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ABSTRACT

We compute explicitly the normal zeta functions of the Heisenberg groups

H(R), where R is a compact discrete valuation ring of characteristic zero.

These zeta functions occur as Euler factors of normal zeta functions of

Heisenberg groups of the form H(OK), where OK is the ring of integers

of an arbitrary number field K, at the rational primes which are non-split

in K. We show that these local zeta functions satisfy functional equations

upon inversion of the prime.
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1. Introduction

Let G be a finitely generated abstract or profinite group. For m ∈ N, let a�m(G)

denote the number of (open) normal subgroups of G of index m in G. The

normal zeta function of G is the Dirichlet generating series

ζ�G(s) =

∞∑
m=1

a�m(G)m−s,

where s is a complex variable. If G is a finitely generated nilpotent group, then

its normal zeta function converges on a complex half-plane and satisfies the

Euler product

ζ�G(s) =
∏

p prime

ζ�G,p(s).

Here, for a prime p, the Euler factor ζ�G,p(s) =
∑∞

k=0 a
�
pk(G)p

−ks enumerates

the normal subgroups of G of p-power index in G. It may also be viewed as

the normal zeta function of the pro-p completion Ĝp of G. The Euler product

reflects the facts that the normal zeta function of G coincides with the normal

zeta function of its profinite completion Ĝ and that Ĝ ∼=∏p prime Ĝ
p. The zeta

functions ζ�G,p(s) are known to be rational functions in p−s; cf. [2, Theorem 1].

Given a ring R, the Heisenberg group H(R) over R is the group of upper

unitriangular 3× 3 matrices over R:

H(R) =

⎧⎪⎨⎪⎩
⎛⎜⎝1 a c

0 1 b

0 0 1

⎞⎟⎠ | a, b, c ∈ R

⎫⎪⎬⎪⎭ .

If R is a finitely generated torsion-free Z-module of rank n, say, then H(R) is a

finitely generated torsion-free nilpotent group of nilpotency class 2 and Hirsch

length 3n. Given a prime p, the pro-p completion of H(R) is isomorphic to

the 3n-dimensional nilpotent p-adic analytic pro-p group H(Rp), where Rp =

R⊗Z Zp, and we have

ζ�H(R),p = ζ�H(Rp)
.

In this article we compute an explicit formula for the normal zeta function

of the Heisenberg group over an arbitrary compact discrete valuation ring R of

characteristic zero, i.e. a finite extension of the ring Zp of p-adic integers. Let m

be the maximal ideal of the local ring R. The residue field kR = R/m is a finite

extension of the prime field Fp. Its degree f = [kR : Fp] is called the inertia

degree of R. The (absolute) ramification index e of R is given by pR = me.
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The ring R is called unramified (over Zp) if e = 1 and totally ramified (over

Zp) if f = 1. The degree of R as an extension of Zp is n = ef . It coincides

with the rank of R as a Zp-module.

Normal zeta functions of Heisenberg groups of the form H(R) occur as Euler

factors of normal zeta functions of Heisenberg groups over number rings. Indeed,

let OK be the ring of integers of a number field K. Then (OK)p = OK ⊗Z Zp

is a local ring precisely if p does not split in K, i.e. it decomposes in K as

pOK = pe, where p is a prime ideal of OK . In this case, f = [OK/p : Fp] and

n = ef = [K : Q] is the degree of K. We call such primes non-split (in K).

Note that all finite extensions of Zp arise in this way.

It follows from the general result [2, Theorem 1] that normal zeta functions

of groups of the form H(R) are rational in p−s. The more specific result [2,

Theorem 3] asserts that the Euler factors of (normal) zeta functions of H(OK)

are rational in the two parameters p−s and p on sets of rational primes with

fixed decomposition type in K; cf. also [7] for details. There are, in particular,

rational functionsW �
e,f (X,Y ) ∈ Q(X,Y ) such that for all rational primes p and

rings R as above, the following holds:

ζ�H(R)(s) =W �
e,f (p, p

−s).

In Theorem 3.8, our main result, we compute the rational functions

W �
e,f (X,Y ) explicitly. Moreover, we prove the following functional equation

in Corollary 3.13.

Theorem 1.1: Let e, f ∈ N with ef = n. Then

W �
e,f (X

−1, Y −1) = (−1)3nX(3n2 )Y 5n+2(e−1)fW �
e,f (X,Y ).

Note that 3n = dim(H(R)) and 5n = dim(H(R))+dim(H(R)/H(R)′), where
H(R)′ is the derived subgroup of H(R). Here “dim” refers to the dimensions as

p-adic analytic pro-p groups. The term 2(e−1)f in the exponent of Y describes

the deviation from the “generic” symmetry factor in the functional equations for

the local factors of normal zeta functions of finitely generated nilpotent groups

of nilpotency class 2; cf. [10, Theorem C].

Prior to our work, the normal zeta functions ζ�H(R) had been calculated for

all cases occurring for n ≤ 3; see [1, Theorems 2.3, 2.7, and 2.9].

1.1. Methodology. The results of the current paper complement those of [7],

where we carry out analogous computations of the normal zeta functions of the
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groups H((OK)p) for primes p which are unramified in the number field K. In

[7, Theorem 1.2] we establish functional equations for these zeta functions that

are comparable to those in Theorem 1.1. Our results agree, of course, in the

common special case of primes p which are inert in K; see Theorem 3.2. In [7,

Conjecture 1.4] we conjecture a functional equation for ζ�H(OK ),p(s) for arbitrary

(not necessarily unramified or non-split) primes.

The methods used in the present paper are, however, quite different from

those of [7]. There the problem of computing the relevant zeta functions reduces

to that of effectively enumerating subgroups of finite abelian p-groups varying

in infinite, combinatorially described families. The precise shape these families

may take is determined by the decomposition type of the rational prime p in

the number field K. The sum defining the local zeta function is organized as a

finite sum, indexed by certain Dyck words.

The decomposition type that leads to the combinatorially simplest situation

is that of inert primes, namely the case where pOK is a prime ideal. We view

the non-split case considered in this paper as a degeneration of the inert case

and tackle it using geometric and Coxeter-group-theoretic ideas introduced in

[9] and [4], as we now explain.

