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Pascal Lefèvre, Étienne Matheron and Armel Primot
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ABSTRACT

We isolate various sufficient conditions for a Banach space X to have

the so-called Blum–Hanson property. In particular, we show that X has

the Blum–Hanson property if either the modulus of asymptotic smooth-

ness of X has an extremal behaviour at infinity, or if X is uniformly

Gâteaux smooth and embeds isometrically into a Banach space with a

1-unconditional finite-dimensional decomposition.

1. Introduction

Let X be a Banach space, and let T be a power-bounded linear operator on X

(i.e., supn�N �T n� � �). By the classical mean ergodic theorem (see, e.g., [30,

p. 72]) if x � X and if the sequence of arithmetic means

AN �x� �
1

N

N�
n�1

T nx

has a weakly convergent subsequence, then AN �x� is in fact norm convergent. In

particular, if x has a weakly null T -orbit (T nx
w
�	 0), then AN �x�

� �
�	 0. When

X is a Hilbert space and T is a contraction operator (�T � 
 1), it turns out that

a much stronger conclusion holds true: for any x � X with a weakly null T -orbit,

the arithmetic means of T nx along any increasing sequence of integers �ni� are
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norm convergent to 0. This was first proved by J. R. Blum and D. L. Hanson

([9]) for isometries induced by measure-preserving transformations, and later

on in [2], [24] and [34] for arbitrary contractions. For contractions on a general

Banach space X , this strong conclusion may or may not hold true. When it

does so (for every contraction operator on X), the space X is said to have the

Blum–Hanson property. This property is the topic of the present paper.

To proceed further, let us fix some terminology. From now on, we consider real

Banach spaces only. A sequence �xn�n�N � X is a Blum–Hanson sequence

if every subsequence of �xn� is norm convergent to 0 in the Cesàro sense; that

is, for any increasing sequence of integers �ni�, it holds that

lim
K��

1

K

���� K�
i�1

xni

���� � 0.

Obviously, every norm null sequence is Blum–Hanson and every Blum–Hanson

sequence is weakly null. In fact, it is shown in [39] that a sequence �xn� � X

is Blum–Hanson if and if only it is “uniformly weakly null”, which means that

for any ε � 0, there exists an integer Nε such that

x� � BX� : ��n � N; ��x�, xn�� � ε� 
 Nε.

(In the case where X is a Hilbert space, this was proved earlier in [8], where

Blum–Hanson sequences are called strongly mixing).

An operator T � L�X� satisfies the Blum–Hanson dichotomy at some

point x � X if either the sequence �T nx� is not weakly null, or it is Blum–

Hanson. We note that if T � L�X� and if z � X has a weakly convergent T -

orbit, then πT z :� w-lim T nz is a fixed point of T and hence T n�z�πT z�
w
�	 0.

It follows that an operator satisfies the Blum–Hanson dichotomy at all points

x � X if and only if the following holds: for any z � X with a weakly convergent

T -orbit, every subsequence of �T nz� is norm convergent to πTz in the Cesàro

sense.

Given a class of operators C, we say that the Banach space X has the Blum–

Hanson property with respect to C if every operator T � C�L�X� satisfies

the Blum–Hanson dichotomy at all points x � X . Thus, the Blum–Hanson

property itself corresponds to the class C of all contraction operators. If one

considers only those operators T � C with weakly convergent orbits, one gets a

formally weaker property, which we call the conditional Blum–Hanson prop-

erty (with respect to C).
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Few results can be found in the literature regarding the Blum–Hanson prop-

erty. In the “positive” direction and apart from Hilbert spaces, the most notable

ones seem to be the following: �p, 1 
 p � � has the Blum–Hanson property

([43]); L1 has the conditional Blum–Hanson property ([2]); Lp has the condi-

tional Blum–Hanson property with respect to positive contractions ([3]); any

positive contraction on Lp satisfies the Blum–Hanson dichotomy at all posi-

tive f � Lp ([7]); the same is true for Orlicz function spaces endowed with the

Orlicz norm, provided that this norm is uniformly smooth ([41]). As for “neg-

ative” results, we mention the following: the space C�T2� does not have the

conditional Blum–Hanson property ([1]); and �p, 1 � p � � does not have the

conditional Blum–Hanson property with respect to power-bounded operators

([43]). (This last result shows in particular that the Blum–Hanson property

is not preserved under renormings; in other words, this is not an isomorphic

property of the space.) The most exciting question is arguably whether Lp has

the Blum–Hanson property.

In this note, our aim is to show that some of the above positive results, as

well as some new ones, can be derived in a unified way from a general and rather

simple theorem (Theorem 2.1) involving a certain “modulus” similar to the well

known modulus of asymptotic smoothness of the given Banach space X . (See

section 2 for the definition.)

To be a little bit more precise, it follows from our main result that an “ex-

tremal” behaviour of the modulus of asymptotic smoothness at infinity entails

the Blum–Hanson property for X . This is rather unexpected since, as far as

we know, the behaviour of this modulus at infinity has never been considered.

It also follows immediately from Theorem 2.1 that Banach spaces satisfying

Kalton–Werner’s property �mp� for some p � �1,�� have the Blum–Hanson

property. Finally, with little extra work we deduce from Theorem 2.1 that if

the duality mapping of X has a certain weak continuity property, then X has

the Blum–Hanson property; it follows in particular that uniform Gâteaux dif-

ferentiability of the norm implies Blum–Hanson when combined with a suitable

“approximation-like” property. As a concrete class of examples, we consider

Orlicz spaces endowed with the Luxemburg norm: we show that asymptotically

uniformly smooth small Orlicz sequence spaces have the Blum–Hanson prop-

erty, and that any positive contraction on a Gâteaux smooth Orlicz function

space Lθ satisfies the Blum–Hanson dichotomy at all positive f � Lθ.
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The paper is organized as follows. Our main result is stated in section 2, and

two typical examples are given immediately. Theorem 2.1 is proved in section 3.

Results involving differentiability of the norm are collected in section 4. Section

5 is devoted to Orlicz spaces. Section 6 contains some remarks about C�K�

spaces and Lp spaces. In particular, we observe that C�K� fails the conditional

Blum–Hanson property for any uncountable compact metric space K. Finally,

section 7 contains some additional remarks and ends up with a few natural

questions.

Acknowledgement. We would like to thank the anonymous referee for his/her

very careful reading of the paper and valuable suggestions.

2. Main result, and two examples

Our main result (Theorem 2.1) is about sequences �xn� � X which are not

necessarily of the form xn � T nx for some contraction T � L�X�. We shall

“only” assume that �xn� is shift-monotone, in the following sense: for every

finite increasing sequence of integers n1 � � � � � nk, it holds that

�x1�n1 � � � � � x1�nk
� 
 �xn1 � � � � � xnk

�.

This is indeed more general than assuming that �xn� is an orbit of some

contraction operator; see [50, Example 3.3.]. A similar property, called convex

shift-boundedness, is considered in [50]. It is shown there that a convex shift-

bounded sequence �xn� is weakly mixing to 0 (i.e., 1
N

�N
n�1 ��x

�, xn�� 	 0 for

every x� � X�) if and only if the arithmetic means of �xn� along any increasing

sequence of integers with positive lower density are norm convergent to 0. For

sequences of the form xn � T nx where T is a power-bounded operator, this was

proved earlier in [25].

Theorem 2.1 will be formulated using a “modulus” associated with a given

convex cone C � X (i.e., a nonempty convex set which is closed under multi-

plication by nonnegative scalars). For any set A � X , let us denote by WN�A�

the family of all weakly nul sequences �yn� � X with yn � A for all n. Then,

for any x � X and t � 0, we put

rC�t, x� � sup
�yn	�WN�SX
C	

lim sup
n��

�x� tyn�.

(Here and elsewhere, SX is the unit sphere of X .)
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The trivial case WN�SX �C� � � is allowed: sup� declared to be ��. For

example, rC�t, x� � �� if the Banach space X has the Schur property, i.e.,

when every weakly null sequence is in fact norm null.

The modulus rX has already been used by many authors; see e.g., [20], [21],

[22], [37], [38], [45]. There is a simple connection with the modulus of asymptotic

smoothness. The latter is one of the many moduli introduced by V. D. Milman

in [42]. With the notation of [26], it is the function ρ̄X : R��SX 	 R� defined

as follows:

ρ̄X�t, x� � inf
E

sup
y�BE

�x� ty� � 1,

where the infinimum infE is taken over all finite-codimensional subspaces E � X

(and BE is the unit ball of E). The connection between the two moduli is the

following: for any x � SX ,

(1) rX�t, x� 
 ρ̄X�t, x� � 1.

This is fairly easy to check, using the fact that if �yn� is a weakly null sequence

in X , then dist�yn, E� 	 0 for every finite-codimensional subspace E � X .

Moreover, it is shown in [37] that equality holds in (1) as soon as X embeds

isometrically into a Banach space with a shrinking Markushevich basis (for

example, a reflexive Banach space).

We note that if WN�SX�C� � �, then rC�t, x� � t��x� for all t. Moreover,

since rC�t, x� is obviously 1-Lipschitz with respect to t, the map t �	 rC�t, x�� t

is non-increasing. Hence, rC�t, x� � t always has a limit lC�x� as t 	 �, and

lC�x� � ��x� in the nontrivial case WN�SX �C� �� �. (Actually, if the cone

C is symmetric, then rC�t, x� � t for all t and hence lC�x� � 0: this is because

t � �ty� 
 �x�ty���x�ty�
2 for any y � SX �C.)

We can now state

Theorem 2.1: Let X be a Banach space, and let C � X be a nonempty convex

cone. Let also �xn�n�Z� be a shift-monotone, weakly null sequence in C. If the

initial point x :� x0 satisfies

( ) lim
t��

�rC�t, x� � t� 
 0,

then �xn� is a Blum–Hanson sequence.

