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ABSTRACT

Let (X, d) be a compact metric space and μ a Borel probability on X. For

each N ≥ 1 let dN∞ be the �∞-product on XN of copies of d, and consider

1-Lipschitz functions XN −→ R for dN∞.

If the support of μ is connected and locally connected, then all such

functions are close in probability to juntas: that is, functions that depend

on only a few coordinates of XN . This describes the failure of measure

concentration for these product spaces, and can be seen as a Lipschitz-

function counterpart of the celebrated result of Friedgut that Boolean

functions with small influences are close to juntas.

1. Introduction

In this paper, a metric probability space will be a triple (X, d, μ) in which d

is a compact metric on X and μ is a probability measure on the Borel σ-algebra

of (X, d).

Given a metric space (X, d) and an integer N ≥ 1, we shall write dN∞ for the

�∞-product of N copies of d: that is,

dN∞((xn)n≤N , (x′
n)n≤N ) := max

n≤N
d(xn, x

′
n).

If μ is a probability measure on X , then μN denotes its N -fold product on XN .
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Recall that a sequence of metric probability spaces (XN , dN , μN ) exhibits

concentration of measure if

(1) sup
f : XN −→ R

Lip(f) ≤ 1

μN{|f − ∫
f dμN | ≥ δ} −→ 0 ∀δ > 0

as N −→ ∞ (see, for instance, [Led01] and the many references there).

Unless μ is a Dirac mass, the sequence of metric probability spaces

(XN , dN∞, μN )

does not exhibit concentration of measure. Each coordinate projection

πn : XN −→ X is 1-Lipschitz and pushes μN to μ. Composing one of these

with any non-constant 1-Lipschitz function f : X −→ R witnesses that (1) is

violated, because for small enough δ > 0 the supremum on the left is bounded

below by the positive constant μ{|f − ∫
f dμ| ≥ δ}, independently of N .

In light of this, one can ask for a rough description of all functions XN −→ R

that have a fixed Lipschitz constant but are not highly concentrated for the

measure μN . If the support of μ, sptμ, is disconnected, then there are many such

functions, and no special description is conceivable: for instance, if X = {0, 1},
d(0, 1) = 1 and μ = 1

2 (δ0 + δ1), then all functions XN −→ [0, 1] are 1-Lipschitz

for the metric dN∞. This observation may easily be extended to other examples

with disconnected sptμ.

However, the situation changes in case sptμ has some connectedness. This

will be made precise in Theorem 1.1 below, which will involve the following

notions.

First, (X, d, μ) is (locally) connected if sptμ is (locally) connected.

Next, when a probability space (X,μ) is understood and n ∈ [N ], let E[N ]\{n}
denote the conditional expectation operator on L1(μ

N ) defined by integrating

out the nth coordinate:

E[N ]\{n}f(x1, . . . , xN ) :=

∫
X

f(x1, . . . , xn−1, y, xn+1, . . . , xN )μ(dy).

More generally, for S = [N ] \ {n1, . . . , nk} ⊆ [N ] let

ES := E[N ]\{n1} ◦ · · · ◦ E[N ]\{nk},

where clearly the order of composition is unimportant. In this notation, S

records those coordinates in [N ] on which the dependence of f is retained.
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Lastly, for any metric space (X, d) and function f : X −→ R, the non-

decreasing modulus of continuity of f is the function ω : [0,∞) −→ [0,∞]

defined by

ω(r) := sup{|f(x)− f(y)| | d(x, y) ≤ r}.
Clearly ω(0) = 0, and uniform continuity of f is equivalent to continuity of ω

at 0.

Theorem 1.1: Let (X, d, μ) be a connected and locally connected metric prob-

ability space, and let ω : [0,∞) −→ [0,∞] be non-decreasing. For every ε > 0

there is some integer p ≥ 1, depending on X , ε and ω, with the following prop-

erty. For every N ≥ 1, if f : XN −→ R has modulus of continuity at most ω

for the metric dN∞, then there is S ⊆ [N ] with |S| ≤ p such that

‖f − ESf‖L1(μN ) < ε.

I suspect that this theorem needs only the assumption of connectedness, not

local connectedness.

Approximation in L1(μ
N ) is convenient for the proof, but it implies an ap-

proximation in Lp(μ
N ) for any p < ∞: this is because

diam(XN , dN∞) = diam(X, d) < ∞

for all N , and so the modulus-of-continuity bound implies also a uniform bound

on |f − ∫
f |. However, Theorem 1.1 cannot be tightened to an approximation

in L∞(μN ): for instance, on [0, 1]N with Lebesgue measure, the function

f(x1, . . . , xN ) := max
n≤N

xn

is 1-Lipschitz, takes values in (1− ε, 1] with probability 1− (1− ε)N , but is not

uniformly close to any function depending on only N − 1 coordinates.

