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ABSTRACT

We study random 2-dimensional complexes in the Linial–Meshulam model

and prove that the fundamental group of a random 2-complex Y has coho-

mological dimension ≤ 2 if the probability parameter satisfies p � n−3/5.

Besides, for n−3/5 � p � n−1/2−ε the fundamental group π1(Y ) has

elements of order two and is of infinite cohomological dimension. We also

prove that for p � n−1/2−ε the fundamental group of a random 2-complex

has no m-torsion, for any given odd prime m ≥ 3. We find a simple al-

gorithmically testable criterion for a subcomplex of a random 2-complex

to be aspherical; this implies that (for p � n−1/2−ε) any aspherical sub-

complex of a random 2-complex satisfies the Whitehead conjecture. We

use inequalities for Cheeger constants and systoles of simplicial surfaces to

analyse spheres and projective planes lying in random 2-complexes. Our

proofs exploit the uniform hyperbolicity property of random 2-complexes

(Theorem 3.4).

1. Introduction and statements of the main results

A model producing random simplicial complexes was recently suggested and

studied by Linial and Meshulam [13] and further by Meshulam and Wallach [14];

it is a high-dimensional generalisation of one of the Erdős and Rényi models of

random graphs [7]. In the Linial–Meshulam model one generates a random d-

dimensional complex Y by considering the full d-dimensional skeleton of the sim-

plex Δn on vertices {1, . . . , n} and retaining d-dimensional faces independently
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with probability p. The work of Linial–Meshulam and Meshulam–Wallach pro-

vides threshold functions for the vanishing of the (d− 1)-st homology groups of

random complexes with coefficients in a finite abelian group. Threshold func-

tions for the vanishing of the d-th homology groups were subsequently studied

by Kozlov [12].

Significant progress in understanding the topology of random 2-complexes

was made by Babson, Hoffman and Kahle [2] who investigated the fundamental

groups of random 2-complexes. They showed that the fundamental group of a

random 2-complex is either nontrivial and Gromov hyperbolic (for p� n−1/2−ε)

or trivial (if p2n− 3 logn→ ∞), a.a.s.1

In the paper [5] it was proven that a random 2-complex Y collapses to a graph

if p� n−1 and therefore its fundamental group is free.

The paper [1] suggests an explicit constant γ such that for any c < γ a random

Y ∈ Y (n, c/n) is either collapsible to a graph or contains a tetrahedron.

It is important to have a model producing random aspherical 2-dimensional

complexes Y . A connected simplicial complex Y is said to be aspherical if

πi(Y ) = 0 for all i ≥ 2; this is equivalent to the requirement that the univer-

sal cover of Y is contractible. For 2-dimensional complexes Y the asphericity

is equivalent to the vanishing of the second homotopy group π2(Y ) = 0, or

equivalently, that any continuous map S2 → Y is homotopic to a constant map.

Random aspherical 2-complexes could be helpful for testing probabilistically the

open problems of two-dimensional topology, such as the Whitehead conjecture.

This conjecture stated by J. H. C. Whitehead in 1941 claims that a subcomplex

of an aspherical 2-complex is also aspherical. Surveys of results related to the

Whitehead conjecture can be found in [3], [17].

The Linial–Meshulam model of random 2-complexes produces an aspherical

complex Y if p � n−1, when Y is homotopy equivalent to a graph, a.a.s.;

however, for p � n−1 a random 2-complex is not aspherical since it contains

a tetrahedron as a subcomplex, a.a.s. In [6] the authors studied asphericable

2-complexes, which can be made aspherical by deleting a few faces belonging

to tetrahedra. The result of [6] states that random 2-complexes in the Linial–

Meshulam model are asphericable in the range p� n−46/47.

1 The symbol a.a.s. is an abbreviation of “asymptotically almost surely”, which means that

the probability that the corresponding statement is valid tends to 1 as n → ∞.
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In this paper we revisit the hyperbolicity theorem of Babson, Hoffman and

Kahle [2] having in mind two principal goals: firstly, we simplify and make more

transparent the main ideas of the proof; secondly we observe that the arguments

of [2] give in fact a slightly stronger statement: a uniform lower bound on the

isoperimetric constants of all subcomplexes of random complexes (see Theorem

3.4 below and its full proof in §6).
The key role in this paper is played by Theorem 2.5 which gives a topological

classification of minimal cycles Z with the property μ(Z) > 1/2.

Now we state the major results obtained in this paper.

Theorem A (see Corollary 5.9 and Proposition 5.11): If p � n−3/5, then the

fundamental group π1(Y ) of a random 2-complex Y ∈ Y (n, p) has cohomological

dimension at most 2, a.a.s. In particular, π1(Y ) is torsion free, a.a.s. Moreover,

if c
n < p� n−3/5, where c > 3, then cd(π1(Y )) = 2, a.a.s.

The following theorem states that 2-torsion appears in the fundamental group

π1(Y ) once the probability parameter p crosses the threshold n−3/5.

Theorem B (see Theorem 4.5): If for some 0 < ε < 0.1 the probability param-

eter p satisfies

n−3/5 � p� n−1/2−ε,

then the fundamental group π1(Y ) of a random 2-complex Y ∈ Y (n, p) has

nontrivial elements of order two and consequently cd(π1(Y )) = ∞, a.a.s.

The next result complements Theorem B.

Theorem C (see Theorem 4.6): Let m ≥ 3 be an odd prime. If for some

ε > 0 the probability parameter p satisfies p� n−1/2−ε, then, with probability

tending to one as n → ∞, a random 2-complex Y ∈ Y (n, p) has the following

property: the fundamental group π1(Y
′) of any subcomplex Y ′ ⊂ Y has no

m-torsion.

The next statement describes aspherical subcomplexes of random 2-com-

plexes. It is a strengthening of the main result of [6].

Theorem D (see Theorem 5.5): Assume that p � n−1/2−ε for a fixed ε > 0.

Then a random 2-complex Y ∈ Y (n, p) has the following property with prob-

ability tending to one as n → ∞: any subcomplex Y ′ ⊂ Y is aspherical if

and only if it contains no subcomplexes S ⊂ Y ′ with at most 2ε−1 faces which
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are homeomorphic either to the sphere S2, the projective plane RP2 or the

complexes Z2, Z3 shown on Figure 3.

Theorem D implies the following result which can be viewed as probabilistic

confirmation of The Whitehead Conjecture.

Corollary E (The Whitehead Conjecture): Assume that p � n−1/2−ε for a

fixed ε > 0. Then a random 2-complex Y ∈ Y (n, p) has the following prop-

erty with probability tending to one as n → ∞: any aspherical subcomplex

Y ′ ⊂ Y satisfies The Whitehead Conjecture, i.e., any subcomplex Y ′′ ⊂ Y ′ is
also aspherical.

Proposition 5.11 describes the second Betti number of random aspherical

2-complexes obtained from a random 2-complex Y ∈ Y (n, p) by deleting a

sequence of faces. It follows that these complexes have non-free fundamental

groups.

The following corollary states that a random 2-complex in the range

p� n−1/2−ε contains no tori and no large spheres and projective planes.

Corollary F (see Corollaries 3.5, 3.6, 3.7): Suppose that p� n−1/2−ε, where

ε > 0 is fixed. Then:

(a) A random 2-complex Y ∈ Y (n, p) contains no subcomplex homeomor-

phic to the torus T 2, a.a.s.

(b) A random 2-complex Y ∈ Y (n, p) contains no subcomplex with more

than 2ε−1 faces which is homeomorphic to the sphere S2, a.a.s.

(c) A random 2-complex Y ∈ Y (n, p) contains no subcomplex with more

than ε−1 faces which is homeomorphic to the real projective plane RP2,

a.a.s.

Note that under the assumptions of Corollary F (as follows from the results

of [5]) any triangulated sphere with ≤ 2ε−1 faces is contained in a random

2-complex as a subcomplex and, besides, any triangulated real projective plane

with ≤ ε−1 faces is contained in a random 2-complex, a.a.s. Thus Corollary F

lists all spheres and projective planes which cannot be found as subcomplexes

of random complexes with probability tending to one.

We know that for p = nα with α > −1/2 a random 2-complex Y ∈ Y (n, p) is

simply connected and hence it has homotopy type of a wedge of 2-spheres; see

[2]. Thus, a significant change in geometry and topology of random 2-complexes
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happens around p = n−1/2, and an outstanding challenge for the research field

is to analyse this event in more detail.

Figure 1 illustrates the behaviour of the cohomological dimension of the fun-

damental group π1(Y ) of a random 2-complex Y ∈ Y (n, p). For simplicity we

assume here that p = nα where α is a real parameter, α ∈ (−∞, 0).

Figure 1. The cohomological dimension cd = cd(π1(Y )) of the

fundamental group of a random 2-complex Y ∈ Y (n, p) where

p = nα.

The behaviour of the torsion in the fundamental group π1(Y ) of a random

2-complex Y ∈ Y (n, p) is illustrated by Figure 2. Again, we assume here that

p = nα, where α ∈ (−∞, 0). We also know that π1(Y ) has no m-torsion, where

m is an odd prime, for p = nα with α 
= −1/2.

Figure 2. Torsion in the fundamental group of a random 2-

complex Y ∈ Y (n, p) where p = nα.

A few words about terminology we use in this paper. By a 2-complex we

understand a finite simplicial complex Z of dimension ≤ 2. The i-dimensional

simplexes of a 2-complex are called vertices (for i = 0), edges (for i = 1) and

faces (for i = 2). A 2-complex is said to be pure if any vertex and any edge are

incident to a face. For an edge e ⊂ Z we denote by deg e = degZ(e) the degree

of e, i.e., the number of faces of Z containing e. The union of edges of degree
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one is denoted ∂Z and is called the boundary of Z. We say that a 2-complex

Z is closed if ∂Z = ∅.
We use the notations P 2 and RP2 for the real projective plane.

For a 2-complex X we denote by μ(X) the ratio v/f , where v = v(X) is the

number of vertices and f = f(X) is the number of faces in X . The symbol

μ̃(X) denotes

μ̃(X) = minμ(S)

where S ⊂ X runs over all subcomplexes. More information about the prop-

erties of the invariants μ(X) and μ̃(X) and their relevance to the containment

problem for random complexes can be found in [2], [5]. For convenience of the

reader we shall state here one of the results which will be used frequently in the

paper; compare Theorem 15 in [5].

Lemma 1.1: Let F be a finite collection of finite simplicial complexes. Denote

α = min{μ̃(X), X ∈ F}, and β = max{μ̃(X), X ∈ F}. Let AF
n ⊂ Y (n, p)

denote the set of complexes Y ∈ Y (n, p) which contain each of the complexes

X ∈ F as a simplicial subcomplex. Let BF
n ⊂ Y (n, p) denote the set of com-

plexes Y ∈ Y (n, p) which contain at least one of the complexes X ∈ F as a

simplicial subcomplex. Clearly AF
n ⊂ BF

n . Then one has:

(1) If p� n−β then P(BF
n ) → 0 as n→ ∞;

(2) If p� n−α then P(AF
n ) → 1 as n→ ∞.

In other words, (1) states that for small p none of the complexes X ∈ F is

embeddable into a random 2-complex, a.a.s.; statement (2) states that for large

p any complex X ∈ F is embeddable into a random 2-complex, a.a.s.

Acknowledgements. The authors thank the anonymous referee for his/her

helpful comments. This research was supported by a grant from the EPSRC

research council, UK.

2. Topology of minimal cycles

In this section we classify topologically the minimal cycles satisfying the con-

dition μ(Z) > 1/2; this result will be important for our study of aspherical

subcomplexes and The Whitehead Conjecture in §5.
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If v ∈ Z is a vertex of a 2-complex Z, then the link of v is a graph; we denote

by Sing(v) = SingZ(v) the number of connected components of the link of v

minus one.

Let Z be a finite pure 2-complex with the set of vertices V (Z). The closure

of a connected component of the complement Z − V (Z) is called a strongly

connected component of Z. A finite pure complex Z is called strongly

connected if there is a unique strongly connected component. Note that if Z

is path-connected and Sing(v) = 0 for any vertex v ∈ V (Z), then Z is strongly

connected.