Let us say that an operator T � L�X� is C-positive if it maps the cone C

into itself. As an immediate consequence of Theorem 2.1, we get
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Corollary 2.2: Assume that ( ) holds for some x � C. Then, any C-positive

contraction on X satisfies the Blum–Hanson dichotomy at all ξ � Rx.

Proof. Let T � L�X� be a C-positive contraction. Since T is linear, it is enough

to show that it satisfies the Blum–Hanson dichotomy at all ξ � R�x; so let us

assume that T nξ
w
�	 0 for some ξ � λx with λ � 0. To show that �T nξ� is a

Blum–Hanson sequence, we may obviously assume that ξ � 0. Then λ � 0 and

rC�t, ξ� � λrC�
t
λ , x� for all t � R�, so ( ) is satisfied for ξ and the result follows

by applying Theorem 2.1 with xn � T nξ.

Remark: Assume additionally that C�C � X . Then, the following equivalence

holds for every C-positive contraction T : all T -orbits are weakly null iff they

are all Blum–Hanson. However, it does not follow directly from Corollary 2.2

that X has the conditional Blum–Hanson property with respect to C-positive

contractions. The point is that if a contraction T with weakly convergent orbits

satisfies T nx
w
�	 0 for some x � X and if we write x � u� v with u, v � C, then

the sequences �T nu� and �T nv� have no reason for being both weakly null even

though they are both weakly convergent. When X � Lp and C � L�p , one can

get round this difficulty with some extra work; see [3], paragraph (2.1).

For future reference, it is convenient to introduce the following terminology.

Definition 2.3: We shall say that a Banach space X has extremal asymptotic

smoothness at infinity if the modulus rX satisfies limt���rX �t, x� � t� 
 0

for all x � X , and that X has extremal uniform asymptotic smoothness at

infinity if limt���rX�t� � t� 
 0, where rX�t� � supx�SX
rX �t, x�.

Thanks to (1), we see that X has extremal asymptotic smoothness at infinity

as soon as its modulus of asymptotic smoothness satisfies (for all x � SX)

(  ) lim
t��

�ρ̄X�t, x� � 1 � t� � 0.

Note also that Banach spaces with the Schur property, for example the space

�1, trivially have extremal (uniform) asymptotic smoothness at infinity. This

makes the terminology perhaps confusing because �1 is usually considered as

the “least smooth” of all Banach spaces (indeed, it has the ”worst possible”

modulus of asymptotic smoothness). But we prefer to use the modulus rX

rather than ρX because it leads to more general results, and yet we want to

emphasize asymptotic smoothness.
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Note that extremal asymptotic smoothness at infinity is a hereditary property,

i.e., inherited by subspaces. Thus, we may state

Corollary 2.4: If the Banach space X has extremal asymptotic smoothness

at infinity, then every subspace of X has the Blum–Hanson property. In par-

ticular, X has Blum–Hanson if (  ) holds for all x � X .

The “in particular” part is rather unexpected, since usually what matters

about the modulus of asymptotic smoothness is the behaviour of ρ̄X�t, x� as t

goes to 0. Indeed, the main property captured by the modulus ρ̄X is the follow-

ing: the Banach space X is said to be asymptotically uniformly smooth

if

lim
t�0

ρ̄X�t�

t
� 0,

where ρ̄X�t� � supx�SX
ρ̄�t, x�. This property has been extensively studied; see

in particular [29] and [46] for deep results concerning asymptotically uniformly

smooth renormings.

Theorem 2.1 can also be applied when the given norm on X is smooth in

a more usual sense, under a certain assumption on the duality mapping. We

state the result right now in order to illustrate it with positive contractions on

Lp, but the proof is postponed to section 4 (see Proposition 4.1).

Corollary 2.5: Assume that the norm of X is uniformly Gâteaux differen-

tiable on the unit sphere SX , and denote by J�x� the Gâteaux derivative of

the norm at x � SX . Assume that whenever �yn� is a weakly null sequence in

SX � C, it holds that �J�yn�, x� 	 0 for every x � C. Then, any C-positive

contraction on X satisfies the Blum–Hanson dichotomy at all x � C.

We now give two hopefully illustrative examples.

The first one is about the so-called properties �mp� introduced by N. Kalton

and D. Werner in [28]. A Banach X has property �mp�, 1 
 p 
 � if, for any

x � X and every weakly null sequence �xn� � X , it holds that

(2) lim sup
n��

�x� xn� � ��x�p � lim sup �xn�
p�1�p.

For p � � the right-hand side is of course to be interpreted as

max��x�, lim sup �xn��.

We shall say that X has property sub-�mp� if (2) holds with “�” replaced with

“
”; equivalently, if rX �t, x� 
 �1 � tp�1�p for all x � SX .
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For example, �p has property �mp� and c0 has property �m��; any Lorentz

sequence space d�w, p� different from �� has property sub-�mp� (see [35] for

the definition); the Bergman space Bp�D� on the unit disk has property �mp�;

and for any continuous weight w : !0, 1� 	 R� such that w�r� � 0 only at

r � 1, the space βw consisting of all functions f holomorphic on D such that

w��z��f�z� 	 0 as �z� 	 1, with its natural norm, has property �m�� (see

[28, pp. 163–164]). Note also that any Banach space has property sub-�m1�

and that, just like extremal asymptotic smoothness, �mp� and sub-�mp� are

hereditary properties, i.e., inherited by subspaces.

Example 1: For any p � �1,��, property sub-�mp� implies extremal uniform

asymptotic smoothness at infinity, and hence the Blum–Hanson property. In

particular, any subspace of an �p or c0 direct sum of Banach spaces with the

Schur property has the Blum–Hanson property.

Proof. If X has property sub-�mp�, then rX �t� 
 �1 � tp�1�p if p � �, and

rX �t� 
 max�1, t� if p � �; so the first part is clear. For the second part,

it is enough to show that any �p (resp. c0) sum of Banach spaces with the

Schur property has property �mp� (resp. �m��). But this is clear since if

X �
�

k Ek is such a space, then (by the Schur property of each Ek) a se-

quence �xn� � �
�

k xn,k� � X is weakly null if and only if it is bounded and

�xn,k�Ek
	 0 as n 	 �, for every k � N.

Remark 1: The �p case is a slight generalization of a result of Y. Tomilov and

V. Müller [43]. Somewhat surprisingly, the c0 case appears to be new. (That

X � c0 itself has the Blum–Hanson property was observed independently in

[5].)

Remark 2: It is shown in [28] that a separable Banach space X not containing �1

has property �mp�, 1 � p � � if and only if it is almost isometric to a subspace

of an �p direct sum of finite-dimensional spaces, and that X has property �m��

iff it is almost isometric to a subspace of c0. Hence, the special case quoted

above is in fact rather general.

Our second example is a result due to A. Bellow [7] (already mentioned in

the introduction).

Example 2: Any positive contraction on Lp, 1 � p � � satisfies the Blum–

Hanson dichotomy at all f � L�p (the positive cone of Lp).
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Proof. The space Lp is uniformly (Fréchet) smooth, and the first key step in [7]

is to show that for any ε � 0, one can find a constant Cε such that the following

inequality holds for every f, g � SLp� � L�p :

(3)

�
fJ�g� 
 ε� Cε

�
gJ�f�.

Now, the new thing is that the proof is already finished. Indeed, it follows

at once from (3) that if �gn� is a weakly null sequence in SLp � L�p , then

�J�gn�, f� 	 0 for every f � SLp � L�p . Hence, we may apply Corollary 2.5.

For completeness and since the same idea will be used in section 5, we include

a proof of (3) (not with the best constant C�ε�). Recall that the duality mapping

J : SLp 	 SLq is given by

J�f� � �f �p�2f ;

so J�f� � fp�1 if f � SLp� � L�p .

Let us fix ε � 0, and let η � 0 be chosen later. If f, g � SLp � L�p then�
fJ�g� �

�
fgp�1




�
f�ηg�

�ηg�gp�1�

�
f�η�1g�

f�ηf�p�1�

�
ηg�f�η�1g�

�η�1g��η�1f�p�1


2ηp�1 � η�p

�
gJ�f�,

and the result follows by taking η � �ε"2�1�p�1.

3. Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the following simple lemma. Here and

afterwards, for any d, s � N we denote by FIN�s, d� the set of all finite sets

A � N with cardinality �A� � s and “gaps” of length at least d, i.e., �n�n�� � d

for any n � n� in A.

Lemma 3.1: Let �xn�n�Z� be a bounded sequence in X . For any s � N, set

F �s� :� inf
d�N

sup
A�FIN�s,d	

���� �
n�A

xn

����.
Then �xn� is a Blum–Hanson sequence if and only if lims��

F �s	
s � 0.
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Proof. It is easy to see that if �xn� is Blum–Hanson, then in fact

lim
�A���

1

�A�

���� �
n�A

xn

���� � 0.

Indeed, if this does not hold, then one can find ε � 0 and a sequence of finite

sets �Ak�k�N such that �Ak� 	 � and �
�

n�Ak
xn� � ε�Ak� for all k. If �Ak�

is increasing sufficiently fast, then the sets Bk :� Ak � �maxAk�1,�� satisfy

maxBk � min�Bk�1� and �
�

n�Bk
xn� � �ε"2��Bk� for all k, and hence �xn� is

not Blum–Hanson (consider the increasing enumeration �ni� of the set
�

k Bk).

Conversely, assume that F �s	
s 	 0 as s 	 �. Let �ni�i�1 be an increasing

sequence of integers, and let us fix ε � 0. We have to find K0 � N such that

K � K0 :

���� 1

K

K�
i�1

xni

���� 
 ε.

By assumption, one may pick d, s � N such that

A � FIN�s, d� :

���� �
n�A

xn

���� 
 εs.

