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ABSTRACT

In this paper we obtain quite general and definitive forms for Hardy—
Littlewood type inequalities. Moreover, when restricted to the original
particular cases, our approach provides much simpler and straightforward
proofs and we are able to show that in most cases the exponents involved
are optimal. The technique we used is a combination of probabilistic tools
and of an interpolative approach; this former technique is also employed in
this paper to improve the constants for vector-valued Bohnenblust—Hille

type inequalities.

1. Introduction

In 1930 Littlewood [22] has shown the following result on bilinear forms on
¢o X ¢g, now called Littlewood’s 4/3 inequality: for any bounded bilinear form
A:cgxecg—C,

( 5 lA(ei,ejn%)‘B‘ < Va4

4,j=1

and, moreover, the exponent 4/3 is optimal. From now on, m > 1 is a positive
integer, p := (p1,...,Pm) € [1,+00]™ and

For 1 < p < 400, let us set X, := ¢, and let us define X = ¢y. As soon as
Littlewood’s 4/3 inequality appeared, it was rapidly extended to more general

frameworks. For instance:

e (Bohnenblust and Hille, [6, Theorem I], 1931 (see also [12])) There exists
a constant C' = C(m) > 1 such that

oo o
(1.1) ( ) |A<eh,...,eim>|m+1) < |4

D10y im =1

for all continuous m-linear forms A : ¢y X -+ - X ¢g — C and the exponent

2m

1 1s optimal.
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e (Hardy and Littlewood, [I8], 1934 (see also [19, page 224])/Praciano-
Pereira, [27, Theorems A and BJ, 1981) Let p € [1, +oc]™ with

1 1
RESS
o) 2
then there exists a constant C' > 0 such that, for every continuous
m-linear form A : X, x---x X, —C,
+oo 2m 1 m+12:n2‘}1)‘
(1.2) ( > JA(es,, .. ,eim)|’"“2p) < C||A].
1 yeeyim=1
e (Defant and Sevilla-Peris, [11, Theorem 1], 2009) If 1 < s < ¢ < 2,
there exists a constant C' > 0 such that, for every continuous m-linear
mapping A : ¢y X -+ X ¢g — lg, then

1 1
m+2 -
2m s a )

oo maa(lo1y 2m
( S AGens el ) <) All.

i1 yeeeyim =1
Very recently the previous results were generalized by the authors and by
Dimant and Sevilla-Peris:
e ([Il Corollary 1.3], 2013) Let 1 < s < ¢ < 2 and p € [1,+00]™ such
that

(1.3) -

Then there exists a constant C' > 0 such that, for every continuous
m-linear mapping A : X, x --- x X, — X, we have
m+2(l -1 -1LD

e~

+OO 2m
ma2(t-1 1) 2m
( S Alens o en) ] ) < o)Al

and the exponent is optimal.

e (Dimant and Sevilla-Peris, [14, Proposition 4.4], 2013) Let p € [1, +oc0|™
and s,¢g€1,400] be such that s<g. Then there exists a constant C'>0
such that, for every continuous m-linear mapping A:X,, x---x X, —Xj,

we have

+o00 ,13
( 3 |A<ei1,...,eim>||zq) <)All.

i1yeyim=1

where p is given by:
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(i) s <g<2 and
. 1 1
(a) ifO<| [ <,

}1 , then

1 1 1,1 1 |1
L e )
p 2 mis ¢ |Ip

el 1 1 1,11
(b) 1fs—q§|p|<2+s—q,then

(il) If s <2 < g, and
(a) if0§|11)|< ! — 1, then

171+1(1*1*’1D'
p 2 m\s 2 Ipl/)’

(b) if } =5 <[] <!, then
1T 1 ‘1‘
p s Ipl

11‘1‘
ps '

Isr. J. Math.

Moreover, the exponents in the cases (ia), (iib) and (iii) are optimal.

Also, the exponent in (ib) is optimal for ! — é < |11)| <3

Our main intention, in this paper, is to improve the previous theorems in

three directions.

(1) We study in depth the remaining cases of the Dimant and Sevilla-Peris
result. Surprisingly, we show that in case (iia), the exponent given above is
optimal whereas it is not optimal in case (ib) when |;| > 5. We give a better
exponent in that case and show a necessary condition on it. These two bounds

coincide when s = 1. We can summarize this into the two following statements.

