [16], [17], [20], [21].

It is easy to see that a restriction of type (1) is necessary for (2) to hold.

Indeed, suppose that for some N × n matrix A with i.i.d. entries and some

numbers u, v, α > 0, (2) is true whenever B = λI, λ ∈ R. Then, obviously,

P

{ N∑
i=1

(ai1 − λ)2 ≤ α2u2N

}
≤ exp(−vN), λ ∈ R,

implying Q(a11, αu) = supλ∈R
P{|a11 − λ| ≤ αu} ≤ exp(−v).

Our proof of Theorem 1 is based on two key elements: on a modification

of a standard ε-net argument for matrices (Proposition 3) and on estimates of

the distance between a random vector and a fixed linear subspace that follow

from a result of [13] (Theorem 4 and Corollary 6 of our paper). Our method is

similar in many aspects to the approach developed in [7] and later in [14], [15].

In particular, as in the mentioned papers, we decompose the unit sphere Sn−1

into several subsets which are studied separately from one another. On the

other hand, our modification of the ε-net argument and its technical realization

in regard to splitting a random matrix into “regular” and “non-regular” parts

are apparently new.

We will discuss the main idea of the proof more concretely and in more detail

at the end of the next section, after we define notation and state the modified

ε-net argument.

2. Preliminaries

Throughout the text, (Ω,Σ,P) denotes a probability space. Given a vector

x ∈ R
N , ‖x‖ is the standard Euclidean norm and ‖x‖∞ is the �N∞-norm of x.
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By SN−1 (respectively, BN
2 ) we denote the Euclidean unit sphere (respectively,

the closed unit ball) in R
N . Given a set K ⊂ R

N and a vector x, the Euclidean

distance between K and x is d(x,K) = inf{‖x− y‖ : y ∈ K}. We use the same

notation for the distance between two subsets of RN , i.e.,

d(K1,K2) = inf{‖x− y‖ : x ∈ K1, y ∈ K2}.

We will sometimes use the standard identification of N × n matrices and

linear operators from R
n to R

N . In particular, for an N × n matrix D, by ‖D‖
we mean the operator norm of D treated as the linear operator D : �n2 → �N2 .

For a set K ⊂ R
n, D(K) is the image of K in R

N under the action of D. For

an N × n matrix D, colj(D) is the j-th column of D and spanD is the linear

span of columns of D in R
N . The N × n matrix of ones is denoted by 1N×n.

For a linear subspace E ⊂ R
n, E⊥ is the orthogonal complement of E in R

n

and ProjE : Rn → R
n is the orgothogonal projection onto E. In the special

case when E is the linear span of a subset {ej}j∈J (J ⊂ {1, 2, . . . , n}) of the

standard unit basis in R
n, we will often write xχJ in place of ProjE(x).

In the paper, we define many universal constants and functions that are

frequently referred to later in the text. For convenience, we add to the name of

every such constant or function a subscript indicating the statement where it

was defined. For example, C12 is the universal constant from Lemma 12, etc.

Let K be a subset of Rn and let ε ∈ (0, 1]. A subset N ⊂ K is called an

ε-net for K if for any y ∈ K there is y′ ∈ N with ‖y − y′‖ ≤ ε. We will

use a well-known fact that any subset K ⊂ Bn
2 admits an ε-net N for K with

cardinality |N | ≤ (3/ε)n.

Given an ε-netN for Sn−1, the matrixA+B from Theorem 1 trivially satisfies

sn(A+B) ≥ miny′∈N ‖Ay′+By′‖−ε‖A+B‖. This standard ε-net argument is

not applicable in our setting as A+B may have a very large norm with a large

probability. A modification of the method in such a way that ‖A + B‖ does

not participate in the estimate for sn(A + B) is an important element of our

proof. In this section we provide a “non-probabilistic” form of the argument.

Given a non-random N × n matrix D, we shall represent it as a sum of two

matrices D1 and D2; then we are able to estimate sn(D) from below in terms

of the norm ‖D1‖ of the “regular part” of the matrix D and distances between

certain vectors and subspaces in R
N (determined by matrices D1 and D2). We

start with a simpler version of the argument:
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Lemma 2: Let N,n ∈ N, h, ε > 0 and let D1, D2, D be N × n (non-random)

matrices with D = D1 +D2. Further, let N be an ε-net on Sn−1 such that for

any y′ ∈ N we have

d(D1y
′, spanD2) ≥ h.

Then

sn(D) ≥ inf
y∈Sn−1

d(D1y, spanD2) ≥ h− ε‖D1‖.

Proof. Choose any y ∈ Sn−1 and y′ ∈ N such that ‖y − y′‖ ≤ ε. Then

‖Dy‖=‖D1y +D2y‖≥d(D1y, spanD2)≥d(D1y
′, spanD2)−ε‖D1‖≥h−ε‖D1‖.

By taking the infimum over all y ∈ Sn−1, we obtain the result.

Note that Lemma 2 cannot be used to handle matrices with the aspect ratio

less than 2. Indeed, the lower estimate sn(D) ≥ infy∈Sn−1 d(D1y, spanD2) is

non-trivial only if spanD1 ∩ spanD2 = 0, which is not true when N < 2n

and both D1 and D2 have full rank. The following strengthening of Lemma 2

resolves the problem:

Proposition 3: Let N,n ∈ N, S ⊂ Sn−1 and let D1, D2, D be N × n (non-

random) matrices with D = D1 +D2. Further, suppose that numbers h, ε > 0,

a subset N ⊂ R
n and a collection of linear subspaces {Ey′ ⊂ R

n : y′ ∈ N}
satisfy the following three conditions:

(a) y′ ∈ Ey′ for all y′ ∈ N ;

(b) for any y′ ∈ N we have

(3) d(D1y
′, D(E⊥

y′) +D2(Ey′)) ≥ h;

(c) for any y ∈ S there is y′ ∈ N such that ‖ProjEy′ (y)− y′‖ ≤ ε.

Then

inf
y∈S

‖Dy‖ ≥ h− ε‖D1‖.