Given a pure 2-complex Z, there is a canonically defined 2-complex Z̃ with a

natural surjective map Z̃ → Z, which is 1-1 on Z̃−V (Z̃), such that SingZ̃(w) = 0

for any vertex w of Z̃. The complex Z̃ is obtained by multiplying every vertex

of Z as many times as there are connected components in the link of this vertex

(in other words, we cut open any vertex v with Sing(v) > 0 along the cut point).

Clearly, Z̃ is strongly connected if Z is strongly connected. In this case one ob-

serves that Z is homotopy equivalent to the wedge sum Z̃ ∨ S1 ∨ S1 ∨ · · · ∨ S1,

where the number of S1 summands equals
∑

v∈V (Z) Sing(v). This gives the

following corollary:

Corollary 2.1: For any pure strongly connected 2-complex Z one has

b1(Z) = b1(Z̃) +
∑

v∈V (Z)

Sing(v) ≥
∑

v∈V (Z)

Sing(v).

In particular, if Z has at least one vertex with Sing(v) ≥ 1 then b1(Z) ≥ 1.

Definition 2.2: A finite pure 2-complex Z is said to be a minimal cycle if

b2(Z) = 1 and for any proper subcomplex Z ′ ⊂ Z one has b2(Z
′) = 0.

Clearly a minimal cycle must be closed (i.e., ∂Z = ∅) and strongly connected.

Indeed, if Z1, . . . , Zk are strongly connected components of Z, k ≥ 2, then

b2(Z) =
∑
b2(Zi) and hence exactly one component Zi has the second Betti

number 1. Removing a face from another component Zj, j 
= i, will not affect

the second Betti number, which gives a contradiction.

The following easy statement will be useful later.

Lemma 2.3: Let φ : Z1 → Z2 be a simplicial map between finite pure

2-complexes such that b2(Z1) ≥ 1 and Z2 is a minimal cycle. Suppose that

φ maps bijectively the set of faces of Z1 onto the set of faces of Z2 (and, in
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particular, faces of Z1 do not degenerate under φ). Then Z1 is also a minimal

cycle; in particular, Z1 is strongly connected.

Proof. Assuming that Z1 is not a minimal cycle we may find a proper subcom-

plex Z ′
1 ⊂ Z1 with b2(Z

′
1) = 1. Then our assumptions imply that the subcom-

plex φ(Z ′
1) ⊂ Z2 is proper and carries a nontrivial 2-cycle, i.e., b2(φ(Z

′
1)) ≥ 1

contradicting the minimality of Z2.

Lemma 2.4: Let Z be a minimal cycle and let D ⊂ Z be a subcomplex home-

omorphic to a 2-disc such that the interior Int(D) is open in Z. Denote by

Z ′ = Z − Int(D) the result of deleting the interior of D. Then the 2-complex

Z ′ is strongly connected.

Proof. Assume the contrary, i.e., let Z ′ have at least two strongly connected

components Z ′
1, Z

′
2, . . .. Then the quotient Z/D is homotopy equivalent to the

wedge sum of the spaces Z ′
i/(Z

′
i ∩D) (where i = 1, 2, . . . ) and some number of

circles. It is obvious that in the case Z ′
i ∩D = ∂D for some i the complex Z ′

is strongly connected. Thus we may assume that each intersection Z ′
i ∩D is a

proper subcomplex of the circle ∂D, i.e., Z ′
i ∩D is homeomorphic to a disjoint

union of intervals. Hence the quotient Z ′
i/(Z

′
i∩D) is homotopy equivalent to the

wedge sum of Z ′
i with several copies of S1 which gives b2(Z

′
i/(Z

′
i∩D)) = b2(Z

′
i).

Thus we have

(1) b2(Z) = b2(Z/D) =
∑
i

b2(Z
′
i/(Z

′
i ∩D)) =

∑
i

b2(Z
′
i).

From (1) it follows that among the numbers b2(Z
′
i) exactly one equals 1 and

the others vanish. This contradicts the assumption that Z is a minimal cycle

since it contains a proper subcomplex Z ′
i ⊂ Z with b2(Z

′
i) = 1.

Theorem 2.5 (Classification of minimal cycles): Let Z be a minimal cycle

satisfying

μ(Z) > 1/2.

Then Z is homeomorphic to one of the following 2-complexes Z1, Z2, Z3, Z4,

where Z1 = S2; Z2 is the quotient of S2 with two distinct points identified;

Z3 is the quotient of S2 with two adjacent arcs identified; and Z4 is defined as

P 2 ∪Δ2, where ∂Δ2 = P 2 ∩Δ2 equals the curve P 1 ⊂ P 2.
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Figure 3. Minimal cycles Z2 (left) and Z3 (right).

Proof. Recall that for an edge e ⊂ Z one denotes by deg e the degree of e, i.e.,

the number of faces containing e. Using the following formula

(2) μ(Z) =
1

2
+

2χ(Z) + L(Z)

2f(Z)
,

where

L(X) =
∑
e

(2− deg(e)),

the sum being taken over all edges e of X (see (7), (8) in [6]), we see that the

condition μ(Z) > 1/2 translates into

(3) 2χ(Z) + L(Z) > 0.

Note that L(Z) ≤ 0 since Z is pure and closed. We consider now a few special

cases:

Case A: L(Z) = 0. Then Z is a pseudo-surface2, i.e., each edge has degree

2. The link of every vertex is a disjoint union of several circles. In other words,

Z can be obtained from a connected surface Z̃ by identifying several vertices.

By (3) one has χ(Z) > 0 and hence Z is either the sphere Z1 or the sphere

with two points identified Z2. Hence we see that in the case A the complex Z

is homeomorphic either to Z1 or Z2.

Case B: L(Z) = −1. Let us show that this is impossible. Indeed, in this

case all edges have degree 2 except one edge which has degree 3. If e is this edge

of degree 3, then for one of the incident vertices v one considers the link of v;

it is a graph in which all vertices except one have degree 2 and one vertex has

degree 3. This is impossible since the sum of degrees of all vertices in a graph

is always even (as it equals twice the number of edges of the graph).

2 A pseudo-surface is a 2-complex which is strongly connected and has the property that

each edge is incident to exactly 2 faces.
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If b1(Z) ≥ 1, then χ(Z) ≤ 1 and (3) gives L(Z) ≥ −1, i.e., L(Z) = 0 or

L(Z) = −1. Thus for minimal cycles satisfying b1(Z) ≥ 1 we are in one of the

cases A or B considered above. We shall assume below that b1(Z) = 0.

By Corollary 2.1 the condition b1(Z) = 0 implies that the link of every vertex

of Z is connected.

The assumptions b2(Z) = 1 and b0(Z) = 1 imply χ(Z) = 2 and hence

μ(Z) > 1/2 is equivalent to L(Z) ≥ −3. Thus, we have to consider the following

four special cases L(Z) = 0,−1,−2,−3 with the two first analysed above.

Case C: L(Z) = −2. There are two possibilities: either Z contains two edges

of degree 3 or one edge of degree 4. Consider the first possibility: let e, e′ be
two edges of degree 3 and let v be a vertex incident to e but not to e′. Then the

link of v is a graph with all vertices of degree 2 except one which has degree 3,

which is impossible.

Figure 4. Cones.

Now suppose that Z contains an edge e of degree 4 and all other edges of Z

have degree 2. Denote by v, w the endpoints of e. The links of v and w are

connected graphs with one vertex of degree 4 and all other vertices of degree 2.

Hence these links are homeomorphic to the figure eight Γ8 (the wedge sum of two

circles). The regular neighbourhood of v is the star of v which is homeomorphic

to the cone over Γ8. Replacing the cone C(Γ8) by the wedge of two cones over

the base circles (see Figure 4, middle) gives a pseudo-surface Z ′ on which the

original edge e of degree 4 is represented by two adjacent edges e1, e2 of degree

2. Clearly Z ′ is homotopy equivalent to Z: indeed, attaching a triangle to Z ′

as shown on Figure 4 (right) gives a homotopy equivalent space as the triangle

can be collapsed along the free edge; on the other hand, collapsing the whole

triangle gives a space homotopy equivalent to Z. By Lemma 2.3 the complex Z ′

is a minimal cycle and therefore it is strongly connected. Thus, Z ′ is a pseudo-

surface with b1(Z
′) = 0 and b2(Z

′) = 1. Using Corollary 2.1 we see that Z ′

is nonsingular and hence is homeomorphic to S2. The complex Z is obtained
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from this sphere by folding two adjacent edges e1, e2. Thus, Z is homeomorphic

to Z3.

Case D: L(Z) = −3. There are three possibilities: either (1) Z contains one

edge e of degree 5 and all other edges have degree 2, or (2) there are two edges

e1, e2 with deg(e1) = 3, and deg(e2) = 4 and all other edges have degree 2, or

(3) there are 3 edges ei with deg(ei) = 3 for i = 1, 2, 3 and all other edges of

Z have degree 2. In the case (1), if v is a vertex incident to e, then the link

of v is a graph with one vertex of degree 5 and all other vertices of degree 2

which is impossible. Similarly, the case (2) is impossible; one may apply these

arguments to the vertex of e1 which is not incident to e2. The same reasoning

shows that in the case (3) the only possibility is that the edges e1, e2, e3 form a

triangle.

Below we assume that the edges of degree three e1, e2, e3 form a triangle with

vertices v1, v2, v3, i.e., the edge e1 has vertices v1, v2, the edge e2 has vertices

v2, v3 and e3 has vertices v3, v1.

Consider the link of vi in complex Z. It is a graph with two vertices of degree

three and with all other vertices of degree 2. Hence the link is homeomorphic

to one of the graphs Γ1,Γ2 shown on Figure 5.

Figure 5. Possible links of vi.

Let us show that the graph Γ1 is in fact impossible. Indeed, suppose that the

link of vi is homeomorphic to Γ1. The arc connecting two triple points of Γ1

corresponds to a sequence of 2-faces σ1, . . . , σr such that σj ∩ σj+1 is an edge

containing vi. The union σ = σ1 ∪ · · · ∪ σr is a subcomplex homeomorphic to

a disc. Consider Z ′ = Z − Int(σ). By Lemma 2.4, the complex Z ′ is strongly

connected. We have χ(Z ′) = 1 and b2(Z
′) = 0 and hence b1(Z

′) = 0. This con-

tradicts Corollary 2.1 since the link of vi in Z
′ has two connected components.

Suppose that there is a 2-simplex σ in Z having the vertices v1, v2, v3. Then

removing the interior of this simplex we obtain a pseudo-surface Z ′ (i.e.,

L(Z ′) = 0) with b1(Z
′) = b2(Z

′) = 0. By Lemma 2.4, the complex Z ′ must
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be strongly connected. Then Sing(v) = 0 for every vertex v ∈ Z ′, since oth-

erwise b1(Z
′) > 0; see Corollary 2.1. Hence Z ′ is a genuine closed surface and

since we know the Betti numbers of Z ′, clearly Z ′ must be homeomorphic to

the real projective plane. Thus Z is homeomorphic to the union of P 2 and a

triangle Δ2. The intersection P 2 ∩Δ2 is a simple closed curve. If this curve is

null-homologous on P 2, then this curve must separate P 2 into two connected

components one of which must be homeomorphic to a 2-disc and together with

Δ2 this disc would form a proper 2-cycle in Z contradicting the minimality of

Z (see Definition 2.2). Hence, the curve P 2 ∩ Δ2 is homologous to P 1 ⊂ P 2.

Therefore Z is homeomorphic to Z4.

Next we consider the case that there is no 2-simplex with sides e1, e2, e3.

Let us label the three 2-faces incident to e1 by the symbols 1, 2, 3. In the link

of v2 the edge e1 corresponds to one of the vertices of degree three and the

symbols 1, 2, 3 are now associated with the three arcs (see the graph Γ2 on

Figure 5) incident to this vertex. Viewing the other triple point of the link of

v2 we obtain a labelling by the symbols 1, 2, 3 of the three triangles incident to

the edge e1. Thus we see that a labelling by the symbols 1, 2, 3 of the three

triangles containing an edge ei determines a labelling of the following edge ei+1.

