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ABSTRACT

In this paper we obtain quite general and definitive forms for Hardy–

Littlewood type inequalities. Moreover, when restricted to the original

particular cases, our approach provides much simpler and straightforward

proofs and we are able to show that in most cases the exponents involved

are optimal. The technique we used is a combination of probabilistic tools

and of an interpolative approach; this former technique is also employed in

this paper to improve the constants for vector-valued Bohnenblust–Hille

type inequalities.

1. Introduction

In 1930 Littlewood [22] has shown the following result on bilinear forms on

c0 × c0, now called Littlewood’s 4/3 inequality: for any bounded bilinear form

A : c0 × c0 → C,

( +∞∑
i,j=1

|A(ei, ej)| 43
) 3

4

≤
√
2‖A‖

and, moreover, the exponent 4/3 is optimal. From now on, m ≥ 1 is a positive

integer, p := (p1, . . . , pm) ∈ [1,+∞]m and

∣∣∣ 1
p

∣∣∣ := 1

p1
+ · · ·+ 1

pm
.

For 1 ≤ p < +∞, let us set Xp := �p and let us define X∞ = c0. As soon as

Littlewood’s 4/3 inequality appeared, it was rapidly extended to more general

frameworks. For instance:

• (Bohnenblust and Hille, [6, Theorem I], 1931 (see also [12])) There exists

a constant C = C(m) ≥ 1 such that

(1.1)

( +∞∑
i1,...,im=1

|A(ei1 , . . . , eim)| 2m
m+1

)m+1
2m

≤ C‖A‖

for all continuous m-linear forms A : c0×· · ·×c0 → C and the exponent
2m
m+1 is optimal.
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• (Hardy and Littlewood, [18], 1934 (see also [19, page 224])/Praciano-

Pereira, [27, Theorems A and B], 1981) Let p ∈ [1,+∞]
m

with∣∣∣ 1
p

∣∣∣ ≤ 1

2
,

then there exists a constant C > 0 such that, for every continuous

m-linear form A : Xp1 × · · · ×Xpm → C,

(1.2)

( +∞∑
i1,...,im=1

|A(ei1 , . . . , eim)|
2m

m+1−2| 1
p

|
)m+1−2| 1

p
|

2m

≤ C‖A‖.

• (Defant and Sevilla-Peris, [11, Theorem 1], 2009) If 1 ≤ s ≤ q ≤ 2,

there exists a constant C > 0 such that, for every continuous m-linear

mapping A : c0 × · · · × c0 → �s, then

( +∞∑
i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m

m+2( 1
s
− 1

q
)

�q

)m+2( 1
s
− 1

q
)

2m

≤ C‖A‖.

Very recently the previous results were generalized by the authors and by

Dimant and Sevilla-Peris:

• ([1, Corollary 1.3], 2013) Let 1 ≤ s ≤ q ≤ 2 and p ∈ [1,+∞]m such

that

(1.3)
1

s
− 1

q
−
∣∣∣ 1
p

∣∣∣ ≥ 0.

Then there exists a constant C > 0 such that, for every continuous

m-linear mapping A : Xp1 × · · · ×Xpm → Xs, we have

( +∞∑
i1,...,im=1

‖A(ei1 , . . . , eim)‖
2m

m+2( 1
s
− 1

q
−| 1

p
|)

�q

)m+2( 1
s
− 1

q
−| 1

p
|)

2m

≤ C‖A‖

and the exponent is optimal.

• (Dimant and Sevilla-Peris, [14, Proposition 4.4], 2013) Let p ∈ [1,+∞]m

and s, q∈1,+∞] be such that s≤q. Then there exists a constant C>0

such that, for every continuousm-linear mappingA :Xp1×· · ·×Xpm→Xs,

we have ( +∞∑
i1,...,im=1

‖A(ei1 , . . . , eim)‖ρ�q
) 1

ρ

≤ C‖A‖,

where ρ is given by:
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(i) If s ≤ q ≤ 2, and

(a) if 0 ≤ | 1p | < 1
s − 1

q , then

1

ρ
=

1

2
+

1

m

(1
s
− 1

q
−
∣∣∣ 1
p

∣∣∣);
(b) if 1

s − 1
q ≤ | 1p | < 1

2 + 1
s − 1

q , then

1

ρ
=

1

2
+

1

s
− 1

q
−
∣∣∣ 1
p

∣∣∣.
(ii) If s ≤ 2 ≤ q, and

(a) if 0 ≤ | 1p | < 1
s − 1

2 , then

1

ρ
=

1

2
+

1

m

(1
s
− 1

2
−
∣∣∣ 1
p

∣∣∣);
(b) if 1

s − 1
2 ≤ | 1p | < 1

s , then

1

ρ
=

1

s
−
∣∣∣ 1
p

∣∣∣.
(iii) If 2 ≤ s ≤ q and 0 ≤ | 1p | < 1

s , then

1

ρ
=

1

s
−
∣∣∣ 1
p

∣∣∣.
Moreover, the exponents in the cases (ia), (iib) and (iii) are optimal.

Also, the exponent in (ib) is optimal for 1
s − 1

q ≤ | 1p | < 1
2 .

Our main intention, in this paper, is to improve the previous theorems in

three directions.

(1) We study in depth the remaining cases of the Dimant and Sevilla-Peris

result. Surprisingly, we show that in case (iia), the exponent given above is

optimal whereas it is not optimal in case (ib) when | 1p | > 1
2 . We give a better

exponent in that case and show a necessary condition on it. These two bounds

coincide when s = 1. We can summarize this into the two following statements.