Let K0 be a large integer to be chosen later. Let also K � K0, and let k � N

satisfy ksd 
 K � �k � 1�sd.

One can partition the interval !1,K� as

!1,K� �
d�

l�1

k�
j�1

Bl,j #B,

where each Bl,j is an arithmetic progression with cardinality s and “common

difference” d, and �B� � sd. Explicitly

Bl,j � �bl,j, bl,j � d, . . . , bl,j � �s� 1�d�,

where bl,j � �j�1�sd�l. Putting Al,j :� �ni; i � Bl,j� and A :� �ni; i � B�, we

then have Al,j � FIN�s, d� and �A� � sd. Hence, �
�K

i�1 xni� can be estimated

as follows: ����
K�
i�1

xni

���� 

d�

l�1

k�
j�1

���� �
n�Al,j

xn

�����
���� �
n�A

xn

����

kd� εs� Csd,
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where C � supn �xn�. Dividing by K and since K � max�ksd,K0�, we get���� 1

K

K�
i�1

xni

���� 
 ε�
Csd

K0
,

for every K � K0. If we choose now K0 � Csd
ε and replace ε with ε"2, this

gives the required result.

The following observation will also be useful, mainly because it allows to

replace rC�t, x� with a modulus which is non-decreasing with respect to t. (The

corresponding fact for the modulus of asymptotic smoothness can be found,

e.g., in [23]). From now on, we fix a convex cone C � X .

Remark 3.2: Assume that WN�SX �C� � �. For x � X and t � 0, define

r̄C�t, x� � sup
�zn	�WN�BX
C	

lim sup
n��

�x� tzn�.

(In other words, r̄C�t, x� is defined exactly as rC�t, x� with the unit ball BX in

place of the unit sphere SX .) Then rC�t, x� � r̄C�t, x� whenever t � 2�x�. If C

is symmetric, this holds for every t � 0.

Proof. Let us fix x � X . We have to show that lim supn�� �x� tzn� 
 rC�t, x�

for any weakly null sequence �zn� � BX � C; and upon replacing �zn� by a

suitable subsequence, we may assume that both lim �x� tzn� and lim �zn� exist.

Choose ε � �0, 1� such that 2�x� � εt 
 t. If lim �zn� 
 ε, then

lim �x� tzn� 
 �x� � εt 
 t� �x� 
 rC�t, x�.

Otherwise, we may assume that �zn� � ε for all n. Then yn :� zn
�zn�

w
�	 0, and

x � tzn is a convex combination of x � tyn and x � tεyn. Since yn � SX and

�εyn� � ε, it follows from the first case that

lim �x� tzn� 
 max�lim sup �x� tyn�, lim sup �x� tεyn�� 
 rC�t, x�.

If C is symmetric, then rC�t, x� � �x� because �x� 
 �x�ty���x�ty�
2 for every

y � SX �C. Then the proof splits into two parts as above according to whether

lim �zn� is 0 or � 0, expressing x� tzn as a convex combination of x� tyn and

x� tyn in the second case.

Finally, we note the following trivial yet essential fact: for any x � X and

every weakly null sequence �zd� � C,

(4) lim sup
d��

�x� zd� 
 r̄C�lim sup �zd�, x�.
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We can now give the

Proof of Theorem 2.1. We assume from the beginning that

WN�SX �C� � �,

since otherwise we already know that every weakly null sequence �xn� � C is

norm null and hence Blum–Hanson.

Let �xn�n�Z� � C be a shift-monotone, weakly null sequence such that

lim
t��

�rC�t, x0� � t� 
 0.

Then limt���r̄C�t, x0��t� 
 0 as well by Remark 3.2. For notational simplicity

we will just write r̄�t� instead of r̄C�t, x0�.

Let F : N 	 R� be the function introduced in Lemma 3.1:

F �s� � inf
d�N

Fd�s� � lim
d��

Fd�s�,

where

Fd�s� � sup
A�FIN�s,d	

���� �
n�A

xn

����.
(Since Fd�s� is non-increasing with respect to d, the infimum infd is indeed a

true limit.)

The key point is the following

Fact: The function F satisfies the inductive inequality F �s� 1� 
 r̄�F �s��.

Proof of Fact. Let us fix s � N. By the definition of F �s� 1�, one can choose a

sequence �Ad�d�N, where each Ad is a finite subset of N with cardinality s � 1

and gaps at least d, such that

lim
d��

���� �
n�Ad

xn

���� � F �s� 1�.

Write Ad � �n1,d, . . . , ns�1,d�, with n1,d � � � � � ns�1,d. Since the sequence

�xn� is shift-monotone, we have���� �
n�Ad

xn

���� ��xn1,d
� xn2,d

� � � � � xns�1,d
�


�x0 � �xn2,d�n1,d
� � � � � xns�1,d�n1,d

��

:��x0 � zd�

for every d � N.
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Since ni,d � n1,d � d for every i � �2, . . . , s � 1� and xn
w
�	 0, the sequence

�zd� is weakly null; and zd � C because C is a convex cone. By (4), it follows

that

lim sup
d��

�x0 � zd� 
 r̄C�lim sup �zd�, x0� � r̄�lim sup �zd��.

Moreover, zd has the form
�

m�Bd
xm, for some set Bd � N with cardinality

s and gaps at least d, i.e., Bd � FIN�s, d�. Hence,

�zd� 
 Fd�s�

for all d � N; and since r̄�t� is non-decreasing with respect to t, it follows that

r̄�lim sup �zd�� 
 r̄�lim supFd�s�� � r̄�F �s��. Altogether, we get

F �s� 1� � lim �x0 � zd� 
 r̄�F �s��.

It is now easy to conclude the proof. By Lemma 3.1, we have to show that

F �s�"s	0 as s	�. Put F̄ �s��max�F �1�, . . . , F �s��. Then F̄ is non-decreasing

and satisfies the same inductive inequality as F , i.e., F̄ �s� 1� 
 r̄�F̄ �s�� (again

because r̄�t� is non-decreasing with respect to t). If F̄ �s� has a finite limit

as s 	 �, then of course lims�� F̄ �s�"s � 0, and hence lims�� F �s�"s � 0.

Otherwise, since limt���r̄�t� � t� 
 0, it follows from the inductive inequality

that

lim sup
s��

�F̄ �s� 1� � F̄ �s�� 
 0.

By Cesàro’s theorem, we conclude that F̄ �s�"s 	 0 in this case as well.

Remark: An examination of the above proof reveals that assumption � � in

Theorem 2.1 is a little bit too strong. In fact, to conclude that �xn� is Blum–

Hanson it is enough to assume the following:

( �) inf
k�Z�

lim
t��

�rC�t, xk� � t� 
 0.

The proof is the same as the one given above, with minor adjustments. First,

in the definition of FIN�s, d� one adds the condition“minA � d”. Then Lemma

3.1 remains true, with obvious changes in the proof (partition !d,K� rather than

!1,K�). Next, in the proof of Theorem 2.1, put r̄k�t� � r̄C�t, xk�. The key fact

now reads as follows: for any k�Z�, the inductive inequality F �s� 1�
 r̄k�F �s��

holds. This is proved in the same way as before, with the following changes:

since Ad � FIN�s, d� we know that n1,d � minAd � d for all d; so, for any fixed

k � Z� and all d � k, we may write �xn1,d
� xn2,d

� � � � � xns�1,d
� 
 �xk � zd�,

where zd � xk�n2,d�n1,d
� � � � � xk�ns�1,d�n1,d

; then the proof of the fact can
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proceed as above (note that the set Bd is indeed in FIN�s, d� since minBd � d).

Finally (assuming that F̄ �s� 	 �) it follows from the modified fact and � ��

that lim sup�F̄ �s � 1� � F̄ �s�� 
 infk limt���r̄k�t� � t� 
 0, which gives the

result.

4. Blum–Hanson and the duality mapping

In this section, we give several sufficient conditions for a Banach space X to

have extremal asymptotic smoothness at infinity (Definition 2.3). In particular,

we prove Corollary 2.5 and some related results where the smoothness of the

norm is involved.

4.1. Definitions. Let us recall some standard definitions and notation.

For any y � X$�0�, we denote by J�y� the set of all norming functionals for y,

J�y� � �φ � X�; �φ� � 1 and �φ, y� � �y��.

The Banach space X is said to be Gâteaux smooth if the norm of X is

Gâteaux differentiable at each point of the unit sphere of X . By the classical

Šmulyan’s criterion (see [16]), this holds if and only if the duality mapping is

single-valued, i.e., J�y� is a single point (also denoted by J�y�) for every y � SX .

In this case, we have

(5) �y � εh� � 1 � ε�J�y�, h� � o�ε� as ε 	 0,

for every fixed y � SX and h � 0.

The space X is uniformly Gâteaux smooth if its norm is uniformly Gâteaux

differentiable on the unit sphere, i.e., the duality mapping is single-valued and

the “little o” in (5) is uniform with respect to y � SX , for every fixed h � 0.

This is a much weaker property than uniform Fréchet smoothnes: for example,

uniformly Fréchet smooth Banach spaces are super-reflexive, but any separable

Banach space has a uniformly Gâteaux smooth renorming (see [16]).

Finally, recall that X is said to be an Asplund space if every separable

subspace of X has separable dual (this is the more convenient definition as far

as the present paper is concerned). For example, X is Asplund as soon as it

admits a Fréchet smooth renorming, and the converse is true if X is separable

(see [16]).
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4.2. Vanishing duality mapping. The next result says essentially that the

definition of extremal asymptotic smoothness at infinity can be rephrased in

terms of the duality mapping of X .