Performing this process in the following sequence e1 → e2 → e3 → e1 we obtain

a permutation τ of the symbols 1, 2, 3. We denote by k (= 1, 2, 3) the number

of orbits of the action of τ on {1, 2, 3}.
Case D1: Suppose that k = 1. Let c =

∑
j njσj be a nontrivial 2-cycle

of Z with integral coefficients nj ; here the symbols σi denote distinct oriented

simplexes of Z. Due to our minimality assumption, ni 
= 0 for any i. If two

simplexes σi and σi′ have a common edge of degree two, then ni = ±ni′ . The

complement Z−E (where E is the union of the triple edges e1, e2, e3) is strongly

connected since Z is strongly connected and k = 1, i.e., one may pass from any

face incident to E to any other face incident to E by jumping across edges

not in E. Thus, any two 2-simplexes σ, σ′ of Z can be connected by a chain

σ = σ1, σ2, . . . , σr = σ′ such that each σi and σi+1 has a common edge of degree

two. Hence we obtain that ni = ±nj for any i, j. This leads to a contradiction

with ∂c = 0, since near an edge er of degree three we will have three 2-simplexes,

each contribution the same amount, up to a sign. Thus, Case D1 is impossible.

Case D2: Suppose that k = 2 or k = 3. Then near the union of the triple

edges E the complex Z is homeomorphic either to Y × S1 (where Y is the
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graph representing the letter Y) or to the union of the Möbius band M and the

cylinder N = [0, 1]× S1 such that M ∩N = 0 × S1 is the central circle of the

Möbius band. In either case we may cut Z along the triple circle E, separating

a cylinder from the rest, such that the result is a surface Ẑ with boundary.

Points of E will be represented on Ẑ by two circles, one being the base of

the cylindrical part and another the middle circle of a cylinder or a Möbius

band. If Ẑ is connected, then it is homotopy equivalent to a graph and hence

χ(Ẑ) = χ(Z) ≤ 1. Since L(Z) = −3, we see that (3) is violated. Therefore the

surface Ẑ must have two connected components Ẑ1 � Ẑ2, one of which (say, Ẑ1)

is a closed surface, while the other Ẑ2 has one boundary circle. The minimality

condition implies that the closed surface Ẑ1 must be non-orientable. Thus we

have 2 = χ(Z) = χ(Ẑ) = χ(Ẑ1) + χ(Ẑ2) and χ(Ẑ1) ≤ 1, χ(Ẑ2) ≤ 1 which

implies that χ(Ẑ1) = 1 = χ(Ẑ2). Therefore, Ẑ1 is the real projective plane and

Ẑ2 is a disk. We obtain that Z is the union of the projective plane and a disk

intersecting along the triangle E. Clearly E is not null-homologous in Ẑ1 (since

otherwise it would cut the projective plane into two connected components

one of which would be orientable and together with Ẑ2 it would make a cycle,

contradicting minimality of Z).

Clearly the pair (Ẑ1, E) is homeomorphic to (P 2, P 1), and Z is homeomorphic

to Z4.

This completes the proof.

Corollary 2.6: In any minimal cycle Z with μ(Z) > 1/2 there exists a 2-

face σ such that the boundary curve ∂σ is null-homotopic in the complement

Z − Int(σ).

Lemma 2.7: Let X be a finite closed strongly connected pure 2-complex with

b2(X) = 0. Then either μ(X) ≤ 1/2 or X is homeomorphic to the projective

plane RP2.

Proof. Assume that μ(X) > 1/2; this is equivalent (using formula (2)) to

(4) L(X) ≡ 2χ(X) + L(X) = 2− 2b1(X) + L(X) > 0.

Besides, we have L(X) ≤ 0, since X is closed. The inequality (4) implies that

L(X) can be either −1 or 0. In the proof of Theorem 2.5 (see Case B) we showed

that L(X) = −1 is impossible. Hence, L(X) = 0, i.e., X is a pseudo-surface.

Inequality (4) now implies that b1(X) = 0. Using Corollary 2.1 we obtain that
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X is a genuine surface without singularities. ThusX is a compact nonorientable

surface with b1(X) = 0, i.e., X is homeomorphic to the projective plane.

We shall say that a 2-complexX is an iterated wedge of projective planes

if it can be represented as a union of subcomplexes X =
⋃n

i=1 Ai where each

Aj is homeomorphic to a projective plane and the intersection

Aj ∩
( j−1⋃

i=1

Ai

)
is a single point set for j = 1, . . . , n.

Lemma 2.8: Let X be a finite pure connected 2-complex with b1(X) = 0. Then

X is an iterated wedge of its strongly connected components.

Proof. We shall use the following remark. Let A ∪ B = X be two connected

subcomplexes which are unions of strongly connected components of X and

such that every strongly connected component of X is contained either in A

or in B but not in both A and B. Then the intersection A ∩ B is a finite set

of vertices and using b1(X) = 0 in the Mayer–Vietoris sequence implies that

H̃0(A ∩B) = 0, i.e., A ∩B is a single point.

Let A1 be a strongly connected component of X . Using the connectedness of

X and the previous remark, we may find another strongly connected component

A2 of X such that A1∩A2 is a single point. Inductively, we may find a sequence

A1, . . . , Ar of strongly connected components of X such that X = A1 ∪ · · · ∪Ar

and for any j the intersection

Aj ∩
( j−1⋃

i=1

Ai

)
is a single point. Hence X is an iterated wedge of its strongly connected com-

ponents.

A version of Lemma 2.7 with the words “strongly connected” replaced by

“connected” reads as follows.

Lemma 2.9: Let X be a finite closed connected pure 2-complex with b2(X) = 0

and μ(X) > 1/2. Then X is homeomorphic to an iterated wedge of projective

planes.
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Proof. We will use induction on the number of strongly connected components

k ofX . Lemma 2.7 covers the case k = 1. Assume now that Lemma 2.9 has been

proven for all complexes X with less than k strongly connected components.

If X has k strongly connected components and b2(X) = 0, μ(X) > 1/2, then

b1(X) = 0 (as follows from the inequality (3) combined with L(X) ≤ 0). By

Lemma 2.8, X can be represented as a wedge (one-point-union) X = A ∨ B

with A strongly connected and B having k− 1 strongly connected components.

The complexes A and B are pure, closed, connected and b2(A) = 0 = b2(B).

One has L(X) = L(A)+L(B) and χ(X) = χ(A)+χ(B)−1 which imply (using

the notation introduced in the proof of Lemma 2.7)

L(X) = L(A) + L(B)− 2.

We know by the induction hypothesis that either L(A) ≤ 0, or A is homeomor-

phic to the projective plane and then L(A) = 2. Besides, either L(B) ≤ 0 or

B is an iterated wedge of projective planes and then L(B) = 2. Thus, we see

that either L(X) ≤ 0 (which is equivalent to μ(X) ≤ 1/2 and contradicts our

assumption μ(X) > 1/2) or L(X) = 2 and X is an iterated wedge of projective

planes.

Corollary 2.10 (compare with Lemma 4.1 from [2]): Let Z be a connected

2-complex with μ̃(Z) > 1/2. Then Z is homotopy equivalent to a wedge of

circles, spheres and projective planes.

Proof. Without loss of generality we may additionally assume that Z is strongly

connected, since otherwise Z is homotopy equivalent to a wedge sum of its

strongly connected components and a number of circles. Besides, we may as-

sume that Z is closed, ∂Z = ∅ (otherwise, we may perform a sequence of

collapses to obtain a closed subcomplex Z ′ ⊂ Z having the same homotopy

type). Similarly, without loss of generality we may assume that Z is pure, since

otherwise we can apply the arguments given below to its pure part.

We shall act by induction on b2(Z).

If b2(Z) = 0 and μ̃(Z) > 1/2, then using Lemma 2.9 we see that the complex

Z is homotopy equivalent to a wedge of circles and projective planes.

Assume that Corollary 2.10 was proven for all connected 2-complexes Z sat-

isfying μ̃(Z) > 1/2 and b2(Z) < k.

Consider a 2-complex Z satisfying b2(Z) = k > 0 and μ̃(Z) > 1/2. Find a

minimal cycle Z ′ ⊂ Z. Then the homomorphism H2(Z
′;Z) = Z → H2(Z;Z)
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is an injection. Let σ ⊂ Z ′ be a simplex given by Corollary 2.6. Then

Z ′′ = Z − Int(σ) satisfies b2(Z
′′) = k − 1. Indeed, in the exact sequence

0 → H2(Z
′′) → H2(Z) → H2(Z,Z

′′) (= Z)
∂∗→ H1(Z

′′) → · · ·
the homomorphism ∂∗ = 0 is trivial since the curve ∂σ is null-homotopic in Z ′′.
Since μ̃(Z ′′) > 1/2, by induction hypothesis Z ′′ is homotopy equivalent to a

wedge of spheres, circles and projective planes. Then Z � Z ′′ ∨S2 also has this

property.

3. Isoperimetric constants of simplicial complexes

Let X be a finite simplicial 2-complex. For a simplicial loop γ : S1 → X(1) ⊂ X

we denote by |γ| the length of γ. If γ is null-homotopic, γ ∼ 1, we denote by

AX(γ) the area of γ, i.e., the minimal number of triangles in any simplicial

filling V for γ. A simplicial filling (or a simplicial Van Kampen diagram) for a

loop γ is defined as a pair of simplicial maps S1 i→ V
b→ X such that γ = b ◦ i

and the mapping cylinder of i is a disc with boundary S1 × 0; see [2].

Note that for X ⊂ Y and γ : S1 → X , γ ∼ 1, one has AX(γ) ≥ AY (γ).

Define the following invariant of X :

I(X) = inf
{ |γ|
AX(γ)

; γ : S1 → X(1), γ ∼ 1 in X
}
∈ R.

The inequality I(X) ≥ a means that for any null-homotopic loop γ in X one

has the isoperimetric inequality AX(γ) ≤ a−1 · |γ|. The inequality I(X) < a

means that there exists a null-homotopic loop γ in X with AX(γ) > a−1 · |γ|,
i.e., γ is null-homotopic but does not bound a disk of area less than a−1 · |γ|.

It is well known that I(X) > 0 if and only if π1(X) is hyperbolic in the

sense of M. Gromov [9].

Example 3.1: For X = T 2 one has I(X) = 0.

Example 3.2: Let X be a finite 2-complex satisfying μ̃(X) > 1/2. Then by

Corollary 2.10 the fundamental group π1(X) is a free product of several copies

of Z and Z2 and is hyperbolic. Hence I(X) > 0; compare Theorem 6.2 below.

Remark 3.3: Suppose that γ = γ1 ·γ2 is the concatenation of two null-homotopic

loops γ1, γ2 in X . Then

|γ| = |γ1|+ |γ2|, and AX(γ) ≤ AX(γ1) +AX(γ2).
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This implies that

|γ|
AX(γ)

≥ |γ1|+ |γ2|
AX(γ1) +AX(γ2)

≥ min
{ |γ1|
AX(γ1)

,
|γ2|

AX(γ2)

}
and leads to the following observation:

The number I(X) coincides with the infimum of the ratios |γ| · AX(γ)−1

where γ runs over all null-homotopic simplicial prime loops in X , i.e., such that

their lifts to the universal cover X̃ of X are simple. Note that any simplicial

filling S1 i→ V
b→ X for a prime loop γ : S1 → X has the property that V

is a simplicial disc and i is a homeomorphism i : S1 → ∂V . Hence for prime

loops γ the area AX(γ) coincides with the minimal number of 2-simplexes in

any simplicial spanning disc for γ.

The following Theorem 3.4 gives a uniform isoperimetric constant for random

complexes Y ∈ Y (n, p). It is a slightly stronger statement than simply hyper-

bolicity of the fundamental group of Y . Theorem 3.4 is implicitly contained in

[2] although it was not stated there explicitly.

Theorem 3.4: Suppose that for some ε > 0 the probability parameter p satis-

fies

(5) p� n−1/2−ε.

