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ABSTRACT

We study some properties of hyperbolic Gaussian analytic functions of

intensity L in the unit ball of Cn. First we deal with the asymptotics of

fluctuations of linear statistics as L → ∞. Then we estimate the probabil-

ity of large deviations (with respect to the expected value) of such linear

statistics and use this estimate to prove a hole theorem.

Introduction

Let Bn denote the unit ball in Cn and let ν denote the Lebesgue measure in Cn

normalised so that ν(Bn) = 1. Explicitly dν = n!
πn dm = βn, where dm is the

Lebesgue measure and β = i
2π∂∂̄|z|2 is the fundamental form of the Euclidean

metric.
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For L > n consider the weighted Bergman space

BL(Bn) =

{
f ∈ H(Bn) : ‖f‖2n,L := cn,L

∫
Bn

|f(z)|2(1− |z|2)Ldμ(z) < +∞
}
,

where

(1) dμ(z) =
dν(z)

(1− |z|2)n+1
,

and cn,L = Γ(L)
n!Γ(L−n) is chosen so that ‖1‖n,L = 1.

Let

eα(z) =
(Γ(L+ |α|)

α!Γ(L)

)1/2

zα

denote the normalisation of the monomial zα in the norm ‖·‖n,L, so that {eα}α is

an orthonormal basis of BL(Bn). As usual, here we denote

z = (z1, . . . , zn) and use the multi-index notation α = (α1, . . . , αn),

α! = α1! · · ·αn!, |α| = |α1|+ · · ·+ |αn| and zα = zα1
1 · · · zαn

n .

The hyperbolic Gaussian analytic function (GAF) of intensity L is

defined as

fL(z) =
∑
α

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα, z ∈ Bn,

where aα are i.i.d. complex Gaussians of mean 0 and variance 1 (aα ∼ NC(0, 1)).

We choose the orthonormal basis {eα}α for convenience, but any other basis

would produce the same covariance kernel (see below) and therefore the same

results.

The sum defining fL can be analytically continued to L > 0, hence the

discussion below is also valid for all such L. However, since we only study

asymptotic properties of fL as L tends to infinity, we shall not really use this

extension.

The characteristics of the hyperbolic GAF are determined by its covariance

kernel, which is given by (see [ST04, Section 1], [Sto94, pp. 17–18])

KL(z, w) =E[fL(z)fL(w)] =
∑
α

Γ(L + |α|)
α!Γ(L)

zαw̄α

=

∞∑
m=0

Γ(L +m)

Γ(L)

∑
α:|α|=m

1

α!
zαw̄α

=

∞∑
m=0

Γ(L +m)

m!Γ(L)
(z · w̄)m =

1

(1− z · w̄)L .
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A main feature of the hyperbolic GAF is that the distribution of its zero set

ZfL = {z ∈ Bn; fL(z) = 0}
is invariant under the group Aut(Bn) of holomorphic automorphisms of the ball.

Given w ∈ Bn there exists φw ∈ Aut(Bn) such that φw(w) = 0 and φw(0) = w,

and all automorphisms are essentially of this form: for all ψ ∈ Aut(Bn) there

exist w ∈ Bn and U in the unitary group such that ψ = Uφw (see [Rud08,

2.2.5]). Then the pseudo-hyperbolic distance � in Bn is defined as

�(z, w) = |φw(z)|, z, w ∈ Bn,

and the corresponding pseudo-hyperbolic balls as

E(w, r) = {z ∈ Bn : �(z, w) < r}, r < 1.

There is an immediate relation between the normalised covariance kernel

θL(z, w) =
KL(z, w)√

KL(z, z)
√
KL(w,w)

=
(1− |z|2)L/2(1− |w|2)L/2

(1− z̄ · w)L
and the pseudo-hyperbolic distance, given by the identity

(2) 1− |φw(z)|2 =
(1 − |z|2)(1 − |w|2)

|1− z̄ · w|2 .

The transformations

Tw(f)(z) =
( 1− |w|2
(1 − w̄ · z)2

)L/2

f(φw(z))

are isometries of BL(Bn), hence the random zero sets ZfL and ZfL◦φw have the

same distribution. More specifically, the distribution of the (random) integra-

tion current

[ZfL ] =
i

2π
∂∂̄ log |fL|2

is invariant under automorphisms of the unit ball.

The Edelman–Kostlan formula (see [HKPV09, Section 2.4] and [Sod00, The-

orem 1]) gives the so-called first intensity of the GAF:

E[ZfL ] =
i

2π
∂∂ logKL(z, z) = Lω(z),

where ω is the invariant form

ω(z) =
i

2π
∂∂ log

( 1

1− |z|2
)
=

1

(1− |z|2)2
i

2π

n∑
j,k=1

[(1−|z|2)δj,k+zkzj ]dzj∧dzk.

Notice that μ = ωn is also invariant by Aut(Bn) [Sto94, p. 19].
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In this paper we study some statistical properties of the zero variety ZfL for

large values of the intensity L. The outline of the paper is as follows.

In Section 1 we study the fluctuations of linear statistics as the intensity L

tends to ∞. Let D(n−1,n−1) denote the space of compactly supported smooth

forms of bidegree (n− 1, n− 1). For ϕ ∈ D(n−1,n−1), consider the integral of ϕ

over ZfL :

IL(ϕ) =

∫
ZfL

ϕ =

∫
Bn

ϕ ∧ [ZfL ].

By the Edelman–Kostlan formula,

(3) E[IL(ϕ)] = L

∫
Bn

ϕ ∧ ω.

We compute the leading term of Var[IL(ϕ)] in the limit as L→ ∞ and see that

the rate of self-averaging of the integral of IL(ϕ) increases with the dimension.

A quantitative statement is the following.

Theorem 1: Let ϕ be a compactly supported, real-valued (n− 1, n− 1)-form

with C2 coefficients and let Dϕ be the function defined by i
2π∂∂̄ϕ = Dϕdμ.

Then

Var[IL(ϕ)] = n!ζ(n+ 2)

(∫
Bn

(Dϕ)2dμ

)
1

Ln
+O

( logL

Ln+1

)
.

Notice that this shows a strong form of self-averaging of the volume IL(ϕ),

in the sense that

Var IL(ϕ)

(E[IL(ϕ)])2
= O

( 1

Ln+2

)
.

Notice also that the self-averaging increases with the dimension.

The same computations involved in the proof of this theorem show the as-

ymptotic normality of IL(ϕ), i.e., that the distribution of

IL(ϕ)− E[IL(ϕ)]√
Var[IL(ϕ)]

converges weakly to the (real) standard gaussian (Corollary 5), for each ϕ.