Proof. Take any y ∈ S and let y′ ∈ N be such that ‖ProjEy′ (y)−y′‖ ≤ ε. Then

‖Dy‖ = ‖D1(ProjEy′ (y)) + (D(ProjE⊥
y′
(y)) +D2(ProjEy′ (y)))‖

≥ d(D1(ProjEy′ (y)), D(E⊥
y′ ) +D2(Ey′))

≥ d(D1y
′, D(E⊥

y′) +D2(Ey′))− ε‖D1‖
≥ h− ε‖D1‖.

Taking the infimum over S, we get the result.
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To apply Proposition 3 we need an estimate for the distance between a random

vector in R
N with independent coordinates and a fixed linear subspace. For any

random vector X in R
N define the concentration function of X by

Q(X,h) = sup
λ∈RN

P{‖X − λ‖ ≤ h}, h ≥ 0.

Note that for N = 1 the above definition is consistent with that given in the

introduction. The following result is proved by M. Rudelson and R. Vershynin

in [13]:

Theorem 4 ([13]): Let X = (X1, X2, . . . , Xm) be a random vector in R
m with

independent coordinates such that

Q(Xi, h) ≤ η, i = 1, 2, . . . ,m

for some h > 0, η ∈ (0, 1). Then for any d ∈ {1, 2, . . . ,m} and any d-dimensional

non-random subspace E ⊂ R
m we have

Q(ProjEX,h
√
d) ≤ (C4η)

d,

where C4 > 0 is a (sufficiently large) universal constant.

This theorem gives a non-trivial estimate for the concentration only for η

sufficiently close to zero. Below, we provide an elementary extension of this

result covering the case of “more concentrated” coordinates. First, let us recall

a theorem of B. Rogozin:

Theorem 5 ([11]): Let k ∈ N, ξ1, ξ2, . . . , ξk be independent random variables

and let h1, h2, . . . , hk>0 be some real numbers. Then for any h≥maxj=1,2,...,k hj ,

Q
( k∑

j=1

ξj , h

)
≤ C5h

( k∑
j=1

(1−Q(ξj , hj))h
2
j

)−1/2

,

where C5 > 0 is a universal constant.

Now, an easy application of Theorems 4 and 5 gives

Corollary 6: Let X = (X1, X2, . . . , Xm) be a random vector with indepen-

dent coordinates such that

Q(Xi, h) ≤ 1− τ, i = 1, 2, . . . ,m

for some h > 0, τ ∈ (0, 1). Then for any d ∈ {1, 2, . . . ,m}, � ∈ N and any

d-dimensional non-random subspace E ⊂ R
m the concentration function of
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ProjEX satisfies

Q(ProjEX,h
√
d/�) ≤ (C4C5/

√
�τ)d/�.

Proof. Let X1, X2, . . . , X� be independent copies of X and

S = (S1, S2, . . . , Sm) =

�∑
j=1

Xj.

In view of the condition on the coordinates of X and Theorem 5, we obtain

Q(Si, h) ≤ C5(�(1−Q(Xi, h)))
−1/2 ≤ C5√

�τ
, i = 1, 2, . . . ,m.

Then Theorem 4 gives

Q(ProjES, h
√
d) ≤ (C4C5/

√
�τ)d.

On the other hand, the definition of S together with the triangle inequality

implies that

Q(ProjEX,h
√
d/�)� ≤ Q(ProjES, h

√
d),

and the proof is complete.

Remark 1: Note that for any non-zero τ we can choose � ∈ N such that the

upper estimate for the concentration function provided by Corollary 6 is non-

trivial (strictly less than 1). In fact, a slightly weaker version of Corollary 6 still

sufficient for our purposes could be proved using the original result of P. Lévy

from [6] instead of Theorem 5.

As an immediate application of Corollary 6, we prove a statement about

peaky vectors. We call a vector y ∈ Sn−1 θ-peaky for some θ > 0 if ‖y‖∞ ≥ θ.

The set of all θ-peaky unit vectors in R
n shall be denoted by Sn−1

p (θ).

Proposition 7 (Peaky vectors): Let δ > 1 and let n,N ∈ N satisfy N ≥ δn.

Further, assume we are given θ, γ > 0 and let U = (uij) be an N × n random

matrix with independent entries (not necessarily identically distributed), each

entry uij satisfying

Q(uij , 1) ≤ 1− γ.

Then

P{ inf
y∈Sn−1

p (θ)
‖Uy‖ ≤ h7θ

√
N} ≤ n exp(−w7N),

where the h7, w7 > 0 depend only on γ and δ.
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Proof. By Corollary 6, for d = N − n + 1, any � ∈ N and any fixed (n − 1)-

dimensional subspace F ⊂ R
N we have

P{d(colj(U), F ) ≤
√
d/�} ≤ Q(ProjF⊥(colj(U)),

√
d/�)

≤ (C4C5/
√
�γ)d/�, j = 1, 2, . . . , n.

Take � := 
4C2
4C

2
5/γ�. Since for each j = 1, 2, . . . , n, colj(U) is independent of

the span of the other columns of U , from the above estimate we obtain

P{d(colj(U), span{colk(U)}k �=j) ≤ h
√
d} ≤ exp(−wd), j = 1, 2, . . . , n

for some h,w > 0 depending only on γ. Let

E={ω ∈ Ω : d(colj(U(ω)), span{colk(U(ω))}k �=j)>h
√
d for all j=1, 2, . . . , n}.

Then P(E) ≥ 1−n exp(−wd). Take arbitrary ω ∈ E . For any y = (y1, y2, . . . , yn)

in Sn−1
p (θ) there is j = j(y) such that |yj | ≥ θ, hence

‖U(ω)y‖ = ‖U(ω)(yjej) + U(ω)(y − yjej)‖
≥ θd(colj(U(ω)), span{colk(U(ω))}k �=j)

> hθ
√
d.

Thus,

P{ inf
y∈Sn−1

p (θ)
‖Uy‖ ≤ hθ

√
d} ≤ n exp(−wd),

and the statement follows.

Next, we introduce two notions important for us that will be used throughout

the rest of the text. For any number s ∈ R and any Borel subset H ⊂ R, define

the H-part of s as

sH =

⎧⎨
⎩
s, if s ∈ H,

0, otherwise.