For convenience, we introduce the following ad hoc terminology. We shall say

that a set-valued map Θ : A 	 2X
�

defined on a subset A of X is vanishing

along weakly null nets in A at some point x � X if, whenever �zα� is a

weakly null net in A and φα � Θ�zα�, it follows that �φα, x� 	 0. Vanishing

along weakly null sequences is defined in the same way.

Recall also the notation of Theorem 2.1: given a convex cone C � X , we say

that condition ( ) holds for some x � X if

lim
t��

�rC�t, x� � t� 
 0.

Proposition 4.1: Let C be a convex cone in X . If the duality map J is

vanishing along weakly null nets in SX �C at some point x � C, then ( ) holds

for x, and hence any C-positive contraction on X satisfies the Blum–Hanson

dichotomy at x. If either X is uniformly Gâteaux smooth or an Asplund space,

it is enough to assume that J is vanishing along weakly null sequences.

Proof. Towards a contradiction, assume that ( ) does not hold for x. Then

one can find a sequence �tk� tending to � and, for each k � N, a weakly null

sequence �ykn�n�N � SX �C such that

lim
n��

�x� tkykn� � tk � c

for all k and some c � 0.

Dividing by tk and putting εk :� 1"tk, we get limn�� �εkx � ykn� � 1 � cεk.

It follows that one can find a weakly null net �yα�α�A � SX � C and a net

�εα�α�A � �0,�� tending to 0 such that �εαx� yα� � 1 � cεα for every α � A.

(For example, one may proceed as follows. Let A be the set of all pairs �k, V �

where k � N and V is a weak neighbourhood of 0 in X , with the product

ordering, i.e., �k, V � � �k�, V �� iff k 
 k� and V % V �. For any α � �k, V � � A,

put εα :� εk, and yα :� ykn, where n is the smallest integer such that ykn � V

and �εkx� ykn� � 1 � cεk.)

Put

zα :�
εαx� yα
�εαx� yα�

.

Then zα � SX � C, and the net �zα� is weakly null because εα 	 0; hence

�φα, x� 	 0 for any choice of φα � J�zα�. Now, the map Φ�ε� � �εx � yα� is
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convex and its right derivative is given by Φ�
d�ε� � ε�φ�ε�, x�, where φ�ε� is a

norming functional for εx � yα. The functional φ�ε� is of course also norming

for

zα :�
εx� yα
�εx� yα�

.

Hence, taking ε � εα we get φα � J�zα� such that

�εαx� yα� � 1 � Φ�εα� � Φ�0� 
 εα�φα, x�.

Thus, we see that

�εαx� yα� � 1 � o�εα�,

a contradiction since �εαx� yα� � 1 � cεα for every α � A.

If X is Asplund, then the weak topology of any separable subspace of X is

metrizable on bounded sets. Since in the above proof everything takes place

in the separable subspace span��x� # �ykn; n, k � N��, it follows that one can

replace nets by sequences in this case.

Finally, assume that X is uniformly Gâteaux smooth and, without loss of

generality, that WN�SX �C� � �. If t 	 �, then by uniform smoothness we

have, for any sequence �yn� � SX ,

�x� tyn� �
�t�1x� yn�

t�1

�
1 � t�1�J�yn�, x� � o�t�1�

t�1

�t� �J�yn�, x� � o�1�,

where the “little o” is uniform with respect to �yn�. If J is vanishing at x along

weakly null sequences in SX , it follows immediately that

rC�t, x� � t� o�1�.

Remark 1: Assume that WN�SX �C� �� � and that X is uniformly Gâteaux

smooth. An examination of the above proof reveals that for a given x � C,

the condition limt���rC�t, x�� t� � 0 is actually equivalent to the requirement

that J should be vanishing at x along weakly null sequences in SX �C.

Remark 2: It follows from the proof that if X is uniformly Fréchet smooth and

J is vanishing along weakly null sequences in SX � C at all x � C, then ( )

holds uniformly with respect to x � SX �C.

Remark 3: The proof of Proposition 4.1 is similar to that of [14, Theorem 5].
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Remark 4: The space X is said to have a weakly continuous duality map-

ping if X is Gâteaux smooth and there exists a continuous increasing function

μ : R� 	 R� with μ�0� � 0 such that the map Jμ�y� � μ��y��J�y� is w-w�

continuous on X (setting Jμ�0� � 0). This property has proved to be quite

important in fixed point theory since the classical work of F. Browder [10]. Ob-

viously, it implies vanishing of the duality mapping along weakly null nets in

SX at all x � X , and hence that limt���rX �t, x� � t� 
 0 for all x. In fact,

one can prove directly that limt���rX �t, x� � t� � 0 uniformly on SX , because

the modulus rX can be computed explicitly. Indeed it is shown in [38] that if

X has a weakly continuous duality mapping with “gauge” function μ and if we

put M�t� �
�t
0 μ�s�ds, then

(6) lim sup �x� txn� � M�1�M��x�� �M�t��

for all x � X and every weakly null sequence �xn� � SX ; in particular, rX�t, x�

is the right-hand side of (6). Now, it is not hard to see that μ�t�1� � cμ�t��1,

where c�μ�1�2 (see below). In particular, μ�t�	� as t	� and hence (6) does

imply that rX�t, x� � t 	 0 uniformly on SX . (To show that μ�t�1��cμ�t��1,

note that for any t � 1 one can find a net �yα� � tSX converging weakly to some

y � SX . Then μ�t�J�yα�
w�
��	 μ�1�J�y�; but since yα

t

w
�	 y

t and J� zt � � J�z� for

any z � X$�0�, we also know that μ�1�J�yα�
w�
��	 μ�t�1�J�y�, and the result

follows.)

4.3. An appproximation-like property. We now use Proposition 4.1 to iso-

late one reasonably general class of Banach spaces having extremal asymptotic

smoothness at infinity.

To formulate the result, we introduce an “approximation-like” property for

which we have not tried to find a name to avoid pedantry (see however the

remark at the end of this sub-section). We shall say that a Banach space Z has

property (?) if the following holds: for any z � Z, one can find a sequence of

compact operators �πK� � L�Z� such that

πKz 	 z and lim sup
K

�I � πK� 
 1.

(Equivalently, one may require that �I � πK� 
 1 for all K.) One example

to keep in mind is the following: property (?) is satisfied if Z has a reverse

monotone Schauder basis, i.e., a basis �fk�k�N such that �I � πK� � 1 for
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all K, where πK is the canonical projection onto span�f1, . . . , fK�. (For ex-

ample, any 1-unconditional basis is reverse monotone.) More generally, it is

enough to assume that Z has a reverse monotone finite-dimensional Schauder

decomposition.

Proposition 4.2: If the Banach spaceX is uniformly Gâteaux smooth and em-

beds isometrically into a Banach space with property (?), then X has extremal

asymptotic smoothness at infinity (and hence the Blum–Hanson property).

Proof. By Proposition 4.1 (with C � X) it is enough to show that the duality

mapping of X is vanishing along weakly null sequences in SX at all x � SX . So

let us fix a weakly null sequence �yn� � SX .

Let Z be a Banach space with property (?) such that X embeds isometrically

into Z. Considering X as a subspace of Z, we still denote by J�yn� any Hahn–

Banach extension of J�yn�, n � N. Also, for any Φ � Z� we denote by �Φ�X� the

norm of Φ viewed as a linear functional on X ; that is �Φ�X� � �Φ�X�. Finally,

if �ΦK� is a sequence in Z�, we write “ΦK
w�
��	 0 in X�” if the sequence

��ΦK��X� � X� is w�-null.

Let x � X be arbitrary, and let �πK� be a sequence of compact operators on

Z such that πKx 	 x and lim supK �I � πK� 
 1. Since the sequence �yn� is

weakly null, we know that �πKyn� 	 0 for every fixed K � N. Hence, we can

find a subsequence �ynK � of �yn� such that �πKynK � 	 0 as K 	 �. Then

��I � π�K�J�ynK �, ynK � � 1 � �J�ynK �, πKynK �
K��
����	 1.

Since lim sup ��I � π�K�J�ynK ��X� 
 lim sup ��I � π�K�J�ynK �� 
 1 and, more-

over, ynK � SX and �J�ynK �, ynK � � 1, it follows that

lim ��I � π�K�J�ynK ��X� � 1 � lim �J�ynK ��X�

and

lim ��I � π�K�J�ynK � � J�ynK ��X� � 2.

By the uniform Gâteaux smoothness of X , this implies (see [16, Theorem 6.7

and Proposition 6.2]) that

�I � π�K�J�ynK � � J�ynK �
w�
��	 0 inX�,

i.e., π�KJ�ynK �
w�
��	 0 in X�. In particular, �J�ynK �, πKx� 	 0 and hence

�J�ynK �, x� 	 0 since πKx 	 x.
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Thus, we have shown that for every x � X , one can find a subsequence

�ynK � of �yn� such that �J�ynK �, x� 	 0. Since this can be done starting with

any subsequence of �yn�, this shows that �J�yn�, x� 	 0 for all x � X , as

required.

Corollary 4.3: If X is uniformly Gâteaux smooth and embeds isometrically

into a Banach space with a reverse monotone (e.g., 1-unconditional) FDD, then

X has the Blum–Hanson property.

Remark: There are lots of well identified approximation properties in Banach

space theory; see, e.g., [11] or [12]. The one that seems closest to (?) is the so-

called Reverse Monotone Compact Approximation Property. A Banach

space Z has (RMCAP) if one can find a sequence of compact operators

�πK� � L�Z�

such that πKz 	 z for all z � Z and �I � πK� 	 1. This is formally a much

stronger property than (?), because in (?) the πK ’s are allowed to depend on

z. In view of the existing terminology property (?) could consistently be called

the “Reverse Monotone Compact Point Approximation Property”, which is not

a very exciting name. Incidentally, it is well known that Lp does not have

(RMCAP) if p � 2. (A much stronger result is proved in [44].)