The paper [9] argues that the normal subgroup growth of a finitely generated

nilpotent group G of nilpotency class 2 is, to a large extent, determined by

the geometry of its Pfaffian hypersurface. This is a projective hypersurface,

defined explicitly by the Pfaffian of an antisymmetric matrix of linear forms

encoding the group’s structure constants with respect to a chosen (Mal’cev)

basis. If the Pfaffian hypersurface of G is smooth and contains no lines, and

G satisfies some other mild hypotheses, then [9, Theorem 3] gives an explicit

formula for the Euler factors ζ�G,p, at almost all primes p, in terms of the numbers

of Fp-rational points on the Pfaffian hypersurface. This formula presents the

Euler factor as the sum of an approximative term, which coincides with the

Euler factor if and only if the Pfaffian hypersurface has no Fp-rational point, and

a correction term, which corrects the approximation along the hypersurface’s

Fp-points. In the special case G = H(OK), the results of [9] are not directly

applicable. The Pfaffian hypersurface is the union of n hyperplanes in general

position in (n − 1)-dimensional projective space. It has no Q-rational points;

over Qp it splits as a union of (restrictions of scalars of) hyperplanes, in a way

determined by the decomposition behaviour of p in K. The computation of the
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relevant local zeta function comes down to a detailed quantitative analysis of

the interplay between these fixed hyperplanes and varying p-adic lattices.

In the case of inert primes p, the ideas of [9] do apply directly to the Euler fac-

tors ζ�H(OK ),p, as in this case the Pfaffian hypersurface has no Fp-rational points.

Thus the Euler factor is equal to the approximative term mentioned above. In

the setup of [9], this means that the set of solutions of a certain system of linear

congruences has a particularly simple form. For non-split primes, ramification

complicates this system only slightly. The main idea of the current article is to

control this complication using parabolic length functions on symmetric groups.

These functions generalize the usual Coxeter length and were used to solve re-

lated enumeration problems in [4]. Theorem 3.8 expresses ζ�H(R)(s) in terms of

parabolic length functions on the symmetric group Sn, whereas Corollary 3.18

gives a formula in the totally ramified case in terms of parabolic length functions

on Sn−1. The functional equation expressed in Theorem 1.1 reflects the good

behaviour of the relevant parabolic length functions under (left-)multiplication

by the Coxeter group’s longest element.

1.2. Outlook. In this section we briefly describe some directions for future

research building on the methods of the present paper and of [7].

It would be of great interest to match the geometric setup of [9] precisely

with the combinatorial approach taken in [7], for the Heisenberg groups H(OK)

and also more generally. It is plausible that the presence of lines and higher-

dimensional linear spaces on the Pfaffian hypersurface necessitates further cor-

rection terms, accounting for the possible intersection types of flags with

coordinate hyperplanes. We note that Dyck words and possible intersection

behaviours of a flag with a fixed set of hyperplanes in general position are both

enumerated by the Catalan numbers; moreover, there is a natural bijection be-

tween these two types of objects. For the case of [K : Q] = 3, the correction

terms arising from a generalization of the approach of [9] appear to coincide

with the functions associated to Dyck words that were computed in [7]. This is

likely to be a special case of a very general phenomenon.

Let g ∈ N. Given g-tuples e = (e1, . . . , eg) ∈ Ng and f = (f1, . . . , fg) ∈ Ng

satisfying
∑g

i=1 eifi = [K : Q], we say that a (rational) prime p is of decom-

position type (e, f) in the number field K if

pOK = pe11 · · · pegg ,
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where the pi are distinct prime ideals in OK with ramification indices ei and

inertia degrees fi = [OK/pi : Fp] for i = 1, . . . , g. We call the decomposition

type (e, f) unramified if e = 1 = (1, . . . , 1).

Taken together, [7] and the present paper give explicit formulae for all but

finitely many Euler factors of the global ideal zeta functions ζ�H(OK)(s). Still

outstanding is an analysis of the general ramified decomposition types. In view

of the geometric picture sketched above, it is suggestive to view a general decom-

position type (e, f) as a degeneration of an associated unramified decomposition

type (1, f ′), where f ′ = (e1f1, . . . , egfg). The methods of this paper suggest try-

ing to describe the effect of this degeneration on the zeta function, computed

in [7], of the unramified type (1, f ′) by means of suitable parabolic length func-

tions or similar combinatorially described functions. The current paper carries

out this idea for g = 1.

We see this paper and [7] as first steps in a systematic study of the behaviour

of (normal) subgroup growth of general nilpotent groups under base extension.

Specifically, one may ask the following: given a finitely generated nilpotent

group of the form G = G(Z), arising as the group of Z-rational points of

a unipotent group scheme G defined over Z, how does the normal subgroup

growth sequence (a�m(G(O)))m∈N vary as O ranges over the rings of integers of

number fields? For instance, it seems reasonable to expect that the local factors

of the associated normal zeta functions should admit some kind of uniform

description on sets of (rational) primes of fixed decomposition type.

The same expectation holds for zeta functions encoding other data, such as

the subgroup growth sequence (am(G(O)))m∈N counting all finite index sub-

groups of G(O). The associated Dirichlet series ζG(O)(s) are known to have

Euler decompositions analogous to those of ζ�G(O)(s). It is very natural to

try to extend the methodology developed in this paper and in [7] to the sub-

group zeta factors ζG(O),p(s). For the Heisenberg group, it is conjectured in [2,

p. 188] that for every decomposition type (e, f) there exists a rational function

We,f (X,Y ) ∈ Q(X,Y ) such that for all rational primes p of decomposition type

(e, f) in K the following holds:

ζH(OK ),p(s) =We,f (p, p
−s).

While the analogous statement for normal zeta functions was already proved

in [2], to our knowledge this conjecture has not even been completely settled for

[K : Q] = 2 (but see [1, Theorem 2.4] for the case of split primes). That counting
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all finite index subgroups is a far more complex task than counting normal

such subgroups is reflected in the fact that systems of quadratic Diophantine

equations take the role played by the systems of linear such equations that we

work with in this paper and in [7].

acknowledgements. We are grateful to Mark Berman for bringing us to-

gether to work on this project and to the referee for helpful comments.

2. Preliminaries

Let p be a rational prime. For an integer m ≥ 1, we write [m] for {1, 2, . . . ,m}
and [m]0 for {0, 1, . . . ,m}. Given integers a, b with a ≤ b, we write [a, b] for

{a, a+ 1, . . . , b}. Given a finite set I of integers, we write I = {i1, . . . , i�}< to

indicate that i1 < · · · < i�.

2.1. Coxeter groups. The symmetric group Sn of degree n is a Coxeter group

with Coxeter generating set S = {s1, . . . , sn−1}, where, for each i ∈ [n− 1], we

denote by si = (i i+1) the transposition of the letters i and i+1 in the standard

permutation representation of Sn. We will frequently identify elements of Sn

with permutations of [n] in this way.

We write len : Sn → [
(
n
2

)
]0 for the usual Coxeter length function: for w ∈ Sn,

len(w) denotes the length of a shortest word representing w as a product of

elements of S.