Let T := R/Z, endowed with the metric inherited from the usual distance on

R, which we still denote by | · |. Most of the work in proving Theorem 1.1 will

go towards the following special case:

Theorem 1.2: For every ε > 0 there is a q ≥ 1 such that if f : TN −→ R is

1-Lipschitz for the metric | · |N∞, then there is some S ⊆ [N ] with |S| ≤ q such

that

‖f − ESf‖L1(TN ) < ε.
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An easy exercise shows that with the above metrics on product spaces, any

conditional expectation of the form ESf has modulus of continuity not greater

than that of f itself. Therefore both of these theorems give approximations in

measure by juntas that are ‘as continuous’ as the original function f .

In fact, the method below will give a stronger variant of Theorem 1.2, formu-

lated in terms of a kind of Sobolev norm for f : see Theorem 2.1. This stronger

version also has a consequence for maps between Hamming metrics, rather than

�∞-metrics. Recall that given (X, d), the associated Hamming metric dN1 on

XN is defined by

dN1 ((xn)n≤N , (x′
n)n≤N ) :=

1

N

N∑
n=1

d(xn, x
′
n).

Clearly dN1 ≤ dN∞. The additional consequence of Theorem 2.1 is as follows.

Theorem 1.3: Let N,M ≥ 1 with M/N =: α. Then for every ε, L > 0 there

is a q ≥ 1, depending only on ε, α and L, with the following property. If

F : [0, 1]N −→ [0, 1]M is L-Lipschitz for the Hamming metrics on domain and

target, then there is another L-Lipschitz function

G = (G1, . . . , GM ) : [0, 1]N −→ [0, 1]M

such that ∫
[0,1]N

|F (x) −G(x)|M1 dx < ε,

and such that each Gm depends on only q coordinates of [0, 1]N .

The proof of Theorem 1.2 is a close relative of arguments of Kahn, Kalai

and Linial [KKL], Bourgain, Kahn, Kalai, Katznelson and Linial [BKK+92],

Friedgut and Kalai [FK96], and Friedgut [Fri98, Fri04], used for the analysis

of Boolean functions on product spaces under various conditions. That con-

nection will be discussed further during the course of the proof. Perhaps the

closest predecessor of Theorems 1.1 and 1.2 is the theorem of Friedgut that

a Boolean function on {0, 1}N with controlled total influences is close, in the

uniform measure, to a Boolean function depending on a controlled number of

coordinates: see [Fri98].

Theorems 1.1 and 1.2 also have relatives in other studies of concentration for

product measures and �∞-metrics. Several earlier works have sought conditions

on a metric probability space (X,μ) under which the isoperimetric function of
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(XN , μN , dN∞) may be either estimated or determined exactly, and some quite

general results are now known: see, for instance, Barthe [Bar04] and the refer-

ence given there. However, those results generally concern the strictly extremal

behaviour of the isoperimetric problem in these spaces, for situations in which

the minimizing sets can be described exactly, or in which that problem can be

shown to behave well under tensorizing. By contrast, the isoperimetric result

descending from Theorem 1.1 is very crude:

Theorem: For any connected and locally connected (X, d, μ), and any δ, ε > 0,

there is some q, depending on the space and on δ and ε, such that the following

holds. If A,B ⊆ XN are such that

inf{dN∞(x, y) | x ∈ A, y ∈ B} ≥ δ,

then there are a set S ⊆ [N ] with |S| ≤ q, and subsets A′, B′ ⊆ XN that depend

only on coordinates in S, such that μN (A \A′), μN (B \B′) < ε and

inf{dN∞(x, y) | x ∈ A′, y ∈ B′} ≥ δ − ε.

Thus, in a sense, the approximate isoperimetric problem for �∞-product

spaces may be confined to low-dimensional products.

Sketch proof. The 1-Lipschitz function f(x) := min{δ, dist(x,A)} has the prop-

erty that f |A = 0 and f |B = δ. Applying Theorem 1.1 to f gives a set S of

controlled size such that f ≈ ESf , and now one can read off A′ and B′ as

suitable level sets of ESf .

This argument is likely to give a very poor quantitative dependence, and the

further details are routine, so they will be omitted. It is also similar to part of

the argument of Dinur, Friedgut and Regev in [DFR08] concerning the structure

of independent sets in graph powers.

Acknowledgement.An earlier version of this paper was significantly strength-

ened following suggestions by the anonymous referee.