4.4. Almost isometric embeddings. Recall that a Banach space X is said

to embed almost isometrically into another Banach space Z if it can be

�1� ε�-embedded into Z for any ε � 0, i.e., one can find an operator j : X 	 Z

such that

�1 � ε��1�x� 
 �jx� 
 �1 � ε��x�

for all x � X . Almost isometric embeddings are relevant in our matters because

of the following remark: extremal uniform asymptotic smoothness at infinity is

preserved under almost isometric embeddings; that is, X has extremal uniform

asymptotic smoothness at infinity as soon as it embeds almost isometrically into

a Banach space with this property. Indeed, it is not hard to check that if X

embeds almost isometrically into Z, then rX�t� 
 rZ�t� for all t � R
�. (Recall

that rX �t� � supx�SX
rX �t, x�.) The corresponding fact for the modulus of

asymptotic smoothness ρ̄X is proved, e.g., in [15, Lemma 2.1]

The following result is a “Fréchet” analogue of Proposition 4.2.
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Proposition 4.4: If the Banach space X embeds almost isometrically into a

uniformly Fréchet smooth Banach space with property (?), then X has ex-

tremal extremal uniform asymptotic smoothness at infinity (and hence the

Blum–Hanson property).

Proof. By the proof of Proposition 4.2 and Remark 2 after the proof of Proposi-

tion 4.1, any uniformly Fréchet smooth space Z with property (?) has extremal

uniform asymptotic smoothness at infinity. Since the latter is preserved under

almost isometric embeddings, the result follows.

In view of this result and of Proposition 4.2, it is natural to ask whether

a uniformly Gâteaux smooth space X has extremal (not uniform) asymptotic

smoothness at infinity as soon as it embeds almost isometrically into a Banach

space with property (?). We now show that this does hold true (and in fact

without any smoothness assumption) if (?) is replaced with a stronger property.

Given a function c : R��R� 	 R� such that c�s, t� � s for any �s, t�, let us

say that a Banach space Z has property (?)c if the following holds: for any

z � BZ , one can find a sequence of compact operators �πK� � L�Z� such that

πKz 	 z and

(7) K Φ � Z� : c���I � π�K�Φ�, �π�KΦ�z��� 
 �Φ�.

So one requires �I � πK� 
 1 for all K, with a quantitative estimate provided

by the function c. For example, �p, 1 
 p � � has property (?)c with

c�s, t� � �sq � tq�1�q.

Proposition 4.5: Assume that there exists a continuous function

c : R� � R
� 	 R

�

satisfying c�s�, t� � c�s, t� � s whenever s� � s and t � 0, such that for any

ε � 0, X can be �1�ε�-embedded into a Banach space with property (?)c. Then

X has extremal asymptotic smoothness at infinity (and hence the Blum–Hanson

property).

Proof. We show that the duality mapping of X is vanishing along weakly null

nets in SX at all x � SX . So let us fix a weakly null net �yα� � SX , linear

functionals φα � J�yα�, and a point x � SX . Let also ε � �0, 1� be arbitrary.

By assumption, there exists a Banach space with property (?)c such that X

can be �1 � ε�-embedded into Z. Without loss of generality, we may assume
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that X � Z as a set and �1 � ε��1�ξ�Z 
 �ξ�X 
 �1 � ε��ξ�Z for every ξ � X .

Let us choose a sequence of compact operators πK : Z 	 Z, such that πKx 	 x

and (7) holds with z � x.

Considering each φα as linear functional on �X, � � �Z�, choose any Hahn–

Banach extension Φα � Z�. Then Φα � φα on X (by definition) and

�Φα� 
 1 � ε 
 2 because �φα�X� � 1. We claim that

(8) lim inf
α

��I � π�K�Φα� � �1 � ε��1

for every K � N. Indeed, since �yα�Z 
 �1 � ε� we have

��I � π�K�Φα� ��1 � ε��1��Φα, �I � πK�yα��

��1 � ε��1�1 � �Φα, πKyα��,

because �Φα, yα� � �φα, yα� � 1. Since �πKyα�Z 	 0 (because �yα� is a

bounded weakly null net and πK is compact) and �Φα� is bounded, this gives

(8).

By (7) and since �Φα� 
 1 � ε for every α, it follows that

lim sup
α

c��1 � ε��1, �π�KΦα�x��� 
 1 � ε

for every K � N. Since c�s, t� � s for t � 0 and since π�KΦα�x� is uniformly

bounded with respect to α and K, this implies that

lim sup
α

�π�KΦα�x�� 
 δ�ε, x�,

where δ�ε, x� does not depend on K � N and δ�ε, x� 	 0 as ε 	 0.

Now, let us choose K � N such that ��I � πK�x�Z � ε. Writing

�φα, x� � �Φα, πKx� � �Φα, �I � πK�x�,

we get ��φα, x�� 
 ��π�KΦα, x�� � 2ε for all n � N, and hence

lim sup
α

��φα, x�� 
 δ�ε, x� � 2ε.

Since ε � �0, 1� is arbitrary, we conclude that �φα, x� 	 0 for every x � X , as

required.
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4.5. WORTH. To conclude this section, we prove one more result of the type

“smoothness plus something implies Blum–Hanson”.

The “something” involved here is the so-called Weak Orthogonality Prop-

erty, usually abbreviated as WORTH. A Banach space has WORTH if

lim
n��

��x� yn� � �x� yn�c� � 0

for every weakly null sequence �yn� � X . This property has been considered a

number of times in fixed point theory (see, e.g., [49]). If weakly null sequences

are replaced by weakly null bounded nets, one obtains the so-called property

�au�, which have been thoroughly studied recently by S. R. Cowell and N. Kalton

[13], together with its dual version �au�� (the latter was introduced in [32]

under the name “�wM��”). Though perhaps innocent looking at first sight,

these properties are in fact very strong. For example, it is shown in [13] that a

separable reflexive Banach space has WORTH if and only if it can be �1 � ε�-

embedded into a Banach space with a shrinking 1-unconditional basis, for any

ε � 0.

Proposition 4.6: If X is uniformly Gâteaux smooth with property WORTH,

then it has extremal asymptotic smothness at infinity (and hence the Blum–

Hanson property).

Proof. We may assume that X does not have the Schur property. By WORTH,

the modulus rX can be re-written as follows:

rX�t, x� � sup
�yn	�WN�SX	

lim sup
n��

�x� tyn� � �x� tyn�

2
.

Moreover, by uniform Gâteaux smoothness we have (as t 	 �)

�x�tyn���x�tyn��
�t�1x� yn� � �t�1x� yn�

t�1

�
�1 � t�1�J�yn�, x� � o�t�1����1 � t�1�J�yn�, x� � o�t�1��

t�1

�2t� o�1�,

where the “little o” is uniform with respect to �yn� � WN�SX�. Hence, we get

limt���rX�t, x� � t� � 0 for every x � X .
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Remark: A strong form of WORTH is the important property �M� introduced

by N. Kalton in [27]. A Banach space X has property �M� if

lim sup �u� xn� � lim sup �v � xn�

whenever u, v � X satisfy �u� � �v� and �xn� is a weakly null sequence in X .

Obviously, property (M) is weaker than �mp�, for any p � �1,��. Since we saw

in section 2 that �mp� implies Blum–Hanson, it makes sense to ask whether

(M) implies the Blum–Hanson property. By [28, Corollary 4.5], this is true for

subspaces of Lp, 1 � p � � and for subspaces of L1 not containing �1, because

any such space has property �mr� for some r � 1. More generally, this is true

for separable Banach spaces not containing �1 which are stable in the sense of

[36]; see the proof of [27, Theorem 3.10].

5. Orlicz spaces

In this section, we apply the previous general results to the specific setting of

Orlicz spaces. Not unexpectedly, the situation is similar to that of �p and Lp

spaces (as far as the Blum–Hanson property is concerned).

Let θ : !0,�� 	 !0,�� be an Orlicz N-function, i.e., an increasing convex

function such that limt�� θ�t�"t � � and limt�0 θ�t�"t � 0. Given any measure

space �Ω, μ�, the Orlicz space Lθ�Ω, μ� is the space of all (equivalence classes of)

measurable functions f : Ω 	 R such that
�
Ω θ�c�f ��dμ � � for some c � 0. We

equip Lθ�Ω, μ� with one of its two “natural” norms, the so-called Luxemburg

norm:

�f� � inf

	
λ � 0;

�
Ω

θ

 �f �

λ

�
dμ � �

�
.

When Ω � Z� equipped with the counting measure, we denote the Orlicz

space by �θ; and when Ω � �0, 1� with Lebesgue measure, we simply write Lθ.

The small Orlicz space Mθ�Ω, μ� (also called the Morse–Transue space) is

the subspace of Lθ�Ω, μ� consisting of all f such that
�
Ω θ�c�f ��dμ � � for every

c � 0. We write mθ when Ω � N and Mθ when Ω � �0, 1�.

It is well known (see, e.g., [47] and/or [35]) that mθ � �θ if and only if θ sat-

isfies the so-called Δ2 condition at 0, i.e., lim supt�0 θ�2t�"θ�t� � �, and that

Mθ � Lθ iff θ satisfies the Δ2 condition at �, i.e., lim supt�� θ�2t�"θ�t� � �.

By the duality theory of Orlicz spaces, it follows that �θ is reflexive iff both θ

and the conjugate Orlicz function θ� satisfy the Δ2 condition at 0, and that Lθ

is reflexive iff θ and θ� satisfy the Δ2 condition at �.
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We quote the following more “specialized” results:

& mθ is asymptotically uniformly smooth if and only if θ� satisfies the Δ2

condition at 0 ([15]);

& Lθ is Gâteaux smooth iff θ is C1 and satisfies the Δ2 condition at �

(see [48, Theorem X.4.3]);

We can now state our results about the Blum–Hanson property for Orlicz

spaces. For the sake of “immediate applicability”, we formulate the assumptions

directly in terms of the Orlicz functions θ and θ�; but this should of course be

translated into properties of the Orlicz spaces (using the just mentioned results).