THEOREM 1.1: Let p € [1,4+00]™ and let p > 0. Assume moreover that either

q22orq<2and|é|<é.Let

1 1 1 1 ’ 1

A':2+s_min{q,2}_ p

‘>o.
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Then there exists C' > 0 such that, for every continuous m-linear operator
A Xp x---x X, — X, we have

1

+oo »
(2 e ar) <clal

if and only if

m<1+ m—1
p — A max{\s,2}

The following table summarizes the optimal value of ; following the respective

values of s,q,p1, ..., Pm:
1 1 1 1 1
1<s<qg<2 A<2 T x‘ ‘
2 ms mq m 9]
1 1 1 1
1<s<qg<2,A>2 |} <! - —’ ’
Sssas2A2200<y 2" s g Ip
-1 1 1 1
1<s<2<q, A<2 mn + — x’ ’
2m ms m 9]
1 1
1<s<2<q, A>2 —‘ ‘
S p
1 1
2<s<q —} }
S p

We note that ([I) and (C2) are recovered by Theorem [Tl just by choosing
s=1and qg=2.

When ¢ < 2 and |;| > ) (observe that this automatically implies A > 2), the
situation is more difficult and we get the following statement.

THEOREM 1.2: Let p € [1,400]™, |r1>| >1,1<s<qg<2andlet p>0. Let
us consider the following property.
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There exists C > 0 such that, for every continuous m-linear
operator A : X, x ---x X, — X, we have

+o00 ,13
( 3 |A<ei1,...,eim>||zq) <0)Al.

i1yeyim=1

(A) The property is satisfied as soon as

(B) If the property is satisfied, then

=2 -0)

In particular, if s = 1, then the property is satisfied if and only if
1 1 1
g2(1—| |)(1— )
p p q
(2) We give a simpler proof of the sufficient part of the Dimant and Sevilla-
Peris theorem. It turns out that it is easier to prove a more general result.
THEOREM 1.3: Let p € [1,400|™ and 1 < s < ¢ < 0o be such that
" 1 1
2 s  min{q,2}
Let
1 1 n 1 1 ’ 1 ‘
AT 2 s min{q,2} Ipl
If A\ >0 and ty,...,t, € [\, max{\,s,2}] are such that

(1.4) 1 n " 1 - 1 n m—1
' 2 tm — A max{\s,2}’

then there exists C' > 0 satisfying, for every continuous m-linear map
A Xp x-x X, — X,

tm—1

(1.5) (io ( ( io ||A(ei1,...,eim)||2:) " )) < C|A|.

i1=1 G =1

Moreover, the exponents are optimal except eventually if ¢ < 2 and |11)| > %
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Remark 1.4: The optimality in the above theorem shall be understood in a
strong sense: when A < 2, we prove that if ¢1,...,¢, € [1,+00) are so that
(C3H) holds, then (L4) is valid. When A > 2, note that A = max{\,s, 2} and
we prove that if ¢ = t; = -+ = t,,, are in [1,4+00) and ([F) is valid, then we
have (4] and, as a direct consequence, t > \.

(3) We prove similar results for m-linear mappings with arbitrary codomains
which assume their cotype. For a Banach space X, let ¢x = inf{q > 2; X has
cotype ¢}.

The proof that (B) implies (A) in the theorem below appears in [I4, Propo-
sition 4.3].

THEOREM 1.5: Letp €[2,+00]™, let X be an infinite-dimensional Banach space
with cotype qx, |r1>| < q;, and let p > 0. The following assertions are equiva-
lent:

(A) Every bounded m-linear operator A : X,,, X ---x X, ~— X is such that

+o0
Z ||A(ei1""’ei7n)||p < Ho00.
D1 yeeeyim=1
(B) , < 5 — Il

Finally, in the last section of the paper we obtain better estimates for the
constants of vector-valued Bohnenblust—Hille inequalities.

We conclude this introduction by noting that our theorems can be naturally
stated in the context of homogeneous polynomials. Given an m-homogeneous
polynomial P : X — Y, we denote its coefficients (¢, (P)). In [II, Lemma 5], it
is shown that an inequality

1

(Z leatP)I?) " < P

holds for every m-homogeneous polynomial P : X — Y if and only if a similar

inequality
1

P
( > ||T(6i1,---aem)||”) <7
i17~~~;i77L
is satisfied for every m-linear mapping A : X X --- x X — Y, where X is a
Banach sequence space.
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Notations: For two positive integers n, k, we set
M(k,n):={i= (i1,...,0k);01,...,0k € {1,...,n}}.