Given I ⊆ [n − 1], we write WI = 〈si | i ∈ I〉 for the parabolic subgroup of

Sn generated by the elements of S indexed by elements of I. The restriction

of len to WI coincides with the standard length function on the Coxeter group

WI . Every element w ∈ Sn can be factorized uniquely as w = wIwI , where

wI ∈ WI and wI is the unique element of shortest length in the coset wWI .

Moreover, len(w) = len(wI) + len(wI); cf. [3, Section 1.10]. We set lenI(w) :=

len(wI), and call lenI the (right) parabolic length function associated to I; cf. [4,

Definition 2.2].

The group Sn has a unique longest element w0 with respect to len, namely

the inversion w0(i) = n+ 1− i for i ∈ [n]. Parabolic length functions are well-

behaved with respect to (left) multiplication with w0: for every I ⊆ [n− 1] and

w ∈ Sn,

(2.1) lenI(w0w) = lenI(w0)− lenI(w);
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cf. [4, Lemma 2.3]. Clearly len = len∅. The other parabolic length function

relevant for us is len[n−2]. It is easy to check that len[n−2](w) = n − w(n) for

all w ∈ Sn, and in particular that len[n−2](w0) = n− 1.

The (right) descent set Des(w) of an element w ∈ Sn is defined as

Des(w) = {i ∈ [n− 1] | len(wsi) < len(w)}.
It is easily seen that Des(w) = {i ∈ [n− 1] | w(i + 1) < w(i)} and

(2.2) Des(w0w) = [n− 1] \Des(w).

Example 2.1: Consider the element w ∈ S6 corresponding to the permutation

matrix

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here Des(w) = {3}, len(w) = 7 and len[4](w) = 6− w(6) = 2.

For a variable Y and integers a, b ∈ N0 with a ≥ b, the Gaussian binomial

coefficient is defined to be(
a

b

)
Y

=

∏a
i=a−b+1(1 − Y i)∏b

i=1(1 − Y i)
∈ Z[Y ].

Given an integer n ∈ N and a subset I = {i1, . . . , i�}< ⊆ [n− 1], the associated

Gaussian multinomial is defined as(
n

I

)
Y

=

(
n

i�

)
Y

(
i�
i�−1

)
Y

· · ·
(
i2
i1

)
Y

∈ Z[Y ].

Then (cf. [8, Section 1.7]) for I ⊆ [n− 1] we have

(2.3)
∑

w∈Sn, Des(w)⊆I

Y len(w) =

(
n

I

)
Y

.

2.2. Grassmannians. Given an integer i ∈ [n]0, we denote by Gr(n, n− i) the

Grassmannian of (n − i)-dimensional subspaces of affine n-dimensional space.

This i(n− i)-dimensional projective variety has a decomposition

Gr(n, n− i) =
⋃

w∈Sn, Des(w)⊆{i}
Ωw
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into (Schubert) cells Ωw, indexed by
(

n
n−i

)
elements of Sn. These cells have

an elementary realization as follows. Fix a vector space basis for affine n-

dimensional space. Subspaces of dimension n − i may then be represented by

GLn−i-left cosets of matrices of size n× (n− i) of full rank n− i. A set of such

matrices of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ . . . ∗
...

...

∗ ∗ . . . ∗
1 0 . . . . . . 0

0 ∗ . . . . . . ∗
...

...

0 1 0 . . . 0

0 0 ∗ . . . ∗
...

...
...

0 0 0 . . . 1

0 0
...

...

0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×(n−i)

where ∗ stands for arbitrary field elements, is a set of unique coset representa-

tives. More precisely, for any such matrix there is a subset J ⊆ [n] of cardinality

n− i such that the submatrix comprising rows labeled by elements of J is the

(n − i)-identity matrix. The matrix above has zeroes in all entries below or

to the right of a 1 in this submatrix, and arbitrary entries in the remaining

positions. The set of cosets corresponding to such matrices for a fixed subset

J = {j1, . . . , jn−i}< ⊆ [n] may be identified with the cell Ωw, where w ∈ Sn

is the unique element in Sn whose descent set is contained in {i} and which

satisfies w(i +m) = jm for all m ∈ [n− i]. This illustrates that each cell Ωw is

an affine space of dimension i(n− i)− len(w), which is the number of symbols

∗ in the above matrix. Hence, given a prime p, the number #Gr(n, n − i;Fp)
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of Fp-rational points of Gr(n, n− i) is given by the formula

(2.4)

#Gr(n, n− i;Fp) =
∑

w∈Sn, Des(w)⊆{i}
pi(n−i)−len(w)

=

(
n

n− i

)
p−1

pi(n−i) =

(
n

n− i

)
p

;

cf. (2.3). We refer to [5, Section 3.2] for further information about Schubert

cells.

2.3. Lattices. For the reader’s convenience, we recall some notation used in

[9] to parameterize sublattices Λ ≤ Zn
p . A sublattice Λ ≤ Zn

p of finite index

in Zn
p is maximal in Zn

p if p−1Λ �≤ Zn
p . Such a lattice is called of type

ν(Λ) = (I, rI), where I = {i1, . . . , i�}< ⊆ [n− 1] and rI = (ri1 , . . . , ri�) ∈ N�, if

Λ has elementary divisors

pν := (1, . . . , 1︸ ︷︷ ︸
i1

, pri1 , . . . , pri1︸ ︷︷ ︸
i2−i1

, . . . , p
∑

ι∈I rι , . . . , p
∑

ι∈I rι︸ ︷︷ ︸
n−i�

)

with respect to Zn
p . (Note that this ordering differs from the one used in [10,

Section 3.1].)

Fix a Zp-basis (ε1, . . . , εn) of Zn
p . The group Γ = SLn(Zp) acts transitively

on the finite set of maximal sublattices of Zn
p of given type ν = (I, rI). Denote

by Γ(I,rI) the stabilizer in Γ of the diagonal lattice
⊕n

j=1(p
ν)jZpεj . This allows

us to identify a given maximal lattice with a coset αΓ(I,rI), where α ∈ Γ. The

number of maximal lattices of type (I, rI) inside Zn
p is given by

(2.5) |Γ : Γ(I,rI)| =
(
n

I

)
p−1

p
∑

ι∈I rιι(n−ι);

see, for instance, [10, Eq. (26)].

2.4. Linearization. The problem of counting finite-index normal subgroups

ofH(R) turns out to be equivalent to the problem of counting finite-index ideals

in a certain Lie ring, which we now introduce. Given a ring R, the Heisenberg

Lie ring L(R) over R is defined as

L(R) =

⎧⎪⎨⎪⎩
⎛⎜⎝ 0 a c

0 0 b

0 0 0

⎞⎟⎠ | a, b, c ∈ R

⎫⎪⎬⎪⎭ ,
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equipped with the Lie bracket induced from gl3(R). The derived subring L(R)′

of L(R) is equal to the center of L(R) and consists of those matrices for which

a = b = 0. Let L(R) = L(R)/L(R)′ be the abelianization.