Then there exists a constant cε > 0 depending only on ε such that a random 2-

complex Y ∈ Y (n, p), with probability tending to 1 as n→ ∞, has the following

property: any subcomplex Y ′ ⊂ Y satisfies I(Y ′) ≥ cε and, in particular, the

fundamental group π1(Y
′) is hyperbolic.

We give a detailed proof of Theorem 3.4 in the Appendix.

We state now two immediate corollaries of Theorem 3.4.

Corollary 3.5: Under the assumption (5), a random 2-complex Y ∈ Y (n, p)

contains no subcomplexes homeomorphic to the torus T 2, a.a.s.

Proof. By Example 3.1 any torus S satisfies I(S) = 0 and the inclusion S ⊂ Y

would contradict Theorem 3.4.

Corollary 3.6: Under the assumption (5), a random 2-complex Y ∈ Y (n, p)

contains no subcomplex having more than 2ε−1 faces which is homeomorphic

to the sphere S2, a.a.s.



900 A. E. COSTA AND M. FARBER Isr. J. Math.

Proof. Suppose that a random 2-complex Y ∈ Y (n, p) contains a sphere S ⊂ Y

as a subcomplex.

Firstly we show that the number of faces f(S) is bounded above by a constant

depending on ε. Indeed, removing a 2-simplex from S gives a disc S′ and by

Theorem 3.4 the isoperimetric ratio of the boundary curve γ of this disc must

satisfy

|γ|
AS′(γ)

=
3

f(S)− 1
≥ cε,

where cε > 0 is the constant of Theorem 3.4. Thus we obtain

(6) f(S) ≤ 3 · c−1
ε + 1.

Secondly, we observe that there are finitely many isomorphism types of trian-

gulations of the sphere S2 satisfying (6) and we therefore may apply Theorem

15 from [5] or Lemma 1.1. By Theorem 27 and formula (8) from [5] we obtain

μ̃(S) = 1
2 +

2
f(S) . If μ̃(S) < 1/2+ε, then (by Lemma 1.1) S cannot be embedded

into a random 2-complex Y ∈ Y (n, p), a.a.s. Hence, for the triangulated spheres

S embeddable into Y (a.a.s.) we must have μ̃(S) = 1
2 + 2

f(S) ≥ 1
2 + ε, implying

f(S) ≤ 2 · ε−1.

Let X be a simplicial 2-complex. By sys(X) we denote the systole of X ,

which is defined as the length of the shortest homotopically nontrivial simplicial

loop in X . By Theorem 1.3 from [11] (see also Theorem 6.7.A from [8]) one has

(7) sys(X) < 6 ·A(X)1/2,

assuming that the fundamental group of X is not a free group. Here A(X)

denotes the number of 2-simplexes in X . To deduce (7) from [11], Theorem 1.3

we apply this theorem to X equipped with a piecewise flat metric g in which

each edge has length 1 and each 2-simplex has area
√
3/4. Let sysg(X) and

Ag(X) denote the systole and the area of X with respect to this metric. Then

Ag(X) = A(X) · √3/4 and elementary estimates show that

sysg(X) ≤ sys(X) ≤ 2 · sysg(X).

Hence,

sys2(X)

A(X)
≤

√
3
(
sysg(X)

)2
Ag(X)

≤
√
3 · 12 < 36,

which implies (7).
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Corollary 3.7: Under the assumption (5), a random 2-complex Y ∈ Y (n, p)

contains no subcomplex having more than ε−1 faces which is homeomorphic to

the projective plane RP2, a.a.s.

Proof. Suppose that a random 2-complex Y ∈ Y (n, p) contains a subcomplex

P ⊂ Y homeomorphic to the projective plane. By Theorem 3.4 the isoperimetric

constant I(P ) satisfies I(P ) ≥ cε. Consider the simple simplicial curve γ in P

which is not null-homotopic and has length equal to sys(P ). The twice passed

curve γ is null-homotopic in P and the area of γ2 equals A(P ). Thus we have

(8)
2sys(P )

A(P )
≥ cε.

Applying (7) we obtain sys(P )2 ≤ 36 · A(P ), and combining with (8) we get

A(P ) ≤ 144 · c−2
ε .

There are finitely many isomorphism types of triangulations of the real pro-

jective plane RP2 with at most 144c−2
ε faces. By Theorem 27 and formula (8)

from [5] we obtain μ̃(S) = 1
2 + 1

f(S) . If μ̃(S) < 1/2 + ε, then (by Lemma 1.1)

S cannot be embedded into a random 2-complex Y ∈ Y (n, p), a.a.s. Hence, for

the triangulated real projective plane S embeddable into Y (a.a.s.) we must

have μ̃(S) = 1
2 + 1

f(S) ≥ 1
2 + ε, implying f(S) ≤ ε−1.

4. Torsion in fundamental groups of random 2-complexes

One of the main results of this section is Theorem 4.5, which states that the

fundamental group of a random 2-complex has a nontrivial element of order 2

assuming that n−3/5 � p� n−1/2−ε. The proof of Theorem 4.5 uses Theorem

3.4 together with Theorem 4.3, which is stated and proven below.

The second main result presented in this section is Theorem 4.6, which claims

that for any odd prime m ≥ 3 (assuming that p � n−1/2−ε) the fundamental

group of any subcomplex Y ′ ⊂ Y of a random complex Y ∈ Y (n, p) has no

m-torsion, a.a.s. The proof uses Theorem 3.4 as well as the inequalities for

systoles of Moore surfaces.

4.1. The numbers of embeddings. Consider two 2-complexes S1 ⊃ S2. De-

note by vi and fi the numbers of vertices and faces of Si. We have v1 ≥ v2 and

f1 ≥ f2. We will assume that f1 > f2.
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Let μ(S1, S2) denote the ratio

μ(S1, S2) =
v1 − v2
f1 − f2

.

If μ(S1) < μ(S2), then

(9) μ(S1, S2) < μ(S1) < μ(S2).

If μ(S1) > μ(S2), then

(10) μ(S1, S2) > μ(S1) > μ(S2).

These two observations can be summarised by saying that μ(S1) always lies in

the interval connecting μ(S2) and μ(S1, S2).

One has the following formula:

(11) μ(S1, S2) =
1

2
+

2(χ(S1)− χ(S2)) + L(S1)− L(S2)

2(f1 − f2)
,

which follows from the equation 2vi = fi+2χ(Si)+L(Si); the latter is equivalent

to (2).

Remark 4.1: Let S2 be a pseudo-surface and 2(χ(S1) − χ(S2)) + L(S1) < 0.

Then μ(S1, S2) < 1/2. Note that L(S2) = 0 since S2 is a pseudo-surface. This

remark applies to the case when S1 is a union of a pseudo-surface S2 and a

number of simplicial discs.

Theorem 4.2: Let S1 ⊃ S2 be two fixed 2-complexes and 3

(12) n−μ̃(S2) � p� n−μ(S1,S2).

Then the number of simplicial embeddings of S1 into a random 2-complex

Y ∈ Y (n, p) is smaller than the number of simplicial embeddings of S2 into

Y , a.a.s. In particular, under the assumptions (12), with probability tending to

one, there exists a simplicial embedding S2 → Y which does not extend to an

embedding S1 → Y .

Proof. Let Xi : Y (n, p) → Z be the random variable counting the number of

simplicial embeddings of Si into Y ∈ Y (n, p), i = 1, 2. We know that

E(Xi) =

(
n

vi

)
vi!p

fi ∼ nvipfi .

3 The assumption (12) is meaningful iff μ(S1, S2) < μ̃(S2) ≤ μ(S2) which, as follows from

(9) and (10), implies that μ(S1) < μ(S2). Thus, if Theorem 4.2 is applicable, then

μ(S1) < μ(S2).
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Our goal is to show that X1 < X2, a.a.s. The left-hand side of inequality (12)

implies (via Theorem 15 from [5]) that X2(Y ) > 0, a.a.s., i.e., S2 admits an

embedding into Y with probability tending to one. We have

E(X1)

E(X2)
∼ nv1−v2pf1−f2 = [nμ(S1,S2)p]f1−f2 → 0

under our assumption (12) (the right-hand side).

Below we shall find t1, t2 > 0 such that

t1 + t2 = E(X2)− E(X1)

and E(X1)/t1 → 0 while E(X2)/t2 is bounded.

One of the following three statements holds: eitherX1<X2 orX1≥E(X1)+t1

or X2 < E(X2)− t2, and therefore

(13) P (X1 < X2) ≥ 1− P (X1 ≥ E(X1) + t1)− P (X2 < E(X2)− t2).

By Markov’s inequality

P (X1 ≥ E(X1) + t1) ≤ E(X1)

E(X1) + t1
=

E(X1)
t1

1 + E(X1)
t1

→ 0

while by Chebyschev’s inequality

P (X2 < E(X2)− t2) <
Var(X2)

t22
.

It is known (see [5], proof of Theorem 15) that under our assumptions (12) the

ratio Var(X2)
E(X2)2

tends to zero. Therefore, combining the last two inequalities with

the inequality (13) we see that P (X1 < X2) tends to 1 as n→ ∞.

To make a specific choice of t1 and t2 one may take t1 =
√
E(X1)E(X2) and

t2 = E(X2)− E(X1)− t1. Then

E(X1)

t1
=

√
E(X1)

E(X2)
→ 0

and
E(X2)

t2
=

1

1− E(X1)
E(X2)

−
√

E(X1)
E(X2)

→ 1

is bounded. This completes the proof.
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Theorem 4.3: Let

Tj ⊃ S, j = 1, . . . , N,

be a finite family of 2-complexes containing a given 2-complex S and satisfying

μ(Tj) < μ(S). Assume that

(14) n−μ̃(S) � p� n−μ(Tj ,S), for any j = 1, . . . , N.

Then, with probability tending to one, for a random 2-complex Y ∈ Y (n, p)

there exists a simplicial embedding S → Y which does not extend to a simplicial

embedding Tj → Y , for any j = 1, . . . , N .

Proof. Let X1,j : Y (n, p) → Z denote the random variable counting the number

of embeddings of Tj into Y ∈ Y (n, p). Denote X1 =
∑N

j=1X1,j . Besides, let

X2 : Y (n, p) → Z denote the number of embeddings of S into a random 2-

complex Y ∈ Y (n, p). As in the proof of the provious theorem one has

E(X1)

E(X2)
=

N∑
j=1

E(X1,j)

E(X2)
→ 0

thanks to our assumption (14) (the right-hand-side inequality). Taking

t1 =
√
E(X1)E(X2) and t2 = E(X2)−E(X1)−t1 (as in the proof of the previous

theorem) one has t1+ t2 = E(X2)−E(X1) and E(X1)/t1 → 0 while E(X2)/t2 is

bounded. Repeating the arguments used in the proof of the previous theorem

we see that X1 < X2, a.a.s. Since every embedding Tj → Y determines (by

restriction) an embedding S → Y , the inequality X1(Y ) < X2(Y ) implies that

there there are embeddings S → Y which admit no extensions to an embedding

Tj → Y , for any j = 1, . . . , N .

4.2. Projective planes in random 2-complexes. In this section we prove

the existence of 2-torsion in fundamental groups of random 2-complexes; see

Theorem 4.5. The proof uses simplical embeddings of projective planes into

random 2-complexes. Note that for a triangulation X of the real projective

plane one has

μ(X) = 1/2 +
1

f(X)
,

where f(X) is the number of faces of X , see (2), and therefore the maximal

value of μ(X) happens when f(X) is minimal.

It is well known that the complex S shown in Figure 6 is the minimal

triangulation of P 2; it has 10 faces and therefore μ(S) = 3/5. Moreover,
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μ̃(S) = μ(S) = 3/5 by Theorem 27 from [5]. By Lemma 1.1 for p � n−3/5

the complex S embeds into a random 2-complex, a.a.s. This explains the ap-

pearance of the exponent 3/5 in Theorem 4.5 below.

Figure 6. Minimal triangulation of the real projective plane;

the antipodal points on the peripheral hexagon must be iden-

tified.

We may mention here that for p� n−3/5 the fundamental group of a random

2-complex Y ∈ Y (n, p) is torsion free; see Corollary 5.9.