2. Proof of the special case

For a differentiable function f : TN −→ R and n ≤ N , let ∂nf be the partial

derivative in the nth coordinate, and let


∂f := (∂nf)
N
n=1 : TN −→ R

N .
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At any point x ∈ T
N one may identify the tangent space with R

N in the obvious

way. As one zooms in on that point the metric dN∞ converges to the norm of

�N∞. From this it follows easily that

(2) Lip(f) = sup
x∈TN

‖
∂f(x)‖�N1 = sup
x∈TN

( N∑
n=1

|∂nf(x)|
)

for all f ∈ C1(TN ).

The method below actually gives a slightly stronger result than Theorem 1.2.

For p ∈ [1,∞) and a suitably integrable function F =(F1, . . . , FN ) :TN −→R
N ,

define the norm

‖F‖Lp�Np
:=

(∫
TN

‖F (x)‖p
�Np

dx

)1/p

=

( N∑
n=1

∫
TN

|Fn(x)|p dx
)1/p

,

where the integrals are with respect to the Haar probability measure on T
N .

This norm will be used with p equal to 1 or 2.

From each norm ‖ · ‖Lp�Np
, one may define a seminorm on C1(TN ) by

f �→ ‖
∂f‖Lp�Np
.

When p = 2, this is the homogeneous Sobolev seminorm ‖f‖ ◦
W

1,2

(TN )
.

Since ‖ · ‖�Np ≤ ‖ · ‖�N1 for all p, any f ∈ C1(TN ) satisfies

‖
∂f‖Lp�Np
≤ Lip(f) ∀p ∈ [1,∞).

From this and the fact that any 1-Lipschitz function on T
N may be uniformly

approximated by smooth 1-Lipschitz functions, the following immediately im-

plies Theorem 1.2.

Theorem 2.1: For every ε > 0 there is a q ≥ 1 such that if f ∈ C1(TN ) satisfies

‖
∂f‖L1�N1
≤ 1 and ‖f − ∫

f‖2 ≤ 1, then there is some S ⊆ [N ] with |S| ≤ q

such that

‖f − ESf‖1 < ε.

The same result holds for functions on [0, 1]N , possibly with a different depen-

dence of q on ε.

Most of the work below will go into the first part of Theorem 2.1, and that

is also the case that will imply Theorem 1.1. The result for [0, 1]N is an easy

corollary, but is included here because it is needed for Theorem 1.3.
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Now let Δ:=
∑

n≤N ∂2
n, the non-positive definite Laplacian. Let Pt:=exp(tΔ),

t ≥ 0, be the resulting heat semigroup, which is well-defined and self-adjoint

on L2(T
N ). As is standard, this is the semigroup corresponding to Brownian

motion on T
N . For each t > 0 it may be written explicitly in terms of the

Gaussian measure γt on R with variance t:

(3) Ptf(x) =

∫
RN

f(x+ y) γ⊗N
t (dy),

where y denotes the image of y under the obvious quotient map R
N −→ T

N .

Every Pt is a contraction for the norm ‖ · ‖Lp�Np
for any p ∈ [1,∞]. A simple

calculation gives ∂nPtf = Pt∂nf for all t, n and differentiable f , and hence

(4) ‖
∂Ptf‖Lp�Np
≤ ‖
∂f‖Lp�Np

for any p, f and t ≥ 0.

The proof of Theorem 2.1 follows similar lines to the proofs of the main results

in [KKL, BKK+92, FK96, Fri98, Fri04], concerning the structure of Boolean

functions with low total influences on {0, 1}N and [0, 1]N . Note, however, that

the obvious analog of Theorem 1.2 for Boolean functions — that Boolean func-

tions with small total influences are close to juntas — is false for functions on

[0, 1]N : see Hatami [Hat09, Hat12] for the precise structure in that case.

• On the one hand, if ‖
∂f‖L1�N1
≤ 1, then the evolution t �→ Ptf is not

too fast in the norm ‖ · ‖1, so that for small t one has Ptf ≈ f .

• On the other hand, a hypercontractivity inequality for the semigroup

(Pt)t≥0 implies that if ‖∂nf‖1  1 for some n, then ‖∂nPtf‖2 rapidly

decays towards zero. This will occur so fast that even for small t, the

derivatives ∂nPtf are extremely small in ‖ · ‖2 for all but a few choices

of n, so that Ptf is close to a function that depends on only those few

coordinates.

Thus, one may first approximate f by Ptf for some small t > 0, and then prove

that Ptf is close to a function of only a few coordinates.

The first of these two steps results from the following.

Lemma 2.2: If f ∈ C1(TN ) then

‖f − Ptf‖1 ≤ √
t‖
∂f‖L1�N1

∀t ≥ 0.
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Proof. This is easily deduced from the representation (3), which gives

‖f − Ptf‖1 ≤
∫
TN

∫
RN

|f(x)− f(x+ y)| γ⊗N
t (dy) dx.