The proofs are rather straight-forward generalisations of the proof for the one-

dimensional case given by Sodin and Tsirelson [ST04], or the analogous result

in the context of compact manifolds given by Shiffman and Zelditch, which we

now outline.
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Let pN be a Gaussian holomorphic polynomial in CPn or, more generally,

a section of a power L N of a positive Hermitian line bundle L over an n-

dimensional Kähler manifold M . Given a test form ϕ of bidegree (n− 1, n− 1),

define

IN (ϕ) =

∫
ZpN

ϕ =

∫
M

ϕ ∧ [ZpN ].

According to [SZ10, Theorem 1.1], for a real-valued (n− 1, n− 1)-form with C3

coefficients, as N → ∞,

Var[IN (ϕ)] =
πn−2

4
ζ(n+ 2)‖∂∂̄ϕ‖22

1

Nn
+O

( 1

Nn+1/2−ε

)
.

The proof of this result is based on a bi-potential expression of Var[IN (ϕ)]

(see (4)) together with good estimates of the covariance kernel, something we

certainly have for the GAF in the ball.

In Section 2, we deal with large deviations. We study the probability that

the deviation of IL(ϕ) from its expected value is at least a fixed proportion of

E[IL(ϕ)].

Theorem 2: For all ϕ ∈ D(n−1,n−1) and δ > 0, there exist c > 0 and L0(ϕ, δ, n)

such that for all L ≥ L0,

P[|IL(ϕ)− E(IL(ϕ))| > δE(IL(ϕ))] ≤ e−cLn+1

.

Replacing δ
∫
Bn
ϕ ∧ ω by δ we get the equivalent formulation:

P

[∣∣∣∣ 1LIL(ϕ) −
∫
Bn

ϕ ∧ ω
∣∣∣∣ > δ

]
≤ e−cLn+1

.

Following the scheme of [SZZ08, p. 1994] we deduce a corollary that implies

the upper bound in the hole theorem (Theorem 4 below). For a compactly

supported function ψ in Bn denote

IL(ψ) =

∫
ZfL

ψωn−1 =

∫
Bn

ψ ∧ ωn−1 ∧ [ZfL ].

Notice that (3) gives here

E[IL(ψ)] = L

∫
Bn

ψ dμ.

In particular, and for an open set U in the ball, let χU denote its characteristic

function and let IL(U) = IL(χU ). Then E[IL(U)] = Lμ(U).
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Corollary 3: Suppose that U is an open set contained in a compact subset

of Bn. For all δ > 0 there exist c > 0 and L0 such that for all L ≥ L0,

P

[∣∣∣ 1
L
IL(U)− μ(U)

∣∣∣ > δ
]
≤ e−cLn+1

.

The case n = 1 of Theorem 2 is given in [Buc13, Theorem 5.7]. Our proof

is inspired by the methods of B. Shiffman, S. Zelditch and S. Zrebiec for the

study of the analogous problem for compact Kähler manifolds. According to

[SZZ08, Theorem 1.5], given δ > 0, and letting ω denote the Kähler form of the

manifold,

P

[∣∣∣∣ 1N
∫
ZpN

ϕ− 1

π

∫
M

ω ∧ ϕ
∣∣∣∣ > δ

]
≤ e−cNn+1

,

where here N indicates the power of the positive Hermitian bundle over M .

In the last Section we study the probability that ZfL has a pseudohyper-

bolic hole of radius r. By the invariance under automorphisms of the distri-

bution of the zero variety, this is the same as studying the probability that

ZfL ∩B(0, r) = ∅.
Theorem 4: Let r∈(0, 1) be fixed. There existC1=C1(n, r)>0, C2=C2(n, r)>0

and L0 such that for all L ≥ L0,

e−C1L
n+1 ≤ P[ZfL ∩B(0, r) = ∅] ≤ e−C2L

n+1

.

This result is also inspired by an analogue for entire functions in the plane

given by Sodin and Tsirelson [ST05]. Let

FL =

{
f ∈ H(C) :

∫
C

|f(z)|2e−L|z|2dm(z) < +∞
}

and consider the Gaussian entire function

fL(z) =

∞∑
k=0

akek(z),

where ak are i.i.d. complex standard Gaussians and {ek(z)}∞k=0 is an orthonor-

mal basis of FL.

The Edelman–Kostlan formula gives

E[ZfL ] =
L

π
dm(z),

and for a test function ϕ,

IL(ϕ) = L

∫
C

ϕ(z)
dm(z)

π
=

∫
C

ϕ(w/
√
L)
dm(z)

π
.
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In particular

E[#(ZfL ∩D(0, r))] = E[#(Zf1 ∩D(0, r
√
L))],

and therefore studying the asymptotics as L → ∞ is equivalent to replacing L

by r2 and letting r → ∞.

Sodin and Tsirelson proved [ST05, Theorem 1] that, as r → ∞,

e−Cr4 ≤ P[Zf1 ∩D(0, r) = ∅] ≤ e−cr4.

Zrebiec extended this result to C
n [Zre07, Theorem 1.2], showing that the decay

rate is then e−Cr2n+2

, which matches with our Theorem 4.

Shiffman, Zelditch and Zrebiec proved also a hole theorem for sections of

powers of a positive Hermitian line bundle over a compact Kähler manifold

[SZZ08, Theorem 1.4]. In that case the decay rate of the hole probability is

again e−CNn+1

.

A final word about notation. By A � B we mean that there exists C > 0

independent of the relevant variables of A and B for which A ≤ CB. Then

A 
 B means that A � B and B � A.

1. Linear statistics

Proof of Theorem 1. The proof is as in [HKPV09, Section 3.5], so we keep it

short. By Stokes and Fubini’s theorems

Var[IL(ϕ)]

=E[|IL(ϕ) − E(IL(ϕ))|2] = E

[∣∣∣∣
∫
Bn

ϕ ∧ i

2π
∂∂̄ log

( |fL|2
KL(z, z)

)∣∣∣∣
2]

=4E

[∣∣∣∣
∫
Bn

log
( |fL|√

KL(z, z)

) i

2π
∂∂̄ϕ

∣∣∣∣
2]

=4

∫
Bn

∫
Bn

E

[
log

( |fL(z)|√
KL(z, z)

)
log

( |fL(w)|√
KL(w,w)

)] i

2π
∂∂̄ϕ(z)

i

2π
∂∂̄ϕ(w).

Consider the normalised GAF

f̂(z) =
fL(z)√
KL(z, z)

.