For ¢ € [1,400], ¢* will denote its conjugate exponent.

2. Proof of Theorem (sufficiency)

Let 1 < ¢ < +00. We recall that a Banach space X has cotype ¢ if there
is a constant £ > 0 such that, no matter how we select finitely many vectors

Tl Tn € X,
n L n 2 3
(Z ||$k||q) < m(/ Zrk(t)xk dt)
k=1 Ilg=1

where I = [0,1] and r; denotes the k-th Rademacher function. To cover the

case ¢ = 400, the left-hand side should be replaced by maxi<g<y ||zkl]. The
smallest of all these constants is denoted by Cy(X) and named the cotype ¢
constant of X.

An operator between Banach spaces v : X — Y is (7, s)-summing (with
s < r < +o0) if there exists C' > 0 such that, for all n > 1 and for all vectors
T1yeoo,Tp € X,

1

(;lwklr)rgc sup (;W%”s)i_

r*EBx*

The smallest constant in this inequality is denoted by 7, 4(v).
We need a cotype ¢ version of [I, Proposition 4.1], whose proof can be found
in [I4, Proposition 3.1]:

LEMMA 2.1: Let X be a Banach space, let Y be a cotype q space, let r € [1, |
and let p € [1,4o00]™ with

1 1 1

\ \< .

p r q
Define

T 1 ‘1’

AT or pl

Then, for every continuous m-linear map A : X,,, x --- x X, ~— X and every

1

(r,1)-summing operator v : X — Y, we have

2 (X (e .,eim>||%)m)m < (V2C, (V)™ 1o (0)1A]

ik
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forallk=1,...,m.

The symbol Zi}- means that we are fixing the k-th index and that we are
summing over all the remaining indices.
We shall deduce from this lemma the following theorem, which extends results

of [I] and [14]:

THEOREM 2.2: Let p € [1,+00]™, X be a Banach space, Y be a cotype q space
and 1 < r < g, with |11>| < i Define

T 1 ‘1‘
AT pl
Ifty, ... ty € [\, max{\, ¢}] are such that
1 R 1 - 1 n m—1
t tm — A max{\q}’
then, for every continuous m-linear map A : X,, x --- x X, ~— X and every

(r,1)-summing operator v : X — 'Y, we have

(2:2) (io < <i§1|vA(eil,...,eim>W)tTml >)

ir=1
<(V20maxpag)y (Y)™ M1 (0) | A
Proof. If A < ¢, from Lemma 2] we have (Z2]) for

(tla-'-atm):()‘aQa-'-aq)'

Since A < ¢, the mixed (¢x, ¢,)-norm inequality (see [I, Proposition 3.1]), we
also have (2.2)) for the exponents

(tla'-'atm):(qa'-'aqa)‘aQa-'-aq)

with A in the k-th position, for all k =1,..., m. Now, using a general version of
Holder’s inequality (see [15], Theorem 2.1]),we get ([22) for all (¢y,. .. ,tm) €[Ag]™

such that
L, 1 1 m-1_ 1, m-1
t1 tm A ¢ A max{\q}

IfA>gq, forany e > 0, let - = A+¢. So A < ¢ and this automatically implies
that
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Since Y has cotype ¢ > ¢, we may apply Lemma 2.l to get

N N

<Z< > lvA(em---veim)ll”E)Ais>;S(V2CA+E(Y))"‘_lm,l(v)llAll

i1=1 VNig,..im=1

for all positive integers N. Making ¢ — 0, we get

N Y
( 3 ||vA<ei1,...,eim>||A) < (V2N (V)™ M ()] A]

i1 5eenybm =1
for all N and the proof is done.

Remark 2.3: If we take t; = --- = t,,, then, upon polarization, we recover
exactly [14] Theorem 1.2] with a much simpler proof due to the fact that the
inequality is simpler to prove for the extremal values of (t1,...,ty,).