By the Fundamental Theorem of Calculus and a change of variables, this last

bound equals∫
TN

∫
RN

∣∣∣∣
∫ 1

0

d

ds
f(x+ sy) ds

∣∣∣∣ γ⊗N
t (dy) dx

≤
∫
TN

∫ 1

0

∫
RN

∣∣∣∣
N∑

n=1

yn∂nf(x+ sy)

∣∣∣∣ γ⊗N
t (dy) ds dx

=

∫
TN

∫
RN

∣∣∣∣
N∑

n=1

yn∂nf(x
′)
∣∣∣∣ γ⊗N

t (dy) dx′.

By the monotonicity of Lebesgue norms, this is at most

∫
TN

(∫
RN

( N∑
n=1

yn∂nf(x
′)
)2

γ⊗N
t (dy)

)1/2

dx′,

and now, since the coordinates yn of y are independent under γ⊗N
t , this bound

equals

(∫
RN

y21 γt(dy1)

)1/2 ∫
TN

( N∑
n=1

|∂nf(x′)|2
)1/2

dx′ =
√
t

∫
TN

‖
∂f(x′)‖�N2 dx′.

Finally, this is at most
√
t‖f‖L1�N2

, since ‖ · ‖�N2 ≤ ‖ · ‖�N1 .
For the second part of the proof, the key ingredients are a reverse Poincaré

inequality and a hypercontractive estimate for the heat semigroup on a torus.

Proposition 2.3 (Reverse Poincaré inequality): If f ∈ C1(TN ) then

‖
∂Ptf‖L2�N2
≤ ‖f‖2/

√
t ∀t > 0.

Proof. For any f ∈ C1(TN ), the self-adjointness of Pt and integration by parts

give

‖
∂Ptf‖2L2�N2
=

N∑
n=1

∫
TN

(∂nPtf(x))
2 dx = −

N∑
n=1

∫
TN

Ptf(x) · ∂2
nPtf(x) dx

=−
N∑

n=1

∫
TN

etΔf(x) · ∂2
ne

tΔf(x) dx =

∫
Tn

f(x) · (−Δ)e2tΔf(x) dx.
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Since −Δ has spectrum contained in [0,∞), the Spectral Theorem gives

‖(−Δ)e2tΔf‖2 ≤ ( max
x∈[0,∞)

xe−2tx)‖f‖2 ≤ ‖f‖2/t.

Substituting above, the Cauchy–Bunyakowski–Schwartz inequality gives

‖
∂Ptf‖2L2�N2
≤ ‖f‖2‖(−Δ)e2tΔf‖2 ≤ ‖f‖22/t.

Proposition 2.4 (Hypercontractivity on tori): Let

t > 0 and p := 1 + e−2t ∈ (1, 2).

If f ∈ Lp(T
N ), then

‖Ptf‖2 ≤ ‖f‖p.
Proof. In case N = 1, this is a special case of Weissler’s hypercontractive es-

timates in [Wei80, Theorem 2]. Given this, the result for general N follows

because the operator Pt is a tensor product of one-dimensional operators, and

all the norms ‖ · ‖p also tensorize.

Weissler’s proof of the case N = 1 closely follows Gross’ famous work [Gro75]

on the Ornstein–Uhlenbeck semigroup and Nelson’s hypercontractive estimates.

The main task is to prove a logarithmic Sobolev inequality for the Laplacian

on the circle; this can then be integrated over a time interval to give hypercon-

tractivity. Weissler’s proof of the logarithmic Sobolev inequality uses Fourier

analysis, but a more direct argument from standard properties of the heat semi-

group is also possible: cf. [Led01, Theorem 5.1].

Lastly, the proof will also need the following simple Poincaré inequality.

Lemma 2.5: For any S ⊆ [N ] and f ∈ C1(TN ) one has

‖f − ESf‖22 ≤
∑

n∈[N ]\S
‖∂nf‖22.

Proof. If S = [N ] \ {n}, then the desired inequality is

‖f − ESf‖22 ≤ ‖∂nf‖22.
This follows by applying the Poincaré inequality on T to each of the one-

dimensional slices

f(x1, . . . , xn−1, · , xn+1, . . . , xN ), (x1, . . . , xn−1, xn+1, . . . , xN ) ∈ T
N−1,

and then integrating over TN−1.
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For the general case, observe that for any n and S, the operators ∂n and ES

commute, and so one has

‖∂nESf‖2 = ‖ES(∂nf)‖2 ≤ ‖∂nf‖2.

Now, if S=[N ]\{n1, . . . , nM} and one defines f0 :=f and then fk :=E[N ]\{nk}fk−1

for k = 1, . . . ,M , then this sequence is a reverse martingale, so we have

‖f − ESf‖22 =
M∑
k=1

‖fk−1 − fk‖22 ≤
M∑
k=1

‖∂nk
fk−1‖22 ≤

∑
n∈[N ]\S

‖∂nf‖22.