Theorem 1.1: Let p ∈ [1,+∞]m and let ρ > 0. Assume moreover that either

q ≥ 2 or q < 2 and | 1p | < 1
2 . Let

1

λ
:=

1

2
+

1

s
− 1

min{q, 2} −
∣∣∣ 1
p

∣∣∣ > 0.
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Then there exists C > 0 such that, for every continuous m-linear operator

A : Xp1 × · · · ×Xpm → Xs, we have

( +∞∑
i1,...,im=1

‖A(ei1 , . . . , eim)‖ρ�q
) 1

ρ

≤ C‖A‖

if and only if

m

ρ
≤ 1

λ
+

m− 1

max{λ, s, 2} .

The following table summarizes the optimal value of 1
ρ following the respective

values of s, q, p1, . . . , pm:

1 ≤ s ≤ q ≤ 2, λ < 2
1

2
+

1

ms
− 1

mq
− 1

m
×
∣∣∣ 1
p

∣∣∣

1 ≤ s ≤ q ≤ 2, λ ≥ 2, | 1p | < 1
2

1

2
+

1

s
− 1

q
−
∣∣∣ 1
p

∣∣∣

1 ≤ s ≤ 2 ≤ q, λ < 2
m− 1

2m
+

1

ms
− 1

m
×
∣∣∣ 1
p

∣∣∣

1 ≤ s ≤ 2 ≤ q, λ ≥ 2
1

s
−
∣∣∣ 1
p

∣∣∣

2 ≤ s ≤ q
1

s
−
∣∣∣ 1
p

∣∣∣

We note that (1.1) and (1.2) are recovered by Theorem 1.1 just by choosing

s = 1 and q = 2.

When q < 2 and | 1p | > 1
2 (observe that this automatically implies λ ≥ 2), the

situation is more difficult and we get the following statement.

Theorem 1.2: Let p ∈ [1,+∞]m, | 1p | > 1
2 , 1 ≤ s ≤ q ≤ 2 and let ρ > 0. Let

us consider the following property.
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There exists C > 0 such that, for every continuous m-linear

operator A : Xp1 × · · · ×Xpm → Xs, we have

( +∞∑
i1,...,im=1

‖A(ei1 , . . . , eim)‖ρ�q
) 1

ρ

≤ C‖A‖.

(A) The property is satisfied as soon as

1

ρ
≤ (1s − 1

q )(
1
s − | 1p |)

1
2 − 1

s

.

(B) If the property is satisfied, then

1

ρ
≤ 2

(
1−

∣∣∣ 1
p

∣∣∣)(1
s
− 1

q

)
.

In particular, if s = 1, then the property is satisfied if and only if

1

ρ
≤ 2

(
1− | 1

p
|
)(

1− 1

q

)
.

(2) We give a simpler proof of the sufficient part of the Dimant and Sevilla-

Peris theorem. It turns out that it is easier to prove a more general result.

Theorem 1.3: Let p ∈ [1,+∞]m and 1 ≤ s ≤ q ≤ ∞ be such that

∣∣∣ 1
p

∣∣∣ < 1

2
+

1

s
− 1

min{q, 2} .

Let
1

λ
:=

1

2
+

1

s
− 1

min{q, 2} −
∣∣∣ 1
p

∣∣∣.
If λ > 0 and t1, . . . , tm ∈ [λ,max{λ, s, 2}] are such that

(1.4)
1

t1
+ · · ·+ 1

tm
≤ 1

λ
+

m− 1

max{λ, s, 2} ,

then there exists C > 0 satisfying, for every continuous m-linear map

A : Xp1 × · · · ×Xpm → Xs,

(1.5)

( +∞∑
i1=1

(
· · ·

( +∞∑
im=1

‖A(ei1 , . . . , eim)‖tm�q
) tm−1

tm · · ·
) t1

t2
) 1

t1 ≤ C‖A‖.

Moreover, the exponents are optimal except eventually if q ≤ 2 and | 1p | > 1
2 .
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Remark 1.4: The optimality in the above theorem shall be understood in a

strong sense: when λ < 2, we prove that if t1, . . . , tm ∈ [1,+∞) are so that

(1.5) holds, then (1.4) is valid. When λ ≥ 2, note that λ = max {λ, s, 2} and

we prove that if t = t1 = · · · = tm are in [1,+∞) and (1.5) is valid, then we

have (1.4) and, as a direct consequence, t ≥ λ.

(3) We prove similar results for m-linear mappings with arbitrary codomains

which assume their cotype. For a Banach space X , let qX = inf{q ≥ 2; X has

cotype q}.
The proof that (B) implies (A) in the theorem below appears in [14, Propo-

sition 4.3].

Theorem 1.5: Let p ∈[2,+∞]m, letX be an infinite-dimensional Banach space

with cotype qX , | 1p | < 1
qX

, and let ρ > 0. The following assertions are equiva-

lent:

(A) Every bounded m-linear operator A : Xp1 ×· · ·×Xpm → X is such that

+∞∑
i1,...,im=1

‖A(ei1 , . . . , eim)‖ρ < +∞.

(B) 1
ρ ≤ 1

qX
− | 1p |.

Finally, in the last section of the paper we obtain better estimates for the

constants of vector-valued Bohnenblust–Hille inequalities.

We conclude this introduction by noting that our theorems can be naturally

stated in the context of homogeneous polynomials. Given an m-homogeneous

polynomial P : X → Y , we denote its coefficients (cα(P )). In [11, Lemma 5], it

is shown that an inequality

(∑
α

‖cα(P )‖ρ
) 1

ρ

≤ C‖P‖

holds for every m-homogeneous polynomial P : X → Y if and only if a similar

inequality ( ∑
i1,...,im

‖T (ei1 , . . . , eim)‖ρ
) 1

ρ

≤ C′‖T ‖

is satisfied for every m-linear mapping A : X × · · · × X → Y , where X is a

Banach sequence space.
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Notations: For two positive integers n, k, we set

M(k, n) := {i = (i1, . . . , ik); i1, . . . , ik ∈ {1, . . . , n}}.
For q ∈ [1,+∞], q∗ will denote its conjugate exponent.