The “complementary” R\H-part of s will be denoted by sH . Obviously,

s = sH + sH . The name and the notation resemble the positive and nega-

tive part of a real number; in fact s+ = sH for H = [0,∞). For a real-valued

random variable ξ we define the H-part of ξ pointwise: ξH(ω) = ξ(ω)H for all

ω ∈ Ω. When a variable has a subscript, we will use parentheses to separate the

subscript from the H-part notation, for example (ξ1)H is the H-part of a ran-

dom variable ξ1. Given a matrix A = (aij), its H-part AH is defined entry-wise,

i.e., (AH)ij = (aij)H for all admissible i, j.
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For any N × n matrices M,M ′ (whether random or not), a Borel set H ⊂ R

and a linear subspace E ⊂ R
n let

VM,M ′(H,E) := (M +M ′)(E⊥) + (MH +M ′)(E).

Note that VM,M ′(H,E) is a linear subspace of RN of dimension at most n. When

the matrices M , M ′ are clear from the context, we shall write V (H,E) in place

of VM,M ′(H,E). When one or both matrices M,M ′ are random, VM,M ′ (H,E)

is a random subspace in R
N of dimension at most n.

Let us conclude the section by describing the main idea of the proof of

Theorem 1. Let S be a subset of Sn−1. As we already noted before, the

main obstacle in using the standard ε-net argument to get a lower estimate for

infy∈S ‖Ay+By‖ is the need to control the norm of the matrix A+B which is

not possible unless we impose strong restrictions on its entries. Proposition 3

provides a workaround: we represent A + B as a sum of two random matri-

ces, “regular” and “irregular”, satisfying certain conditions, so that the lower

bound for infy∈S ‖Ay+By‖ involves the norm of only the “regular” matrix. The

splitting shall be defined with help of the above concept of H-part. Namely,

for some specially chosen λ ∈ R and H ⊂ R we define the “regular” part as

(A− λ1N×n)H and the “irregular” as A+B−(A − λ1N×n)H (which is identical

to (A− λ1N×n)H + B + λ1N×n). The set H shall be bounded which implies

boundedness of the entries of (A− λ1N×n)H . This, together with the appropri-

ately chosen “shift” λ, allows us to easily control ‖(A− λ1N×n)H‖ from above.

We will define H as the union of two specially constructed closed intervals on R.

The choice of H depends on the set S and may depend on the characteristics of

the distribution of the entries of A (we leave this problem for the last section).

The crucial property that our set H shall satisfy is: letting Ã = A − λ1N×n

and B̃ = B + λ1N×n, for a certain finite subset of vectors N ⊂ R
n and a

collection of linear subspaces {Ey′ ⊂ R
n}y′∈N (see Proposition 3) we have

inf
y′∈N

d(ÃHy′, VÃ,B̃(H,Ey′)) �
√
N

with a large probability. This restriction on H naturally corresponds to the

condition (3) in Proposition 3. In practice, we shall verify this property of

H by proving that for every vector y ∈ Bn
2 satisfying certain upper bounds

on ‖y‖∞ and lower bounds on ‖y‖ and for E = span{ej}j∈suppy, the distance

d(ÃHy, VÃ,B̃(H,E)) is large with an overwhelming probability. This condition

demands a “rich” structure from ÃH ; consequently, the set H cannot be very
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small in diameter. On the other hand, the “upper” restrictions on H are dic-

tated by the necessity to control the norm of ÃH . Thus, we have to find a

balance between the two requirements.

In order to estimate the distance between the random vector ÃHy and the

random subspace VÃ,B̃(H,E), we will use Corollary 6. However, since in gen-

eral VÃ,B̃(H,E) is dependent (in a probabilistic sense) on ÃHy, an immediate

application of the corollary is not possible; instead, we will combine it with a

conditioning argument, which is presented in the next section.

3. The distribution of d(AHy, VA,B(H,E))

Assume that we are given δ > 1, N,n ∈ N with N ≥ δn, a random N×n matrix

A with i.i.d. entries, a non-random N × n matrix B and a Borel subset H ⊂ R

with P{a11 ∈ H} > 0. The purpose of this section is to study the distribution

of the distance between a random vector AHy and the random subspace

VA,B(H,E) = (A+B)(E⊥) + (AH +B)(E),

where E = span{ej}j∈suppy. We give sufficient conditions on A, H and y which

guarantee that d(AHy, VA,B(H,E)) is large with a large probability (Proposi-

tion 11). Note that generally AHy and VA,B(H,E) are dependent. In order to

overcome this problem, we apply a decoupling argument.

We adopt the following notation: For any subset

W ⊂ {1, 2, . . . , N} × {1, 2, . . . , n}
let

ΩW ={ω ∈ Ω : aij(ω) ∈ H for all (i, j) ∈ W and aij(ω) ∈ H for all (i, j) /∈ W}.
Given an event E ⊂ Ω with P(E) > 0, we denote by (E ,ΣE ,PE) the probability

space where the σ-algebra ΣE of subsets of E is naturally induced by the σ-

algebra Σ on Ω, and PE is defined by

PE(K) = P(E)−1
P(K) (K ∈ ΣE).

Lemma 8 (Conditional independence): Let A, B and H be as above, y ∈ R
n,

E = span{ej}j∈suppy and let W ⊂ {1, 2, . . . , N} × {1, 2, . . . , n} be such that

P(ΩW ) > 0. Then the random vector AHy in R
N and the random subspace

VA,B(H,E) ⊂ R
N are conditionally independent given event ΩW . Moreover,

the coordinates of AHy are conditionally independent given ΩW .
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The proof of the lemma is quite straightforward, so we omit it. Lemma 8

shows that Corollary 6 can be applied to AHy and the subspace VA,B(H,E)

“inside” each ΩW . Hence, to give a satisfactory lower estimate for

d(AHy, VA,B(H,E))

on the entire Ω, it is enough to verify that there is a subset

M ⊂ 2{1,2,...,N}×{1,2,...,n}

such that the P-measure of the union of ΩW ’s (W ∈ M) is close to 1 and for

each W ∈ M , the restriction of the vector AHy to ΩW has sufficiently “spread”

coordinates. Of course, such a set M may exist only under certain assumptions

on A, H and y. In Lemma 9, we formulate those assumptions using random

variables that agree on a part of the probability space and are independent

when restricted to the other part of Ω. Let us remark that, whereas the use of

such variables has some advantages (in our opinion), it should not be regarded

as a necessary ingredient of the proof.