Proposition 5.1: Let θ be an Orlicz N -function.

(1) If θ� satisfies the Δ2 condition at 0, then every subspace of mθ has the

Blum–Hanson property.

(2) If θ is C1-smooth and satisfies the Δ2 condition at �, then any positive

contraction on Lθ satisfies the Blum–Hanson dichotomy at all f � L�θ
(the positive cone of Lθ).

Proof. (1) By [15], the Δ2 condition for θ� means that X � mθ is asymptotically

uniformly smooth. Moreover, it is also shown in [15] that in this case the

modulus of asymptotic smoothness of X behaves very nicely: one can find some

constant α � 1 such that

ρ̄X�t, x� 
 �1 � tα�1�α � 1

for every x � SX and all t � 0. (This is stated only for t � !0, 1� in [15], but

the proof works for any t � 0.) This shows that mθ has extremal (uniform)

asymptotic smoothness at infinity, hence (1).

(2) Here, the assumption means that Lθ is Gâteaux smooth. It is enough to

show that the duality mapping J � SLθ
	 SL�θ

is vanishing along weakly null

nets in SLθ
� L�θ at all f � SLθ

� L�θ .

We shall use the following known fact (see [47, Theorem VII.2.3]): if

f � SLθ
� L�θ ,

then J�f� is given by the formula

(9) �J�f�, g� �
1�

fθ��f�

�
gθ��f�.
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This formula makes sense thanks to the Δ2 condition. Indeed, if h � Lθ, then

θ���h�� � Lθ� by Δ2 (see [47, proof of proposition III.4.8]) and hence, by Hölder’s

inequality (see, e.g., [47, Proposition III.3.1]), kθ���h�� is integrable for any

k, h � Lθ.

We also need the following inequality:

(10) f � L�θ � SLθ
:

�
fθ��f� � 1.

To prove this, note that
�
θ��f �� � 1 for every f � SLθ

, by Δ2 (see, e.g., [47,

Proposition III.4.6]). Since θ� is non-decreasing and θ�0� � 0, it follows that

tθ��t� � θ�t� for all t � 0 and hence
�
fθ��f� �

�
θ�f� for any f � L�θ .

Now, let us fix a weakly null net �fα� � L�θ �SLθ
and a function g � L�θ . We

show that �J�fα�, g� 	 0.

Let ε � 0 be arbitrary. Since the function gθ��g� is integrable (see the remark

just after (9)), we may first choose η � 0 so that
�
gθ��ηg� � ε. Then, proceed

as in the proof of Bellow’s inequality (3) for Lp:�
gθ��fα� �

�
fα�ηg

�

�
g�ηfα

�

�
ηg�fα�η�1g




�
gθ��ηg� � η

�
fαθ

��fα� � η�1

�
fαθ

��η�1g�.

Using (9), (10) and assuming (as we may) that η � ε, we get

�J�fα�, g� 
 2ε� η�1

�
fαθ

��η�1g�,

for every α. Since θ��η�1g� � Lθ� � �Lθ�
� by Δ2 and since �fα� is weakly null,

it follows that lim sup�J�fα�, g� 
 2ε, which concludes the proof.

Corollary 5.2: Any subspace of a reflexive Orlicz sequence space has the

Blum–Hanson property.

Remark: As mentioned in the introduction, the Blum–Hanson property for Or-

licz function spaces endowed with the Orlicz norm has been studied in [41]. It

is shown there (Theorem 7.7) that if Lθ is uniformly Fréchet smooth when en-

dowed with the Orlicz norm, then it has the Blum–Hanson property with repect

to positive contractions. The proof also makes use of a Bellow-like inequality

(Lemma 7.2). Exactly as in the Lp case, it could be shortened by applying

Proposition 4.1.
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6. C�K� spaces and Lp spaces

6.1. C�K� spaces. As mentioned in the introduction, it is shown in [1] that the

space C�T2� fails the conditional Blum–Hanson property. From this and known

results about C�K� spaces, one can easily deduce

Proposition 6.1: IfK is an uncountable compact metrizable space, then C�K�

fails the conditional Blum–Hanson property.

Proof. This relies on the following trivial observation:

Fact: Let X be a Banach space, and let Z be a 1-complemented subspace of

X . If Z fails the (conditional) Blum–Hanson property, then so does X .

Proof of Fact. Let π : X 	 Z be a norm 1 projection from X onto Z, and let

j : Z 	 X be the canonical embedding. If T : Z 	 Z is a contraction on Z,

then T :� jTπ is a contraction on X extending T ; and since T n � jT nπ for all

n, it has weakly convergent orbits as soon as T does. So the result is clear.

Now, we use the following facts, which are the key ingredients in the proof of

Miljutin’s theorem on the isomorphism of all C�K� for uncountable and metriz-

able K (see [4, p. 94]). Let Δ � �0, 1�N be the usual Cantor space. Then, for

every compact metrizable L the space C�L� is isometric to a 1-complemented

subspace of C�Δ�; and if L is uncountable then the space C�Δ� is isometric to a

1-complemented subspace of C�L�. Applying this first with L � T2 we deduce

that C�Δ� fails the conditional Blum–Hanson property, and taking then L � K

we conclude that so does C�K�.

Corollary 6.2: The disk algebra A�D� does not have the conditional Blum–

Hanson property.

Proof. Recall that the disk algebra is the space of all complex-valued functions

which are continuous on the closed unit disk D � C and holomorphic on D,

endowed with the sup norm. Let K be an uncountable compact subset of T

with Lebesgue measure 0. By the Rudin-Carleson theorem, any continuous

function f : K 	 C can be extended to a function f � A�D� with � f�� � �f��;

and in fact, it was shown by A. Pe�lczyński that there is an isometric linear

extension operator E : C�K� 	 A�D� (see [40]). It follows at once that A�D�

has a 1-complemented subspace isometric to C�K� (namely EC�K�), and hence

that A�D� cannot have the conditional Blum–Hanson property.
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Remark 1: Shortly after the submission of the present paper, we were able to

characterize completely the metrizable compact spaces K for which C�K� has

the Blum–Hanson property: this happens if and only if K has finitely many

accumulation points. This result will appear elsewhere; see [31].

Remark 2: On may also note that if K is an infinite compact Hausdorff space

(not necessarily metrizable), then C�K� does not have extremal asymptotic

smoothness at infinity. Indeed, as in any infinite Hausdorff space one can find

a countably infinite discrete D in K. Denoting by Ω the closure of D in K,

the space C�K� contains an isometric copy of C�Ω�; so it is enough to show

that C�Ω� does not have extremal asymptotic smoothness at infinity. Write

D � �dn;n � N�. Since D is discrete, each �dn� is clopen in Ω, so the func-

tion fn � 1dn� is in C�Ω�. Obviously, the sequence �fn� is weakly null in

X � C�Ω�. Moreover, since fn � 0 we have �1� tfn�� � 1 � t for every t � 0;

so rX �t,1� � 1 � t for all t.

In the case K � T2, the main result of [1] is in fact much more precise than

Proposition 6.1: the space C�T2� fails the conditional Blum–Hanson property

with respect to the very special class of composition operators, i.e., operators

of the form Tf � f 'ϕ. Interestingly enough, this does not hold for K � !0, 1�.

Proposition 6.3: The space C�!0, 1�� has the conditional Blum–Hanson prop-

erty with respect to composition operators.

Indeed, let T be a composition operator (Tf � f ' ϕ) on C�!0, 1�� induced

by some continuous map ϕ : !0, 1� 	 !0, 1�, and assume that T has weakly

convergent orbits. This means exactly that the iterates ϕn converge pointwise

on !0, 1� to some continuous function α : !0, 1� 	 !0, 1�. Hence, it is enough

to prove the following lemma. (This lemma is certainly well known but we

couldn’t locate a reference. The proof we give is due to D. Malicet, and we

thank V. Munnier for explaining it.)

Lemma 6.4: Let ϕ : !0, 1� 	 !0, 1� be a continuous map. If ϕn�x� 	 α�x�

pointwise, where α : !0, 1� 	 !0, 1� is continuous, then in fact ϕn�x� 	 α�x�

uniformly.

Proof. We note that the set of fixed points of ϕ is exactly the closed interval

I � α�!0, 1��. If I � !0, 1�, there is nothing to prove. Otherwise, consider the

space Λ obtained from !0, 1� by identifying all the points of I, with the usual
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quotient topology. Then Λ is homeomorphic to !0, 1�, the map ϕ induces a

continuous map ϕ : Λ 	 Λ with a single fixed point α, and the iterates ϕn

converge pointwise to α on Λ. If we can show that ϕn 	 α uniformly then we

will get the result for ϕ. Therefore, all we need to do is to prove the following

result : If ϕ : !0, 1� 	 !0, 1� is a continuous map with a single fixed point α

such that ϕn�x� 	 α pointwise on !0, 1�, then the convergence is uniform. To

do this, the key point is the following

Fact: Let J � !u, v� be a nontrivial compact interval of R. If ϕ : J 	 J is

continuous and ϕn�x� 	 α � J pointwise on J , then ϕ cannot be onto.