Lemma 2.6: Suppose that f ∈ C1(TN ) has ‖
∂f‖L1�N1
≤ 1 and ‖f‖2 ≤ 1. Fix

t > 0 and η > 0, and let

S := {n ∈ [N ] | ‖∂nf‖1 ≥ η}.

Then

‖P2tf − ESP2tf‖2 < t
− e−2t

1+e−2t · η
1−e−2t

2(1+e−2t) .

Proof. Proposition 2.4 and the log-convexity of the Lebesgue norms give

‖P2t(∂nf)‖2 =‖Pt(∂nPtf)‖2
≤‖∂nPtf‖1+e−2t

≤‖∂nPtf‖
2e−2t

1+e−2t

2 ‖∂nPtf‖
1−e−2t

1+e−2t

1 .

Substituting this into Lemma 2.5 gives

‖P2tf − ESP2tf‖22 ≤
∑

n∈[N ]\S
‖P2t(∂nf)‖22

≤
∑

n∈[N ]\S
‖∂nPtf‖

4e−2t

1+e−2t

2 ‖∂nPtf‖
2(1−e−2t)

1+e−2t

1

≤
( ∑

n∈[N ]\S
‖∂nPtf‖22

) 2e−2t

1+e−2t
( ∑

n∈[N ]\S
‖∂nPtf‖21

) 1−e−2t

1+e−2t

,

where the last bound follows from Hölder’s Inequality with exponents

(1 + e−2t

2e−2t
,
1 + e−2t

1− e−2t

)
.
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Applying the contractivity of Pt and then the definition of S to the second

factor, we may now bound this by

( ∑
n∈[N ]\S

‖∂nPtf‖22
) 2e−2t

1+e−2t
( ∑

n∈[N ]\S
‖∂nf‖21

) 1−e−2t

1+e−2t

≤
( ∑

n∈[N ]\S
‖∂nPtf‖22

) 2e−2t

1+e−2t
(
η

∑
n∈[N ]\S

‖∂nf‖1
) 1−e−2t

1+e−2t

≤η
1−e−2t

1+e−2t (‖
∂Ptf‖2L2�N2
)

2e−2t

1+e−2t (‖
∂f‖L1�N1
)

1−e−2t

1+e−2t .

Finally, our assumptions on f and Proposition 2.3 bound this by

η
1−e−2t

1+e−2t (t−1‖f‖22)
2e−2t

1+e−2t (‖
∂f‖L1�N1
)

1−e−2t

1+e−2t ≤ t
− 2e−2t

1+e−2t · η 1−e−2t

1+e−2t .

Taking square roots completes the proof.

Proof of Theorem 2.1. Consider f ∈ C1(TN ). Replacing f with f − ∫
f if nec-

essary, we may assume that
∫
f = 0. Let t, η > 0, and let S be as in Lemma 2.6.

Combining Lemmas 2.2 and 2.6 gives

‖f − ESf‖1 ≤‖f − P2tf‖1 + ‖P2tf − ESP2tf‖1 + ‖ES(f − P2tf)‖1
≤2‖f − P2tf‖1 + ‖P2tf − ESP2tf‖2

≤2
√
2t+ t

− e−2t

1+e−2t · η
1−e−2t

2(1+e−2t) .

For any ε > 0, choose t ∈ (0, ε2/32), so that

2
√
2t < ε/2;

then choose η > 0 so small that

t
− e−2t

1+e−2t · η
1−e−2t

2(1+e−2t) < ε/2.

For this choice of t and η, one obtains

‖f − ESf‖1 < ε.

On the other hand, the definition of S gives

η|S| ≤
∑
n∈S

‖∂nf‖1 = ‖
∂f‖L1�N1
≤ 1,

so |S| ≤ 1/η, which is bounded only in terms of ε.
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Lastly, suppose instead that f ∈ C1([0, 1]N). Let F : T −→ [0, 1] be the map

defined by

F (θ + Z) =

⎧⎨
⎩
2θ if θ ∈ [0, 1/2),

2− 2θ if θ ∈ [1/2, 1).

Then F×N : TN −→ [0, 1]N is 2-Lipschitz, differentiable almost everywhere and

measure preserving, so f ◦ F×N is differentiable almost everywhere and

‖
∂(f ◦ F×N )‖Lp�Np
≤ 2‖
∂f‖Lp�Np

∀p ∈ [1,∞).

Therefore f ◦F×N may be uniformly approximated by continuously differen-

tiable functions satisfying the same inequalities, for example by convolving with

a mollifier. Since also (ESf) ◦ F×N = ES(f ◦ F×N ), the proof is completed by

applying the first part of the result to f ◦ F×N .