Let ξ, ξ′ be two random variables such that P{ξ ∈ H} > 0. We say that ξ, ξ′

are conditionally i.i.d. given event {ω ∈ Ω : ξ(ω) ∈ H} and identical on

{ω ∈ Ω : ξ(ω) ∈ H} if the following is true: setting E = {ω ∈ Ω : ξ(ω) ∈ H}, the
restrictions of ξ, ξ′ to the probability space (E ,ΣE ,PE) are i.i.d. and ξ(ω) = ξ′(ω)
for ω ∈ Ω\E . The definition implies that ξ′ has the same individual distribution

(on Ω) as ξ and for any Borel subsets K,K ′ ⊂ R

(4) P{(ξ, ξ′) ∈ K×K ′} =
P{ξ ∈ H ∩K}P{ξ ∈ H ∩K ′}

P{ξ ∈ H} +P{ξ ∈ H∩K∩K ′};

in particular, P{(ξ, ξ′) ∈ H ×H} = P{(ξ, ξ′) ∈ H ×H} = 0. Note that ξH and

ξ′H are equal a.s. on Ω. It is a trivial observation that ξH−ξ′H is symmetrically

distributed.

For any event E ⊂ Ω with P(E) > 0 and any random variable ξ on Ω, let

QE(ξ, ·) be the concentration function of the restriction of ξ to the probability

space (E ,ΣE ,PE).

Lemma 9: Let H be a Borel subset of R; N ≥ δn for some δ > 1 and let

A = (aij) be an N × n random matrix with i.i.d. entries and P{a11 ∈ H} > 0.

Further, let A′ = (a′ij) be an N×n random matrix having the same distribution

as A such that 2-dimensional vectors (aij , a
′
ij) (1 ≤ i ≤ N , 1 ≤ j ≤ n) are

i.i.d. and for any admissible i and j the variables aij and a′ij are conditionally
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i.i.d. given event {ω ∈ Ω : aij(ω) ∈ H} and identical on {ω ∈ Ω : aij(ω) ∈ H}.
Let y = (y1, y2, . . . , yn) ∈ R

n and s > 0 be such that

(5) P

{∣∣∣∣
n∑

j=1

((aij)H − (a′ij)H)yj

∣∣∣∣ > s

}
≥ δ−1/4, i = 1, 2, . . . , N.

Define M as the collection of all subsets W ⊂ {1, 2, . . . , N} × {1, 2, . . . , n}
satisfying

P(ΩW ) > 0

and ∣∣∣∣
{
i ∈ {1, 2, . . . , N} : QΩW

( n∑
j=1

(aij)Hyj ,
s

2

)
≤ 1− τ

}∣∣∣∣ ≥ Nδ−1/2

with τ = 1
2 (δ

−1/4 − δ−1/3). Then

P

( ⋃
W∈M

ΩW

)
≥ 1− exp(−w9N),

where w9 > 0 depends only on δ.

Proof. For each i = 1, 2, . . . , N and J ⊂ {1, 2, . . . , n} let

Ωi
J = {ω ∈ Ω : aij(ω) ∈ H for all j ∈ J and aij(ω) ∈ H for all j /∈ J},

and for i = 1, 2, . . . , N define

Li =

{
J ⊂ {1, 2, . . . , n} : P(Ωi

J ) > 0 and QΩi
J

( n∑
j=1

(aij)Hyj,
s

2

)
≤ 1− τ

}
;

Ei =
⋃

J∈Li

Ωi
J .

It is not difficult to see that the events Ei ⊂ Ω (i = 1, 2, . . . , N) are independent

in view of the independence of the entries of A.

Fix for a moment any i ∈ {1, 2, . . . , N}. One can verify that for any

j ∈ {1, 2, . . . , n} and J ⊂ {1, 2, . . . , n} the variables (aij)H and (a′ij)H are

i.i.d. given event Ωi
J . It follows that

(6)

n∑
j=1

(aij)Hyj and

n∑
j=1

(a′ij)Hyj are i.i.d. given Ωi
J , for all J⊂{1, 2, . . . , n}.
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Take any subset J ⊂ {1, 2, . . . , n} satisfying

(7) P(Ωi
J) > 0 and PΩi

J

{∣∣∣∣
n∑

j=1

((aij)H − (a′ij)H)yj

∣∣∣∣ > s

}
≥ 2τ.

For all λ ∈ R we have, in view of (6),

PΩi
J

{
λ− s

2
≤

n∑
j=1

(aij)Hyj ≤ λ+
s

2

}2

=PΩi
J

{
λ− s

2
≤

n∑
j=1

(aij)Hyj ≤ λ+
s

2
and λ− s

2
≤

n∑
j=1

(a′ij)Hyj ≤ λ+
s

2

}

≤PΩi
J

{∣∣∣∣
n∑

j=1

((aij)H − (a′ij)H)yj

∣∣∣∣ ≤ s

}

≤1− 2τ,

implying

QΩi
J

( n∑
j=1

(aij)Hyj ,
s

2

)
≤ √

1− 2τ ≤ 1− τ.

Thus, any J satisfying (7) belongs to Li. Clearly,

P

{∣∣∣∣
n∑

j=1

((aij)H−(a′ij)H)yj

∣∣∣∣>s

}
=
∑
J

PΩi
J

{∣∣∣∣
n∑

j=1

((aij)H−(a′ij)H)yj

∣∣∣∣>s

}
P(Ωi

J),

where the summation is taken over J ⊂ {1, 2, . . . , n} satisfying P(Ωi
J) > 0.

Hence, in view of (5) and the above observations we get

δ−1/4 ≤
∑
J

PΩi
J

{∣∣∣∣
n∑

j=1

((aij)H − (a′ij)H)yj

∣∣∣∣ > s

}
P(Ωi

J )

≤
∑
J∈Li

P(Ωi
J) + 2τ

∑
J /∈Li

P(Ωi
J)

≤ 2τ + P(Ei),
implying P(Ei) ≥ δ−1/3.