2. Proof of Theorem 1.3 (sufficiency)

Let 1 ≤ q ≤ +∞. We recall that a Banach space X has cotype q if there

is a constant κ > 0 such that, no matter how we select finitely many vectors

x1, . . . , xn ∈ X , ( n∑
k=1

‖xk‖q
) 1

q

≤ κ

(∫
I

∥∥∥∥
n∑

k=1

rk(t)xk

∥∥∥∥
2

dt

) 1
2

where I = [0, 1] and rk denotes the k-th Rademacher function. To cover the

case q = +∞, the left-hand side should be replaced by max1≤k≤n ‖xk‖. The

smallest of all these constants is denoted by Cq(X) and named the cotype q

constant of X .

An operator between Banach spaces v : X → Y is (r, s)-summing (with

s ≤ r ≤ +∞) if there exists C > 0 such that, for all n ≥ 1 and for all vectors

x1, . . . , xn ∈ X ,( n∑
k=1

‖vxk‖r
) 1

r

≤ C sup
x∗∈BX∗

( n∑
k=1

|x∗(xk)|s
) 1

s

.

The smallest constant in this inequality is denoted by πr,s(v).

We need a cotype q version of [1, Proposition 4.1], whose proof can be found

in [14, Proposition 3.1]:

Lemma 2.1: Let X be a Banach space, let Y be a cotype q space, let r ∈ [1, q]

and let p ∈ [1,+∞]m with ∣∣∣ 1
p

∣∣∣ < 1

r
− 1

q
.

Define
1

λ
:=

1

r
−
∣∣∣ 1
p

∣∣∣.
Then, for every continuous m-linear map A : Xp1 × · · · ×Xpm → X and every

(r, 1)-summing operator v : X → Y , we have

(2.1)

(∑
ik

(∑
̂ik

‖vA(ei1 , . . . , eim)‖qY
)λ/q)1/λ

≤ (
√
2Cq(Y ))m−1πr,1(v)‖A‖
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for all k = 1, . . . ,m.

The symbol
∑

̂ik
means that we are fixing the k-th index and that we are

summing over all the remaining indices.

We shall deduce from this lemma the following theorem, which extends results

of [1] and [14]:

Theorem 2.2: Let p ∈ [1,+∞]
m
, X be a Banach space, Y be a cotype q space

and 1 ≤ r ≤ q, with | 1p | < 1
r . Define

1

λ
:=

1

r
−
∣∣∣ 1
p

∣∣∣.
If t1, . . . , tm ∈ [λ,max{λ, q}] are such that

1

t1
+ · · ·+ 1

tm
≤ 1

λ
+

m− 1

max{λ, q} ,

then, for every continuous m-linear map A : Xp1 × · · · ×Xpm → X and every

(r, 1)-summing operator v : X → Y , we have

(2.2)

( +∞∑
i1=1

(
· · ·

( +∞∑
im=1

‖vA(ei1 , . . . ,eim)‖tmY
) tm−1

tm · · ·
) t1

t2
) 1

t1

≤(
√
2Cmax{λ,q}(Y ))m−1πr,1(v)‖A‖.

Proof. If λ < q, from Lemma 2.1, we have (2.2) for

(t1, . . . , tm) = (λ, q, . . . , q).

Since λ < q, the mixed (�λ, �q)-norm inequality (see [1, Proposition 3.1]), we

also have (2.2) for the exponents

(t1, . . . , tm) = (q, . . . , q, λ, q, . . . , q)

with λ in the k-th position, for all k = 1, . . . ,m. Now, using a general version of

Hölder’s inequality (see [15, Theorem 2.1]),we get (2.2) for all (t1, . . . ,tm)∈ [λ,q]m

such that
1

t1
+ · · ·+ 1

tm
=

1

λ
+

m− 1

q
=

1

λ
+

m− 1

max{λ, q} .

If λ ≥ q, for any ε > 0, let qε = λ+ ε. So λ < qε and this automatically implies

that ∣∣∣ 1
p

∣∣∣ < 1

r
− 1

qε
.
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Since Y has cotype qε > q, we may apply Lemma 2.1 to get

( N∑
i1=1

( N∑
i2,...,im=1

‖vA(ei1 , . . . , eim)‖λ+ε

) λ
λ+ε

) 1
λ

≤(
√
2Cλ+ε(Y ))m−1πr,1(v)‖A‖

for all positive integers N . Making ε → 0, we get

( N∑
i1,...,im=1

‖vA(ei1 , . . . , eim)‖λ
) 1

λ

≤ (
√
2Cλ(Y ))m−1πr,1(v)‖A‖

for all N and the proof is done.

Remark 2.3: If we take t1 = · · · = tm, then, upon polarization, we recover

exactly [14, Theorem 1.2] with a much simpler proof due to the fact that the

inequality is simpler to prove for the extremal values of (t1, . . . , tm).

We are now ready for the proof of the sufficient part of Theorem 1.3. We

split the proof into three cases, and we combine Theorem 2.2 with the Bennett–

Carl inequalities ([3, 9]): for 1 ≤ s ≤ q ≤ +∞, the inclusion map �s ↪→ �q is

(r, 1)-summing, where the optimal r is given by

1

r
:=

1

2
+

1

s
− 1

min{2, q} .