Proof of Fact. If α � u, then we must have ϕ�x� � x for all x ��u, v�, because

ϕ�x� � x has constant sign on �u, v� by the intermediate value theorem (α � u

is the only fixed point of ϕ) and ϕ�v� 
 v; in particular, ϕ�x� � v for all

x � J , which gives the result in this case. Likewise if α � v. Now, assume

that α ��u, v! and that ϕ is onto. Then ϕ�x� � x has constant sign on both

intervals !u, α! and �α, v�, and since ϕ�!u, v�� � !u, v� the only possible case is

the following: ϕ�x� � x on !u, α! and ϕ�x� � x on �α, v�. In particular, ϕ�x� � u

on !u, α� and ϕ�x� � v on !α, v�. Since ϕ is onto, we then have v � ϕ�!u, α��

and u � ϕ�!α, v��, whence !α, v� � ϕ�!u, α�� and !u, α� � ϕ�!α, v��. It follows

that !u, α� � ϕ2�!u, α��; but this is a contradiction because ϕ2 satisfies the same

assumption as ϕ and hence ϕ2�x� � u on !u, α�.

Now, let ϕ : !0, 1� 	 !0, 1� be a continuous map such that ϕn�x� 	 α

pointwise on !0, 1�. Then J �
�

n�0 ϕ
n�!0, 1�� is a compact interval containing

α, and it is easily checked that ϕ�J� � J . By the above fact, it follows that�
n�0 ϕ

n�!0, 1�� � �α�; and from this it is not hard to deduce that ϕn�x� 	 α

uniformly.

Remark: Since composition operators are positive contractions, it is natural to

ask whether C�K� fails the conditional Blum–Hanson property with respect to

positive contractions whenever K is an uncountable compact metrizable space.

This is not quite clear from the proof of Proposition 6.1 given above.

6.2. The space L1. In [2], the proof that L1 � L1�0, 1� has the conditional

Blum–Hanson property proceeds roughly as follows. Using the so-called linear

modulus associated with a given contraction T on L1 and assuming that T

has weakly convergent orbits, one breaks the underlying measure space into 2
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pieces A and B such that T has norm null orbits on L1�A� and T is an absolute

contraction on L1�B�, i.e., a contraction on any Lp, 1 
 p 
 �. Then the

absolutely contractive part is handled using the L2 case. This seems to be very

specific to L1, and we see no way of using any kind of “smoothness” argument

to shorten the proof.

6.3. The space Lp. If Lp � Lp�0, 1�, 1 � p � � were to have the Blum–

Hanson property, this could not be proved by a direct application of Theorem

2.1 with C � X � Lp, except of course for p � 2. Indeed, Lp does not have

extremal asymptotic smoothness at infinity.

One can see this somewhat indirectly by observing that the duality mapping

of Lp is not vanishing along weakly null sequences (see Remark 1 just after

Proposition 4.1). Indeed, let τ : �0, 1� 	 �0, 1� be any transformation preserving

Lebesgue measure and strongly mixing with respect to it, and let Tf � f ' τ be

the induced isometry on Lp. Since p � 2, one can find g � Lp such that
�
g � 0

and
�
J�g� � c � 0. Then T ng

w
�	 0 by the strong mixing property, but J�T ng�

is not weakly null because
�
J�T ng� � c. (This example is taken from [7].)

One may also check directly that Lp does not have extremal asymptotic

smoothness at infinity. Consider a sequence �ξn� of independent random vari-

ables on the probability space �Ω,P� � �0, 1� with Lebesgue measure, such

that P�ξn � a� � 1 � λ and P�ξn � �b� � λ, where a � b (with a, b � 0)

and λ are chosen in such a way that E�ξn� � 0 and �ξn�Lp � 1; explic-

itly, �1 � λ�ap � λbp � 1 and �1 � λ�a � λb. The sequence �ξn� is bounded

in L� and orthogonal in L2, hence weakly null in Lp. On the other hand,

�1� tξn�p � ��1 � λ��1 � ta�p � λ�1 � tb�p�1�p for all n, and it follows that

rLp�t,1�
p

tp
� �1 � λ�ap�1 � a�1t�1�p � λbp�1 � b�1t�1�p.

Since �1 � λ�ap � λbp � 1, the right-hand side is equivalent to 1 � ct�1 as

t 	 �, where c � p��1 � λ�ap�1 � λbp�1�. Putting α � �1 � λ�a � λb, we have

c � pα�bp�2 � ap�2� and hence c � 0 if p � 2. Thus, taking a � b if p � 2 and

a � b if p � 2, we see that limt���rLp�t,1� � t� � c
p � 0. (This example is

taken from [18].)

Incidentally, the sequence �ξn� above is Blum–Hanson. Indeed, since any

subsequence of �ξn� has the same asymptotic behaviour as �ξn�, it is enough to

check that 1
N

�N
n�1 ξn is convergent in Lp. This, in turn, follows for example

from the mean ergodic theorem: denoting by X the closed subspace of Lp
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generated by the ξn, the shift map ξn �	 ξn�1 extends to an isometry S of X

because the ξn are independent and identically distributed, and ξn � Snξ0 by

definition.

Note also that the space X has the Blum–Hanson property. Indeed, be-

ing centred and independent, the ξn form a bi-monotone Schauder basis of X

(because �ξ � ξ��p � �ξ�p whenever ξ and ξ� are independent centred random

variables); so one can apply Proposition 4.2.

This suggests that there still might be some hope for showing that Lp has the

Blum–Hanson property by applying something like Theorem 2.1. In this spirit,

it is worth noting that for any finite measure space �Ω,B, μ�, the space Lp�Ω, μ�

satisfies a weak form of Kalton–Werner’s property �mp�. Indeed, let us denote

by τ the topology of convergence in measure (for measurable functions on Ω).

It is not difficult to see that Lp has property �mp� with respect to the topology

τ ; that is, if f � Lp�Ω, μ� and if �fn� � Lp�Ω, μ� is τ -convergent to 0, then

lim sup �f � fn� � ��f�p � lim sup �fn�
p�1�p.

It follows that any subspace of Lp�Ω, μ� in which all weakly null sequences

are τ -null has property �mp�, and hence the Blum–Hanson property. (This

applies for example to the Bergman space Bp�D�, since weak convergence in

Bp�D� implies uniform convergence on compact sets.) More generally, the proof

of Theorem 2.1 yields the following result.

Proposition 6.5: Let �Ω,B, μ� be a finite measure space, and let T be a

contraction on a subspace X of Lp�Ω, ,μ�. If f � X is such that T nf
τ
�	 0, then

the sequence �T nf� is Blum–Hanson.

Hence, any subspace of Lp has the “τ -Blum–Hanson property”. This leaves

us certainly far from showing the Blum–Hanson property for Lp, but still this

could be an interesting fact.

7. Concluding remarks, and some questions

7.1. Sequences of contractions. Using the same ideas as in the proof of

Theorem 2.1, one can prove a more general result allowing to deal with se-

quences of contractions not necessarily of the form T n for some T . We have no

application, but this might be useful elsewhere.
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Let I be the set of all finite intervals of positive integers, including the empty

interval. We denote by �α� the length of an interval α � I. We write α � β if

α � β and minα � minβ. Finally, we say that a family of points �xα�α�I in a

Banach space X is shift-monotone if �xα1�� � ��xαk
� 
 �xα1�α0

�� � ��xαk�α0
�

for every increasing sequence α0 � α1 � � � � � αk in I. For example, if �xn�

is a shift-monotone sequence in X and xα � x�α�, then the family �xα�α�I is

shift-monotone.

Proposition 7.1: Let �xα�α�I be a shift-monotone family in a Banach space

X . Assume that xα
w
�	 0 as �α� 	 �, and that limt���rX �t, x�� � t� 
 0.

Then, for any infinite increasing sequence α1 � α2 � � � � in I, the sequence

�xαn� is Blum–Hanson.

As an immediate consequence, we get

Corollary 7.2: Let �Tj�j�N be a sequence of contractions onX , and let x � X .

Assume that TpTp�1 � � �Tqx
w
�	 0 as q � p 	 ��, and that

lim
t��

�rX �t, x� � t� 
 0.

Then the sequence �T1 � � �Tnx�n�N is Blum–Hanson.

Proof. Just apply Proposition 7.1 to the (shift-monotone) family �xα�α�I de-

fined by x� � x and xα � Tp � � �Tqx if α � !p, q�.

Proof of Proposition 7.1. For any d, s � N, let us denote by F�s, d� the family

of all finite sets A � I of the form A � �α1, . . . , αs� with α1 � � � � � αs and

�αi�1$αi� � d for all i � �1, . . . , s� 1�. Now define the function F : N 	 R� in

the obvious way:

F �s� � inf
d�N

sup
A�F�s,d	

���� �
α�A

xα

����.
Then, one shows exactly as in the proof of Theorem 2.1 that F �s�"s 	 0 as

s 	 �; and the result follows.

7.2. Direct sums and sub-�mp�. The following remarks show that properties

sub-�mp� are preserved under direct sums.

Proposition 7.3: Let �Xi�i�I be a family of Banach spaces.

(1) Let p � !1,��, and assume that each Xi has property sub-�mpi� for

some pi � p. Then the �p direct sum
�

�p
Xi has property sub-�mp�.
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(2) If all �Xi� have property sub-�m��, then
�

c0
Xi has sub-�m��.

Proof. (1) To avoid double subscripts, we write any vector in X �
�

�p
Xi as

x � �x�i��i�I . Moreover, we denote all norms involved (in X and in every space

Xi) by the same symbol � � �. Finally, we may assume that in fact pi � p for all

i since sub-�mq� obviously implies sub-�mp� whenever q � p.

Let x � X , and let �zn� be any weakly null sequence in X . We have to show

that

(11) lim sup
n��

�x� zn�
p 
 �x�p � lim sup �zn�

p.

Since all zn have countable support, we may assume (by a diagonal argument)

that limn �zn�i�� exists for all i � I.

Let us fix ε � 0. By the definition of X , we may choose a finite set Iε � I

such that �
i�Iε

�x�i��p � εp.