We are now ready for the proof of the sufficient part of Theorem We
split the proof into three cases, and we combine Theorem 22l with the Bennett—
Carl inequalities ([3] [@]): for 1 < s < ¢ < +o0, the inclusion map ¢, — £, is
(r,1)-summing, where the optimal r is given by

1 1 1 1

Tt T min{2, ¢}

(i) s < ¢ < 2: The Bennet—Carl inequalities ensure that the inclusion map

by = g is (r,1)-summing with | = J + ! — ;, so the results follow from
Theorem 2.2, with t1,...,t,, satisfying

1 bt T 1 " 1 1 ’ 1 ’ m—1

t tm 2 s q Ipl max{)\?2}

(ii) s < 2 < ¢ Also by using Bennet—Carl inequalities, £; < {3 is (s,1)-
summing, thus we get (L3 applying Theorem 221 with ¢1,...,t,, satisfying
1 1 1 ‘ 1 ’ m—1

t1+”.+tm:s pl  max{) 2}

(iii) 2 < s < ¢: Since ls < £ is (s, 1)-summing, the result follows from Theorem
22 with¢t; =--- =1, = Xand X\ > s, since r = s and
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Remark 2.4: Let us set
g, fs<g<2
Cqs = 4 2, 1f5§2§q7
s, if2<s<q.

With the above notations, a careful look at the proof shows that the constant
C which appears in Theorem is dominated by

(\/QCmax{A,sQ} (gcqs ))milwr,l (gs — gcqs )

3. Proof of Theorem (optimality)

In this section we show that the exponents in Theorem are optimal ex-
1
5
such that there exists C' > 1 satisfying, for any continuous multilinear map
Xy xox X, — X,

cept when ¢ < 2 and |11)| > More precisely, if (t1,...,t,) € [1,4+00)™ are

R R T B\ A
a0 (T (X ely) o)) <clal
i1=1 im=1
then we prove that ([4) holds. When A > 2, we will always assume that
t1 = =ty =t, since A\ = max{\,s,2} and our inequality holds true when
all the exponents are equal. We split the proof into several cases. Most of
the cases are a consequence of a random construction. The main tool is the
following lemma, from [I Lemma 6.2].

LEMMA 3.1: Let d,n>1, qi,...,qar1 € [1,+00]t! and let, for ¢ > 1,

0 otherwise.

Then there exists a d-linear mapping A : £} X -+ X {} — ty,., which may be

written

A(:Z?(l), . ,z(d)) = Z :I::z:l(.ll) G

id Cigiq
@15y ldp1=1
such that
14| < C’dn;+04(P1)+”'+0t(pd)+04(17;+1)_
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3.1. CAsE 1: 1 <5< ¢g<2AND A < 2. This case has already been solved in [,
Section 6.2], using Lemma B I with d = m and (q1, ..., ¢m+1) = (P1,- -, Dm, S)-

32. CASE 2: 1 <s<qg<2,\A>2AND |11>| < é This case has already

been solved in [I4] Proposition 4.4(ib)] using a Fourier matrix. We shall give
an alternative probabilistic proof. Let p € [2,+00] be such that 11) = |}
By Lemma [3.T] there exists a linear map 7' : £ — £7 which may be written

T(x) =3, j€ijviej with €;; = £1 and such that
|IT|| < Cn2te—pti=d = opita-lal,
Let A: £ x---x () — (7 defined by

AWM. ™) Z €i,j; . :Cl(-m)ej.
By Holder’s inequality, it is plain that ||A|| < [|T]| < Cn2*:"1sl On the other
hand, since A(e;,,...,e;,, ) # 0if and only if i; = -+ = i,,, and

|A(ei, ... ei)lle, = n'/e,

we have

1 1
( Z ||A(€i1a---,€im)||2q) =nate,

ieM(m,n)

This clearly implies

3.3. CASE 3: 1 <s<2<¢q AND A < 2. Let p € [0,+00] be defined by
1 1 1
+

p Pm s

Since A < 2, it is easy to check that p > 2 and that p; > 2 forany i =1,...,m.
We then apply LemmaBIlwith d = m—1and (¢1,...,9m) = (P1,-- -, Pm—1,D%).
We get an (m — 1)-linear form 7" : £} x --- X f;mil — {3« which can be written
T(:v(l), o pm— 1) Z Eirorim & “ . w(m 1)61,

G —1 m

115eenslm

and such that
IT]| < Cnat % lol=& = on"™ ' —lslte,
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We then define A : £} x ---x £} — {7 by

AW 2y = Z €igon, im:cl(.ll) » 'z(-m)eim.