Then (f̂(z), f̂(w)) has joint gaussian distribution with mean 0 and marginal

variances 1. Since f̂(z) ∼ NC(0, 1) the expectation E(log |f̂(z)|) is constant, and
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integrated against ∂∂̄ϕ gives 0. Therefore, in the integral above, the expectation

can be replaced by

Cov(log |f̂(z)|, log |f̂(w)|) = E[log |f̂(z)| log |f̂(w)|] − E[log |f̂(z)|]E[log |f̂(w)|].
This yields the following bi-potential expression of the variance, which is our

starting point:

(4)

Var[IL(ϕ)] =

∫
Bn

∫
Bn

ρL(z, w)
i

2π
∂∂̄ϕ(z)

i

2π
∂∂̄ϕ(w)

=

∫
Bn

∫
Bn

ρL(z, w)Dϕ(z)Dϕ(w)dμ(z)dμ(w),

where ρL(z, w) = 4Cov(log |f̂(z)|, log |f̂(w)|). By [HKPV09, Lemma 3.5.2]

ρL(z, w) =

∞∑
m=1

|θL(z, w)|2m
m2

,

where

(5) θL(z, w) =
KL(z, w)√

KL(z, z)
√
KL(w,w)

=
(1− |z|2)L/2(1− |w|2)L/2

(1− z̄ · w)L

is the normalised covariance kernel of fL.

We see next that only the near diagonal part of the double integral (4) is

relevant. Let εL = 2/Ln+1, and split the integral in three parts:

Var[IL(ϕ)] =

∫
ρL(z,w)≤εL

ρL(z, w)Dϕ(z)Dϕ(w)dμ(z)dμ(w)(I1)

+

∫
ρL(z,w)>εL

ρL(z, w)(Dϕ(z)−Dϕ(w))Dϕ(w)dμ(z)dμ(w)(I2)

+

∫
ρL(z,w)>εL

ρL(z, w)(Dϕ(w))
2dμ(z)dμ(w).(I3)

The bound for the first integral is straight-forward,

|I1| ≤ εL

∫
ρL(z,w)≤εL

|Dϕ(z)Dϕ(w)|dμ(z)dμ(w) ≤ εL

(∫
Bn

|Dϕ(z)| dμ(z)
)2

.

In order to bound (I2) let φz denote the automorphism of Bn exchanging z

and 0, so that |θL(z, w)|2 = (1−|φz(w)|2)L (see (2)). By the uniform continuity

of i∂∂̄ϕ there exists η(t) with limt→1 η(t) = 0 such that for all z, w ∈ Bn,

|Dϕ(z)−Dϕ(w)| ≤ η(1 − |φz(w)|2).
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An immediate estimate shows that

x ≤
∞∑

m=1

xm

m2
≤ 2x, x ∈ [0, 1],

and therefore

(6) (1− |φz(w)|2)L ≤ ρL(z, w) ≤ 2(1− |φz(w)|2)L.
By the invariance by automorphisms of the measure dμ, we get (after changing

appropriately the value of Cϕ at each step)

|I2|≤ 2Cϕ

∫
{ρL(z,w)>εL}∩(suppϕ×suppϕ)

(1−|φz(w)|2)Lη(1−|φz(w)|2)dμ(z)dμ(w)

≤ Cϕη((εL/2)
1/L)

∫
{ρL(z,w)>εL}∩(suppϕ×suppϕ)

(1− |φz(w)|2)Ldμ(z)dμ(w)

≤ Cϕη((εL/2)
1/L)

∫
suppϕ

(∫
z:ρL(z,0)>εL

(1 − |z|2)Ldμ(z)
)
dμ(w)

≤ Cϕη((εL/2)
1/L)

∫
z:ρL(z,0)>εL

(1− |z|2)Ldμ(z).

Since η(t) � |1− t| for t near 1, we see that

η((εL/2)
1/L) � 1− (εL/2)

1/L 
 logL

L

and therefore

|I2| � logL

L

∫
z:ρL(z,0)>εL

(1− |z|2)Ldμ(z).

On the other hand, using again the invariance, we see that

I3 =

(∫
Bn

(Dϕ(w))2dμ(w)

)∫
z:ρL(z,0)>εL

(1 − |z|2)Ldμ(z).

Since limL→∞ ε
1/L
L = 1 we have thus I2 = o(I3) and therefore

(7) Var[IL(ϕ)] = I3
(
1 + O

( logL
L

))
+O(εL).

It remains to compute the second factor in I3:

J :=

∫
z:ρL(z,0)>εL

ρL(z, 0)dμ(z) =

∞∑
m=1

1

m2

∫
z:ρL(z,0)>εL

(1− |z|2)mLdμ(z).

By (6),

{|z|2 < 1− ε
1/L
L } ⊂ {ρL(z, 0) > εL} ⊂ {|z|2 < 1− (εL/2)

1/L}
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and therefore

J =

∞∑
m=1

1

m2

∫
|z|2<1−(

εL
2 )1/L

(1−|z|2)mLdμ(z)−
∫

|z|2<1−(
εL
2

)1/L

ρL(z,0)≤εL

(1−|z|2)mLdμ(z).

Claim 1: The sum of the negative terms is negligible. More precisely,

∞∑
m=1

1

m2

∫
|z|2<1−(

εL
2

)1/L

ρL(z,0)≤εL

(1 − |z|2)mLdμ(z) = O
( logn−1 L

L2n+1

)
.

Assuming this we have

(8) J =
∞∑

m=1

1

m2
Im + o(L−n)

where, denoting rL = 1− ( εL2 )1/L,

Im =

∫
|z|2<rL

(1− |z|2)mLdμ(z) =

∫
|z|2<rL

(1− |z|2)mL−n−1dν(z).

Integration in polar coordinates ([Rud08, 1.4.3]) shows that Im is a truncated

beta function:

Im = n

∫ √
rL

0

(1 − r2)mL−n−1r2(n−1)2r dr = n

∫ rL

0

(1− t)mL−n−1tn−1dt.

A repeated integration by parts yields, for n, k > 0,

n

∫ r

0

(1− t)k−1tn−1dt

=
n!Γ(k)

Γ(n+ k)
(1− (1 − r)k+n−1)−

n−1∑
j=1

n!Γ(k)

Γ(n− j)Γ(k + j)
(1− r)k+j−1rn−j ,

thus taking k = mL− n we deduce from (8) that

J = n!

∞∑
m=1

1

m2

[
Γ(mL− n)

Γ(mL)
[1− (1− rL)

mL−1]

−
n−1∑
j=1

Γ(mL− n)

Γ(n− j)Γ(mL− n+ j)
(1 − rL)

mL−n+j−1rn−j
L

]
.