Now, let �εi�i�Iε be positive numbers such that
�

i ε
p
i � εp. Since each space

Xi has property sub-�mp� and all limits limn �zn�i�� exist, one can find N � N

such that

n � N i � Iε : �x�i� � zn�i��
p 
 �x�i��p � �zn�i��

p � εpi .

We then have, for all n � N ,

�x� zn�
p �

�
i�Iε

�x�i� � zn�i��
p �

�
i�Iε

�x�i� � zn�i��
p



�
i�Iε

��x�i��p � �zn�i��
p � εpi � �

�
i�Iε

�x�i� � zn�i��
p


εp � �x�p �
�
i�Iε

�zn�i��
p �

�
i�Iε

��x�i�� � �zn�i���
p.

By Minkowski’s inequality for �p�I�, it follows that

�x� zn�
p 
εp � �x�p �

���
i�I

�zn�i��
p

� 1
p

�

� �
i�Iε

�x�i��p
� 1

p
�p


εp � �x�p � ��zn� � ε�p

for all n � N . Since ε is arbitray, this gives (11).

Part (2) is proved in the same way (the details are actually simpler).



Vol. 211, 2016 SMOOTHNESS AND THE BLUM–HANSON PROPERTY 303

Corollary 7.4: Let I be an arbitrary index set. If X is a Banach space

with property sub-�mq� for some q � 1, then �p�I,X� has extremal asymptotic

smoothness at infinity (and hence the Blum–Hanson property) for any p � �1, q�.

If X has property sub-�m��, then c0�I,X� has extremal asymptotic smoothness

at infinity.

Remark: Apart from trivial cases, �1 direct sums never have extremal asymp-

totic smoothness at infinity. In fact, if Z is a Banach space without the Schur

property then, for any Y � �0�, the space X � Y (�1 Z does not have extremal

asymptotic smoothness at infinity. To see this, choose a weakly null sequence

�zn� � SZ and observe that if y � SY , then ��y, 0� � t�0, zn�� � 1 � t for every

t � 0 and all n � N: this shows that rX�t, x� � 1� t for any x � SX of the form

�y, 0�. On the other hand, we don’t know if a “nontrivial” �1 direct sum can

ever have the Blum–Hanson property.

7.3. A symmetric modulus. For any Banach space X , consider the “sym-

metric” modulus rX defined as follows:

rX �t, x� � sup
�yn	�WN�SX	

lim sup
n��


�x� tyn� � �x� tyn�

2

�
.

Obviously rX �t, x� 
 rX �t, x�. Moreover, the proof of Proposition 4.6 yields

that if X is uniformly Gâteaux smooth (and does not have the Schur property),

then limt���rX �t, x� � t� � 0 for every x � SX . That is, condition ( ) of

Theorem 2.1 holds when rX is replaced with rX .

From this, it is tempting to believe that a proof similar to that of Theorem 2.1

should yield the following result : if T is a contraction on a uniformly Gâteaux

smooth space X then, for any x � X with a weakly null orbit, one can find a

choice of signs �εn� � ��1, 1�N such that the sequence �εnT
nx� is Blum–Hanson.

However, this would in fact mean that uniformly Gâteaux smooth spaces have

the Blum–Hanson property, since it is easily checked that a sequence �xn� is

Blum–Hanson if and only if �εnxn� is, for any choice of signs �εn�.

To put this in perspective, it is worth recalling here that uniformly (Fréchet)

smooth Banach spaces have the Banach–Saks property (see, e.g., [17]); that

is, any bounded sequence has a subsequence whose arithmetic means are norm

convergent. By a well known result of P. Erdős and M. Magidor ([19], see also [6,

II.6]), any bounded sequence in a space X with the Banach–Saks property has a

subsequence all of whose further subsequences have norm convergent arithmetic
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means. In particular, if X has the Banach–Saks property, then any weakly

null sequence in X has a Blum–Hanson subsequence. (In fact, it is enough to

assume that X has the weak Banach-Saks property, i.e., any weakly convergent

sequence has a subsequence with norm convergent arithmetic means.) Hence,

if T is a contraction on X then, for any x � X with a weakly null orbit, one can

find a (nontrivial) choice of 0’s and 1’s �εn� such that �εnT
nx� is Blum–Hanson.

7.4. How not to be Blum–Hanson. Since asymptotic smoothness is “dual”

to asymptotic convexity, it is natural to expect that an extremal behaviour

of the modulus of asymptotic convexity should give rise to non-Blum–Hanson

sequences.

Recall that the modulus of asymptotic convexity of the Banach space X is

the function δ̄X : R� � SX 	 R� defined by

δ̄X�t, x� � sup
E

inf
y� �BE

�x� ty� � 1,

where the supremum is taken over all finite-codimensional subspaces E of X

and �BE � �y � E; �y� � 1�. Obviously δ̄X�t, x� � 0. The space X is said to

be asymptotically uniformly convex if δ̄X�t� :� infx�SX δ̄X�t, x� � 0 for all

t � 0. For example, �1 is asymptotically uniformly convex because δ̄X�t� � t

for all t.

A closely related “modulus” is

dX �t, x� � inf
�yn	�WN�SX	

lim inf �x� tyn�.

(Again, the trivial case WN�SX � � � is allowed: inf � is declared to be ��.)

In the terminology of [33], t�1 infx�SX dX�t, x� � 1 is the value of the Opial

modulus of X at t�1.

It is easy to check that dX �t, x� � 1 � δ̄�t, x� � t for all t (if x � SX), and

that both δ̄X�t, x� and dX �t, x� � t have a (non-negative) limit as t 	 �. The

following result can now be proved along the same lines as Theorem 2.1.

Proposition 7.5: Let �xn�n�Z� be a reverse shift-monotone sequence in X ,

i.e., �x1�n1 �� � � �x1�nk
� � �xn1 � � � � �xnk

� for all finite increasing sequences

n1 � � � � � nk. Assume that the initial point x � x0 satisfies

(12) lim
t��

�dX �s, x� � t� � 0.

Then �xn� is not a Blum–Hanson sequence.
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As an immediate consequence, we get

Corollary 7.6: Assume that limt���δ̄X�t, x� � 1 � t� � 0 for every x � SX .

Then, no linear isometry on X can have any Blum–Hanson orbit (except �0�).

To prove Proposition 7.5, one may obviously assume that the sequence �xn�

is weakly null. Then, the strategy is the same as for Theorem 2.1 (but reverting

all the inequalities). The function F introduced in Lemma 3.1 is replaced with

G�s� � sup
d�N

inf
A�FINs,d

���� �
n�A

xn

����,
and one shows that lim infs��

G�s	
s � 0. To do this, one makes use of the

inequality

G�s� 1� � G�dX �s, x0��.

We shall not give any further detail, for a rather unpleasant reason: all the

Banach spaces that we know for which limt���δ̄X�t, x� � 1 � t� � 0 for every

x � SX happen to have the Schur property; and for such spaces everything is

trivial since Blum–Hanson sequences are norm null.

7.5. Power-bounded operators. As mentioned in the introduction, it is

shown in [43] that �p, 1 � p � � does not have the conditional Blum–Hanson

property with respect to power-bounded operators (in short, (CBHPB)). This

has been extended by J.-M. Augé [5, Theorem 5.2.2]: any Banach space X with

a shrinking symmetric basis (e.g., X � c0 or �p) fails (CBHPB). Since the prop-

erty is easily seen to be inherited by complemented subspaces, it follows that

any Banach space containing a complemented copy of c0 or some �p, 1 � p � �

fails (CBHPB). For example, this holds for Lp, 1 � p � � and for any separable

Banach space containing a copy of c0 (which is necessarily complemented by

Sobczyk’s theorem). Actually, we are aware of no example of a Banach space

having the Blum–Hanson property with respect to power-bounded operators,

apart from the trivial case of Banach spaces with the Schur property.

7.6. Some questions. To conclude the paper, we collect a few questions that

appear to be quite natural.

(1) Does every uniformly Gâteaux smooth Banach space have the Blum–

Hanson property?
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(2) Is it at least true that every Banach space which is both uniformly

convex and uniformly smooth have the conditional Blum–Hanson prop-

erty?

(3) For which compact K does C�K� have the Blum–Hanson property? As

pointed out in Remark 1 after Proposition 6.1, the answer is known

for metrizable K’s. We also know that �� � C�βN� does not have the

Blum–Hanson property; see [31].

(4) Let X be a Banach space with the Schur property, and let �Ω,P� be a

probability space. Does L2�Ω,P, X� have the Blum–Hanson property?

(5) Let X be a Banach space and assume that X has the Blum–Hanson

property with respect to contractions with weakly null orbits. Does it

follow that X has the conditional Blum–Hanson property (i.e., BH with

respect to contractions with weakly convergent orbits)?

(6) Does L1 have the full (not just conditional) Blum–Hanson property?

(7) Are the Blum–Hanson property and the conditional Blum–Hanson prop-

erty equivalent?

(8) Does every subspace of L1 have the (conditional) Blum–Hanson prop-

erty?

(9) Does the Hardy space Hp�D�, 1 
 p � � have property (?)?

(10) Does property (M) imply the Blum–Hanson property?

(11) Is there a Banach space with a 1-unconditional basis failing the Blum–

Hanson property?

(12) Does the �1 direct sum �2 ( �2 have the Blum–Hanson property?

(13) Does L1 have the (conditional) Blum–Hanson property with respect to

power-bounded operators? By [41, Theorem 3.1], this holds for positive

operators and for operators with Cesàro-bounded modulus.

(14) Is there any Banach space X failing the Schur property but having

the Blum–Hanson property with respect to power-bounded operators?

Equivalently, is it true (or not) that if X is a Banach space without

the Schur property, then X admits a renorming under which it fails the

Blum–Hanson property?

(15) Which Banach spaces can be renormed to have the Blum–Hanson prop-

erty?
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