(i) s ≤ q ≤ 2: The Bennet–Carl inequalities ensure that the inclusion map

�s ↪→ �q is (r, 1)-summing with 1
r = 1

2 + 1
s − 1

q , so the results follow from

Theorem 2.2, with t1, . . . , tm satisfying

1

t1
+ · · ·+ 1

tm
=

1

2
+

1

s
− 1

q
−
∣∣∣ 1
p

∣∣∣+ m− 1

max{λ, 2} .

(ii) s ≤ 2 ≤ q: Also by using Bennet–Carl inequalities, �s ↪→ �2 is (s, 1)-

summing, thus we get (1.5) applying Theorem 2.2, with t1, . . . , tm satisfying

1

t1
+ · · ·+ 1

tm
=

1

s
−
∣∣∣ 1
p

∣∣∣+ m− 1

max{λ, 2} .

(iii) 2 ≤ s ≤ q: Since �s ↪→ �s is (s, 1)-summing, the result follows from Theorem

2.2, with t1 = · · · = tm = λ and λ ≥ s, since r = s and

1

λ
:=

1

s
−
∣∣∣ 1
p

∣∣∣ ≤ 1

s
.
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Remark 2.4: Let us set

cqs :=

⎧⎪⎪⎨
⎪⎪⎩
q, if s ≤ q ≤ 2,

2, if s ≤ 2 ≤ q,

s, if 2 ≤ s ≤ q.

With the above notations, a careful look at the proof shows that the constant

C which appears in Theorem 1.3 is dominated by

(
√
2Cmax{λ,s,2}(�cqs))

m−1πr,1(�s ↪→ �cqs).

3. Proof of Theorem 1.3 (optimality)

In this section we show that the exponents in Theorem 1.3 are optimal ex-

cept when q ≤ 2 and | 1p | > 1
2 . More precisely, if (t1, . . . , tm) ∈ [1,+∞)m are

such that there exists C > 1 satisfying, for any continuous multilinear map

Xp1 × · · · ×Xpm → Xs,

(3.1)

( +∞∑
i1=1

(
· · ·

( +∞∑
im=1

‖A(ei1 , . . . , eim)‖tm�q
) tm−1

tm · · ·
) t1

t2
) 1

t1 ≤ C‖A‖,

then we prove that (1.4) holds. When λ ≥ 2, we will always assume that

t1 = · · · = tm = t, since λ = max{λ, s, 2} and our inequality holds true when

all the exponents are equal. We split the proof into several cases. Most of

the cases are a consequence of a random construction. The main tool is the

following lemma, from [1, Lemma 6.2].

Lemma 3.1: Let d, n ≥ 1, q1, . . . , qd+1 ∈ [1,+∞]d+1 and let, for q ≥ 1,

α(q) =

⎧⎨
⎩

1
2 − 1

q if q ≥ 2,

0 otherwise.

Then there exists a d-linear mapping A : �np1
× · · · × �npd

→ �npd+1
which may be

written

A(x(1), . . . , x(d)) =
n∑

i1,...,id+1=1

±x
(1)
i1

· · ·x(d)
id

eid+1

such that

‖A‖ ≤ Cdn
1
2+α(p1)+···+α(pd)+α(p∗

d+1).
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3.1. Case 1: 1 ≤ s ≤ q ≤ 2 and λ < 2. This case has already been solved in [1,

Section 6.2], using Lemma 3.1 with d = m and (q1, . . . , qm+1) = (p1, . . . , pm, s).

3.2. Case 2: 1 ≤ s ≤ q ≤ 2, λ ≥ 2 and | 1p | ≤ 1
2 . This case has already

been solved in [14, Proposition 4.4(ib)] using a Fourier matrix. We shall give

an alternative probabilistic proof. Let p ∈ [2,+∞] be such that 1
p = | 1p |.

By Lemma 3.1, there exists a linear map T : �np → �ns which may be written

T (x) =
∑

i,j εi,jxiej with εi,j = ±1 and such that

‖T ‖ ≤ Cn
1
2+

1
2− 1

p+
1
2− 1

s∗ = Cn
1
2+

1
s−| 1p |.

Let A : �np1
× · · · × �npm

→ �ns defined by

A(x(1), . . . , x(m)) :=
∑
i,j

εi,jx
(1)
i · · ·x(m)

i ej .

By Hölder’s inequality, it is plain that ‖A‖ ≤ ‖T ‖ ≤ Cn
1
2+

1
s−| 1p |. On the other

hand, since A(ei1 , . . . , eim) 	= 0 if and only if i1 = · · · = im, and

‖A(ei, . . . , ei)‖�q = n1/q,

we have ( ∑
i∈M(m,n)

‖A(ei1 , . . . , eim)‖t�q
) 1

t

= n
1
q+

1
t .

This clearly implies
1

t
≤ 1

2
+

1

s
− 1

q
−
∣∣∣ 1
p

∣∣∣.
3.3. Case 3: 1 ≤ s ≤ 2 ≤ q and λ < 2. Let p ∈ [0,+∞] be defined by

1

p
=

1

pm
+

1

s∗
.

Since λ < 2, it is easy to check that p ≥ 2 and that pi ≥ 2 for any i = 1, . . . ,m.

We then apply Lemma 3.1 with d = m−1 and (q1, . . . , qm) = (p1, . . . , pm−1, p
∗).

We get an (m− 1)-linear form T : �np1
× · · · × �npm−1

→ �np∗ which can be written

T (x(1), . . . , x(m−1)) =
∑

i1,...,im

εi1,...,imx
(1)
i1

· · ·x(m−1)
im−1

eim

and such that

‖T ‖ ≤ Cn
1
2+

m
2 −| 1p |− 1

s∗ = Cn
m−1

2 −| 1p |+ 1
s .
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We then define A : �np1
× · · · × �npm

→ �ns by

A(x(1), . . . , x(m)) =
∑

i1,...,im

εi1,...,imx
(1)
i1

· · ·x(m)
im

eim .