Claim 2: The negative terms in this sum are again negligible. Specifically,

∞∑
m=1

1

m2

n−1∑
j=1

Γ(mL− n)

Γ(n− j)Γ(mL− n+ j)
(1 − rL)

mL−n+j−1rn−j
L = O

( logn+j L

L2n+3

)
.
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The asymptotics of the Γ-function

(9) lim
m→∞

Γ(m+ n)

Γ(m)mn
= 1

and the fact that (1 − rL)
mL = (εL/2)

m tends to 0 as L→ ∞ yield

J = n!

∞∑
m=1

1

m2

Γ(mL− n)

Γ(mL)
+ o(L−n) = n!

∞∑
m=1

1

m2

1

(mL)n
+ o(L−n)

= n!
1

Ln
ζ(n+ 2) + o(L−n).

Plugging this in (7) we finally obtain the stated result.

Proof of Claim 1. Denote by N the sum we need to estimate. Using the fact

that εL = 2L−(n+1) and unwinding the condition ρL(z, 0) ≤ εL, a rough esti-

mate yields

N =

∞∑
m=1

1

m2

∫
(
εL
2 )1/L≤1−|z|2≤ε

1/L
L

(1− |z|2)mL−n−1dν(z)

�
∞∑

m=1

1

m2
(ε

1/L
L )L−n−1ν

({
1− ε

1/L
L ≤ |z|2 ≤ 1−

(εL
2

)1/L})

� ε
1− n

L

L

(
1− 1

21/L

)(
1− (

εL
2
)1/L

)n−1

≤ 2

Ln+1

( log 2
L

+ o(L−1)
)(n+ 1

L
logL+ o

( logL
L

))n−1

= O
( logn−1 L

L2n+1

)
.

Proof of Claim 2. We have

(1 − rL)
mL−n+j−1rn−j

L = L−n+1
L (mL−n+j−1)

(n+ 1

L
logL+ o(L−n)

)n−j

= O
( logn+j L

L(n+1)m+n+j

)
.

On the other hand, the number of terms in the sum in j is independent of L,

so by (9), for L big enough and for all j

lim
L→∞

Γ(mL− n)

Γ(mL− n+ j)
=

1

(mL)j
.
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Thus, denoting by M the double sum in m and j we see that

M 

∞∑

m=1

1

m2

n−1∑
j=1

1

(mL)j
logn+j L

L(n+1)m+n+j
= O

( logn+j L

L2n+3

)
.

As an immediate consequence of the results of M. Sodin and B. Tsirelson and

the previous computations we obtain the asymptotic normality of IL(ϕ).

Corollary 5: As L→ ∞ the distribution of the normalised random variable

IL(ϕ)− E[IL(ϕ)]√
Var(IL(ϕ))

tends weakly to the standard (real) gaussian, for each ϕ.

Proof. Consider the normalised GAF f̂L(z), whose covariance kernel is θL(z, w).

Notice that

JL(ϕ) :=

∫
Bn

log |f̂L(z)|2Dϕ(z)dμ(z) = IL(ϕ)−
∫
Bn

logKL(z, z) Dϕ(z)dμ(z),

and that the second term has no random part. Hence

(JL(ϕ) − E[JL(ϕ)])/
√

Var[JL(ϕ)] and (IL(ϕ)− E[IL(ϕ)])/
√

Var[IL(ϕ)]

have the same distribution, and according to [ST04, Theorem 2.2], to prove the

asymptotic normality of JL(ϕ) it is enough to see that

lim inf
L→∞

∫
Bn

∫
Bn

|θL(z, w)|2|Dϕ(z)||Dϕ(w)|dμ(z)dμ(w)
supw∈Bn

∫
Bn

|θL(z, w)|dμ(z) > 0(a)

lim
L→∞

sup
w∈Bn

∫
Bn

|θL(z, w)|dμ(z) = 0.(b)

By the invariance under automorphisms of the measure μ∫
Bn

|θL(z, w)| dμ(z) =
∫
Bn

(1 − |z|2)L/2dμ(z),

and (b) follows.

On the other hand, the double integral in the numerator of (a) is essentially

the same as the integral we have estimated in the proof of the previous theorem

(see (4)), and the same computations show that (a) holds.
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2. Large deviations

We begin with the proof of Corollary 3 (assuming Theorem 2).

Proof of Corollary 3. Since ωn−1 ∧ [ZfL ] is a positive current, the functional

IL(ψ) is monotone, i.e., if ψ1 ≤ ψ2 then IL(ψ1) ≤ IL(ψ2).

Let ψ1, ψ2 be smooth compactly supported functions in Bn such that

0 ≤ ψ1 ≤ χU ≤ ψ2 ≤ 1 and∫
Bn

ψ1 dμ ≥ μ(U)(1− δ),

∫
Bn

ψ2 dμ ≤ μ(U)(1 + δ).

Outside an exceptional set of probability e−cLn+1

we have, by Theorem 2,

IL(U) ≤ IL(ψ2) ≤ (1 + δ)E[IL(ψ2)] = (1 + δ)L

∫
Bn

ψ2dμ ≤ (1 + δ)2Lμ(U).

Similarly, using ψ1, we see that

IL(U) ≥ (1− δ)2Lμ(U)

outside another set of probability e−cLn+1

, which after appropiately changing

the value of δ completes the proof.

A different proof of Corollary 3 can be obtained by following the scheme

of [HKPV09, Theorem 7.2.5], using the Poisson–Szegö representation of the

averages
∫
|ξ|=1

log |fL(ξ)|dσ(ξ) instead of Jensen’s formula.

Proof of Theorem 2. Applying Stokes’ theorem, we have

IL(ϕ) − E[IL(ϕ)] =

∫
Bn

ϕ ∧ i

2π
∂∂ log

|fL|2
KL(z, z)

=

∫
Bn

log
|f̂L|2

KL(z, z)

i

2π
∂∂ϕ.

Thus,

|IL(ϕ) − E[IL(ϕ)]| ≤ ‖Dϕ‖∞
∫
suppϕ

| log |f̂L(z)|2|dμ(z).

By (3), the proof of Theorem 2 will be completed as soon as we prove the

following Lemma.

Lemma 6: For any regular compact setK and any δ > 0 there exists c = c(δ,K)

such that

P

[ ∫
K

| log |f̂L(z)|2|dμ(z) > δL

]
≤ e−cLn+1

.