Tm
Vlyenny ’im
Then, for any (), ... z(M ¢ ngl X oo X ng ,
4G g = s | Y el ol
yEBeQ D1eeylm,
< sup Z €ir,..., imzl(-ll) ~~:171(-:jj11)zim
z€Byn i .
<[IT°[].
Moreover, given any i € M(m,n), ||A(ei,, ..., €, )llq = ll€i,.|lg = 1, so that
+o0 +o0 et 0N A ) )
<Z < < Z ||A(ei17---7€im)||g;n) ) > I
=1 im=1
Hence, provided (B)) is satisfied, (¢1,...,%m) has to satisfy
1+ +1<m—1+1 ‘1’
t tm — 2 s Ipl

3.4. CASE 4 AND CASE 5: 1 < s <2< qgAND A > 2, 2 < s < q. These
cases have a deterministic proof, as noted in [I4] Proposition 4.4 (iib), (iii)],
considering A : £ x --- x {7 ~— {7 given by

Az M) = le(-l) e xgm)ei.
i=1
3.5. THE PROOF OF THEOREM [Tl From Theorem 1.3, by choosing t1=- - -=t,,
we conclude that provided
1 1 1 1
ol <

2+s_mm@2y
the best exponent p in Theorem [Tl satisfies

m 1 n m—1

p A max{\s, 2}
To conclude the proof, it remains to prove that, whenever
‘ 1 ’ S 1 n 1 1
pl =2 s min{q2}’



210 N. ALBUQUERQUE ET AL. Isr. J. Math.

we cannot find an exponent p > 0 such that (L)) is satisfied for all m-linear
operators A : X, x---x X, ~— X,. In fact, everything has already been done
before: if ¢ < 2, then we have just to follow the lines of Case 2, and if ¢ > 2,
then we may consider the m-linear mapping of Cases 4 and 5.

4. ThecaselSsSqSQ,)\Zzand|l1,|>é

4.1. A REFORMULATION OF THE HARDY-LITTLEWOOD TYPE INEQUALITIES.
We shall improve in this section the bound given by Theorem [T We shall
proceed by interpolation. To do this, we need a reformulation of the result of
this theorem, as Villanueva and Pérez-Garcia reformulated the Bohnenblust—
Hille inequality in [26]. The forthcoming result is a variant of [7, Proposition
2.2]; its proof will be omitted.

THEOREM 4.1: Let 1 < p1,...,pm < 400, 1 < s < g < oo and let p > 0. The

following assertions are equivalent.

(A) There exists C' > 0 such that, for every continuous m-linear mapping
A Xy, x - x Xp,, — X, we have

1/p
( ) |A<ei1,...,eim>||zq) < 0)Al.

(B) There exists C' > 0 such that, for any n > 1, for any Banach spaces
Y1,...,Y,,, for any continuous m-linear mapping S : Y1 x---xY,, — X,
the induced operator

T lye (Y1) X - x e (Vi) =00 (Xy)
@@, 2™) (S, 2™ e amon)
satisfies | T|| < C||S].

We recall that, for any p € [1,+0o0] and any Banach space Y,

@pEBy «

lu(Y) = {(zj>?_1 CY5 @)l = sup (éw(xmp)”p <+oo}

with the appropriate modifications for p = co.
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4.2. PROOF OF THE SUFFICIENT CONDITION. We now prove our better up-
per bound in the case 1 < s < g < 2, |11>| > % (namely we prove the first
part of Theorem [[2). Let n > 1, let Y3,...,Y,, be Banach spaces and let
S:Yy x---xY,, > Xs; be bounded. Let n > 1 and let T" be the operator
induced by S on Y =€}, (Y1) X -+ X lp: (Ym), defined by

Do a™y).

1 7 m

T(xM, ... ™) = (S(a!

Then T is bounded as an operator from ) into £ (X,) (this is trivial); T is
also bounded as an operator from ) into K;}m (Xs) with ; =1- |11)| (this is
Theorem [T for 1 < s < 2 and ¢ > 2). We can interpolate between these two
extreme situations. Hence, let g € [s,2] and let 6 € [0,1] be such that

|
_l’_
)
I
W o= e
N = Q=

By [4 Theorem 4.4.1], T' is bounded as an operator from ) into ¢ (X,) where

1 1y/1 1
L_1-090 (S*q)(sflpl)'

bt p ST

Remark 4.2: Tt is easy to check that, for1§s§q§2and|l1)|2 é,then the
bound

1 1y/1 1

(¢ = )G = 15D

1 1

s 2

is always better (namely larger) than the bound J + | — ; — |;| obtained in
Theorem [[11

4.3. THE NECESSARY CONDITION. We now prove the second part of Theorem
It also uses a probabilistic device for linear maps when the two spaces do

not need to have the same dimension. The forthcoming lemma can be found in
[3L Proposition 3.2].