Theorem 2.1 begs the following question. I suspect the answer is negative,

but have not been able to find a counterexample.

Question 2.7: In the statement of Theorem 2.1, is it enough to assume that

‖
∂f‖L1�N1
≤ 1, without the bound on ‖f − ∫

f‖2? (Of course one should expect

a worse dependence of q on ε.)

Remarks: 1. The argument above can also be used, essentially without change,

to prove an analog of Theorem 2.1 for the standard Gaussian measure γ on R
N :

a function f ∈ C1(RN ) for which
∫ ‖
∂f‖�N1 dγ ≤ 1 and ‖f‖L2(γ) ≤ 1 may be

approximated in L1(γ) by functions of boundedly many coordinates.

Indeed, it seems likely that these methods, and Theorem 2.1, generalize to a

large class of Markov diffusion semigroups subject to suitable ‘curvature’ condi-

tions, as studied in [Led00, BGL14]. More general reverse Poincaré inequalities,

for instance, can be found in [BGL14, Section 4.7], and hypercontractivity es-

timates in [BGL14, Section 5.2].

2. Another connection worth remarking is with the recent works [KMS12]

and [CEL12]. These establish versions of Talagrand’s famous variance-bound

for functions on {±1}N (see [Tal94]) in various new settings, including some

product and non-product measures on R
N , using a similar strategy to that

above. It should also be possible to deduce Theorem 2.1 directly from one of

those Talagrand-type inequalities, such as [CEL12, Theorem 1].
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3. Proof of the general case

Lemma 3.1: Let (X, d) be a compact metric space and let f : X −→ R be

continuous with a non-decreasing modulus of continuity ω. Let ε > 0, and

let K1 := supr≥ε r
−1ω(r) ∈ [0,∞] and K = max{K1, 1}. Then there is a

K-Lipschitz function h : X −→ R such that ‖f − h‖∞ ≤ Kε.

Proof. This is vacuous if K = ∞, so assume K is finite. For each n ∈ Z let

Xn := {x ∈ X | f(x) ≤ εn},
and define h : X −→ R by

h(x) := inf
n∈Z

(εn+Kd(x,Xn)).

As a pointwise infimum ofK-Lipschitz functions, h isK-Lipschitz. If f(x) ≤ εn,

then x ∈ Xn, and so h(x) ≤ εn+Kd(x,Xn) = εn. Infimizing over n, this gives

h(x) ≤ f(x) + ε.

On the other hand, for any x ∈ X , n ∈ Z and y ∈ Xn, one has

f(x) ≤ f(y) + ω(d(x, y)) ≤ f(y) + ω(d(x, y) + ε) ≤ f(y) +Kd(x, y) +Kε.

Using that f(y) ≤ εn and then infimizing over y ∈ Xn, this gives

f(x) ≤ εn+Kd(x,Xn) +Kε.

Now infimizing over n gives f(x) ≤ h(x) +Kε, as required.

Proof of Theorem 1.1. As Gromov reminds us in the proof of the Non-Dis-

sipation Theorem in [Gro01, Section 3 1
2 .62], since (X, d, μ) is connected and

locally connected, there is a uniformly continuous map F : T −→ X such that

F∗m = μ. Let σ be a non-decreasing modulus of continuity for F . For any

(xn)n, (yn)n ∈ XN , one has

max
n≤N

d(F (xn), F (yn)) ≤ max
n≤N

σ(|xn − yn|) = σ(|(xn)n − (yn)n|N∞),

so F×N : TN −→ XN has the same modulus of continuity σ for all N for the

metrics | · |N∞ and dN∞.

Now let f : XN −→ R have non-decreasing modulus of continuity ω for the

metric dN∞. By the above, f ◦ F×N : TN −→ R has non-decreasing modulus

of continuity ω ◦ σ. Let ε > 0, and let Kε := max{supr≥ε r
−1ω(σ(r)), 1}, as

in Lemma 3.1 for the function f . That lemma gives a Kε-Lipschitz function

h : TN −→ R for which ‖f ◦ F×N − h‖∞ ≤ Kεε.
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Having found this h, Theorem 1.2 gives a set S ⊆ [N ] with |S| bounded in

terms of ε and Kε (hence, in terms of ε, ω and σ) such that

‖h− ESh‖1 ≤ ε,

and combining this with the previous inequalities gives

‖f − ESf‖1 ≤ 2‖f ◦ F×N − h‖1 + ‖h− ESh‖1 ≤ 2Kεε+ ε.

An easy exercise shows that Kεε −→ 0 as ε −→ 0, so this completes the

proof.