The key ingredient in the proof of this lemma is given by the following control

on the average of
∣∣log |f̂L|2∣∣ over pseudo-hyperbolic balls.
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Lemma 7: There exists a constant c > 0 such that for a hyperbolic ball

E = E(z0, s), z0 ∈ Bn, s ∈ (0, 1),

P

[
1

μ(E)

∫
E

| log |f̂L(ξ)|2|dμ(ξ) > 5Lμ(E)1/n
]
≤ e−cLn+1

.

Let us see first how this allows to complete the proof of Lemma 6, and there-

fore of Theorem 2.

Proof of Lemma 6. Cover K with pseudo-hyperbolic balls Ej = E(λj , ε),

j = 1, . . . , N of fixed invariant volume μ(Ej) = η (to be determined later

on). A direct estimate shows that N 
 μ(K)/η.

By Lemma 7, outside an exceptional event of probabilityNe−cLn+1≤e−c′Ln+1

,

∫
K

log |f̂L(ξ)|2|dμ(ξ) ≤
N∑
j=1

∫
Ej

| log |f̂L(ξ)|2|dμ(ξ)

≤
N∑
j=1

5Lη1+1/n 
 Lμ(K)η1/n.

Choosing η such that μ(K)η1/n = δ we are done.

Now we proceed to prove Lemma 7. A first step is the following lemma.

Lemma 8: Fix r < 1 and δ > 0. There exists c > 0 and L0 = L0(r, δ) such that

for all L ≥ L0 and all z0 ∈ Bn

(a) P [maxE(z0,r) log |f̂L(z)|2 < −δL] ≤ e−cLn+1

,

(b) P [maxE(z0,r) log |f̂L(z)|2 > δL] ≤ e−ceLδ/2

.

Combining both estimates P[maxE(z0,r) | log |f̂L(z)|2| > δL] ≤ e−cLn+1

.

Proof. By the invariance of the distribution of f̂ , it is enough to consider the

case z0 = 0.

(a) Consider the event

E1 = {max
|z|≤r

log |f̂L(z)|2 < −δL}.

Note that

log |f̂L(z)|2 = log
|fL(z)|2
KL(z, z)

= log |fL(z)|2 − log
1

(1− |z|2)L ,
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hence, by subharmonicity,

E1 ⊂ {max
|z|≤r

log |fL(z)|2 ≤ L log
1

1− r2
− Lδ}

= {max
|z|=r

log |fL(z)|2 ≤ L(log
1

1− r2
− δ)}.

Therefore, letting δ̃ = δ
2 [log(

1
1−r2 )]

−1,

P[E1] ≤ P

[
max
|z|=r

log |fL(z)|
L

≤
(1
2
− δ̃

)
log

1

1− r2

]
.

The estimate of P[E1] will be done as soon as we prove the following lemma,

which is the analogue of the upper bound in [HKPV09, Lemma 7.2.7].

Lemma 9: For 0 < δ < 1/2 and r ∈ (0, 1) there exist c = c(δ, r) and L0=L0(δ, r)

such that for all L ≥ L0

P

[
max
|z|=r

log |fL(z)|
L

≤
(1
2
− δ

)
log

1

1− r2

]
≤ e−cLn+1

.

Proof of Lemma 9. Under the event we want to estimate

max
|z|=r

|fL(z)| ≤ (1− r2)−L( 1
2−δ).

We shall see that this implies that some coefficients of the series of fL are

necessarily “small”, something that only happens with a probability less than

e−cLn+1

. Since

fL(z) =
∑
α

∂αfL(0)

α!
zα =

∑
α

aα

(Γ(|α| + L)

α!Γ(L)

)1/2

zα,

we have

aα =
( α!Γ(L)

Γ(L + |α|)
)1/2 ∂αfL(0)

α!
,

and by Cauchy’s formula [Rud08, p. 37]

∂αfL(0)

α!
=

Γ(n+ |α|)
Γ(n)α!r|α|

∫
S

fL(rξ)ξ
α
dσ(ξ).

Hence

|aα| ≤
( α!Γ(L)

Γ(L+ |α|)
)1/2 Γ(n+ |α|)

Γ(n)α!r|α|
(max
ξ∈S

|ξα|)(max
|z|=r

|fL|).
Since for m ∈ N,

(10)
∑

|α|=m

αα

α!|α||α| =
1

m!
,
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we have

|aα| ≤
( Γ(L)

Γ(L+ |α|)
)1/2Γ(n+ |α|)

Γ(n)

( αα

α!|α||α|
)1/2

(1− r2)−L( 1
2−δ)r−|α|.

Using

(11)
∑

|α|=m

αα

α!|α||α| =
1

m!
,

Stirling’s formula and the asymptotics for the Gamma function (9), we get (for

m� n)

∑
|α|=m

|aα|2 ≤ Γ(L)

Γ(L +m)

Γ2(n+m)

Γ2(n)m!
r−2m(1 − r2)−L(1−2δ)

� Γ(L)Γ(n+m)

Γ(L+m)
mn−1r−2m(1− r2)−L(1−2δ)

� LL(m+ n)m+n

(L+m)L+m
mn−1r−2m(1 − r2)−L(1−2δ)

� LL(m+ n)m

(L+m)L+m
m2nr−2m(1 − r2)−L(1−2δ).

(We use this lemma (and Lemma 8) in the proof of Lemma 7, which is in

turn used in Lemma 6 with a radius r = ε such that μ(E(λj , ε)) = (δ/μ(K))n.

Since in Lemma 6 it is enough to consider δ small, here it is enough to consider

r close to 0. We assume thus that r is close to 0, although the proof seems to

work for all r ∈ (0, 1).)

For the indices m such that

(12) m ≤ r2L− n

1− r2

we have (1− r2)m ≤ r2L− n and therefore m+n
L+mr

−2 ≤ 1. Hence

∑
|α|=m

|aα|2 ≤ LL

(L+m)L
m2n

(1− r2)L(1−2δ)
=

[ Lm
2n
L

(L+m)(1− r2)1−2δ

]L
.

Fix ε (possibly very small) and let us find conditions on m so that the term

in the brackets is smaller than (1 + ε)−1. Assume that m satisfies (12) and

(13) m ≥ (1− δ)
r2L

1− r2
,
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Then limL→∞m
2n
L = 1 and we can take L0 such that m

2n
L ≤ 1 + ε for L ≥ L0.

Then, for the term in the brackets to be smaller than (1 + ε)−1 it is enough to

have
L(1 + ε)

(L+m)(1 − r2)1−2δ
≤ 1

1 + ε
,

that is

(1 + ε)2L ≤ (L+m)(1 − r2)1−δ.