LEMMA 4.3: Letn,d>1,1<p,s<2. There existsT:ﬂgAE’;, T(z)zzz‘,j taje;
such that
11| < Cpo ma(d!/*, n}= b d2 ).

Coming back to the proof of Theorem [[2] we first observe that we may
always assume that |11)| < 1. Otherwise, we can consider the m-linear map
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A Xy, X x Xp, — X, defined by

Az, 2y = ngl) . .:El(-m)eo

i>1

and observe that it is bounded whereas it has infinitely many coefficients equal
to 1. We then define p € [1,2] by 119 = |r1>| and we consider T' : (4 — (2,
T'(zx) = >, j€ijrje; the map given by Lemma L3 We then define

. pd d n

Al xoxty =L

(M, .. 2 - Z meg-l) e xg-m)ei
]
and we observe that, by Holder’s inequality, ||A|| < ||T'||. Furthermore,

1/t
< > ||A(ei1,...,eim)||zq) — gt/

D15 50m

Taking d'/2 = n'~» (this is the optimal relation between d and n), we get that
if

1/t
(T M el ) <l
i1y
then it is necessary that
1

t §2(1—;)(i—;).

Remark 4.4: This last condition is optimal when s = 1 or when |11>| = 5 (with,
in fact, the same proof as in Case 2 above). When 1 < s < 2, another necessary
condition is

(see Case 4 or Case 5 above).

5. Optimal estimates under cotype assumptions

For a Banach space X, let ¢x := inf{q > 2; X has cotype ¢}. For scalar-
valued multilinear operators it is easy to observe that summability in multiple
indexes behaves in a quite different way than summability in just one index.
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For instance, for any bounded bilinear form A : ¢y X ¢y — C,
o :
(X 1tenent?) < velal
ij=1
and the exponent 4/3 is optimal. But, if we sum diagonally (i = j), the exponent
4/3 can be reduced to 1 since

—+oo
D Afen e < Al
i=1

for any bounded bilinear form A : ¢y X ¢g — C. Now we prove Theorem
which shows that when replacing the scalar field by infinite-dimensional spaces
the situation is quite different.

Proof. (A)=(B). From a deep result of Maurey and Pisier ([24] and [I3], Section
14]), £, is finitely representable in X, which means that, for any n > 1, one
may find unit vectors z1, ..., 2z, € X such that, for any a4,...,a, € C,

n n 1/qx
S flaczillx < 2<Z|az-|qx) .
=1 1

=

We then consider the m-linear map A : €7 x -+ x {7 — X defined by
Az M)y = ngl) ™
i=1
Then, for any (21, ..., z(™)) belonging to Bg;l XX B

n 1/ax
4D, o) < 2( 3l faf)e )
i=1

1 7|1|
<2nex Pl

where the last inequality follows from Holder’s inequality applied to the expo-

D1 pm( ’1’)*1
Yty ’ 1_qX .
ax ax P

nents

On the other hand,

n 1/p )
(Z ||A(ei,...,ei)||p) =nr
=1

and we obtain (B).
(B)=-(A). This implication is proved in [14, Proposition 4.3].
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If X does not have cotype qx, the condition remains necessary. But now we
just have the following sufficient condition:
m 1 ‘ 1 ‘
p ax Ipl

Of course, it would be nice to determine what happens in this case. A look
at [I3, page 304] shows that the situation does not look simple.

As a consequence of the previous result we conclude that under certain cir-
cumstances the concepts of absolutely summing multilinear operator and mul-
tiple summing multilinear operator (see [8] 23] [25]) are precisely the same.

COROLLARY 5.1: Let p € [2,+0¢], let X be an infinite dimensional Banach
space with cotype qx < ! and let p > 0. The following assertions are equiva-
lent:

(A) Every bounded m-linear operator A : X, x --- x X, = X is absolutely
(p; p*)-summing.