Then, for any x(1), . . . , x(m) ∈ B�np1
× · · · ×B�npm

,

‖A(x(1), . . . , x(m))‖ = sup
y∈B�n

s∗

∣∣∣∣
∑

i1,...,im

εi1,...,imx
(1)
i1

· · ·x(m)
im

yim

∣∣∣∣
≤ sup

z∈B�np

∣∣∣∣
∑

i1,...,im

εi1,...,imx
(1)
i1

· · ·x(m−1)
im−1

zim

∣∣∣∣
≤‖T ‖.

Moreover, given any i ∈ M(m,n), ‖A(ei1 , . . . , eim)‖q = ‖eim‖q = 1, so that

( +∞∑
i1=1

(
· · ·

( +∞∑
im=1

‖A(ei1 , . . . , eim)‖tm�q
) tm−1

tm · · ·
) t1

t2
) 1

t1

= n
1
t1

+···+ 1
tm .

Hence, provided (3.1) is satisfied, (t1, . . . , tm) has to satisfy

1

t1
+ · · ·+ 1

tm
≤ m− 1

2
+

1

s
−
∣∣∣ 1
p

∣∣∣.
3.4. Case 4 and Case 5: 1 ≤ s ≤ 2 ≤ q and λ ≥ 2, 2 ≤ s ≤ q. These

cases have a deterministic proof, as noted in [14, Proposition 4.4 (iib), (iii)],

considering A : �np1
× · · · × �npm

→ �ns given by

A(x(1), . . . , x(m)) :=

n∑
i=1

x
(1)
i · · ·x(m)

i ei.

3.5. The proof of Theorem 1.1. From Theorem 1.3, by choosing t1=· · ·=tm
we conclude that provided∣∣∣ 1

p

∣∣∣ < 1

2
+

1

s
− 1

min{q, 2} ,

the best exponent ρ in Theorem 1.1 satisfies

m

ρ
=

1

λ
+

m− 1

max{λ, s, 2} .

To conclude the proof, it remains to prove that, whenever∣∣∣ 1
p

∣∣∣ ≥ 1

2
+

1

s
− 1

min{q, 2} ,
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we cannot find an exponent ρ > 0 such that (1.1) is satisfied for all m-linear

operators A : Xp1 × · · ·×Xpm → Xs. In fact, everything has already been done

before: if q ≤ 2, then we have just to follow the lines of Case 2, and if q ≥ 2,

then we may consider the m-linear mapping of Cases 4 and 5.

4. The case 1 ≤ s ≤ q ≤ 2, λ ≥ 2 and | 1p | > 1
2

4.1. A reformulation of the Hardy–Littlewood type inequalities.

We shall improve in this section the bound given by Theorem 1.1. We shall

proceed by interpolation. To do this, we need a reformulation of the result of

this theorem, as Villanueva and Pérez-Garćıa reformulated the Bohnenblust–

Hille inequality in [26]. The forthcoming result is a variant of [7, Proposition

2.2]; its proof will be omitted.

Theorem 4.1: Let 1 ≤ p1, . . . , pm ≤ +∞, 1 ≤ s ≤ q ≤ ∞ and let ρ > 0. The

following assertions are equivalent.

(A) There exists C > 0 such that, for every continuous m-linear mapping

A : Xp1 × · · · ×Xpm → Xs, we have

( ∑
i1,...,im

‖A(ei1 , . . . , eim)‖ρ�q
)1/ρ

≤ C‖A‖.

(B) There exists C > 0 such that, for any n ≥ 1, for any Banach spaces

Y1, . . . , Ym, for any continuousm-linear mapping S : Y1×· · ·×Ym → Xs,

the induced operator

T : �np∗
1,w

(Y1)× · · · × �np∗
m,w(Ym) →�n

m

ρ (Xq)

(x(1), . . . , x(m)) 
→(S(x
(1)
i1

, . . . , x
(m)
im

))i∈M(m,n)

satisfies ‖T ‖ ≤ C‖S‖.
We recall that, for any p ∈ [1,+∞] and any Banach space Y ,

�np,w(Y ) =

{
(xj)

n
j=1 ⊂ Y ; ‖(xj)‖w,p := sup

ϕ∈BY ∗

( n∑
j=1

|ϕ(xj)|p
)1/p

< +∞
}

with the appropriate modifications for p = ∞.
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4.2. Proof of the sufficient condition. We now prove our better up-

per bound in the case 1 ≤ s ≤ q ≤ 2, | 1p | > 1
2 (namely we prove the first

part of Theorem 1.2). Let n ≥ 1, let Y1, . . . , Ym be Banach spaces and let

S : Y1 × · · · × Ym → Xs be bounded. Let n ≥ 1 and let T be the operator

induced by S on Y = �np∗
1 ,w

(Y1)× · · · × �p∗
m,w(Ym), defined by

T (x(1), . . . , x(m)) = (S(x
(1)
i1

, . . . , x
(m)
im

)).

Then T is bounded as an operator from Y into �n
m

∞ (Xs) (this is trivial); T is

also bounded as an operator from Y into �n
m

ρ (Xs) with 1
ρ = 1

s − | 1p | (this is

Theorem 1.1 for 1 ≤ s ≤ 2 and q ≥ 2). We can interpolate between these two

extreme situations. Hence, let q ∈ [s, 2] and let θ ∈ [0, 1] be such that

1

q
=

1− θ

s
+

θ

2
⇐⇒ θ =

1
s − 1

q
1
s − 1

2

.