If R is an A-module of finite rank, for some commutative ring A, then so is

L(R). In this case, L(R) has only finitely many A-ideals of each finite index.

The (A-)ideal zeta function of L(R) is then defined as the Dirichlet generating

function

(2.6) ζ�L(R)(s) =

∞∑
n=1

a�n(L(R))n
−s,

where a�n(L(R)) denotes the number of A-ideals of index n in L(R). In the cases

considered in this paper, we have A = Zp.

3. Computation of the functions W �
e,f (X,Y )

3.1. The set-up. Let R be a compact discrete valuation ring of characteristic

zero, with maximal ideal m and finite residue field kR = R/m. Fix a uniformizer

π ∈ m, and let val be the discrete valuation on R, normalized so that val(π) = 1.

Let p be the characteristic of kR and f = [kR : Fp] the inertia degree. Denote

by e the ramification index of R, which satisfies pR = me. Note that there is a

natural ring embedding of Zp into R, endowing R with a Zp-module structure.

Let (β1, . . . , βf ) be an ordered Fp-basis of kR. For each i ∈ [f ], we fix a lift

βi ∈ R of βi. Then R is a free Zp-module of rank n = ef and the set

B =
{
βiπ

j | i ∈ [f ], j ∈ [e− 1]0
}

is a Zp-basis; cf. [6, Proposition II.6.8]. We order it as follows: B = (d1, . . . , dn),

where di+fj = βiπ
j . Setting

ai =

⎛⎜⎝ 0 di 0

0 0 0

0 0 0

⎞⎟⎠ , an+i =

⎛⎜⎝ 0 0 0

0 0 di

0 0 0

⎞⎟⎠ , ci =

⎛⎜⎝ 0 0 di

0 0 0

0 0 0

⎞⎟⎠
for each i ∈ [n], we obtain the following presentation of the Heisenberg Lie ring

L(R) defined in Section 2.4:

(3.1) L(R) = 〈a1, . . . , a2n, c1, . . . , cn | [ai, aj] =M(c)ij , i, j ∈ [2n]〉 .
Here M(Y) ∈ Mat2n(Zp[Y1, . . . , Yn]) is a matrix whose entries are Zp-linear

forms in the variables Y1, . . . , Yn, andM(c) is the matrix obtained after making
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the substitution Yi = ci for all i ∈ [n]. More precisely, M(Y) has the form

(3.2) M(Y) =

(
0 B(Y)

−B(Y) 0

)
,

where B(Y) is an n×nmatrix whose entries are given by B(Y)ij =
∑n

k=1 γ
ij
k Yk,

and the “structure constants” γijk ∈ Zp are defined by the relations didj =∑n
k=1 γ

ij
k dk. Note that (3.1) differs from the presentation appearing in [7, Sec-

tion 2.1] by a reordering of the generators ai.

Remark 3.1: Given integers i, j ∈ [n], write i = i1f + i0 and j = j1f + j0,

where i0, j0 ∈ [f ] and i1, j1 ∈ [e − 1]0. Define η = πe/p ∈ Z∗
p. It is immediate

from the definition of the basis elements di that didj = πi1+j1di0dj0 . We write

i1 + j1 = 	1e + 	0 for 	0 ∈ [e − 1]0 and 	1 ∈ {0, 1}. The structure constants γijk
satisfy the following:

(1) γijk = γjik for all i, j, k ∈ [n].

(2) γij�0f+k = p�1η�1γi0j0k for k ∈ [(e− 	0)f ].

(3) γijk ∈ p�1+1Zp for all k ∈ [	0f ].

In particular, B(Y) is symmetric and has the following block decomposition:

(3.3) B(Y) =

⎛⎜⎜⎜⎜⎝
B(0)(Y) B(1)(Y) . . . B(e−1)(Y)

B(1)(Y) B(2)(Y) . . . pB(e)(Y)
...

...
...

B(e−1)(Y) pB(e)(Y) . . . pB(2e−2)(Y)

⎞⎟⎟⎟⎟⎠ ,

for suitable square matrices B(μ)(Y) ∈ Matf (Zp[Y]) of Zp-linear forms, for

μ ∈ [2e− 2]0.

By the remark after [2, Lemma 4.9], we have that

(3.4) ζ�H(R) = ζ�L(R),

where the ideal zeta function on the right hand side was defined in (2.6); see

the discussion in [7, Section 1.3] for more details.

It is well known that, for all d ∈ N, the (normal) zeta function of the free

abelian pro-p group Zd
p of rank d is given by

(3.5) ζZd
p
(s) =

d−1∏
i=0

ζp(s− i),
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where ζp(s) = (1−p−s)−1 is the Euler factor of the Riemann zeta function ζ(s)

at the prime p; see, for instance, [2, Proposition 1.1].

3.2. The unramified case. First suppose that e = 1, covering the case of

finite unramified extensions R of Zp.

Theorem 3.2: Let p be a prime and R a finite unramified extension of Zp.

Then

(3.6) ζ�H(R)(s) = ζZ2n
p
(s)

1

1− x0

∑
I⊆[n−1]

(
n

I

)
p−1

∏
i∈I

xi
1− xi

,

with numerical data xi = p(2n+i)(n−i)−(3n−i)s for i ∈ [n− 1]0.

Proof. In order to keep the notation of this paper compatible with [9], we have

labeled the numerical data in reverse order to that of [7]. By [7, Corollary 3.7],

we have

ζ�H(R)(s) = ζZ2n
p
(s)

1

1 − x0

∑
I⊆[n−1]

(
n

I

)
p−1

∏
i∈I

xn−i

1− xn−i
.

Define n − I ⊆ [n − 1] to be the set {n − i | i ∈ I}. Our claim follows by the

identity (
n

n− I

)
p−1

=

(
n

I

)
p−1

;

cf. [7, Remark 2.13].

The object of this section is to give a second proof of Theorem 3.2, based on

the ideas of [9]. This will prepare the way for arguments in the general case in

the remainder of the article.

Note that, since e = 1, we have B = (β1, . . . , βn). Hence B reduces modulo

m = pR to an Fp-basis of the residue field kR. As in [9], we consider the Pfaffian

hypersurface PH(R) ⊆ Pn−1 defined by the equation det(B(Y)) = 0.

Lemma 3.3: Let q = pn, and let T : Fq → Fp be a non-zero Fp-linear map.

Let {x1, . . . , xn} be an Fp-basis of Fq. Then the matrix AT = (T (xixj))ij ∈
Matn(Fp) is nonsingular.