We have noted that the events Ei (i = 1, 2, . . . , N) are independent and

P(Ei) ≥ δ−1/3 for each i. Now, setting

E = {ω ∈ Ω : |{i ∈ {1, 2, . . . , N} : ω ∈ Ei}| ≥ Nδ−1/2},
we obtain by Bernstein’s (or Hoeffding’s) inequality P(E) ≥ 1 − exp(−w9N),

where w9 > 0 depends only on δ. Finally, we will show that E ⊂ ⋃
W∈M ΩW ∪Ω0
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for a set Ω0 of zero probability measure. Define Ω0 =
⋃

W ΩW , where the

union is taken over all W such that P(ΩW ) = 0. Fix any ω ∈ E \ Ω0 and let

W̃ ⊂ {1, 2, . . . , N}×{1, 2, . . . , n} be such that ω ∈ ΩW̃ . In view of the definition

of E and the events Ei, there are indices i1 < i2 < · · · < ik (k ≥ Nδ−1/2) such

that w ∈ Ω
iq
Jq

for all q = 1, 2, . . . , k, where Jq = {j : (iq, j) ∈ W̃} and

Q
Ω

iq
Jq

( n∑
j=1

(aiqj)Hyj ,
s

2

)
≤ 1− τ, q = 1, 2, . . . , k.

Note that, in view of the independence of the entries of A and the relation

between ΩW̃ and Ω
iq
Jq
, the conditional distribution of the sum

∑n
j=1 (aiqj)Hyj

given event ΩW̃ is the same as its conditional distribution given Ω
iq
Jq
. Hence,

QΩW̃

( n∑
j=1

(aiqj)Hyj ,
s

2

)
= Q

Ω
iq
Jq

( n∑
j=1

(aiqj)Hyj ,
s

2

)
≤ 1− τ, q = 1, 2, . . . , k.

The last formula implies that W̃ ⊂ M , so ω ∈ ⋃
W∈M ΩW . The proof is

complete.

Next, we combine the result of Lemma 9 with Corollary 6:

Lemma 10: Let N,n, δ, H , A,A′, y and s be exactly as in Lemma 9 and B be

a non-random N × n matrix. Then

P{d(AHy, VA,B(H,E)) ≤ sh10

√
N} ≤ 2 exp(−w10N),

where E = span{ej}j∈suppy and h10 > 0, w10 > 0 depend only on δ.

Proof. Let M and τ be defined as in Lemma 9 and take any W ∈ M . Let

m =

∣∣∣∣
{
i ∈ {1, 2, . . . , N} : QΩW

( n∑
j=1

(aij)Hyj,
s

2

)
≤ 1− τ

}∣∣∣∣.
By the definition of M , we have m ≥ Nδ−1/2 ≥ √

δn, hence, taking d = m− n

and � = 4(C4C5)
2/τ , by Corollary 6, for κ = δ−1/2 − δ−1 and any fixed n-

dimensional subspace F ⊂ R
N we obtain

PΩW {d(AHy, F ) ≤ s

2�

√
κN} ≤ 2−κN/�.

Now, consider the random subspace VA,B(H,E) = (A+B)(E⊥)+(AH+B)(E).

Let us remark that (A + B)(E⊥) is just the linear span of columns of A + B

whose indices do not belong to the support of y, and, similarly, (AH +B)(E) is

the span of those columns of AH +B whose indices belong to the support of y.
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By Lemma 8, VA,B(H,E) and the vector AHy are conditionally independent

given ΩW , hence the above estimate immediately implies

PΩW {d(AHy, VA,B(H,E)) ≤ s

2�

√
κN} ≤ 2−κN/�.

Since the relation holds for all W ∈ M , in view of Lemma 9 we obtain

P{d(AHy, VA,B(H,E))≤ s

2�

√
κN}≤2−κN/�

P

( ⋃
W∈M

ΩW

)
+1−P

( ⋃
W∈M

ΩW

)

≤ 2−κN/� + exp(−w9N),

and the result follows.

Finally, we can prove the main result of the section:

Proposition 11: Let δ > 1, n,N ∈ N, N ≥ δn and let A = (aij) be an N × n

random matrix with i.i.d. entries and B be any non-random N × n matrix.

Further, for some d, r > 0 let H be a Borel subset of R such that H = H1 ∪H2

for disjoint Borel sets H1, H2 with

d(H1, H2) ≥ d and min(P{a11 ∈ H1},P{a11 ∈ H2}) ≥ r.

For arbitrary t > 0 define

h11 =
1− δ−1/4

C5

√
r

8
td

and let y∈Rn be a vector satisfying ‖y‖≥ t, ‖y‖∞≤2h11

d and E=span{ej}j∈suppy.

Then

P{d(AHy, VA,B(H,E)) ≤ h10h11

√
N} ≤ 2 exp(−w10N).

Proof. Let A′ = (a′ij) be an N ×n random matrix having the same distribution

as A such that 2-dimensional vectors (aij , a
′
ij) (1 ≤ i ≤ N , 1 ≤ j ≤ n) are

i.i.d. and for any admissible i and j the variables aij and a′ij are conditionally

i.i.d. given event {ω ∈ Ω : aij(ω) ∈ H} and identical on {ω ∈ Ω : aij(ω) ∈ H}.
For every i = 1, 2, . . . , N and j = 1, 2, . . . , n, in view of formula (4) for the joint

distribution we get

P{|(aij)H−(a′ij)H | ≥ d} ≥P{aij∈H1 and a′ij ∈H2}+P{aij∈H2 and a′ij ∈H1}
≥r.
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Since (aij)H − (a′ij)H is symmetrically distributed, the above relation implies

Q((aij)H − (a′ij)H , d
2 ) ≤ 1 − r

2 . Clearly, h11 ≥ d|yj|
2 for every coordinate yj of

the vector y, hence by Theorem 5 for all i = 1, 2, . . . , N we have

P

{∣∣∣∣
n∑

j=1

((aij)H − (a′ij)H)yj

∣∣∣∣ ≤ h11

}

≤ Q
( n∑

j=1

((aij)H − (a′ij)H)yj , h11

)

≤ C5h11

(
1

4

n∑
j=1

(
1−Q

(
((aij)H − (a′ij)H)yj ,

|yj|d
2

))
(yjd)

2

)−1/2

≤ C5h11

(
r

8

n∑
j=1

(yjd)
2

)−1/2

≤ C5h11

td

√
8

r
= 1− δ−1/4.