By [4, Theorem 4.4.1], T is bounded as an operator from Y into �n
m

t (Xq) where

1

t
=

1− θ

∞ +
θ

ρ
=

(1s − 1
q )(

1
s − | 1p |)

1
s − 1

2

.

Remark 4.2: It is easy to check that, for 1 ≤ s ≤ q ≤ 2 and | 1p | ≥ 1
2 , then the

bound

(1s − 1
q )(

1
s − | 1p |)

1
s − 1

2

is always better (namely larger) than the bound 1
2 + 1

s − 1
q − | 1p | obtained in

Theorem 1.1.

4.3. The necessary condition. We now prove the second part of Theorem

1.2. It also uses a probabilistic device for linear maps when the two spaces do

not need to have the same dimension. The forthcoming lemma can be found in

[3, Proposition 3.2].

Lemma 4.3: Let n, d≥1, 1≤p, s≤2. There exists T :�dp→�ns , T (x)=
∑

i,j ±xjei

such that

‖T ‖ ≤ Cp,s max(d1/s, n1− 1
p d

1
s− 1

2 ).

Coming back to the proof of Theorem 1.2, we first observe that we may

always assume that | 1p | < 1. Otherwise, we can consider the m-linear map
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A : Xp1 × · · · ×Xpm → Xs defined by

A(x(1), . . . , x(m)) =
∑
i≥1

x
(1)
i . . . x

(m)
i e0

and observe that it is bounded whereas it has infinitely many coefficients equal

to 1. We then define p ∈ [1, 2] by 1
p = | 1p | and we consider T : �dp → �ns ,

T (x) =
∑

i,j εi,jxjei the map given by Lemma 4.3. We then define

A : �dp1
× · · · × �dpm

→�ns

(x(1), . . . , x(m)) 
→
∑
i,j

εi,jx
(1)
j · · ·x(m)

j ei

and we observe that, by Hölder’s inequality, ‖A‖ ≤ ‖T ‖. Furthermore,

( ∑
i1,...,im

‖A(ei1 , . . . , eim)‖t�q
)1/t

= n1/td1/q.

Taking d1/2 = n1− 1
p (this is the optimal relation between d and n), we get that

if ( ∑
i1,...,im

‖A(ei1 , . . . , eim)‖t�q
)1/t

≤ C‖A‖,

then it is necessary that

1

t
≤ 2

(
1− 1

p

)(1
s
− 1

q

)
.

Remark 4.4: This last condition is optimal when s = 1 or when | 1p | = 1
2 (with,

in fact, the same proof as in Case 2 above). When 1 < s < 2, another necessary

condition is
1

t
≤ 1

s
−
∣∣∣ 1
p

∣∣∣
(see Case 4 or Case 5 above).

5. Optimal estimates under cotype assumptions

For a Banach space X , let qX := inf{q ≥ 2; X has cotype q}. For scalar-

valued multilinear operators it is easy to observe that summability in multiple

indexes behaves in a quite different way than summability in just one index.
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For instance, for any bounded bilinear form A : c0 × c0 → C,( +∞∑
i,j=1

|A(ei, ej)| 43
) 3

4

≤ √
2‖A‖

and the exponent 4/3 is optimal. But, if we sum diagonally (i = j), the exponent

4/3 can be reduced to 1 since

+∞∑
i=1

|A(ei, ei)| ≤ ‖A‖

for any bounded bilinear form A : c0 × c0 → C. Now we prove Theorem 1.5

which shows that when replacing the scalar field by infinite-dimensional spaces

the situation is quite different.

Proof. (A)⇒(B). From a deep result of Maurey and Pisier ([24] and [13, Section

14]), �qX is finitely representable in X , which means that, for any n ≥ 1, one

may find unit vectors z1, . . . , zn ∈ X such that, for any a1, . . . , an ∈ C,

n∑
i=1

‖aizi‖X ≤ 2

( n∑
i=1

|ai|qX
)1/qX

.

We then consider the m-linear map A : �np1
× · · · × �npm

→ X defined by

A(x(1), · · · , x(m)) :=

n∑
i=1

x
(1)
i · · ·x(m)

i zi.

Then, for any (x(1), . . . , x(m)) belonging to B�np1
× · · · ×B�npm

,

‖A(x(1), · · · , x(m))‖ ≤ 2

( n∑
i=1

|x(1)
i |qX · · · |x(m)

i |qX
)1/qX

≤ 2n
1

qX
−| 1p |

,

where the last inequality follows from Hölder’s inequality applied to the expo-

nents
p1
qX

, . . . ,
pm
qX

,
(
1− qX

∣∣∣ 1
p

∣∣∣)−1

.

On the other hand, ( n∑
i=1

‖A(ei, . . . , ei)‖ρ
)1/ρ

= n
1
ρ

and we obtain (B).

(B)⇒(A). This implication is proved in [14, Proposition 4.3].
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If X does not have cotype qX , the condition remains necessary. But now we

just have the following sufficient condition:

m

ρ
<

1

qX
−
∣∣∣ 1
p

∣∣∣.
Of course, it would be nice to determine what happens in this case. A look

at [13, page 304] shows that the situation does not look simple.

As a consequence of the previous result we conclude that under certain cir-

cumstances the concepts of absolutely summing multilinear operator and mul-

tiple summing multilinear operator (see [8, 23, 25]) are precisely the same.

Corollary 5.1: Let p ∈ [2,+∞], let X be an infinite dimensional Banach

space with cotype qX < p
m and let ρ > 0. The following assertions are equiva-

lent:

(A) Every bounded m-linear operator A : Xp × · · · ×Xp → X is absolutely

(ρ; p∗)-summing.

(B) Every bounded m-linear operator A : Xp × · · · × Xp → X is multiple

(ρ; p∗)-summing.