Proof. Given x ∈ Fq, consider the Fp-linear map UT,x : Fq → Fp given by

UT,x(y) = T (xy). Let F∨
q = HomFp(Fq,Fp) be the dual space of Fq. Observe

that the map

Fq → F∨
q , x → UT,x
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is Fp-linear and injective and therefore is an isomorphism of Fp-vector spaces.

The matrix AT is just the matrix of this map with respect to the Fp-basis

{x1, . . . , xn} and its dual basis {x∨1 , . . . , x∨n}, so the claim follows.

Lemma 3.4: The Pfaffian hypersurface PH(R) has no Fp-rational points.

Proof. Let v = (v1, . . . , vn)
t ∈ Zn be a column vector, and set q = pn. Let

vi ∈ Fp be the reduction modulo p of vi ∈ Z. Choose an isomorphism kR � Fq

and use it to identify these two fields. Now let βi ∈ Fq be the reduction modulo

p of βi ∈ R, for i ∈ [n]. Recall that {β1, . . . , βn} is an Fp-basis of Fq and

consider the Fp-linear map Tv : Fq → Fp given by Tv(βi) = vi. Observe that

the reduction modulo p of the matrix B(v) is just the matrix ATv defined in

the statement of Lemma 3.3. The conclusion of that lemma then implies that

det(B(v)) = 0 only if v = 0.

In the notation of [9], Lemma 3.4 states that nPH(R)
(p) = 0 if R is un-

ramified. Furthermore, it implies that the Pfaffian hypersurface has no points

defined over Q. Therefore it is vacuously smooth and has no lines. Hence, in

the notation of [9, Theorem 3], ζ�H(R),p(s) = W0(p, p
−s), where W0(p, p

−s) is

implicitly computed in [9, Section 4.2.1]. It is easily seen to match the formula

given in (3.6). This concludes the second proof of Theorem 3.2.

3.3. The general case. We start off by describing the elementary divisors of

matrices of the form B(α) ∈ Matn(Zp), where B(Y) ∈ Matn(Zp[Y]) is defined

following (3.2) and α ∈ Zn
p \pZp. Recall the block decomposition of B(Y) given

in (3.3).

Given a real number x, we denote by �x� the smallest integer greater than or

equal to x, and by �x� the largest integer less than or equal to x.

Definition 3.5: Given α = (α1, . . . , αn) ∈ Zn
p \ pZn

p , put

μ(α) = max{i ∈ [n] | val(αi) = 0} ∈ [e]

and define �α� = �μ(α)
f �.

Lemma 3.6: Let α ∈ Zn
p \ pZn

p with �α� = m. Then:

(1) B(m−1)(α) ∈ GLf (Zp) and B
(μ)(α) ∈ pMatf (Zp) for all μ ∈ [m, e− 1].

(2) B(m+e−1)(α) ∈ GLf (Zp) and B(μ)(α) ∈ pMatf (Zp) for all

μ ∈ [m+ e, 2e− 2].
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Proof. Let μ ∈ [e − 1] and let Ā(μ) ∈ Matf (Fp) be the reduction modulo p

of B(μ)(α). From Remark 3.1(3) it follows that Ā
(μ)
i,j =

∑(e−μ)f
�=1 γij� αμf+�

for all i, j ∈ [f ], where the overline denotes reduction modulo p and the γij�
are as defined immediately following (3.2). Our assumption on α immedi-

ately implies the second part of (1), whereas if μ = m − 1 then we obtain

Ā
(m−1)
i,j =

∑f
�=1 γ

ij
� α(m−1)f+�. We would like to prove that Ā(m−1) is invert-

ible.

Since βiβj =
∑f

�=1 γ
ij
� β� for all i, j ∈ [f ], we find that Ā(m−1) = AT , in the

notation of Lemma 3.3, where T : kR → Fp is the non-zero Fp-linear operator

given by T (βi) = α(m−1)f+i for all i ∈ [f ]. Lemma 3.3 thus implies that Ā(m−1)

is non-singular. This establishes the first part of claim (1).

The second part of (2) follows similarly from Remark 3.1 and the hypoth-

esis on α. To establish the first part of (2), we let ψ : kR → kR denote the

Fp-linear isomorphism corresponding to multiplication by πe/p ∈ k×R and set

(α′
1, . . . , α

′
f ) = ψ(α(m−1)f+1, . . . , αmf ). It follows similarly to the previous case

that Ā(m+e−1) = AT ′ , where T ′(βi) = α′
i for all i ∈ [f ]. Thus we again have

Ā(m+e−1) ∈ GLf (Fp) by Lemma 3.3.

Write I� for the 	× 	 identity matrix. For m ∈ [e] we define

Jm =

(
0 Imf

p−1I(e−m)f 0

)
∈ Matn(Qp).

Corollary 3.7: Let m ∈ [e], and let α = (α1, . . . , αn) ∈ Zn
p \ pZn

p be a vector

such that �α� = m. Then B(α)Jm ∈ GLn(Zp).

Proof. This is immediate from Lemma 3.6 and (3.3).

We now state the main result of this article. Recall the statistics len, len[n−2],

and Des on the Coxeter group Sn that were defined in Section 2.1.

Theorem 3.8: Let R be a finite extension of Zp with inertia degree f and

ramification index e. Set n = ef . Then

(3.7) ζ�H(R)(s) = ζZ2n
p
(s)

∑
w∈Sn

p
− len(w)+2f

⌊
len[n−2](w)

f

⌋
s∏

j∈Des(w) xj∏n−1
i=0 (1− xi)

,

with numerical data xi = p(2n+i)(n−i)−(3n−i)s for i ∈ [n− 1]0.
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Proof. We saw in (3.4) that ζ�H(R)(s) = ζ�L(R)(s), where L(R) is the Heisenberg

Lie ring overR; cf. Section 2.4. The abelianization L(R) and the derived subring

L(R)′ are free Zp-modules of rank 2n and n, respectively. By [9, Lemma 1],

which is essentially [2, Lemma 6.1], we have

(3.8)

ζ�L(R)(s) = ζZ2n
p
(s)ζp(3ns− 2n2)

∑
Λ′≤L(R)′
Λ′ maximal

|L(R)′ : Λ′|2n−s|L(R) : X(Λ′)|−s,

where, for every finite-index sublattice Λ′ ≤ L(R)′, we define X(Λ′) to be the

sublattice of L(R) such that X(Λ′)/Λ′ is the center of L(R)/Λ′. Note that

ζp(3ns− 2n2) = 1
1−x0

.

Let Λ′ ≤ L(R)′ � Zn
p be a maximal sublattice of finite index, of type ν(Λ′) =

(I, rI), where I = {i1, . . . , i�}< ⊆ [n − 1] and rI = (ri1 , . . . , ri�) ∈ N�; cf.