This will occur for the m’s in our range if

(1 + ε)2 <
(
1 +

(1− δ)r2

1− r2

)
(1− r2)1−δ.

Thus for the existence of an ε > 0 with this property it is enough to have

1 <
(
1 +

(1− δ)r2

1− r2

)
(1− r2)1−δ = (1− r2)1−δ +

(1− δ)r2

(1− r2)δ
.

The function f(x) = (1−x)1−δ+ (1−δ)x
(1−x)δ

has f(0) = 1 and f ′(x) = δ(1−δ)x
(1−x)1+δ > 0,

thus f(x) > 1 for x > 0.

All combined, for the indices m satisfying (12) and (13), i.e., in the set

A :=
{
m : (1 − δ)

r2L

1− r2
≤ m ≤ r2L− n

1− r2

}
,

the following estimate holds∑
|α|=m

|aα|2 � (1 + ε)−m.

Let us see next that this happens with very small probability. Note that

P

[ ∑
|α|=m

|aα|2 ≤ (1 + ε)−m, ∀m ∈ A

]
=

∏
m∈A

P

[N(n,m)∑
j=1

|ξj |2 ≤ (1 + ε)−m

]
,

where ξj ∼ NC(0, 1) are independent and N(n,m) = Γ(n+m)/(m!Γ(n)) is the

number of indices α with |α| = m. The variable
∑N(n,m)

j=1 |ξj |2 follows a Gamma

distribution of parameter N(n,m), therefore,

P

[N(n,m)∑
j=1

|ξj |2 ≤ (1 + ε)−m

]
=

1

Γ(N(n,m))

∫ (1+ε)−m

0

xN(n,m)−1e−xdx

≤ 1

Γ(N(n,m))

1

N(n,m)
(1 + ε)−mN(n,m).
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Observe that for m ∈ A, m 
 L and, by (9), N(n,m) 
 mn−1 
 Ln−1. With

this and Stirling’s formula we get

log P

[N(n,m)∑
j=1

|ξj |2 ≤ (1 + ε)−(m+n)

]

�− log Γ(Ln−1)− logLn−1 − L · Ln−1 log(1 + ε)


− Ln log(1 + ε)[1 + o(1)] ≤ −CLn.

Therefore, changing appropiately the value C at each step, we finally see that

P

[ ∑
|α|=m

|aα|2 ≤ (1+ε)−m, ∀m ∈ A

]
≤(e−CLn

)#A = (e−CLn

)L+o(1) ≤ e−CLn+1

.

This finishes the proof of (a) in Lemma 8.

(b) Let now

E2 := {max
|z|≤r

log |f̂L(z)|2 > δL} =
{
max
|z|≤r

[
log |fL(z)| − L

2
log

1

1− |z|2
]
> δL

}
.

We estimate the probability of this event by controlling the coefficients of the

series of fL. Let C be a constant to be determined later on. Split the sum

defining |fL| as

(14)
|fL(z)| ≤

∑
|α|≤CδL

|aα|
(Γ(|α|+L)
α!Γ(L)

)1/2

|zα|+
∑

|α|>CδL

|aα|
(Γ(|α|+L)
α!Γ(L)

)1/2

|zα|

=: (I) + (II).

We shall estimate each part separately.

Let us begin with the first sum. Using Cauchy–Schwarz inequality, (10) and

(11), we obtain

(I) ≤
( ∑

|α|≤CδL

|aα|2
)1/2( ∑

|α|≤CδL

Γ(|α|+ L)

α!Γ(L)

αα

|α||α| |z|
2|α|

)1/2

=

( ∑
|α|≤CδL

|aα|2
)1/2( ∑

m≤CδL

Γ(m+ L)

m!Γ(L)
|z|2m

)1/2

≤
( ∑

|α|≤CδL

|aα|2
)1/2

(1− |z|2)−L/2 =

( ∑
|α|≤CδL

|aα|2
)1/2√

KL(z, z).
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Now we shall see that, except for an event of small probability, (II) is bounded

(if C is choosen appropiately). For |z| ≤ r,

(II) ≤
∑

|α|>CδL

|aα|
(Γ(|α|+ L)

α!Γ(L)

)1/2( αα

|α||α|
)1/2

r|α|

≤
∑

|α|>CδL

|aα|
(Γ(|α|+ L)

|α|!Γ(L)
)1/2

r|α|.

Let β > 0 be such that r = e−β and consider γ ∈ (0, β) and ε > 0 such that

0 < γ < γ + ε < β. Define the following event:

A = {|aα| ≤ eγ|α|, ∀α : |α| ≥ CδL}.

If A occurs, by the asymptotics (9),

(II) ≤
∑

m>CδL

eγm
(Γ(m+ L)

m!Γ(L)

)1/2

rm
Γ(m+ n)

Γ(n)m!

� 1√
Γ(L)

∑
m>CδL

m
L−1

2 mn−1eγmrm ≤ 1√
Γ(L)

∑
m>CδL

mn+L/2(eγr)m.

Lemma 10: Given ε > 0 there exists C > 0 big enough so that for all m > CδL

mn+L/2√
Γ(L)

≤ Ceεm.

Proof. It is enough to see that there exists a constant D such that for x > CδL

f(x) := εx−
(
n+

L

2

)
log x+

1

2
log Γ(L) +D ≥ 0.

Note that limx→∞ f(x) = +∞ and that f is increasing for x ≥ ε−1(n + L/2).

Choose C with CδL > ε−1(n+L/2), so that f is increasing for x > CδL. Then,

by Stirling’s formula,

f(CδL) = εCδL−
(
n+

L

2

)
log(CδL) +

1

2
log Γ(L) + logD

= εCδL−
(
n+

L

2

)
log(Cδ) − n logL+

1

2
log

(2π
L

)1/2

− L

2
+ O(1)

=
[
εCδ − 1

2
log(Cδ)− 1

2

]
L+ o(L).

Choose C big enough so that the term in the brackets is positive, and therefore

f(x) > 0 for x > CδL.
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Taking C as in this lemma we obtain

(II) �
∑

m>CδL

e−[β−(γ+ε)]m ≤ 1

1− e−[β−(γ+ε)]
.

Now we show that the event A has “big” probability. The variables |aα|2 are

independent exponentials, hence

P[A] =
∏

|α|≥CδL

1− P[|aα| ≥ eγ|α|] =
∏

m≥CδL

[1− e−e2γm

]
Γ(n+m)
Γ(n)m! .