(B) Every bounded m-linear operator A : X, x --- x X, — X is multiple
(p; p*)-summing.

(C) 1 < 1 _ m.

P — 4x p
We stress the equivalence between (A) and (B) is not true, in general. For
instance, every bounded bilinear operator A : f3 x {5 — {5 is absolutely (1;1)-
summing but this is no longer true for multiple summability.

6. Constants of vector-valued Bohnenblust—Hille inequalities

A particular case of our main result is the following vector-valued Bohnenblust—
Hille inequality (see [I1I, Lemma 3] and also |28, Section 2.2]):

THEOREM 6.1: Let X be a Banach space, Y a cotype q space and v : X — Y
an (r,1)-summing operator with 1 < r < q. Then, for all m-linear operators
T:cox - xXcg— X,

at+Om—1)r

foo qrm qrm
( > ||UT(6i1,---,€im)||§”m1”) < Cymmra (0)[| T

010y im =1

with Oy, = (v20,(Y))™ L.

In this section, in Theorem[6.2] we improve the above estimate for Cy ,,,. The
proof of Theorem[6.2 follows almost word by word the proof of [2] Proposition 3.1]
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using [10, Lemma 2.2] and Kahane’s inequality instead of the Khinchine inequal-
ity. We present the proof for the sake of completeness. We need the following
inequality due to Kahane:

KAHANE’S INEQUALITY: Let 0 < p,q < +00. Then there is a constant K, ; > 0
for which
p) ,

1
(J1Srwman)’ < x|
regardless of the choice of a Banach space X and of finitely many vectors

k=1
T1yeoo, Ty € X.

n

Z TEk (t):ck dt

k=1

THEOREM 6.2: For allm and all 1 < k < m,

Cym < (Co(Y)K o )" FCyp.

a+(k—1)r

Proof. Let p:= +(‘17:;7_11)T and to simplify notation let us write

vTe; = vT(eiy,... €, ).

Let us make use of [2, Remark 2.2] withm > 2, 1 <k <m-—1and s = q+(qkrfl)r'
So we have
N\ o(m
o0 (Swrait) s T (Z(Shrean) )@,
i SEP(m) is ig

where Py (m) denotes the set of all subsets of {1,..., m} with cardinality k. For
the sake of clarity, we shall assume that S = {1,...,k}. By the multilinear
cotype inequality (see [10, Lemma 2.2]) and the Kahane inequality, we have

(Z ||vT<eiS,ei§)||%)
ig

<K

Jm—k

S

E Tls &)vT( 615,615) y

dﬁg

T (els,z rls els) dtg
Y

_ s(m—k)
(CQIKa) ™ [
:(Cq (Y)KSQ)S(m_k)

></ U(T(@il,.. ezk,g Tkt tk+1 Chtly--- E rm
[m—k

lk+1 im

S
Atoi1 - dbm.

e
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But for a fixed choice of (tgy1,...,tm) € I™F =[0,1]™"*, we know, by Theo-
rem [6.1] that

> v(T (e i YT () ergs Zrm(tm)em>>

U1y ylk Tk+t1 im

< (Cypmea(0)[|IT]))5.

S

Y

Thus
Z(Z ||vT<eiS,eig>||%)
is N g

s(m—k)
6.2) <(Co(YV)Ks2) S

'U(T<€i1;-- c€insd Tt (tep1)errts oY Tt m))

Zk+1 im

Y

S((Cq(Y) K 2)™ "1 (v)Cyil|T1)°

namely

DI CACTEN] Z lS(Cq(Y)Ks,z)’""“ﬁr,l(v)CY,kHTII-
(Z(3 ))

is

From (6] we conclude that

(Z |vTei|@) < (Co(V)Kaz)™ *Cyamra ()T

When m is even, the case k = "} recovers the constants from [2§].