(C) 1
ρ ≤ 1

qX
− m

p .

We stress the equivalence between (A) and (B) is not true, in general. For

instance, every bounded bilinear operator A : �2 × �2 → �2 is absolutely (1; 1)-

summing but this is no longer true for multiple summability.

6. Constants of vector-valued Bohnenblust–Hille inequalities

A particular case of our main result is the following vector-valued Bohnenblust–

Hille inequality (see [11, Lemma 3] and also [28, Section 2.2]):

Theorem 6.1: Let X be a Banach space, Y a cotype q space and v : X → Y

an (r, 1)-summing operator with 1 ≤ r ≤ q. Then, for all m-linear operators

T : c0 × · · · × c0 → X ,

( +∞∑
i1,...,im=1

‖vT (ei1 , . . . , eim)‖
qrm

q+(m−1)r

Y

) q+(m−1)r
qrm

≤ CY,mπr,1(v)‖T ‖

with CY,m = (
√
2Cq(Y ))m−1.

In this section, in Theorem 6.2, we improve the above estimate for CY,m. The

proof of Theorem 6.2 follows almost word by word the proof of [2, Proposition 3.1]



Vol. 211, 2016 OPTIMAL HARDY–LITTLEWOOD TYPE INEQUALITIES 215

using [10, Lemma 2.2] and Kahane’s inequality instead of the Khinchine inequal-

ity. We present the proof for the sake of completeness. We need the following

inequality due to Kahane:

Kahane’s Inequality: Let 0 < p, q < +∞. Then there is a constantKp,q > 0

for which (∫
I

‖
n∑

k=1

rk(t)xk dt‖q
) 1

q

≤ Kp,q

(∫
I

∥∥∥∥
n∑

k=1

rk(t)xk dt

∥∥∥∥
p) 1

p

,

regardless of the choice of a Banach space X and of finitely many vectors

x1, . . . , xn ∈ X .

Theorem 6.2: For all m and all 1 ≤ k < m,

CY,m ≤ (Cq(Y )K qrk
q+(k−1)r ,2

)m−kCY,k.

Proof. Let ρ := qrm
q+(m−1)r and to simplify notation let us write

vT ei = vT (ei1 , . . . , eim).

Let us make use of [2, Remark 2.2] with m ≥ 2, 1 ≤ k ≤ m−1 and s = qrk
q+(k−1)r .

So we have

(6.1)

(∑
i

‖vT ei‖ρY
) 1

ρ

≤
∏

S∈Pk(m)

(∑
iS

(∑
iŜ

‖vT (eiS , eiŜ )‖qY
) s

q
) 1

s(mk) ,

where Pk(m) denotes the set of all subsets of {1, . . . ,m} with cardinality k. For

the sake of clarity, we shall assume that S = {1, . . . , k}. By the multilinear

cotype inequality (see [10, Lemma 2.2]) and the Kahane inequality, we have
(∑

iŜ

‖vT (eiS , eiŜ )‖qY
) s

q

≤(Cq(Y )Ks,2)
s(m−k)

∫
Im−k

∥∥∥∥
∑
iŜ

riŜ (tŜ)vT (eiS , eiŜ)

∥∥∥∥
s

Y

dtŜ

=(Cq(Y )Ks,2)
s(m−k)

∫
Im−k

∥∥∥∥vT
(
eiS ,

∑
iŜ

riŜ (tŜ)eiŜ

)∥∥∥∥
s

Y

dtŜ

=(Cq(Y )Ks,2)
s(m−k)

×
∫
Im−k

∥∥∥∥v
(
T

(
ei1 , . . . , eik ,

∑
ik+1

rk+1(tk+1)ek+1, . . . ,
∑
im

rm(tm)em

))∥∥∥∥
s

Y

dtk+1 · · · dtm.
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But for a fixed choice of (tk+1, . . . , tm) ∈ Im−k = [0, 1]m−k, we know, by Theo-

rem 6.1, that

∑
i1,...,ik

∥∥∥∥v
(
T

(
ei1 , . . . , eik ,

∑
ik+1

rk+1(tk+1)ek+1, . . . ,
∑
im

rm(tm)em

))∥∥∥∥
s

Y

≤ (CY,kπr,1(v)‖T ‖)s.
Thus

(6.2)

∑
iS

(∑
iŜ

‖vT (eiS , eiŜ )‖qY
) s

q

≤(Cq(Y )Ks,2)
s(m−k)

×
∑

i1,...,ik

∥∥∥∥v
(
T

(
ei1 , . . . , eik ,

∑
ik+1

rk+1(tk+1)ek+1, . . . ,
∑
im

rm(tm)em

))∥∥∥∥
s

Y

≤((Cq(Y )Ks,2)
m−kπr,1(v)CY,k‖T ‖)s,

namely
(∑

iS

(∑
iŜ

‖vT (eiS , eiŜ )‖qY
) s

q
) 1

s

≤ (Cq(Y )Ks,2)
m−kπr,1(v)CY,k‖T ‖.

From (6.1) we conclude that

(∑
i

‖vT ei‖ρY
) 1

ρ

≤ (Cq(Y )Ks,2)
m−kCY,kπr,1(v)‖T ‖.

When m is even, the case k = m
2 recovers the constants from [28].

Corollary 6.3: For all m,

CY,m ≤ Cq(Y )m−1
m−1∏
k=1

K qrk
q+(k−1)r

,2.