Definition 4.4: A subcomplex S ⊂ Y is said to be essential if the induced

homomorphism π1(S) → π1(Y ) is injective.

Theorem 4.5: Let S be a triangulation of the real projective planeRP2 having

6 vertices, 15 edges and 10 faces. Assume that ε > 0 and

n−3/5 � p� n−1/2−ε.

Then a random 2-complex Y ∈ Y (n, p) contains S as an essential subcomplex,

a.a.s. In particular, the fundamental group π1(Y ) contains an element of order

two and hence its cohomological dimension is infinite.

Proof. Consider the set Sε of isomorphism types of pure connected closed 2-

complexes X satisfying the following conditions:

(a) X contains S as a subcomplex.

(b) The inclusion S → X induces a trivial homomorphism π1(S) → π1(X).

(c) For any subcomplex S ⊂ X ′ ⊂ X , X ′ 
= X , the homomorphism

π1(S) → π1(X
′) is nontrivial.

(d) X has at most 10+3c−1
ε faces where cε is the constant given by Theorem

3.4.
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(e) μ̃(X) > 1/2 + ε.

Let us show that any X ∈ Sε is homeomorphic to the complex Z4, as defined

in Theorem 2.5. In the exact sequence

0 → H2(X) → H2(X,S) → H1(S) = Z2 → 0

the middle group has no torsion and hence b2(X) = b2(X,S) ≥ 1. If Z ⊂ X is

a minimal cycle, then μ(Z) > 1/2 + ε (by (e)) and Theorem 2.5 implies that Z

is homeomorphic to one of the 2-complexes Z1, Z2, Z3, Z4.

If Z is homeomorphic to one of the complexes Z1, Z2, Z3, then any face σ ⊂ Z

satisfies the conditions of Corollary 2.6. Therefore, removing from X any face

σ ⊂ Z − S would produce 2-complex X ′ violating (c).

This shows that any minimal cycle Z ⊂ X is homeomorphic to Z4 = P 2∪Δ2.

The union of the edges of degree 3 in Z is a closed curve and cutting along

this curve disconnects Z onto a copy of P 2 and Δ2. Thus, we may think of P 2

as being a subcomplex of Z. If P 2 
⊂ S, then there is a 2-simplex σ ⊂ P 2 − S.

Then the curve ∂σ ⊂ Z − σ ⊂ X − σ is null-homotopic and hence the inclusion

X ′ = Z − σ → X induces an isomorphism π1(X
′) → π1(X) contradicting (c).

This argument shows that P 2 ⊂ S and hence P 2 = S. Since π1(S) → π1(Z) is

trivial, it follows from the minimality of X (property (c)) that Z = X .

Since μ(X) > 1/2, by formula (2) we obtain that 2χ(X) + L(X) > 0 or

equivalently L(X) ≥ −3 (as χ(X) = 2 since X is homotopy equivalent to the

2-sphere). On the other hand, L(X) ≤ −3 since X is closed and has at least 3

edge of degree 3. Thus L(X) = −3.

Using formula (11) we find that

μ(X,S) =
1

2
− 1

2(f(X)− 10)
<

1

2

and then applying Theorem 4.3 we find that for

n−3/5 � p� n−1/2−ε,

with probability tending to 1, there exists embedding S → Y (where Y ∈ Y (n, p)

is random) which cannot be extended to an embedding of X → Y for any

X ∈ Sε.

Let Y ′
n ⊂ Y (n, p) denote the set of complexes Y ∈ Y (n, p) such that there

exists a simplicial embedding S → Y which cannot be extended to an embedding

X → Y , for any X ∈ Sε. We have shown earlier that P(Y ′
n) → 1 as n→ ∞.
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Consider the finite family F of isomorphism types of simplicial complexes

T having at most 10 + 3c−1
ε faces and satisfying μ̃(T ) ≤ 1/2 + ε. By Lemma

1.1, since we assume that p � n−1/2−ε, the set Y ′′
n ⊂ Y (n, p) of 2-complexes

Y ∈ Y (n, p) having the property that none of the complexes T ∈ F is embed-

dable into Y satisfies P(Y ′′
n ) → 1, as n→ ∞.

Besides, let Y ′′′
n ⊂ Y (n, p) denote the set of complexes satisfying Theorem

3.4. We know that P(Y ′′′
n ) → 1 as n→ ∞.

Now, let Y ∈ Y ′
n ∩ Y ′′

n ∩ Y ′′′
n and let S ⊂ Y be an embedding which cannot

be extended to an embedding X → Y for X ∈ Sε. Let us show that S ⊂ Y is

essential. Assuming the contrary, if the embedding S ⊂ Y is not essential then

the central circle γ of S (of length 3) extends to a simplicial map of a simplicial

disc into Y . Under the assumption p � n−1/2−ε, using Theorem 3.4, we find

that the circle γ extends to a simplicial map b : Δ2 → Y , b|∂Δ2 = γ, into Y

of a simplicial disc of area ≤ 3c−1
ε where cε > 0 depends only on the value of

ε. Since S ∪ b(Δ2) is embedded into Y we obtain that μ̃(S ∪ b(Δ2)) > 1/2 + ε.

Hence, if S ⊂ Y is not essential then there would exist a complex X ∈ Sε, where

S ⊂ X ⊂ S ∪ b(Δ2), such that the embedding S ⊂ Y extends to an embedding

X ⊂ Y . This gives a contradiction.

4.3. Absence of higher torsion. In this subsection we prove the following

statement complementing Theorem 4.5.

Theorem 4.6: Assume that the probability parameter p satisfies

(15) p� n−1/2−ε,

where ε > 0. Let m ≥ 3 be a prime number. Then a random 2-complex

Y ∈ Y (n, p), with probability tending to 1, has the following property: for any

subcomplex Y ′ ⊂ Y the fundamental group π1(Y
′) has no elements of order m.

Let Σ be a simplicial 2-complex homeomorphic to the Moore surface

M(Zm, 1) = S1 ∪fm e2, where m ≥ 3;

it is obtained from the circle S1 by attaching a 2-cell via the degree m map

fm : S1 → S1, fm(z) = zm, z ∈ S1. The 2-complex Σ has a well defined circle

C ⊂ Σ (which we shall call the singular circle) which is the union of all edges

of degree m; all other edges of Σ have degree 2. Clearly, the homotopy class of

the singular circle generates the fundamental group π1(Σ) � Zm.
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Next we define an integer Nm(Y ) ≥ 0 associated to any connected 2-complex

Y . If π1(Y ) has no m-torsion we set Nm(Y ) = 0. If π1(Y ) has elements of

order m we shall consider homotopically nontrivial simplicial maps γ : Cr → Y ,

where Cr is the simplicial circle with r edges, such that

(a) γm is null-homotopic (as a free loop in Y );

(b) r is minimal: for r′ < r any simplicial loop γ : Cr′ → Y satisfying (a)

is homotopically trivial.

Any such simplicial map γ : Cr → Y can be extended to a simplicial map

f : Σ → Y of a triangulation Σ of the Moore surface, such that the singular

circle C of Σ is isomorphic to Cr and f |C = γ. We shall say that a simplicial

map f : Σ → Y is m-minimal if it satisfies (a), (b) and the number of 2-

simplexes in Σ is the smallest possible. Now, we denote by

Nm(Y ) ∈ Z

the number of 2-simplexes in a triangulation of the Moore surface Σ admitting

an m-minimal map f : Σ → Y .

Lemma 4.7: Let Y be a 2-complex satisfying I(Y ) ≥ c > 0 (where the quantity

I(Y ) is defined in §3). Let m ≥ 3 be an odd prime. Then one has

Nm(Y ) ≤
(
6m

c

)2

.

Proof. We shall assume that the fundamental group of Y contains an element

of order m; otherwise Nm(Y ) = 0. Consider an m-minimal simplicial map

f : Σ → Y ,

(16) A(Σ) = Nm(Y ),

where A(Σ) denotes the number of 2-simplexes in Σ. It is obvious from the

m-minimality of f that the singular circle C ⊂ Σ is the shortest (in terms of

the number of edges) homotopically nontrivial simplicial loop in Σ, i.e.,

(17) |C| = sys(Σ).

Consider the loop γ = f |C, |γ| = |C| = sys(Σ). We know that γm is homo-

topically trivial in Y and the inequality I(Y ) ≥ c > 0 implies that γm bounds

in Y a disc of area at most m · |γ| · c−1. The 2-complex Σ is obtained from

a simplicial disc D by dividing its boundary into m intervals of equal length

and identifying them to each other. If A(D) > m · |γ| · c−1, then one could
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replace the disc D by the minimal spanning disc for γm obtaining a simplicial

map Σ′ → Y which has smaller area, contradicting the m-minimality. Thus, we

obtain

(18) A(Σ) ≤ c−1 ·m · sys(Σ).
Inequality (7) gives

(19) sys(Σ) ≤ 6 ·A(Σ)1/2.
Combining (16), (18) and (19) we obtain

Nm(Y ) = A(Σ) ≤
(
6m

c

)2

.

Theorem 4.8: Assume that the probability parameter p satisfies p� n−1/2−ε

where ε > 0 is fixed. Let m ≥ 3 be an odd prime. Then there exists a constant

Cε > 0 such that a random 2-complex Y ∈ Y (n, p) with probability tending to

1 has the following property: for any subcomplex Y ′ ⊂ Y one has

(20) Nm(Y ′) ≤ Cε.

Proof. We know from Theorem 3.4 that, with probability tending to 1, a random

2-complex Y has the following property: for any subcomplex Y ′ ⊂ Y one has

I(Y ′) ≥ cε > 0, where cε > 0 is the constant given by Theorem 3.4. Then,

setting Cε = (6mcε )
2, the inequality (20) follows from Lemma 4.7.

Proof of Theorem 4.6. Let cε > 0 be the number given by Theorem 3.4. Con-

sider the finite set of all isomorphism types of triangulations Sm = {Σ} of the

Moore surface M(Zm, 1) having at most (6mcε )
2 two-dimensional simplexes. Let

Xm denote the set of isomorphism types of images of all surjective simplicial

maps Σ → X inducing injective homomorphisms π1(Σ) = Zm → π1(X), where

Σ ∈ Sm. The set Xm is also finite.

From Theorem 4.8 we obtain that, with probability tending to one, for any

subcomplex Y ′ ⊂ Y , either π1(Y
′) has no m-torsion, or there exists an m-

minimal map f : Σ → Y ′ with Σ having at most ( 6mcε ) simplexes of dimension

2; in the second case the image X = f(Σ) is a subcomplex of Y ′ and f : Σ → X

induces a monomorphism π1(Σ) → π1(X), i.e., X ∈ Xm.

From Corollary 2.10 we know that the fundamental group of any 2-complex

satisfying μ̃(X) > 1/2 is a free product of several copies of Z and Z2 and

has no m-torsion, as we assume that m ≥ 3. Since the fundamental group
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of any X ∈ Xm has m-torsion, where m ≥ 3, one has μ̃(X) ≤ 1/2 for any

X ∈ Xm. Hence, using the finiteness of Xm and the results on the containment

problem (cf. Lemma 1.1) we see that for p � n−1/2−ε the probability that a

random complex Y ∈ Y (n, p) contains a subcomplex isomorphic to one of the

complexes X ∈ Xm tends to 0 as n → ∞. Hence, we obtain that (a.a.s.) any

subcomplex Y ′ ⊂ Y does not contain X ∈ Xm as a subcomplex and therefore

the fundamental group of Y ′ has no m-torsion.

5. Minimal spheres and The Whitehead Conjecture

Definition 5.1: Let Y be a simplicial complex with π2(Y ) 
= 0. We define a

numerical invariant M(Y ) ∈ Z, M(Y ) ≥ 4, as the minimal number of faces

in a 2-complex Σ homeomorphic to the sphere S2 such that there exists a

homotopically nontrivial simplicial map Σ → Y . We define M(Y ) = 0, if

π2(Y ) = 0.