Thus, vector y satisfies condition (5) with s := h11. Then, by Lemma 10,

P{d(AHy, VA,B(H,E)) ≤ h10h11

√
N} ≤ 2 exp(−w10N).

4. Decomposition of Sn−1 and proof of Theorem 1

Recall that in Section 2 we defined Sn−1
p (θ) as the set of θ-peaky vectors, that is,

unit vectors in R
n whose �n∞-norm is at least θ. We say that a vector y ∈ Sn−1

is m-sparse if |supp y| ≤ m. Next, y ∈ Sn−1 is almost m-sparse, if there is a

subset J ⊂ {1, 2, . . . , n} of cardinality at most m, such that ‖yχJ‖ ≥ 1/2. The

set of all almost m-sparse vectors shall be denoted by Sn−1
a (m).

In our proof of Theorem 1, we represent Sn−1 as the union of three subsets:

Sn−1 = Sn−1
p (θ) ∪ (Sn−1

a (
√
N) \ Sn−1

p (θ)) ∪ (Sn−1 \ Sn−1
a (

√
N)),

where θ is a function of the parameters β and δ of the theorem. Then the

smallest singular value of A + B can be estimated by bounding separately

infy ‖Ay +By‖ over each of the three subsets.

The reasons for such a representation of Sn−1 are purely technical: Propo-

sition 11 proved in the previous section handles vectors with a sufficiently

small �n∞-norm, so instead we use Proposition 7 to deal with the set Sn−1
p (θ).

Further, the separate treatment of almost
√
N -sparse vectors is convenient
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because, on the one hand, the construction of the set H corresponding to

Sn−1
a (

√
N)\Sn−1

p (θ) is trivial compared to Sn−1\Sn−1
a (

√
N); on the other hand,

vectors from Sn−1 \ Sn−1
a (

√
N) have a useful geometric property (Lemma 16)

which the almost sparse vectors generally do not possess. We note that the

set Sn−1
a (

√
N) in the covering of Sn−1 can be replaced with Sn−1

a (Nκ) for any

constant power κ ∈ (0, 1); this would only affect the constants in the final

estimate.

In our representation of Sn−1, we follow an idea from [7], where the unit

sphere was split into sets of “close to sparse” and “far from sparse” vectors. A

similar splitting was also employed in [14], [15], where the terms “compressible”

and “incompressible” were used instead. On the other hand, our “borderline”√
N is smaller by the order of magnitude than in the mentioned papers.

The next elementary lemma shall be used in conjunction with Proposition 3.

Lemma 12: There is a universal constant C12 > 0 with the following property:

Let n,m ∈ N with m ≤ n, ε ∈ (0, 1], S ⊂ Sn−1 and let T ⊂ Bn
2 consist of

m-sparse vectors and satisfy

(8) for any y ∈ S there is x = x(y) ∈ T with yχsuppx = x.

Then there is a finite set N ⊂ T of cardinality at most (C12n
εm )m such that for

any y ∈ S there is y′ = y′(y) ∈ N with ‖yχsuppy′ − y′‖ ≤ ε.

Proposition 13 (Vectors from Sn−1
a (

√
N) with a small �n∞-norm): For any

γ > 0 and δ > 1 there are N13 ∈ N and h13 > 0 depending only on γ and δ

with the following property: Let

θ13 =
1− δ−1/4

C5

√
γ

8
,

N ≥ max(N13, δn), z ∈ R and let A be anN×n randommatrix with i.i.d. entries

such that

min(P{z −
√
N ≤ a11 ≤ z − 1},P{z + 1 ≤ a11 ≤ z +

√
N}) ≥ γ.

Then for the set S = Sn−1
a (

√
N)\Sn−1

p (θ13) and any non-random N×n matrix

B we have

P{ inf
y∈S

‖Ay +By‖ ≤ h13

√
N} ≤ exp(−w10N/2).

Proof. Fix any γ > 0 and δ > 1 and define d := 2, r := γ, t := 1
2 ; let h11

be as in Proposition 11 and N13 = N13(γ, δ) be the smallest integer greater
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than 2
h10h11

such that for all N ≥ N13

2(C12N)3
√
N ≤ exp(w10N/2).

Now, take any n ∈ N and N ≥ max(N13, δn); let z and A satisfy conditions of

the proposition and B be any non-randomN×n matrix. We will assume that S

is non-empty. Without loss of generality, z = 0 (otherwise, we replace A, B with

A−z1N×n, B+z1N×n). Define H1 = [−√
N,−1], H2 = [1,

√
N ], H = H1∪H2.

Obviously, d(H1, H2) = d and min(P{a11 ∈ H1},P{a11 ∈ H2}) ≥ r. Let

T ⊂ Bn
2 be the set of

√
N -sparse vectors with the Euclidean norm at least 1

2

and the maximal norm at most θ13. Clearly, T and S satisfy (8), hence, by

Lemma 12, there is a finite subset N ⊂ T of cardinality at most (C12N)3
√
N

such that for any y ∈ S there is y′ = y′(y) ∈ N with ‖yχsuppy′ − y′‖ ≤ N−2.

Let Ey′ = span{ej}j∈suppy′ (y′ ∈ N ) and define an event

E = {ω ∈ Ω : d(AH(ω)y′, VA,B(H,Ey′)(ω)) > h10h11

√
N for all y′ ∈ N}.

In view of Proposition 11, the upper estimate for |N | and the definition of N13,

we get

P(E) ≥ 1− 2|N | exp(−w10N) ≥ 1− exp(−w10N/2).