7. Other exponents

From now on 1 ≤ r ≤ q and (q1, . . . , qm) ∈ [r, q]m, so that

1

q1
+ · · ·+ 1

qm
=

q + (m− 1)r

qr
=

1

r
+

m− 1

q

are called vector-valued Bohnenblust–Hille exponents. From Theorem 2.2 we

have:
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Theorem 7.1 (Multiple exponent vector-valued Bohnenblust–Hille inequal-

ity): Let X be a Banach space and Y a cotype q space with 1 ≤ r ≤ q. If

(q1, . . . , qm) ∈ [r, q]m are vector-valued Bohnenblust–Hille exponents, then there

exists CY,q1,...,qm ≥ 1 such that, for all m-linear operators T : c0 × · · ·× c0 → X

and every (r, 1)-summing operator v : X → Y , we have

(7.1)

( +∞∑
i1=1

· · ·
( +∞∑

im=1

‖vT ei‖qmY
) qm−1

qm · · ·
) 1

q1 ≤ CY,q1,...,qmπr,1(v)‖T ‖,

with CY,q1,...,qm = (
√
2Cq(Y ))m−1.

Our final result gives better estimates for the constants CY,q1,...,qm :

Theorem 7.2: If (q1, . . . , qm) is a vector-valued Bohnenblust–Hille exponent

and σ is a permutation of the indexes {1, . . . ,m} such that qσ(1) ≤ · · · ≤ qσ(m),

then

CY,q1...,qm ≤
m∏

k=1

(
(Cq(Y )K kqr

q+(k−1)r
,2)

m−kCY,k

)θk

with

(7.2) θm = m
(1
r
− 1

q

)−1( 1

qσ(m)
− 1

q

)

and

(7.3) θk = k
(1
r
− 1

q

)−1( 1

qσ(k)
− 1

qσ(k+1)

)
, for k = 1, . . . ,m− 1.

Proof. In view of a consequence of Minkowski’s inequality, which can be see in,

e.g., [16, Corollary 5.4.2], we have that CY,q1,...,qm ≤ CY,qσ(1),...,qσ(m)
Therefore,

it suffices to prove the result for the exponent (qσ(1), . . . , qσ(m)).

For each k = 1, . . . ,m, define

sk =
kqr

q + (k − 1)r
.

From the proof of Theorem 6.2 we have (7.1) for each exponent

(sk, k times. . . , sk, q . . . , q).

More precisely, from (6.2) we have

( ∑
i1,...,ik

( ∑
ik+1,...,im

‖vT ei‖qY
) sk

q
) 1

sk ≤ (Cq(Y )Ksk,2)
m−kCY,kπr,1(v)‖T ‖.
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Consequently, for each k = 1, . . . ,m we have

CY,sk,k times... ,sk,q...,q
≤ (Cq(Y )Ksk,2)

m−kCY,k.

Since every vector-valued Bohnenblust–Hille exponent (q1, . . . , qm) with

q1 ≤ · · · ≤ qm is obtained by interpolation of α1, . . . , αm with

αk = (sk, k times. . . , sk, q . . . , q),

and θ1, . . . , θm as in (7.2) and (7.3), we conclude that

CY,q1,...,qm ≤
m∏

k=1

(CY,sk,k times... ,sk,q,...,q
)θk ≤

m∏
k=1

((Cq(Y )Ksk,2)
m−kCY,k)

θk .

A particular case of Kahane’s inequality is Khintchine’s inequality: if (εi) is

a sequence of independent Rademacher variables, then, for any p ∈ [1, 2], there

exists a constant AR,p such that, for any n ≥ 1 and any a1 . . . , an ∈ R,

( n∑
i=1

|ai|2
) 1

2

≤ AR,p

(∫
Ω

∣∣∣∣
n∑

i=1

aiε(ω)

∣∣∣∣
p

dω

) 1
p

.

It has a complex counterpart: for any p ∈ [1, 2], there exists a constant AC,p

such that, for any n ≥ 1 and any a1 . . . , an ∈ C,

( n∑
i=1

|ai|2
) 1

2

≤ AC,p

(∫
Tn

∣∣∣∣
n∑

i=1

aizi

∣∣∣∣
p

dz

) 1
p

.

The best constants AR,p and AC,p are known (see [17] and [20]):

• AR,p =

⎧⎨
⎩
2

1
p− 1

2 , if 0 < p ≤ p0 ≈ 1.847,

1√
2

(
Γ( 1+p

2 )√
π

)− 1
p

, if p > p0;

• AC,p = Γ
(

1+p
2

)− 1
p

, if 1 < p ≤ 2.

Taking X = Y = K and r = 1 we obtain estimates for the constants of the

scalar-valued Bohnenblust–Hille inequality with multiple exponents:

Corollary 7.3: If (q1, . . . , qm) ∈ [1, 2]m fulfils

1

q1
+ · · ·+ 1

qm
=

m+ 1

2
,
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and σ is a permutation of the indexes {1, . . . ,m} such that qσ(1) ≤ · · · ≤ qσ(m),

then ( +∞∑
i1=1

· · ·
( +∞∑

im=1

|T (ei1 , . . . , eim)|qm
) qm−1

qm · · ·
) 1

q1

≤C
2m( 1

qσ(m)
− 1

2 )

K,m

(m−1∏
k=1

(Am−k
K, 2k

k+1

CK,k)
2k( 1

qσ(k)
− 1

qσ(k+1)
)
)
‖T ‖

for all m-linear operators T : c0 × · · · × c0 → K. In particular, for complex

scalars, the left-hand side of the above inequality can be replaced by

( m∏
j=1

Γ
(
2− 1

j

) j
2−2j

)2m( 1
qσ(m)

− 1
2 )

×
(m−1∏

k=1

(
Γ
(3k + 1

2k + 2

)(−k−1
2k )(m−k) k∏

j=1

Γ
(
2− 1

j

) j
2−2j

)2k( 1
qσ(k)

− 1
qσ(k+1)

))
‖T ‖.
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