Since x = e−e2γm

is close to 0, we can use the estimate log(1− x) 
 −x. Thus,
using (9) once more,

logP[A] =
∑

m≥CδL

Γ(n+m)

Γ(n)m!
log[1− e−e2γm

] 
 −
∑

m≥CδL

mn−1e−e2γm

.

There exists L0 such that for all L ≥ L0 and m ≥ CδL,

mn−1e−e2γm ≤ e−eγm

,

and therefore

logP[A] ≥ −
∑

m≥CδL

e−eγm 
 −e−eγCδL

.

Choosing C big enough so that, in addition to the previous conditions,

γC > log
1

1− r2
,

we have

−e−e(2γ−η)CδL

> −e−(1−r2)−δL

and therefore

P[A] ≥ e−e−(1−r2)−δL

.

So far we have proved that, after choosing γ appropriately, and under the

event A,

|fL(z)| ≤
( ∑

|α|≤CδL

|aα|2
)1/2√

KL(z, z) + Cr .

Therefore, the condition
|fL(z)|2
KL(z, z)

> eδL

imposed in E2 implies that, for |z| ≤ r and L big,∑
|α|≤CδL

|aα|2 ≥
(
e

δ
2L − Cr√

KL(z, z)

)2

>
1

2
eδL.
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Let

ML = #{α : |α| ≤ CδL} =
∑

m≤CδL

Γ(n+m)

Γ(n)m!
≤ CδL

Γ(n+ CδL)

Γ(n)(CδL)!

 CnδnLn.

Hence,

P[A ∩ E2] ≤P

[{ ∑
|α|≤CδL

|aα|2 ≥ 1

2
eδL

}]

≤
∑

|α|≤CδL

P

[
|aα|2 ≥ eδL

2ML

]

=MLe
−( eδL

2ML
) ≤ e−e

δ
2
L

.

Using this last estimate and the bound for P[A], we have finally that

P[E2] ≤ e−eLδ/2

.

It remains to prove Lemma 7. Before we proceed we need the following

mean-value estimate of log |f̂L(λ)|2.
Lemma 11: Let λ ∈ Bn, s > 0 and consider the pseudo-hyperbolic ball E(λ, s).

Then

log |f̂L(λ)|2 ≤ 1

μ(E(λ, s))

∫
E(λ,s)

log |f̂L(ξ)|2dμ(ξ) + Lε(n, s),

where

ε(n, s) =
n

μ(E(0, s))

∫ s2

1−s2

0

xn−1 log(1 + x)dx ≤ s2

1− s2
= μ(E(λ, s))1/n.

Proof. By the subharmonicity of log |fL(z)|2 we have

log |f̂L(λ)|2 ≤ 1

μ(E(λ, s))

∫
E(λ,s)

log |fL(ξ)|2dμ(ξ) + L log(1− |z|2)

=
1

μ(E(λ, s))

∫
E(λ,s)

log |f̂L(ξ)|2dμ(ξ)

+ L

[
log(1− |λ|2)− 1

μ(E(λ, s))

∫
E(λ,s)

log(1 − |ξ|2)dμ(ξ)
]
.
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Identity (2) and the pluriharmonicity of log |1− λ̄ · ξ|2 yield

1

μ(E(λ, s))

∫
E(λ,s)

log(1 − |ξ|2)dμ(ξ)

=
1

μ(B(0, s))

∫
B(0,s)

log(1− |φλ(ξ)|2)dμ(ξ)

= log(1 − |λ|2) + 1

μ(B(0, s))

∫
B(0,s)

log(1− |ξ|2)dμ(ξ).

Changing into polar coordinates and performing the change of variable x = r2

1−r2

we get ∫
B(0,s)

log(1− |ξ|2)dμ(ξ) =2n

∫ s

0

log(1− r2)
r2n−1

(1− r2)n+1
dr

=− n

∫ s2

1−s2

0

xn−1 log(1 + x) dx.

This and the fact that μ(B(0, s)) = s2n

(1−s2)n ([Sto94] (4.4)) finish the proof.

Proof of Lemma 7. According to Lemma 8(a), except for an exceptional event

of probability e−cLn+1

, there is λ ∈ E := E(z0, s) such that

−L(μ(E))1/n < log |f̂L(λ)|2.

Therefore, using Lemma 11,

−L(μ(E))1/n <
1

μ(E)

∫
E

log |f̂L(ξ)|2dμ(ξ) + L(μ(E))1/n.

Hence

0 <
1

μ(E)

∫
E

log |f̂L(ξ)|2dμ(ξ) + 2L(μ(E))1/n.

Separating the positive and negative parts of the logarithm we obtain

1

μ(E)

∫
E

log− |f̂L(ξ)|2dμ(ξ) ≤ 1

μ(E)

∫
E

log+ |f̂L(ξ)|2dμ(ξ) + 2L(μ(E))1/n.

Hence,

1

μ(E)

∫
E

| log |f̂L(ξ)|2|dμ(ξ) ≤ 2

μ(E)

∫
E

log+ |f̂L(ξ)|2dμ(ξ) + 2L(μ(E))1/n.
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Again by Lemma 8, outside another exceptional event of probability e−cLn+1

,

1

μ(E)

∫
E

| log |f̂L(ξ)|2|dμ(ξ) ≤2max
E

log+ |f̂L(ξ)|2 + 2L(μ(E))1/n

≤5Lμ(E)1/n.

3. The hole theorem

Here we prove Theorem 4.

The upper bound is a direct consequence of the results in the previous section.

Letting U = B(0, r) and applying Corollary 3 with δμ(U) instead of δ we get

P[ZfL ∩B(0, r) = ∅] ≤ P[|IL(U)− Lμ(U)| > δLμ(U)] ≤ e−C2L
n+1

.

The method to prove the lower bound is by now standard (see, for example,

[HKPV09, Theorem 7.2.3] and [ST04]): we shall choose three events forcing fL

to have a hole B(0, r) and then we shall see that the probability of such events

is at least e−C1L
n+1

. Our starting point is the estimate

|fL(z)| ≥ |a0|−
∣∣∣∣ ∑
0<|α|≤CL

aα

(Γ(L + |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣−

∣∣∣∣ ∑
|α|>CL

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣,

where C will be chosen later on.

The first event is

E1 := { |a0| ≥ 1},

which has probability

P[E1] = P[|a0|2 ≥ 1] = e−1.

The second event corresponds to the tail of the power series of fL. Let

E2 :=

{
|aα| ≤

√
α!Γ(n)

Γ(n+ |α|) |α|
n, ∀α : |α| > CL

}
.

We shall see next that P[E2] is big, and that under the event E2 the tail of

the power series of fL is small.
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Using (10) we have∣∣∣∣ ∑
|α|>CL

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣

≤
∑

|α|>CL

|aα|
[Γ(L+ |α|)

Γ(L)α!