Section 2.3. We write i for i�. As in Section 2.3, we identify Λ′ with a coset

αΓ(I,rI), where α ∈ SLn(Zp). For j ∈ [n], let αj denote the j-th column vector

of α. Recalling Definition 3.5 we set

(3.9) κ(Λ′) := e−max{�αj� | n− i < j ≤ n} ∈ [e− 1]0.

An informal description of κ(Λ′) is as follows. Consider the reduction modulo p

of the n×(n−i) matrix composed of the last n−i columns of α. Then κ(Λ′) = κ

if and only if the last κf rows of this matrix are zero, but the (κ+ 1)-st block

of f rows from the bottom contains a nonzero element.

The most mysterious ingredient of (3.8) is the quantity |L(R) : X(Λ′)|, which
we will now compute.

Lemma 3.9: Let Λ′ ≤ L(R)′ be a maximal sublattice of type ν(Λ′) = (I, rI).

Then

|L(R) : X(Λ′)| = p2(n
∑

ι∈I rι−κ(Λ′)f).

Proof. By [9, Theorem 6], |L(R) : X(Λ′)| is equal to the index in L(R) ∼= Z2n
p

of the sublattice of simultaneous solutions to the following system of linear

congruences:

(3.10) gM(αj) ≡ 0 mod (pν)j for j ∈ [n]

in variables g = (g1, . . . , g2n). Here M(αj) is the commutator matrix M(Y)

of (3.2) evaluated at αj . It is clear from (3.2) that the index of the solution

sublattice of (3.10) in L(R) is the square of the index in Zn
p of the solution
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sublattice of the system

(3.11) hB(αj) ≡ 0 mod (pν)j for j ∈ [n],

where h = (h1, . . . , hn) ∈ Zn
p . By Lemma 3.7, each matrix B(αj) ∈ Matn(Zp)

becomes invertible after all the entries in its last (e−�αj�)f columns have been

divided by p. Therefore, h = (ht) ∈ Zn
p is a solution to (3.11) if and only if, for

all j ∈ [n],

ht ≡ 0 mod (pν)j if t ≤ �αj�f,
pht ≡ 0 mod (pν)j if t > �αj�f.

It follows that the congruences where (pν)j is maximal, namely those with

j ∈ [i + 1, n], dominate all the others. Hence, h ∈ Zn
p is a solution to (3.11) if

and only if

ht ≡ 0 mod p
∑

ι∈I rι if t ≤ (e− κ(Λ′))f,

ht ≡ 0 mod p(
∑

ι∈I rι)−1 if t > (e− κ(Λ′))f.

Recalling that n = ef , it follows that the index in L(R) of the sublattice of

simultaneous solutions to the congruences (3.10) is the quantity in the statement

of the lemma.

It is obvious from the definition of the type of a lattice that, if Λ′ ≤ L(R)′ is
a sublattice of type (I, rI), then

(3.12) |L(R)′ : Λ′| = p
∑

ι∈I(n−ι)rι .

Given κ ∈ [e− 1]0 and a type (I, rI), define

Nκ
(I,rI)

= #{Λ′ ≤ L(R)′ | ν(Λ′) = (I, rI), κ(Λ
′) = κ}.

It follows from (3.8), (3.12), and Lemma 3.9 that

(3.13) ζ�L(R)(s)

=
ζZ2n

p
(s)

1− x0

∑
I⊆[n−1]

∑
rI∈N|I|

e−1∑
κ=0

Nκ
(I,rI)

p(
∑

ι∈I(n−ι)rι)(2n−s)−2s(n
∑

ι∈I rι−κf).
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As preparation for computing the numbers Nκ
(I,rI)

, we fix a type (I, rI) as

above and consider the surjective map

ϕ(I,rI) : {Λ′ | ν(Λ′) = (I, rI)} → Gr(n, n− i;Fp)

αΓ(I,rI) → 〈αj | i < j ≤ n〉Fp .

As before, we identify lattices of type (I, rI) with cosets αΓ(I,rI) for α ∈ Γ.

Informally, ϕ(αΓ(I,rI)) is the subspace of Fn
p spanned by the reduction modulo

p of the last n− i columns of the matrix α ∈ Γ = SLn(Zp).

Lemma 3.10: The fibres of ϕ(I,rI) all have the same cardinality

(3.14) p−i(n−i)

(
i

I \ {i}
)

p−1

p
∑

ι∈I rιι(n−ι).

Proof. The map ϕ(I,rI) is just the natural surjection

Γ/Γ(I,rI) → Γ/Γ({i},1), αΓ(I,rI) → αΓ({i},1).

Of course |Γ : Γ(I,rI)| = |Γ : Γ({i},1)||Γ({i},1) : Γ(I,rI)|. By (2.5) we have

|Γ : Γ(I,rI)| =
(
n

I

)
p−1

p
∑

ι∈I rιι(n−ι)

=

(
n

n− i

)
p−1

prii(n−i) ·
(

i

I \ {i}
)

p−1

p
∑

ι∈I\{i} rιι(n−ι).

Formula (3.14) for the index |Γ({i},1) : Γ(I,rI)| follows now from (2.4), as

|Γ : Γ({i},1)| = #Gr(n, n− i;Fp) =

(
n

n− i

)
p−1

pi(n−i).

Consider the following filtration on Gr(n, n−i;Fp). Let (ε1, . . . , εn) denote the

standard Fp-basis of V=Fn
p , and consider the flag (Vd)

e
d=0=

(〈ε1, . . . , εfd〉Fp

)e
d=0

.

Define

ψ : Gr(n, n− i;Fp) → [e], W → min{d |W ⊆ Vd}.
One verifies easily that the fibres of ψ are unions of Schubert cells. Indeed, if

λ ∈ [e] and W ∈ Gr(n, n − i;Fp), then ψ(W ) = λ if and only if the bottom

(e − λ)f rows of the matrix of W (cf. Section 2.2) consist of zeroes, whereas

the previous block of f rows does contain a non-zero matrix element. It is clear

from the discussion in Section 2.2 that the lowest-positioned non-zero element

in the matrix ofW is a 1 in the (w(n), n−i) position, where w ∈ Sn is such that

W ∈ Ωw(Fp). In other words, ψ(W ) = λ if and only if w(n) ∈ [(λ−1)f+1, λf ].
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Recalling that len[n−2](w) = n − w(n), this condition is clearly equivalent to⌊
len[n−2](w)

f

⌋
= e − λ. Therefore, for every λ ∈ [e],

(3.15) ψ−1(λ) =
⋃

w∈Sn, Des(w)⊆{i}⌊
len[n−2](w)

f

⌋
=e−λ

Ωw(Fp).