4. Lipschitz maps between Hamming cubes

Proof of Theorem 1.3. Suppose that F = (F1, . . . , FM ) : [0, 1]N −→ [0, 1]M is

L-Lipschitz between the Hamming metrics. It may be uniformly approximated

by smooth L-Lipschitz functions, so assume smoothness also. The L-Lipschitz

bound implies that

M∑
m=1

|Fm(x+ dx) − Fm(x)| ≤ L
N∑

n=1

|dxn|

for all x ∈ [0, 1]N and all perturbations dx = (dx1, . . . , dxN ).

For fixed n ≤ N , this inequality may be applied with

dx = (0, . . . , 0, dxn, 0, . . . , 0)

to obtain

max
m≤M

|Fm(x+ dx) − Fm(x)| ≤
M∑

m=1

|Fm(x+ dx) − Fm(x)| ≤ L|dxn|.

Normalizing and letting |dxn| −→ 0, this implies firstly that ‖∂nFm‖L∞ ≤ L

for all n and m, and secondly that

M∑
m=1

N∑
n=1

|∂nFm(x)| ≤ LN = LM/α =⇒ 1

M

M∑
m=1

‖
∂Fm‖L1�N1
≤ L/α.

Given ε > 0, let

I :=
{
m ≤ M

∣∣ ‖
∂Fm‖L1�N1
≤ 2L/αε

}
.

Applying Chebyshev’s Inequality, the last inequality above implies that

|I| ≥ (1− ε/2)M .
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For each m ∈ I, one has ‖
∂Fm‖L1�N1
≤ 2L/aε, and of course Fm is uniformly

bounded by 1. Therefore, for each m ∈ I, the second part of Theorem 2.1 gives

a subset Sm ⊆ [N ] of size bounded in terms of L, ε and α such that

‖Fm − ESmFm‖1 ≤ ε/2.

Let Gm := ESmFm for m ∈ I, and let Gm be any constant function in case

m ∈ [M ] \ I. Then the above inequalities combine to give
∫
[0,1]N

|F (x) −G(x)|M1 dx ≤ 1

M

∑
m∈I

‖Fm − ESmFm‖1 + M − |I|
M

<ε/2 + ε/2 = ε.

Equivalently, Theorem 1.3 asserts that most of the functions Fm are indi-

vidually close to functions that depend on only small sets of coordinates. One

cannot tighten this conclusion to apply to strictly every Fm. For example, the

function

[0, 1]N −→ [0, 1]N : (x1, . . . , xN ) �→ (x1, . . . , xN−1, sin(2π(x1 + · · ·+ xN )))

is easily checked to be continuously differentiable and 2-Lipschitz for the Ham-

ming metrics, but its last coordinate is not close to any function depending on

fewer than N coordinates. By concatenating several such examples, for any

divergent positive sequence aN = o(N), one may construct a sequence of 2-

Lipschitz maps in which roughly aN of the output coordinates each depend on

roughly N/aN of the input coordinates.

A similar argument to the proof of Theorem 1.3, using Friedgut’s Theo-

rem [Fri98] on Boolean functions with small influences in place of Theorem 2.1,

shows that the analog of Theorem 1.3 also holds for functions

{0, 1}N −→ {0, 1}M ,

where domain and target are again given the Hamming metrics. This argument

appeared recently in Subsection 1.1 of [BCS], where it was used to analyze a

particular bi-Lipschitz bijection between {0, 1}N and a radius-(N/2) Hamming

ball in {0, 1}N+1 (although those authors were also able to give a more precise

bespoke analysis for that function). Actually, the argument using Friedgut’s

Theorem in [BCS] requires only ‘bounded average stretch’ for the function

{0, 1}N−→{0, 1}M . In our setting of a map F =(F1, . . . , Fm) : [0, 1]N−→ [0, 1]M ,
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this corresponds to assuming that

M∑
m=1

‖
∂Fm‖L1�N1
≤ LM

for some fixed constant L. One can therefore obtain a closer analog of that

conclusion from [BCS] by using the full strength of Theorem 2.1.

By contrast, no obvious analog of Theorem 1.3 holds between Euclidean

spheres with the Euclidean metrics. To see this, consider the following two

natural classes of Lipschitz map S3N−1 −→ S3N−1:

• maps of the form

(x1, . . . , x3N ) �→ (F1(x1, x2, x3), . . . , FN (x3N−2, x3N−1, x3N )),

where Fi : R3 −→ R
3 for i ≤ N are 10-Lipschitz functions such that

‖Fi(u, v, w)‖�32 = ‖Fi(u, v, w)‖�32 (for example, one may choose a se-

quence of 10-Lipschitz maps S2 −→ S2 and extend them radially to

R
3);

• orthogonal rotations.