Our first goal in this section is to prove the following theorem:

Theorem 5.2: Assume that the probability parameter p satisfies p� n−1/2−ε

where ε > 0 is fixed. Then there exists a constant C = Cε such that a random

2-complex Y ∈ Y (n, p) with probability tending to 1 has the following property:

for any subcomplex Y ′ ⊂ Y one has

(21) M(Y ′) ≤ C.

In other words, in the specified range of p, the numbersM(Y ′) have a uniform
upper bound, a.a.s.

In the proof of Theorem 5.2 we will use the following version of the notion of

Cheeger’s constant. For a pure simplicial 2-complex Σ one defines the Cheeger’s

constant h(Σ) as

(22) h(Σ) = min
S⊂Σ

{ |∂S|
A(S)

;A(S) ≤ A(Σ)/2
}
,

where S ⊂ Σ runs over all pure subcomplexes. Here |∂S| denotes the length of

the boundary (the number of edges) and A(S) and A(Σ) denote the area of S

and Σ, i.e., the number of 2-simplexes.
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Note that in (22) one may always assume that S ⊂ Σ is strongly connected.

Indeed, if S =
⋃

j Sj are the strongly connected components of S, then

|∂S| =
∑
j

|∂Sj| and A(S) =
∑
j

A(Sj)

and therefore,
|∂S|
A(S)

≥ min
j

|∂Sj |
A(Sj)

.

In the case when Σ is homeomorphic to the sphere S2, one can require the

subcomplex S ⊂ Σ which appears in the formula (22) to be homeomorphic to a

disc. Indeed, if S ⊂ Σ is strongly connected and |∂S|
A(S) = h(S), A(S) ≤ A(Σ)/2,

consider the strongly connected components of the closure of the complement

Σ− S =
⋃

j Dj . Each Dj is a disc and

|∂S| =
∑
j

|∂Dj| and A(S) ≤ A(Σ− S) =
∑
j

A(Dj).

Hence

h(Σ) =
|∂S|
A(S)

≥
∑

j |∂Dj|∑
j A(Dj)

≥ min
j

|∂Dj |
A(Dj)

and, in particular, for some j0 one has
|∂Dj0 |
A(Dj0 )

≤ h(Σ). From now on we may

assume that A(Dj0) > A(Σ)/2 since otherwise the proof is complete. Consider

the disc C = Σ−Dj0 . Then A(C) ≤ A(Σ)/2 and

A(C) ≥ A(S), |∂C| ≤ |∂S|
and we obtain

h(Σ) =
|∂S|
A(S)

≥ |∂C|
A(C)

.

Thus the value h(Σ) in (22) is achieved on subdiscs.

Our next two results are deterministic. We show that the isoperimetric con-

stant can be used to estimate above the value M(Y ).

Lemma 5.3: Let Y be a 2-complex with I(Y ) ≥ c > 0. Let f : Σ → Y be a

homotopically nontrivial simplicial map where Σ is homeomorphic to S2 and

A(Σ) =M(Y ). Then h(Σ) ≥ c.

Proof. Assume that h(Σ) < c. Then (due to our discussion above) there exists

a simplicial subdisc S ⊂ Σ with A(S) ≤ A(Σ)/2 and |∂S|
A(S) < c. The curve

γ = f |∂S is a null-homotopic loop in Y and f |S : S → Y is a bounding disk

for γ. We claim that this disc has the smallest area among all bounding discs
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for γ in Y . Indeed, if there existed a spanning disc b : D → Y , b|∂D = γ, with

A(D) < A(S), then we may define two maps of the sphere S2 → Y , both having

smaller area than f . These maps are φ : S∪D → Y and φ′ : S′∪D → Y , where

S′ = Σ− S. Here φ|S = f |S, φ|D = b = φ′|D, φ′|S′ = f |S′. Clearly at least one

of φ and φ′ is not null-homotopic, since if both φ and φ′ were null-homotopic

then the original map S2 → Y was null-homotopic as well. Thus we obtain

A(S) = AY (γ) and
|γ|

AY (γ) < c, contradicting our assumption I(Y ) ≥ c.

Corollary 5.4: Let Y be a 2-complex with I(Y ) ≥ c > 0. Then

(23) M(Y ) ≤
(16
c

)2

.

Proof. Papasoglu [15] proved the inequality

h(Σ) ≤ 16√
A(Σ)

valid for any simplicial sphere. By Lemma 5.3, one has h(Σ) ≥ c for the

homotopically nontrivial map Σ → Y with the minimal A(Σ). This implies

that A(Σ) ≤ 162/c2, which is equivalent to our statement.

Proof of Theorem 5.2. By Theorem 3.4 one has I(Y ′) > cε, a.a.s. where cε > 0

depends only on ε. Thus, in view of Corollary 5.4, the inequality (21) is satisfied

with C = 256/c2ε .

Next we characterise aspherical subcomplexes of random 2-complexes:

Theorem 5.5: Assume that p� n−1/2−ε for a fixed ε > 0. Then a random 2-

complex Y ∈ Y (n, p) has the following property with probability tending to one

as n→ ∞: for any subcomplex Y ′ ⊂ Y the following properties are equivalent:

(A): Y ′ is aspherical;
(B): Y ′ contains no subcomplexes S ⊂ Y ′ with at most 2ε−1 faces which

are homeomorphic to the sphere S2, the projective plane RP2 or the

complexes Z2, Z3 shown in Figure 3.

In particular, a random 2-complex Y ∈ Y (n, p) has the following property with

probability tending to one as n→ ∞: any subcomplex Y ′ ⊂ Y with b2(Y
′) = 0

is aspherical if and only if

(B′): Y ′ contains no subcomplexes S ⊂ Y ′ with at most 2·ε−1 faces which

are homeomorphic to the projective plane RP2.
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Proof. We first show that (A) ⇒ (B). It is obvious that an aspherical 2-complex

cannot contain as a subcomplex none of S2 or Z2, Z3; otherwise there would

be a nontrivial spherical homology class. By a theorem of W. H. Cockcroft [4],

an aspherical 2-complex cannot contain a projective plane.

Next we show that (B) ⇒ (A) a.a.s. Let Y ′ ⊂ Y be a subcomplex where

Y ∈ Y (n, p) is random. Assume that Y ′ contains no subcomplexes with at most

2/ε faces which are homeomorphic to either S2, RP2 or Z2, Z3; see above. If Y
′

is not aspherical then by Theorem 5.2, M(Y ′) ≤ C where C depends only on ε.

There exist finitely many isomorphism types {Sj}j∈J of triangulations of S2

with at most C faces. By Lemma 1.1 the probability that a random 2-complex

Y contains an image φj(Sj) satisfying μ̃(φj(Sj)) < 1/2 + ε tends to zero as

n → ∞. Thus we only have to consider the images of homotopically nontrivial

simplicial maps φj : Sj → Y ′ satisfying μ̃(φj(Sj)) ≥ 1/2 + ε.

If the second Betti number of the image is nonzero, b2(φj(Sj)) 
= 0, then the

image φj(Sj) contains a minimal cycle Z satisfying μ̃(Z) ≥ 1/2+ε. By Theorem

2.5, such Z must be homeomorphic to one of the complexes Z1, Z2, Z3, Z4. For

i = 1, 2, 3 one has (using formula (2))

ε ≤ μ̃(Zi)− 1

2
≤ 2

f(Zi)

and hence f(Zi) ≤ 2/ε. For i = 4, we have Z4 = P 2 ∪Δ2 and

μ(P 2) =
1

2
+

1

f(P 2)
≥ μ̃(Z4) ≥ 1

2
+ ε

implying that f(P 2) ≤ 2ε−1. Now we may use our assumptions concerning

Y ′, implying that Y ′ contains no subcomplexes homeomorphic to Z1, . . . , Z4

leading to a contradiction.

Consider now the remaining case b2(φj(Sj)) = 0. As above one has

μ(φj(Sj)) ≥ μ̃(φj(Sj)) ≥ 1

2
+ ε.

Now, applying Lemma 2.9, we see that any closed pure subcomplex of the image

φj(Sj) is an iterated wedge of projective planes. The argument similar to the

one used in the previous paragraph shows that each of these projective planes

P 2 has at most 2ε−1 faces. Since we assume that Y ′ contains no projective

planes with at most 2ε−1 faces, we obtain that φj(Sj) contains no closed pure

subcomplexes and therefore the image φj(Sj) is homotopy equivalent to a wedge
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of circles implying that π2(φj(Sj)) = 0. Hence we obtain a contradiction to our

assumption that the map φj : Sj → Y ′ is essential.

The following results are corollaries of Theorem 5.5:

Corollary 5.6: Assume that p � n−1/2−ε where ε > 0 is fixed. Then a

random 2-complex Y ∈ Y (n, p) has the following property with probability

tending to one as n → ∞: any aspherical subcomplex Y ′ ⊂ Y satisfies The

Whitehead Conjecture, i.e., if a subcomplex Y ′ ⊂ Y is aspherical then all

subcomplexes of Y ′ are also aspherical.

Proof. Let Y ′⊂Y be aspherical. Then by the previous Theorem, Y ′ has prop-
erty (B). Hence any subcomplex Y ′′⊂Y ′ has property (B). Applying Theorem

5.5 again we obtain that Y ′′ is aspherical. This completes the proof.

Corollary 5.7: Assume that p � n−1/2−ε where ε > 0 is fixed. Then a

random 2-complex Y ∈ Y (n, p) has the following property with probability

tending to one as n→ ∞: a subcomplex Y ′ ⊂ Y is aspherical if and only if any

subcomplex S ⊂ Y ′ with at most 2ε−1 faces is aspherical.

Proof. Indeed, in one direction the result follows from Corollary 5.6. In the

other direction the result follows from the implication (B) ⇒ (A) of Theo-

rem 5.5.

Corollary 5.8: Assume that p � n−1/2−ε where ε > 0 is fixed. Then a

random 2-complex Y ∈ Y (n, p) has the following property with probability

tending to one as n → ∞: any subcomplex Y ′ ⊂ Y with H2(Y
′;Z2) = 0 is

aspherical.

Proof. If H2(Y
′;Z2) = 0, then Y ′ cannot have subcomplexes homeomorphic to

S2, RP2, Z2 and Z3. Therefore Y
′ is aspherical by Theorem 5.5.

Corollary 5.9: Assume that p � n−3/5. Then for a random 2-complex

Y ∈ Y (n, p) the fundamental group π1(Y ) has cohomological dimension at

most 2, a.a.s. In particular, under this assumption on p the fundamental group

π1(Y ) has no torsion, a.a.s. Moreover, for p � n−3/5, any subcomplex Y ′ ⊂ Y

with b2(Y
′) = 0 is aspherical a.a.s.
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Proof. We shall apply Theorem 5.5 with ε = 1/10, so that 1/2 + ε = 3/5 and

2ε−1 = 20. Thus we shall consider embeddings of triangulated S2, Z2, Z3 and

RP2 into Y ∈ Y (n, p) having at most 20 faces.

For any triangulation of RP2 one has μ̃(RP2) ≤ 3/5 (see [5], Corollary 22),

and by Lemma 1.1 no projective plane with at most 20 faces is contained in

Y ∈ Y (n, p) under the assumption p� n−3/5.

Thus Y may only contain copies of S2, Z2, Z3 with at most 20 faces. We

produce now a sequence of subcomplexes Y = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · ⊃ Yk

with k ≤ b2(Y ) as follows. Each Yi+1 is obtained from Yi by removing a

face belonging to a subcomplex homeomorphic to S2, Z2 or Z3. Then clearly

π1(Yi+1) = π1(Yi) and the last subcomplex Yk ⊂ Y is aspherical by Theorem 5.5.

Therefore, we obtain that there exists a 2-dimensional aspherical complex Yk

having fundamental group π1(Yk) = π1(Y ). This implies that the cohomological

dimension of π1(Y ) is at most 2.

As for the second statement of the Corollary, we observe that any subcomplex

Y ′ ⊂ Y with b2(Y
′) = 0 cannot contain S2, Z2, Z3. It also cannot contain copies

of the real projective plane with at most 20 faces, as explained above. Thus, by

Theorem 5.5, Y ′ must be aspherical, a.a.s.