Now consider the composition

ψ ◦ ϕ(I,rI ) : {Λ′ ≤ L(R)′ | ν(Λ′) = (I, rI)} → [e],

αΓν → ψ
(
〈αj | i < j ≤ n〉Fp

)
.

From the definition of κ(Λ′) in (3.9) it is evident for all κ ∈ [e − 1]0 that

κ(Λ′) = κ if and only if ψ ◦ϕ(I,rI )(Λ
′) = e− κ. Thus, by (3.14), (3.15), and the

fact that |Ωw(Fp)| = pi(n−i)−len(w) for all w ∈ Sn (cf. Section 2.2), we obtain

Nκ
(I,rI )

= #{Λ′ ≤ L(R)′ | ν(Λ′) = (I, rI), κ(Λ
′) = κ}

(3.16)

= #{Λ′ ≤ L(R)′ | ν(Λ′) = (I, rI), ψ(ϕ(I,rI )(Λ
′)) = e− κ}

=

⎛⎜⎜⎜⎝ ∑
w∈Sn, Des(w)⊆{i},

⌊
len[n−2](w)

f

⌋
=κ

p− len(w)

⎞⎟⎟⎟⎠
(

i

I \ {i}
)

p−1

p
∑

ι∈I rιι(n−ι)

= ακ
I

∏
ι∈I

prιι(n−ι),

where we set

(3.17) ακ
I =

⎛⎜⎜⎜⎝ ∑
w∈Sn, Des(w)⊆{i},

⌊
len[n−2](w)

f

⌋
=κ

p− len(w)

⎞⎟⎟⎟⎠
(

i

I \ {i}
)

p−1

.

Lemma 3.11: Let ακ
I be the quantity defined in (3.17). Then

ακ
I =

∑
w∈Sn,Des(w)⊆I⌊
len[n−2](w)

f

⌋
=κ

p− len(w).
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Proof. It is easy to see that an element w ∈ Sn is the unique element of shortest

length in its coset wW[i−1] if and only if Des(w) ∩ [i − 1] = ∅. Writing an

arbitrary element w ∈ Sn in the form w = w[i−1]w[i−1] as in Section 2.1, we

find that w[i−1] is the unique element such that Des(w[i−1]) ∩ [i − 1] = ∅ and

w[i−1](j) = w(j) for all j > i; i.e., Des(w[i−1]) ∩ [i+ 1, n] = Des(w) ∩ [i+ 1, n],

whereas Des(w[i−1]) ∩ [i − 1] = Des(w) ∩ [i − 1]. It follows that the elements

w ∈ Sn satisfying Des(w) ⊆ I are precisely those for which Des(w[i−1]) ⊆ {i}
and Des(w[i−1]) ⊆ I \ {i}. Finally, it is clear that w(n) = w[i−1](n) and hence

len[n−2](w) = len[n−2](w[i−1]). Since len(w) = len(w[i−1]) + len(w[i−1]) and(
i

I \ {i}
)

p−1

=
∑

w∈W[i−1]
Des(w)⊆I\{i}

p− len(w),

the desired equality follows.

Finally, we have all the ingredients necessary to compute ζ�H(R)(s) and finish

the proof of Theorem 3.8. Indeed, a simple calculation using (3.16) shows that∑
rI∈N|I|

Nκ
(I,rI)

p(
∑

ι∈I(n−ι)rι)(2n−s)−2s(n
∑

ι∈I rι−κf) =

ακ
I p

2sκf
∑

rI∈N|I|

∏
ι∈I

(
p(2n+ι)(n−ι)−(3n−ι)s

)rι
= ακ

I p
2sκf

∏
ι∈I

xι
1− xι

,

where xι = p(2n+ι)(n−ι)−(3n−ι)s for ι ∈ I ⊆ [n − 1] as in the statement of

Theorem 3.8. By (3.13) this implies

ζ�H(R)(s)
1− x0
ζZ2n

p
(s)

=
∑

I⊆[n−1]

e−1∑
κ=0

ακ
I p

2κfs
∏
ι∈I

xι
1− xι

.

Bringing the right hand side to a common denominator, we get∑e−1
κ=0

∑
I⊆[n−1] β

κ
I p

2κfs
∏

ι∈I xι∏n−1
i=1 (1− xi)

,

where

βκ
I =

∑
J⊆I

(−1)|I|−|J|ακ
J =

∑
w∈Sn, Des(w)=I⌊
len[n−2](w)

f

⌋
=κ

p− len(w),
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the last equality following from a simple inclusion-exclusion argument; cf. [8,

(1.34)]. Hence,

ζ�H(R)(s)

∏n−1
i=0 (1− xi)

ζZ2n
p
(s)

=
∑

I⊆[n−1]

e−1∑
κ=0

p2κfs

⎛⎜⎜⎜⎜⎝
∑

w∈Sn,Des(w)=I⌊
len[n−2](w)

f

⌋
=κ

p− len(w)

⎞⎟⎟⎟⎟⎠
∏
ι∈I

xι

=
∑
w∈Sn

p
− len(w)+2f

⌊
len[n−2](w)

f

⌋
s ∏
j∈Des(w)

xj ,

as claimed.

Remark 3.12: Theorem 3.2 is indeed a special case of Theorem 3.8. If e = 1 and

f = n, then len[n−2](w) ≤ n− 1 < f for all w ∈ Sn, and hence
⌊
len[n−2](w)

f

⌋
= 0

for all w ∈ Sn. One verifies easily that

∑
w∈Sn

p− len(w)
∏

j∈Des(w) xj∏n−1
i=0 (1 − xi)

=
1

1− x0

∑
I⊆[n−1]

(
n

I

)
p−1

∏
i∈I

xi
1− xi

,

by bringing the right hand side to a common denominator as in [9, Section 4.1]

and using (2.3).

Corollary 3.13: Let R be a finite extension of Zp with inertia degree f

and ramification index e. Set n = ef . Then ζ�H(R)(s) satisfies the following

functional equation:

ζ�H(R)(s)|p→p−1 = (−1)3np(
3n
2 )−(5n+2(e−1)f)sζ�H(R)(s).