COROLLARY 6.3: For all m,

CYmSC mlHK qrk

g+ (h-1yr 2
7. Other exponents
From now on 1 <r < gq and (¢1,...,qm) € [r,q]™, so that
1 1 +(m-1)r 1 m-1
g b r_1,
q1 dm qr r q

are called vector-valued Bohnenblust—Hille exponents. From Theorem we

have:
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THEOREM 7.1 (Multiple exponent vector-valued Bohnenblust—Hille inequal-
ity): Let X be a Banach space and Y a cotype q space with 1 < r < ¢q. If
(q1,- -, qm) € [r,q]™ are vector-valued Bohnenblust—Hille exponents, then there
exists Cy,q, ,....q,, = 1 such that, for all m-linear operatorsT : co X --- x cg — X
and every (r,1)-summing operator v : X — Y, we have

Am—1

JFOO JFOO am qll
(7.1) (Z---(anein?) ) < Cyarranra T,

i1=1 im=1
with Cy,q,.....qm = (\/QCq(Y))m_l'

Our final result gives better estimates for the constants Cy,q,,.. 4., :

THEOREM 7.2: If (q1,...,qm) is a vector-valued Bohnenblust—Hille exponent
and o is a permutation of the indexes {1,...,m} such that q,(1) < -+ < Go(m),
then
m 0k
m—k
o (GO, i)
with
1 1\-1 1 1
(7.2) Om=m( — ) (=)
r q Ao (m) q
and
1 1I\"1/ 1 1
(7.3) ok:k( - ) ( - ) fork=1,...,m—1.
r q 9o (k) Ao (k+1)

Proof. In view of a consequence of Minkowski’s inequality, which can be see in,
e.g., [16l Corollary 5.4.2], we have that Cy,q, . < Cy

wstm < CYiq,0, 00 (my Therefore,
it suffices to prove the result for the exponent (go(1),- -, qo(m))-

For each k =1,...,m, define
B kqr
q+ (k—1)r
From the proof of Theorem [6.2] we have (1)) for each exponent

Sk

(Ska k .ti'n.les7 Skyq -+ Q)
More precisely, from ([62]) we have

(2 (% |T|Y))

lyeenylly bl lseensbm

IN

(Ca(Y) Ky 2)" Cypmra (0)| T
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Consequently, for each k =1,...,m we have
—k
Cyﬁskyk times g, g....q < (Cq(Y)Kst)m OY,k-
Since every vector-valued Bohnenblust-Hille exponent (g¢i,...,¢m,) with
q1 < -+ < g is obtained by interpolation of ay, ..., a,, with

Q. = (Ska k 'tl'n'lesvskaq' . '7Q)a

and 0y,...,0,, as in (C2) and (T3], we conclude that
m m
0, —k O
CYoqr g < H(CY,sk,k t_i_l}les,sk,q,___7q) "< H((Cq (Y)KSkﬁ)m CY,k) "
k=1 k=1

A particular case of Kahane’s inequality is Khintchine’s inequality: if (g;) is
a sequence of independent Rademacher variables, then, for any p € [1, 2], there
exists a constant Ag, such that, for any n > 1 and any a;...,a, € R,

(Zju) <ano [ iaﬁ(w) pdw);

It has a complex counterpart: for any p € [1,2], there exists a constant Ac ,
such that, for any n > 1 and any ay ..., a, € C,

n é n P 117
<Z|ai|2> < A(C,p(/ Zaizi dz> .
™ 1i=1

i=1
The best constants Ar, and Ac , are known (see [I7] and [20]):

202, if 0 < p<po~ 1.847,
.ARP: " _1
: L (TCEN T .
\/2( \/3‘- ) ) 1fp>p07

oAmFJ(@ﬂiiﬁl<p§2
Taking X =Y =K and r = 1 we obtain estimates for the constants of the
scalar-valued Bohnenblust—Hille inequality with multiple exponents:

COROLLARY 7.3: If (q1,...,qm) € [1,2]™ fulfils

1 1 m—+1
4+ 4 = ,
q1 qm 2
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and o is a permutation of the indexes {1,...,m} such that q,(1) < -+ < Qo(m),
then

for

&= & RN
(5 (E mewenr) ™ )
G =1

i1=1

om( Y —=1) m—1 ok( 1 _— 1
<Cm"™™ 2(H( ok Cieg) e ww)mn

> k41
k=1

all m-linear operators T : ¢y X -+ X ¢g — K. In particular, for complex

scalars, the left-hand side of the above inequality can be replaced by

(G- )"

( 2)

1 —
9o (m)

m—1 k-1 _ k i 2k( 1 1 )
k+ 1\ ( sx )(m—k) 1N 270 Qo(k) Yo (bl
« H F(3 + ) 2k F(27 ’)2 2; (k) (k+1) I
2k + 2 :1 J

k=1 j
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