Take any ω ∈ E and define D1 = AH(ω), D2 = AH(ω)+B, D = D1+D2. Since

all entries of D1 are bounded by
√
N by absolute value, we get ‖D1‖ ≤ N3/2;

next, for every y′ ∈ N
d(D1y

′, D(E⊥
y′) +D2(Ey′)) > h10h11

√
N

(note that D(E⊥
y′) +D2(Ey′) = VA,B(H,Ey′)(ω)). Hence, by Proposition 3, we

obtain

inf
y∈S

‖Dy‖ > h10h11

√
N −N−1/2 ≥ 1

2
h10h11

√
N.

Finally, applying the above argument to all ω ∈ E , we get the result.

As we noted before, construction of the set H corresponding to

Sn−1 \ Sn−1
a (

√
N)

is not so trivial as in the case of almost
√
N -sparse vectors. The reason is that in

general the set Sn−1 \ Sn−1
a (

√
N) is much larger than Sn−1

a (
√
N), and we have

to apply more delicate arguments to get a satisfactory probabilistic estimate.

The construction of H for the set of “far from
√
N -sparse” vectors is contained

in the following lemma:
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Lemma 14: Let ξ be a random variable such that for some z ∈ R, γ > 0, N ∈ N

we have

min(P{z −
√
N ≤ ξ ≤ z − 1},P{z + 1 ≤ ξ ≤ z +

√
N}) ≥ γ.

Then there exists an integer � ∈ [0, �log2
√
N�], λ ∈ R and disjoint Borel sets

H1, H2 ⊂ [−2�+2; 2�+2] such that d(H1, H2) ≥ 2�,

min(P{ξ − λ ∈ H1},P{ξ − λ ∈ H2}) ≥ c14γ2
−�/8

and E(ξ − λ)H = 0 for H = H1 ∪H2 and a universal constant c14 > 0.

Proof. Without loss of generality we can assume that z = 0. Let

c14 =

( ∞∑
m=0

2−m/8

)−1

.

Then, by the conditions on ξ, there are �1, �2 ∈ {0, 1, . . . , �log2
√
N�} such that

P{ξ ∈ [−2�1+1,−2�1]} ≥ c14γ2
−�1/8; P{ξ ∈ [2�2 , 2�2+1]} ≥ c14γ2

−�2/8.

Now, define λ as the conditional expectation of ξ given the event

M = {ω ∈ Ω : ξ(ω) ∈ [−2�1+1,−2�1] ∪ [2�2 , 2�2+1]},
i.e.,

λ = P(M)−1

∫
M

ξ(ω)dω.

Let H1 = −λ + [−2�1+1,−2�1 ] and H2 = −λ + [2�2 , 2�2+1]. Note that neces-

sarily λ ∈ [−2�1+1, 2�2+1], hence H1, H2 ⊂ [−2�+2, 2�+2] for � = max(�1, �2).

Obviously, d(H1, H2) ≥ 2� and for H = H1 ∪H2

E(ξ − λ)H =

∫
{ξ−λ∈H}

(ξ(ω)− λ)dω =

∫
M
(ξ(ω)− λ)dω = 0.

Finally,

min(P{ξ − λ ∈ H1},P{ξ − λ ∈ H2})
= min(P{ξ ∈ [−2�1+1,−2�1 ]},P{ξ ∈ [2�2 , 2�2+1]})
≥ c14γ2

−�/8.

Let us recall a folklore estimate of the norm of a random matrix with bounded

mean zero entries (see, for example, [12, Proposition 2.4]):
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Lemma 15: LetW = (wij) be anN×n (N ≥ n) randommatrix with i.i.d. mean

zero entries; R > 0 and assume that |wij | ≤ R a.s. Then for a universal constant

C15 > 0

P{‖W‖ ≥ C15R
√
N} ≤ exp(−N).

The following lemma highlights a useful property of the vectors from

Sn−1 \ Sn−1
a (

√
N):

Lemma 16: For any integer N ≥ n ≥ m ≥ 1 and any y ∈ Sn−1 \ Sn−1
a (

√
N)

there is a set J = J(y) ⊂ {1, 2, . . . , n} such that |J | ≤ m, ‖yχJ‖ ≥ 1
2

√
m
n and

‖yχJ‖∞ ≤ 1
�N1/4	 .

Proof. Take any N ≥ n ≥ m ≥ 1 and y = (y1, y2, . . . , yn) ∈ Sn−1 \ Sn−1
a (

√
N)

and let

J ′(y) =
{
j ∈ {1, 2, . . . , n} : |yj | ≤ 1

�N1/4�
}
.

Obviously, |J ′| ≥ n−√
N > 0 and, since y is not almost

√
N -sparse,

‖yχJ′‖ ≥
√
3/4.

Let {J ′
1, J

′
2, . . . , J

′
p} be any partition of J ′ into pairwise disjoint subsets of car-

dinality at most m with p ≤ 
n/m�. Then, clearly, for some q ∈ {1, 2, . . . , p},
‖yχJq‖ ≥ ‖yχJ′‖/√p > 1

2

√
m
n . Setting, J(y) = Jq, we get the result.

Proposition 17 (The set Sn−1 \ Sn−1
a (

√
N)): For any γ > 0, δ > 1 there are

N17 ∈ N and h17 > 0 depending only on γ and δ with the following property:

Let N ≥ max(N17, δn) and let A be an N ×n random matrix with i.i.d. entries

such that

min(P{z −
√
N ≤ a11 ≤ z − 1},P{z + 1 ≤ a11 ≤ z +

√
N}) ≥ γ

for some z ∈ R. Then for any non-random N × n matrix B and the set

S = Sn−1 \ Sn−1
a (

√
N)

we have

P{ inf
y∈S

‖Ay +By‖ ≤ h17

√
N} ≤ exp(−w10N/2).

Proof. Fix any γ > 0 and δ > 1. To make the notation more compact, denote

f0 :=
(1−δ−1/4)

√
c14γ

C5
and let τ0 = τ0(γ, δ) be the largest number in (0, 1] such
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that for all s ≥ 0

(16√8C12C152
s/2

h10f0τ
3/2
0

)2−s/4τ0 ≤ exp(w10/4)

(it is not difficult to see that τ0 is well defined). Then, take N17 = N17(γ, δ) to

be the smallest positive integer such that for all N ≥ N17

(9)
1

�N1/4� ≤ f0
√
τ0

4
√
8

N−3/16 and
48

√
8NC12C15

h10f0τ
3/2
0

≤ exp(w10N/4).