Remark 5.10: The method of the proof of Corollary 5.9 gives in fact a stronger

result: for p� n−3/5 a random 2-complex Y ∈ Y (n, p) has the following prop-

erty with probability tending to one: the fundamental group of any subcomplex

Y ′ ⊂ Y has cohomological dimension at most 2, i.e., cd(π1(Y
′)) ≤ 2.

Using Theorem 5.5 one may generate random aspherical 2-complexes as fol-

lows. Start with a random 2-complex Y ∈ Y (n, p) where p � n−1/2−ε. Let

Aε = {Z} be the set of all isomorphism types of minimal cycles having at most

2ε−1 faces with the property μ(Z) > 1/2. The set Aε is finite; each Z ∈ Aε

is homeomorphic to one of the 2-complexes Z1, Z2, Z3, Z4 described in Theo-

rem 2.5. Now one finds all subcomplexes of the random complex Y which are

isomorphic to the complexes Z ∈ Aε and removes randomly (or by applying

certain rule) one of the faces4 which satisfies the condition of Corollary 2.6.

The obtained complex Y ′ ⊂ Y is aspherical, a.a.s., by Theorem 5.5; clearly

π1(Y
′) = π1(Y ).

4 Note that in the case of Z4 = P 2 ∪ Δ2 we remove a simplex of P 2.
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In the next statement we show that the aspherical 2-complex Y ′ has large

second Betti number and hence the fundamental group π1(Y
′) = π1(Y ) has

cohomological dimension 2. Combined with Corollary 5.9, Proposition 5.11

implies Theorem A from the Introduction.

Proposition 5.11: Assume that for some c > 3 and ε > 0 one has

(24)
c

n
< p < n−1/2−ε.

Then the second Betti number of the random aspherical 2-complex Y ′ described
in the preceding paragraph satisfies

(25) n2 · c− 3

8
≤ b2(Y

′) ≤ n5/2−ε,

a.a.s.

This result is similar to Theorem 3 from [6] and its proof uses the same

sequence of arguments.

Proof. Let f2, b2 : Y (n, p) → Z denote the number of 2-simplexes in a random

complex and the second Betti number, viewed as random variables. Note that f2

is binomially distributed with expectation p
(
n
3

)
. We have f2 −

(
n−1
2

) ≤ b2 ≤ f2.

The inequality (2.6) on page 26 of [10] with t = n7/4 gives

P

(
f2 ≤ p

(
n

3

)
− t

)
≤ exp

(
− t2

2p
(
n
3

)) ≤ exp(−√
n).

We see that with probability at least 1− exp (−√
n), one has

b2 ≥ f2−
(
n− 1

2

)
≥ p

(
n

3

)
−
(
n− 1

2

)
− t ≥

(
n− 1

2

)
·
(
c− 3

3

)
− t ≥ n2 · c− 3

7

for large n; here b2 = b2(Y ).

For any Z ∈ Aε consider the random variable kZ : Y (n, p) → Z, where

for Y ∈ Y (n, p) the value kZ(Y ) is the number of subcomplexes of Y which

are isomorphic (as simplicial complexes) to Z. The expectation of kZ satisfies

E(kZ ) ≤ nv(Z)pf2(Z). For any Z ∈ Aε one has

L(Z) ≤ 0 and χ(Z) ≤ 2

implying

μ(Z) =
v(Z)

f2(Z)
≤ 1

2
+

2

f2(Z)
,
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as follows from formula (2). Hence we have

v(Z) ≤ f2(Z)/2 + 2

and therefore

E(kZ) ≤nv(Z)pf2(Z)

≤nf2(Z)/2+2pf2(Z)

≤nf2(Z)/2+2n(−1/2−ε)f2(Z)

=n2−εf2(Z) ≤ n2−4ε.

Let k =
∑

Z∈Aε
kZ be the sum random variable. Then we obtain

E(k) =
∑
Z

E(kZ ) ≤ |Aε| · n2−4ε.

The Markov inequality P(k ≥ t) ≤ E(k)
t with t = n2−3ε gives

P(k ≥ n2−3ε) ≤ |Aε| · n−ε.

Thus, with probability tending to one as n→ ∞, one has

b2(Y
′) ≥ b2(Y )− k(Y ) ≥ n2 · c− 3

7
− n2−3ε ≥ n2 · c− 3

8
> 0

for n→ ∞. This proves the left inequality in (25).

From inequality (2.5) on page 26 of [10] with t = n7/4 one obtains that

with probability at least 1 − exp(−√
n) one has f2 ≤ p

(
n
3

)
+ t and hence

b2(Y
′) ≤ b2(Y ) ≤ f2 ≤ p

(
n
3

)
+ t ≤ n5/2−ε. This proves the right inequality

in (25).

As above, for a positive integer m, letMm denote the Moore surface, i.e., the

quotient space of the disc D2 ⊂ C (the unit disc on the complex plane) where

points z1, z2 ∈ ∂D2 are identified iff zm1 = zm2 .

Corollary 5.12: If p� n−1/2−ε, then a random 2-complex Y ∈ Y (n, p) with

probability tending to one as n→ ∞ has the following property: no subcomplex

Y ′ ⊂ Y homeomorphic to a Moore surface Mm with m ≥ 3.

Proof. This is a corollary of Theorem 5.5, since form ≥ 3 the Moore surfaceMm

(a) contains no subcomplexes homeomorphic to the sphere, to the real projective

space and to complexes Z2, Z3 (shown in Figure 3) and (b) the Moore surface

Mm is not aspherical.
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A similar argument provides an alternative proof of Corollary 3.7.

6. Appendix: Proof of Theorem 3.4

The proof of Theorem 3.4 given below is similar to the arguments of [2] and

is based on two auxiliary results: (1) the local-to-global principle of Gromov

[9] and (2) Theorem 6.2 giving uniform isoperimetric constants for complexes

satisfying μ̃(X) ≥ 1/2 + ε.

The local-to-global principle of Gromov can be stated as follows:

Theorem 6.1: Let X be a finite 2-complex and let C > 0 be a constant such

that any pure subcomplex S ⊂ X having at most (44)3 · C−2 two-dimensional

simplexes satisfies I(S) ≥ C. Then I(X) ≥ C · 44−1.

Theorem 6.1 follows from Theorem 3.9 from [2]. Indeed, suppose that the

assumptions of Theorem 6.1 are satisfied. Let γ : S1 → X be a simplicial loop

with AX(γ) < (44)3 · C−2 = 44ρ2, where ρ = 44/C. Then there is a pure

subcomplex S ⊂ X with at most (44)3 · C−2 faces, which contains γ and the

minimal spanning disc for γ in X , such that

|γ|
AS(γ)

≥ I(S) ≥ C = 44/ρ,

by our assumption, i.e.,

AX(γ) = AS(γ) ≤ ρ

44
· |γ|.

Applying Theorem 3.9 from [2] we obtain I(X) ≥ ρ−1 = C/44.

Let X be a 2-complex satisfying μ̃(X) > 1/2. Then by Corollary 2.10 the

fundamental group of X is hyperbolic as it is a free product of several copies

of cyclic groups Z and Z2. Hence, I(X) > 0. The following theorem gives a

uniform lower bound for the numbers I(X).

Theorem 6.2: Given ε > 0, there exists a constant Cε > 0 such that for any

finite pure 2-complex X with μ̃(X) ≥ 1/2 + ε one has I(X) ≥ Cε.

This statement is equivalent to Lemma 3.5 from [2] and plays a crucial role

in the proof of Theorem 3.4. A proof of Theorem 6.2 (which uses the method

of [2] but is presented in a slightly different form) is given below in §6.1.
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Proof of Theorem 3.4 using Theorem 6.1 and Theorem 6.2. Let Cε be the con-

stant given by Theorem 6.2. Consider the set S of isomorphism types of all

pure 2-complexes having at most 443 · C−2
ε faces. Clearly, the set S is finite.

We may present it as the disjoint union S = S1 � S2 where any S ∈ S1 satisfies

μ̃(S) ≥ 1/2 + ε while for S ∈ S2 one has μ̃(S) < 1/2 + ε. By Lemma 1.1, a

random 2-complex Y ∈ Y (n, p) contains as subcomplexes complexes S ∈ S2

with probability tending to zero as n → ∞. Hence, Y ∈ Y (n, p) may contain

as subcomplexes only complexes S ∈ S1, a.a.s. By Theorem 6.2, any S ∈ S1

satisfies I(S) ≥ Cε. Hence we see that with probability tending to one, any

subcomplex S of Y having at most 443 · C−2
ε faces satisfies I(S) ≥ Cε. Now

applying Theorem 6.1 we obtain I(Y ′) ≥ Cε · 44−1 = cε, for any subcomplex

Y ′ ⊂ Y , a.a.s.

6.1. Proof of Theorem 6.2.

Definition 6.3: We will say that a finite 2-complex X is tight if for any proper

subcomplex X ′ ⊂ X , X ′ 
= X , one has I(X ′) > I(X).

Clearly, one has

(26) I(X) ≥ min{I(Y )}
where Y ⊂ X is a tight subcomplex. Since μ̃(Y ) ≥ μ̃(X) for Y ⊂ X , it is

obvious from (26) that it is enough to prove Theorem 6.2 under the additional

assumption that X is tight.

Remark 6.4: Suppose that X is pure and tight and suppose that γ : S1 → X

is a simplicial loop with |γ| · AX(γ)−1 less than the minimum of the numbers

I(X ′), where X ′ ⊂ X is a proper subcomplex. Let b : D2 → X be a minimal

spanning disc for γ; then b(D2) = X, i.e., b is surjective. Indeed, if the image

of b does not contain a 2-simplex σ, then removing it we obtain a subcomplex

X ′ ⊂ X with AX′(γ) = AX(γ) and hence I(X ′) ≤ |γ| ·AX(γ)−1, contradicting

the assumption on γ.

Lemma 6.5: If X is a tight complex with μ̃(X) > 1/2, then b2(X) = 0.

Proof. Assume that b2(X) 
= 0. Then there exists a minimal cycle Z ⊂ X satis-

fying μ(Z) > 1/2. Hence, by Corollary 2.6, we may find a 2-simplex σ ⊂ Z ⊂ X

such that ∂σ is null-homotopic in Z−σ ⊂ X−σ = X ′. Note that X ′(1) = X(1)

and a simplicial curve γ : S1 → X ′ is null-homotopic in X ′ if and only if it is
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null-homotopic in X . Besides, AX(γ) ≤ AX′(γ) and hence

|γ|
AX(γ)

≥ |γ|
AX′(γ)

,

which implies that I(X) ≥ I(X ′) > I(X), a contradiction.

Lemma 6.6: Given ε > 0, there exists a constant C′
ε > 0 such that for any

finite pure tight connected 2-complex with μ̃(X) ≥ 1/2 + ε and L(X) ≤ 0 one

has I(X) ≥ C ′
ε.

This Lemma is similar to Theorem 6.2, but it has an additional assumption

that L(X) ≤ 0. It is clear from the proof that the assumption L(X) ≤ 0 can

be replaced by any assumption of the type L(X) ≤ 1000, i.e., by any specific

upper bound, without altering the proof.

Proof. We show that the number of isomorphism types of complexes X satis-

fying the conditions of the Lemma is finite; hence the statement of the Lemma

follows by setting C′
ε = min I(X) and using Corollary 2.10, which gives I(X) > 0

(since π1(X) is hyperbolic) and hence C ′
ε > 0. The inequality

μ(X) =
1

2
+

2χ(X) + L(X)

2f(X)
≥ 1

2
+ ε

is equivalent to

f(X) ≤ ε−1 · (χ(X) + L(X)/2),

where f(X) denotes the number of 2-simplexes in X . By Lemma 6.5 we have

χ(X) = 1 − b1(X) ≤ 1 and, using the assumption L(X) ≤ 0, we obtain

f(X) ≤ ε−1. This implies the finiteness of the set of possible isomorphism types

of X and completes the proof.