Both of these classes are individually somewhat simple. However, one may now

form a composition of a few maps drawn alternately from these two classes, and

easily produce a map with the property that no output coordinate is close to

any function that depends on only a low-dimensional projection of the domain

sphere. It is also easy to see that such compositions can be chosen to be O(1)-

bi-Lipschitz and preserve Lebesgue measure on S3N−1, by a suitable choice of

the functions Fi appearing in the examples of the first kind.

5. Some questions about non-product measures

Several important developments in the theory of concentration have come from

extensions of concentration inequalities from product to non-product measures.

Similarly, it would be interesting to know whether any other natural measures

on product spaces enjoy an analog of Theorem 1.1.

One rich source of examples is dynamics. Suppose that (X, d, μ) is a connected

and locally connected metric probability space and that T : X −→ X is a μ-

preserving homeomorphism. Then for each N one may form the topological

embeddings

T [0;N−1] := (id, T, T 2, . . . , TN−1) : X −→ XN ,
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and consider the image T [0;N−1](X) and pushforward measure T
[0;N−1]
∗ μ. Equiv-

alently, one may consider the original measure space (X,μ) with the pullback

of the metric dN∞, giving the new metric

DN
∞(x, y) := max

0≤n≤N−1
d(T nx, T ny).

This construction is important in the theory of dynamical systems: the exponen-

tial growth rate of the DN
∞-covering numbers of X gives the Bowen–Dinaburg

definition of topological entropy.

One may obtain examples similar to �∞-product spaces with product mea-

sures in this way. For instance, if (X,μ, T ) is the shift on T
Z with its Haar

measure and some sensible choice of compact metric, then the above metrics

DN
∞ behave increasingly like the metrics | · |N∞ on finite marginals of TZ. This

suggests the following question.

Question 5.1: For which systems (X,μ, T ) is it the case that ∀ε > 0 ∃p,K ≥ 1

such that ∀N ≥ 1, if f : X −→ R is 1-Lipschitz for the metric DN
∞, then it is

ε-close in ‖ · ‖L2(μ) to a function of the form

F (T n1x, T n2x, . . . , T npx)

for some n1, . . . , np ∈ {0, 1, . . . , N − 1}, where F : Xp −→ R is K-Lipschitz for

the metric dp∞?

Another instructive example is the map θ �→ 2θ on (T, | · |,mT). An easy

exercise shows that for this map, DN∞ is equivalent up to constants to the metric

ρN (θ, θ′) := min{2N |θ − θ′|, 1}.

Therefore any function T
N −→ [0, 1] which is 2N -Lipschitz for the usual metric

| · | becomes Lipschitz with bounded Lipschitz constant for the metric DN
∞. This

certainly includes many maps that cannot be approximated in measure by ‘low-

dimensional’ functions F as above, so the (×2)-map is not an example. Similar

reasoning seems to apply to Anosov diffeomorphisms, so these in general do not

give examples.

Question 5.2: Are there any positive examples for the previous question in which

(X,T ) has finite topological entropy?



238 T. AUSTIN Isr. J. Math.

References

[Bar04] F. Barthe, Infinite dimensional isoperimetric inequalities in product spaces with

the supremum distance, Journal of Theoretical Probability 17 (2004), 293–308.

[BCS] I. Benjamini, G. Cohen and I. Shinkar, Bi-Lipschitz bijection between the Boolean

cube and the Hamming ball, preprint, available online at arXiv.org: 1310.2017.

[BGL14] D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion

Operators, Grundlehren der Mathematischen Wissenschaften, Vol. 348, Springer,

Cham, 2014.

[BKK+92] J. Bourgain, J. Kahn, G. Kalai, Y. Katznelson and N. Linial, The influence of

variables in product spaces, Israel Journal of Mathematics 77 (1992), 55–64.

[CEL12] D. Cordero-Erausquin and M. Ledoux, Hypercontractive measures, Talagrand’s

inequality, and influences, in Geometric Aspects of Functional Analysis, Lecture

Notes in Mathematics, Vol. 2050, Springer, Heidelberg, 2012, pp. 169–189.

[DFR08] I. Dinur, E. Friedgut and O. Regev, Independent sets in graph powers are almost

contained in juntas, Geometric and Functional Analysis 18 (2008), 77–97.

[FK96] E. Friedgut and G. Kalai, Every monotone graph property has a sharp threshold,

Proceedings of the American Mathematical Society 124 (1996), 2993–3002.

[Fri98] E. Friedgut, Boolean functions with low average sensitivity depend on few coor-

dinates, Combinatorica 18 (1998), 27–35.

[Fri04] E. Friedgut, Influences in product spaces: KKL and BKKKL revisited, Combina-

torics, Probability and Computing 13 (2004), 17–29.

[Gro75] L. Gross, Logarithmic Sobolev inequalities, American Journal of Mathematics 97

(1975), 1061–1083.

[Gro01] M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, sec-
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