αα

|α||α| r
2|α|

]1/2

≤
∑

m>CL

[Γ(L+m)

Γ(L)
r2m

]1/2 ∑
|α|=m

|aα|
( αα

α!|α||α|
)1/2

.

Thus, using Cauchy–Schwarz inequality and (11),

∣∣∣∣ ∑
|α|>CL

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣ ≤ ∑

m>CL

[Γ(L +m)

Γ(L)m!
r2m

]1/2( ∑
|α|=m

|aα|2
)1/2

.

Using the asymptotics of the Gamma function (9), we estimate

Γ(m+ L)

Γ(L)m!

 mL−1

Γ(L)
≤

[ mL/m

Γ(L)1/m

]m
.

Note that the function g(x) := (xL/Γ(L))1/x is decreasing for x ≥ L. Thus if

m > CL, Stirling’s formula yields

mL/m

Γ(L)1/m
≤ (CL)1/C

Γ(L)1/(CL)
=
C1/CL1/(2CL)e1/C

(2π)1/(2CL)
[1 + o(1)] ≤ (eC)

1
CK

1
2C ,

where K = maxx>0 x
1/x = e−1/e.

Let h(C) = (eC)
1
CK

1
2C and note that h(C) > 1 and limC→∞ h(C) = 1.

Hence, there exists C big enough so that h(C)r2 ≤ (1 − δ)2 and therefore

∣∣∣∣ ∑
|α|>CL

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣ ≤ ∑

m>CL

[h(C)r2]m/2

( ∑
|α|=m

|aα|2
)1/2

≤
∑

m>CL

(1 − δ)m
( ∑

|α|=m

|aα|2
)1/2

.

Under the event E2,

∑
|α|=m

|aα|2 ≤
∑

|α|=m

|α|!Γ(n)
Γ(n+ |α|) |α|

2n = m2n,
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hence the tail of fL is controlled by the tail of a convergent series and there

exists C big enough so that∣∣∣∣ ∑
|α|>CL

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣ ≤ ∑

m>CL

(1− δ)mm2n <
1

4
.

Now we prove that the probability of E2 is big. Since the variables aα are

independent we have, again by (9),

P[Ec
2] ≤

∑
|α|>CL

P

[
|aα|2 > |α|!Γ(n)

Γ(n+ |α|) |α|
2n
]

=
∑

m>CL

P

[
|ξ|2 > m!Γ(n)

Γ(n+m)
m2n

]Γ(n+m)

Γ(n)m!

�
∑

m>CL

P[|ξ|2 > cnm
n+1]mn−1 =

∑
m>CL

e−cnm
n+1

mn−1.

Thus for L big enough, P[Ec
2] ≤ 1/2, and P[E2] ≥ 1/2.

The third event takes care of the middle terms in the power series of fL. Let

E3 :=
{
|aα|2 < 1

16CL

|α|!Γ(n)
Γ(n+ |α|) (1 − r2)L ∀α : 0 < |α| ≤ CL

}
.

Using Cauchy–Schwarz inequality, (10) and(11) we get, as in previous compu-

tations,∣∣∣∣ ∑
0<|α|≤CL

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣

≤
( ∑

0<|α|≤CL

|aα|2
)1/2( ∑

0<|α|≤CL

Γ(|α|+ L)

Γ(L)α!

αα

|α||α| r
2|α|

)1/2

≤
( ∑

0<|α|≤CL

|aα|2
)1/2( ∑

0<m≤CL

Γ(m+ L)

Γ(L)m!
r2m

)1/2

≤
( ∑

0<|α|≤CL

|aα|2
)1/2

(1− r2)−L/2.

Under the event E3,∑
0<|α|≤CL

|aα|2 ≤
∑

0<m≤CL

1

16CL
(1 − r2)L =

1

16
(1 − r2)L,
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and therefore ∣∣∣∣ ∑
0<|α|≤CL

aα

(Γ(L+ |α|)
α!Γ(L)

)1/2

zα
∣∣∣∣ ≤ 1

4
.

On the other hand,

P[E3] =
∏

0<m≤CL

[1− e−
1

16CL
m!Γ(n)
Γ(m+n)

(1−r2)L ]
Γ(n+m)
m!Γ(n) .

Note that if L is big enough, then the term appearing in the exponential is

small. Since 1− e−x ≥ x/2 for x ∈ (0, 1/2), we get

P[E3] ≥
∏

0<m≤CL

[ 1

32CL

m!Γ(n)

Γ(m+ n)
(1 − r2)L

]Γ(n+m)
m!Γ(n)

=
[ Γ(n)

32CL
(1− r2)L

]∑
0<m≤CL

Γ(n+m)
m!Γ(n)

∏
0<m≤CL

( m!

Γ(m+ n)

) Γ(n+m)
m!Γ(n)

.

Now we estimate each term of the product and the sum by the “worst” term.

Denote M = [CL]. The exponent in the first factor is controlled by

M∑
m=1

Γ(n+m)

m!Γ(n)
≤M

Γ(n+M)

M !Γ(n)
=

Γ(n+M)

Γ(M)Γ(n)
≤Mn ≤ (CL)n.

Similarly, for the second factor we have

M∏
m=1

( m!

Γ(m+ n)

)Γ(n+m)
m!Γ(n) ≥

( M !

Γ(M + n)

)M Γ(n+M)
M!Γ(n) ≥

( M !

Γ(M + n)

)Γ(n+M)
Γ(M)

≥
(Γ(CL + 1)

Γ(CL + n)

)Γ(n+CL)
Γ(CL)

.

Then, using again (9),

log P[E3] ≥(CL)n log
[ Γ(n)

32CL
(1− r2)L

]
+

Γ(n+ CL)

Γ(CL)
log

[Γ(CL+ 1)

Γ(CL + n)

]

�(CL)n log
[ Γ(n)

32CL
(1− r2)L

]
+ (CL)n log(CL)1−n

=CnLn
[
log

Γ(n)

32Cn
− n logL− L log

1

1− r2

]

=− CnLn+1 log
1

1− r2

[
1 +

n logL

L log 1
1−r2

− log Γ(n)
32Cn

L log 1
1−r2

]

=− CnLn+1 log
1

1− r2
[1 + o(1)].
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Finally,

P[E2 ∩ E3 ∩ C] ≥ e
−C(n) log( 1

1−r2
)Ln+1[1+o(1)]

,

and under this event |fL(z)| ≥ 1− 1/4− 1/4 > 0.
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