We will also use a relative isoperimetric constant I(X,X ′) ∈ R for a pair

consisting of a finite 2-complex X and its subcomplex X ′ ⊂ X which will be

defined as the infimum of all ratios |γ| ·AX(γ)−1, where γ : S1 → X ′ runs over
simplicial loops in X ′ which are null-homotopic in X . Clearly, I(X,X ′) ≥ I(X)

and I(X,X ′) = I(X) if X ′ = X . Below is a useful strengthening of Lemma 6.6.

Lemma 6.7: Given ε > 0, let C′
ε > 0 be the constant given by Lemma 6.6.

Then for any finite pure tight connected 2-complex with μ̃(X) ≥ 1/2+ ε and for

a connected subcomplex X ′ ⊂ X satisfying L(X ′) ≤ 0, one has I(X,X ′) ≥ C ′
ε.
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Proof. We show below that under the assumptions on X , X ′ one has

(27) I(X,X ′) ≥ min
Y

I(Y ),

where Y runs over all subcomplexes X ′ ⊂ Y ⊂ X satisfying L(Y ) ≤ 0. Clearly,

μ̃(Y ) ≥ 1/2 + ε for any such Y . In the proof of Lemma 6.6 we showed that

b2(X) = 0, which implies that b2(Y ) = 0. Besides, without loss of generality we

may assume that Y is connected. The arguments of the proof of Lemma 6.6 now

apply (i.e., Y may have finitely many isomorphism types, each having a hyper-

bolic fundamental group) and the result follows: I(X,X ′) ≥ minY I(Y ) ≥ C ′
ε.

Suppose that inequality (27) is false, i.e., I(X,X ′) < minY I(Y ), and consider

a simplicial loop γ :S1→X ′ satisfying γ∼1 in X and |γ|·AX(γ)−1<minY I(Y ).

Let ψ : D2 → X be a simplicial spanning disc of minimal area. It follows from

the arguments of Ronan [16] that ψ is non-degenerate in the following sense:

for any 2-simplex σ of D2 the image ψ(σ) is a 2-simplex, and for two distinct

2-simplexes σ1, σ2 of D2 with ψ(σ1) = ψ(σ2) the intersection σ1 ∩ σ2 is either

∅ or a vertex of D2. In other words, we exclude foldings, i.e., situations such

that ψ(σ1) = ψ(σ2) and σ1 ∩ σ2 is an edge. Consider Z = X ′ ∪ ψ(D2). Note

that L(Z) ≤ 0. Indeed, since

L(Z) =
∑
e

(2− degZ(e)),

where e runs over the edges of Z, we see that for e ⊂ X ′, degX′(e) ≤ degZ(e),

and for a newly created edge e ⊂ ψ(D2), clearly degZ(e) ≥ 2. Hence,

L(Z) ≤ L(X ′) ≤ 0.

On the other hand, AX(γ) = AZ(γ) and hence

I(Z) ≤ |γ| ·AX(γ)−1 < min
Y

I(Y ),

a contradiction.

The main idea of the proof of Theorem 6.2 in the general case is to find

a planar complex (a “singular surface”) Σ with one boundary component ∂+Σ

being the initial loop and such that “the rest of the boundary”∂−Σ is a “product

of negative loops”(i.e., loops satisfying Lemma 6.7). The essential part of the

proof is in estimating the area (the number of 2-simplexes) of such Σ.
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Proof of Theorem 6.2. Consider a connected tight pure 2-complex X satisfying

(28) μ̃(X) ≥ 1

2
+ ε

and a simplicial prime loop γ : S1 → X such that the ratio |γ| ·AX(γ)−1 is less

than the minimum of the numbers I(X ′) for all proper subcomplexes X ′ ⊂ X .

Consider a minimal spanning disc b : D2 → X for γ = b|∂D2 ; here D2 is a

triangulated disc and b is a simplicial map. As we showed in Remark 6.4, the

map b is surjective. As explained in the proof of Lemma 6.7, due to arguments

of Ronan [16], we may assume that b has no foldings.

For any integer i ≥ 1 we denote by Xi ⊂ X the pure subcomplex generated

by all 2-simplexes σ of X such that the preimage b−1(σ) ⊂ D2 contains ≥ i

two-dimensional simplexes. One has X = X1 ⊃ X2 ⊃ X3 ⊃ · · · . Each Xi may

have several connected components and we will denote by Λ the set labelling

all the connected components of the disjoint union
⊔

i≥1Xi. For λ ∈ Λ the

symbol Xλ will denote the corresponding connected component of
⊔

i≥1Xi and

the symbol i = i(λ) ∈ {1, 2, . . .} will denote the index i ≥ 1 such that Xλ is a

connected component of Xi, viewed as a subset of
⊔

i≥1Xi. We endow Λ with

the following partial order:

λ1 ≤ λ2 iff Xλ1 ⊃ Xλ2

(where Xλ1 and Xλ2 are viewed as subsets of X) and i(λ1) ≤ i(λ2).

Next we define the sets

Λ− = {λ ∈ Λ;L(Xλ) ≤ 0}
and

Λ+ = {λ ∈ Λ; for any μ ∈ Λ with μ ≤ λ, L(Xμ) > 0}.
Finally we consider the following subcomplex of the disk D2:

(29) Σ′ = D2 −
⋃

λ∈Λ−
Int(b−1(Xλ))

and we shall denote by Σ the connected component of Σ′ containing the bound-

ary circle ∂D2.

Recall that for a 2-complex X the symbol f(X) denotes the number of 2-

simplexes in X . We have

(30) f(D2) =
∑
λ∈Λ

f(Xλ)
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and

(31) f(Σ) ≤ f(Σ′) ≤
∑
λ∈Λ+

f(Xλ).

Formula (30) follows from the observation that any 2-simplex of X = b(D2)

contributes to the RHS of (30) as many units as its multiplicity (the number of

its preimages under b). Formula (31) follows from (30) and from the fact that

for a 2-simplex σ of Σ′ the image b(σ) lies always in the complexes Xλ with

L(Xλ) > 0.

Figure 7. The complex Σ ⊂ D2.

Lemma 6.8: One has the following inequality:

(32)
∑
λ∈Λ+

L(Xλ) ≤ |∂D2|.

Proof. For an edge e of X and for λ ∈ Λ we denote

d̃egλ(e) =

⎧⎨⎩2− degXλ
(e), if e ⊂ Xλ,

0, if e 
⊂ Xλ.
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Note that d̃egλ(e) ≤ 1 and d̃egλ(e) = 1 iff e belongs to a unique 2-simplex of

Xλ, i.e., e ⊂ ∂Xλ. One has∑
λ∈Λ+

L(Xλ) =
∑
e⊂X

∑
λ∈Λ+

d̃egλ(e) ≤
∑
e⊂X

max

{∑
Λ+

d̃egλ(e), 0

}

≤
∑
e⊂X

max

{∑
Λ

d̃egλ(e), 0

}
(33)

≤
∑
e⊂X

|b−1(e) ∩ ∂D2| = |∂D2|.(34)

Here |b−1(e) ∩ ∂D2| denotes the number of boundary edges which b maps onto

the edge e. The inequality (33) follows from the fact that λ �→ d̃egλ(e) is

a non-decreasing function on the poset Λe = {λ ∈ Λ; e ⊂ Xλ}. Note that

Λe is in fact linearly ordered. Indeed, suppose that λ1, λ2 ∈ Λe are such that

i1 = i(λ1) ≥ i2 = i(λ2). ThenXλ2 , as a path-component ofXi2 , is contained in a

path-component of Xi1 ; the latter must coincide with Xλ1 since the intersection

Xλ1 ∩ Xλ2 
= ∅ is nonempty (since it contains the edge e). Thus we see that

the assumption i(λ1) ≥ i(λ2) implies that Xλ2 ⊂ Xλ1 , i.e., λ1 ≥ λ2. Denoting

Λe ∩ Λ+ = Λ+
e we observe that if the sum

(35)
∑
Λ+

d̃egλ(e) =
∑
Λ+

e

d̃egλ(e) > 0

is positive, then (due to the monotonicity) one has d̃egλ0
(e) > 0 for the maximal

element λ0 of Λ+
e and hence d̃egλ(e) > 0 for all λ ≥ λ0, λ ∈ Λe. Thus, the

positivity (35) implies
∑

Λ+ d̃egλ(e) <
∑

Λ d̃egλ(e), giving (33).

To prove the inequality (34) we observe that for an edge e of X one has

(36)
∑
λ∈Λ

degXλ
(e) =

∑
e′∈b−1(e)

degD2(e′) = 2|b−1(e)| − |b−1(e) ∩ ∂D2|

and hence

(37)

∑
λ∈Λ

d̃egλ(e) =2 · |Λe| −
∑
λ∈Λ

degλ(e)

≤2 · |b−1(e)| −
∑
λ∈Λ

degλ(e)

=|b−1(e) ∩ ∂D2| (using (36)).
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Inequality (37) is based on

(38) |Λe| = max
σ⊃e

|b−1(σ)| ≤ |b−1(e)|,

where σ runs over all 2-simplexes ofX containing e. The equality which appears

in (38) is a consequence of the set Λe being linearly ordered; see above. This

completes the proof.

Now we continue with the proof of Theorem 6.2. Consider a tight pure 2-

complex X satisfying (28) and a simplicial loop γ : S1 → X as above. We will

use the notation introduced earlier. The complex Σ is a connected subcomplex

of the disk D2; it contains the boundary circle ∂D2 which we will denote also

by ∂+Σ. The closure of the complement of Σ,

N = D2 − Σ ⊂ D2,

is a pure 2-complex. Let N =
⋃

j∈J Nj be the strongly connected components

of N . Each Nj is PL-homeomorphic to a disc and we define

∂−Σ =
⋃
j∈J

∂Nj,

the union of the circles ∂Nj which are the boundaries of the strongly connected

components of N . It may happen that ∂+Σ and ∂−Σ have nonempty intersec-

tion. Also, the circles forming ∂−Σ may not be disjoint.

We claim that for any j ∈ J there exists λ ∈ Λ− such that b(∂Nj) ⊂ Xλ.

Indeed, let λ1, . . . , λr ∈ Λ− be the minimal elements of Λ− with respect to the

partial order introduced earlier. The complexesXλ1 , . . . , Xλr are connected and

pairwise disjoint and for any λ ∈ Λ− the complex Xλ is a subcomplex of one

of the sets Xλi , where i = 1, . . . , r. From our definition (29) it follows that the

image of the circle b(∂Nj) is contained in the union
⋃r

i=1Xλi , but since b(∂Nj)

is connected it must lie in one of the sets Xλi .

We may apply Lemma 6.7 to each of the circles ∂Nj. We obtain that each of

the circles ∂Nj admits a spanning discs of area ≤ Kε|∂Nj|, where Kε = C ′−1
ε

is the inverse of the constant given by Lemma 6.7. Using the minimality of the

disc D2 we obtain that the circles ∂N bound in D2 several discs with the total

area A ≤ Kε · |∂−Σ| (here we use Lemma 6.6); otherwise one could reduce the

area of the initial disc.
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For λ ∈ Λ+ one has L(Xλ) ≥ 1 and χ(Xλ) ≤ 1 (since b2(Xλ) = 0), hence we

have

3L(Xλ) ≥ 2χ(Xλ) + L(Xλ) ≥ 2εf(Xλ),

where on the last stage we used the inequality μ(Xλ) ≥ 1/2 + ε. Summing up

we get

f(Σ) ≤
∑
λ∈Λ+

f(Xλ) ≤ 3

2ε

∑
λ∈Λ+

L(Xλ) ≤ 3

2ε
|∂D2|.

The rightmost inequality is given by Lemma 6.8.

Next, we observe that

(39) |∂−Σ| ≤ 2f(Σ) + |∂+Σ|.
To explain this inequality we note that each edge of ∂−Σ which does not belong

to ∂+Σ is incident to a face of Σ and a face of Σ can have at most two edges

lying on ∂−Σ. Therefore, we obtain

f(D2) ≤f(Σ) +A ≤ 3

2ε
|γ|+Kε · 2 · f(Σ) +Kε|γ|

≤
( 3

2ε
(1 + 2Kε) +Kε

)
· |γ|,

implying

(40) I(X) ≥ 2ε

3 + 6Kε + 2εKε
.

This completes the proof of Theorem 6.2.
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