Proof. Recall from (2.1) that, for all w ∈ Sn, we have len[n−2](w0w) =

len[n−2](w0) − len[n−2](w), where w0 ∈ Sn is longest element. The key ob-

servation is that the fractional part of len[n−2](w0)
f = n−1

f = e− 1
f is the largest

possible. Hence, for all w ∈ Sn,

⌊
len[n−2](w0w)

f

⌋
=

⌊
len[n−2](w0)

f

⌋
−
⌊
len[n−2](w)

f

⌋
= (e−1)−

⌊
len[n−2](w)

f

⌋
.
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Using (3.5), (2.2), and (2.3) it then follows that

ζ�H(R)(s)|p→p−1

=ζZ2n
p
(s)|p→p−1

∑
w∈Sn

p
len(w)−2f

⌊
len[n−2](w)

f

⌋
s∏

j∈Des(w) x
−1
j∏n−1

i=0 (1− x−1
i )

=(−1)3np(
2n
2 )−2nsζZ2n

p
(s)x0

∑
w∈Sn

p
len(w)−2f

⌊
len[n−2](w)

f

⌋
s∏

j∈[n−1]\Des(w) xj∏n−1
i=0 (1− xi)

=(−1)3np(
3n
2 )−(5n+2(e−1)f)s

× ζZ2n
p
(s)

∑
w0w∈Sn

p
− len(w0w)+2f

⌊
len[n−2](w0w)

f

⌋
s∏

j∈Des(w0w) xj∏n−1
i=0 (1− xi)

=(−1)3np(
3n
2 )−(5n+2(e−1)f)sζ�H(R)(s),

as claimed.

3.4. An alternative formulation of the main result. We now prove

an alternative formula for ζ�H(R)(s) to that of Theorem 3.8 by showing that, in

general, the fraction on the right hand side of (3.7) admits some cancellation.

Consider the n-cycle c = (1 2 · · ·n) ∈ Sn. For i ∈ [n − 1]0, let xi be as in

Theorem 3.8.

Lemma 3.14: Let w ∈ Sn, and let m ∈ [n − 1]0 be such that w(1) ≤ n −m.

Then

p− len(cmw)+2 len[n−2](cmw)s
∏

j∈Des(cmw)

xj

= (p2n−3s)mp− len(w)+2 len[n−2](w)s
∏

j∈Des(w)

xj .

Proof. It suffices to prove the statement for m = 1; the general case clearly

follows from iterated application of this result. So let w ∈ Sn and set j =

w−1(n). Recall that len[n−2](w) = n−w(n) and observe that len(cw)−len(w) =

2j − n− 1. Moreover, we observe that Des(cw) = (Des(w) ∪ {j − 1}) \ {j}.
If j < n, then w(n) < n and so w(n) − cw(n) = −1. If j = n, then

w(n)− cw(n) = n− 1. In either case we obtain, by setting xn := 1, for j ∈ [n],
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that

p− len(cw)+2 len[n−2](cw)s
∏

j∈Des(cw) xj

p− len(w)+2 len[n−2](w)s
∏

j∈Des(w) xj
= pn−2j+1+2(w(n)−cw(n))sxj−1

xj

= p2n−3s.

Lemma 3.15: Suppose that w ∈ Sn and f ∈ N satisfies w(1) ≤ f . Then for

any m ≤ �n−f
f � the following holds:

p
− len(cmfw)+2f

⌊
len[n−2](cmfw)

f

⌋
s ∏
j∈Des(cmfw)

xj

= (p2n−3s)mfp
− len(w)+2f

⌊
len[n−2](w)

f

⌋
s ∏
j∈Des(w)

xj .

Proof. Let w and m be as in the lemma. Then len[n−2](cmfw) = len[n−2](w)−
mf . Thus

f

⌊
len[n−2](cmfw)

f

⌋
− len[n−2](cmfw) = f

⌊
len[n−2](w)

f

⌋
− len[n−2](w).

The lemma follows immediately from this and Lemma 3.14.

Theorem 3.16: Let R be a finite extension of Zp with inertia degree f and

ramification index e. Set n = ef and S
(f)
n = {w ∈ Sn | w(1) ≤ f}. Then

ζ�H(R)(s) = ζZ2n
p
(s)

∑
w∈S

(f)
n
p
− len(w)+2f

⌊
len[n−2](w)

f

⌋
s∏

j∈Des(w) xj

(1− pf(2n−3s))
∏n−1

i=1 (1− xi)
.

Proof. This follows from Theorem 3.8, Lemma 3.15, and the observations that

1− x0 = 1− (p2n−3s)n = (1 − (pf(2n−3s)))
e−1∑
m=0

pmf(2n−3s)

and that every element of Sn can be written uniquely in the form cmfw, where

m ∈ [e− 1]0 and w ∈ S
(f)
n .

Remark 3.17: An interesting question is whether the fraction in Theorem 3.16

is always in lowest terms and admits no more cancellation. T. Bauer has verified

this for all pairs (e, f) with n = ef ≤ 10.
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In the case that e = 1, Theorem 3.16 is exactly Theorem 3.2. In the other

extreme, the case f = 1, we obtain an interesting corollary. We identify S
(1)
n ,

the stabilizer in Sn of the letter 1, viz. the parabolic subgroup (Sn){si| 2≤i≤n−1},
with Sn−1.

Corollary 3.18: Let R be a totally ramified extension of Zp of degree n.

Then

(3.18) ζ�H(R)(s) = ζZ2n
p
(s)

∑
w∈Sn−1

p− len(w)+2 len[n−3](w)s
∏

j∈Des(w) xj+1

(1− p2n−3s)
∏n−1

i=1 (1 − xi)
,

with numerical data xi = p(2n+i)(n−i)−(3n−i)s for i ∈ [n− 1].

Example 3.19: We illustrate our results in the case e = 3, f = 1. Thus let R

be a totally ramified cubic extension of Zp. It is shown in [2, Proposition 8.15]

that

(3.19) ζ�H(R)(s) =
1 + p7−5s(∏5

i=0(1− pi−s)
)
(1 − p6−3s)(1 − p8−7s)(1− p14−8s)

.

Theorem 3.8 presents this zeta function as

(3.20) ζ�H(R)(s) = ζZ6
p
(s)

∑
w∈S3

p− len(w)+2 len{1}(w)s
∏

j∈Des(w) xj∏2
i=0(1− xi)

,

with numerical data

x0 = p18−9s, x1 = p14−8s, x2 = p8−7s.

The Coxeter group S3 is generated by the involutions s1 and s2. We tabulate

the values of the functions Des, len, and len{1} on S3.

w ∈ S3 Des(w) len(w) len{1}(w)
1 ∅ 0 0

s1 {1} 1 0

s2 {2} 1 1

s2s1 {1} 2 1

s1s2 {2} 2 2

(s2s1s2 =)s1s2s1 {1, 2} 3 2
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We deduce that∑
w∈S3

p− len(w)+2 len{1}(w)s
∏

j∈Des(w)

xj

= 1 + p13−8s + p7−5s + p12−6s + p6−3s + p19−11s =
(1 − p18−9s)(1 + p7−5s)

1− p6−3s
,

showing that (3.19) accords with (3.20). Formula (3.19) also illustrates (3.18),

as 〈s2〉 ∼= S2 and

1 + p7−5s = 1 + p−1+2sx2 =
∑
w∈S2

p− len(w)+2 len(w)s
∏

j∈Des(w)

xj+1.
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