Let N ≥ N17, N ≥ δn and let A be an N × n random matrix with entries

satisfying conditions of the lemma and B be any non-random N × n matrix.

By Lemma 14, there is an integer � ∈ [0, �log2
√
N�], λ ∈ R and disjoint Borel

sets H1, H2 ⊂ [−2�+2, 2�+2] such that d(H1, H2) ≥ 2�,

min(P{a11 − λ ∈ H1},P{a11 − λ ∈ H2}) ≥ c14γ2
−�/8

and E(a11 − λ)H = 0 for H = H1 ∪H2. Denote

Ã = A− λ1N×n, B̃ = B + λ1N×n

and let

R := 2�+2, d := 2�, r := c14γ2
−�/8, m :=

⌈ τ0n
2�/4

⌉
, t :=

1

2

√
m

n
, ε :=

h10h11

2C15R
,

where h11 is defined as in Proposition 11. Assume that S is non-empty and let

T ⊂ Bn
2 consist of all m-sparse vectors y ∈ Bn

2 with ‖y‖ ≥ t and ‖y‖∞ ≤ 2h11

d .

The first inequality in (9) and a simple calculation show that 1
�N1/4	 ≤ 2h11

d .

Hence, in view of Lemma 16, T is non-empty and satisfies (8). By Lemma 12,

there is a finite subset N ⊂ T of cardinality at most (nC12

mε )m such that for any

y ∈ S there is y′ = y′(y) ∈ N with ‖yχsuppy′ − y′‖ ≤ ε.

For each y′ ∈ N denote

Ey′ = span{ej}j∈suppy′ .

By Proposition 11,

P{d(ÃHy′, VÃ,B̃(H,Ey′)) ≤ h10h11

√
N} ≤ 2 exp(−w10N).

Define an event

E = {ω ∈ Ω : d(ÃH(ω)y′, VÃ,B̃(H,Ey′)(ω)) > h10h11

√
N

for all y′ ∈ N and ‖ÃH(ω)‖ ≤ C15R
√
N}.
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By the above probability estimates and Lemma 15,

P(E)≥1−exp(−N)−2|N | exp(−w10N)≥1−exp(−N)−2
(C12n

mε

)m

exp(−w10N).

Using the definition of ε, m, τ0 and the second inequality in (9), we can estimate

the probability as

P(E) ≥ 1− 3
(8C12C152

�+�/4

τ0h10h11

)2−�/4τ0n+1

exp(−w10N)

≥ 1− 3
(16√8C12C152

�/2

h10f0τ
3/2
0

)2−�/4τ0n+1

exp(−w10N)

≥ 1− exp(−w10N/2).

Take any ω ∈ E and define

D1 = ÃH(ω), D2 = ÃH(ω) + B̃, D = A(ω) +B(ω) = D1 +D2.

Then ‖D1‖ ≤ C15R
√
N and for every y′ ∈ N we have

d(D1y
′, D(E⊥

y′) +D2(Ey′)) > h10h11

√
N.

Hence, by Proposition 3 and the definition of ε, we get

inf
y∈S

‖Dy‖ > h10h11

√
N − εC15R

√
N =

1

2
h10h11

√
N ≥ h10f0

√
τ0

4
√
8

√
N.

Finally, applying the above argument to the entire setE, we obtain the result.

Proof of Theorem 1. In view of the trivial identity Q(aij , α) = Q(aij/α, 1), it

is enough to prove the theorem for α = 1. Fix any δ > 0 and β > 0, let γ = β/4

and let N0 = N0(β, δ) be the smallest integer such that N0 ≥ max(N13, N17)

and for all N ≥ N0

N ≤ exp(w7N/2) and 3 ≤ exp(min(w7, w10)N/4).

Take any N,n ∈ N with N ≥ max(N0, δn), let A = (aij) be an N × n random

matrix with i.i.d. entries satisfying Q(a11, 1) ≤ 1 − β and let B be any non-

random N × n matrix. By the right-continuity of the cdf of a11, there is z ∈ R

such that

P{a11 ≤ z − 1} ≥ β

2
and P{a11 < z − 1} ≤ β

2
.

Then

P{a11 ≥ z + 1} ≥ 1− P{a11 < z − 1} − Q(a11, 1) ≥ β

2
.

Let us consider three cases.
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(1) P{z + 1 ≤ a11 ≤ z +
√
N} ≤ γ. Then

Q(a11,
√
N/8) ≤ Q(a11, (

√
N − 1)/2) ≤ 1− γ.

Obviously, any vector on Sn−1 is N−1/2-peaky. Then, applying Proposition 7

with the “scaling factor”
√
N/8, we get

P{sn(A+B) ≤ h7

√
N/8} = P{ inf

y∈Sn−1
‖Ay +By‖ ≤ h7

√
N/8}

≤ n exp(−w7N)

≤ exp(−w7N/2).

(2) P{z −√
N ≤ a11 ≤ z − 1} ≤ γ. Treated as above.

(3) min(P{z − √
N ≤ a11 ≤ z − 1},P{z + 1 ≤ a11 ≤ z +

√
N}) ≥ γ. Define

θ13 as in Proposition 13. By Proposition 7 for peaky vectors,

P{ inf
y∈Sn−1

p (θ13)
‖Ay +By‖ ≤ h7θ13

√
N} ≤ n exp(−w7N) ≤ exp(−w7N/2).

By Propositions 13 and 17 for

S = Sn−1
a (

√
N) \ Sn−1

p (θ13) and S′ = Sn−1 \ Sn−1
a (

√
N)

we have

P{ inf
y∈S

‖Ay +By‖ ≤ h13

√
N} ≤ exp(−w10N/2);

P{ inf
y∈S′

‖Ay +By‖ ≤ h17

√
N} ≤ exp(−w10N/2).

Combining the estimates we get, for h = min(h7θ13, h13, h17),

P{sn(A+B) ≤ h
√
N} ≤ exp(−w7N/2) + 2 exp(−w10N/2)

≤ exp(−min(w7, w10)N/4).

This completes the proof.
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