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ABSTRACT

We define new natural variants of the notions of weighted covering and

separation numbers and discuss them in detail. We prove a strong duality

relation between weighted covering and separation numbers and prove a

few relations between the classical and weighted covering numbers, some

of which hold true without convexity assumptions and for general metric

spaces. As a consequence, together with some volume bounds that we

discuss, we provide a bound for the famous Levi–Hadwiger problem con-

cerning covering a convex body by homothetic slightly smaller copies of

itself, in the case of centrally symmetric convex bodies, which is qualita-

tively the same as the best currently known bound. We also introduce the

weighted notion of the Levi–Hadwiger covering problem, and settle the

centrally-symmetric case, thus also confirm the equivalent fractional illu-

mination conjecture [19, Conjecture 7] in the case of centrally symmetric

convex bodies (including the characterization of the equality case, which

was unknown so far).

1. Introduction

1.1. Background and motivation. Covering numbers can be found in var-

ious fields of mathematics, including combinatorics, probability, analysis and

geometry. They often participate in the solution of many problems in quite a

natural manner.
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In the combinatorial world, the idea of fractional covering numbers is well-

known and utilized for many years. In [2], the authors introduced the weighted

notions of covering and separation numbers of convex bodies and shed new

light on the relations between the classical notions of covering and separation,

as well as on the relations between the classical and weighted notions. In this

note we propose a variant of these numbers which is perhaps more natural and

discuss these numbers in more detail, revealing more useful relations, as well as

some applications. To state our main results, we need some definitions. The

impatient reader may skip the following section and go directly to Section 1.3

where the main results are stated.

Apart from deepening our understanding of these notions, and revealing more

useful relations, we also consider this work as a first step towards the function-

alization of covering and separation numbers; in the past decade, various parts

from the theory of convex geometry have been gradually extended to the realm

of log-concave functions. Numerous results found their functional generaliza-

tions. One natural way to embed convex sets in Rn into the class of log-concave

functions is to identify every convex set K with its characteristic function �K .

Besides being independently interesting, such extensions may sometimes be ap-

plied back to the setting of convex bodies. For further reading, we refer the

reader to [1, 3, 4, 14, 15]. Since covering numbers play a considerable part

in the theory of convex geometry, their extension to the realm of log-concave

functions seems to be an essential building block for this theory. Our results

using functional covering numbers will be published elsewhere.

1.2. Definitions. Let K ⊆ R
n be compact and let T ⊆ R

n be compact with

non-empty interior. The classical covering number of K by T is defined

to be the minimal number of translates of T such that their union covers K,

namely

N(K,T ) = min

{
N : N ∈ N, ∃x1, . . . , xN ∈ R

n; K ⊆
N⋃
i=1

(xi + T )

}
.

Here and in the sequel we assume that the covered set K is compact and the

covering set T has non-empty interior so that the covering number will be finite.

However, one may remove these restrictions so long as we are content also with

infinite outcomes.
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A well-known variant of the covering number is obtained by considering only

translates of T that are centered in K, namely

N(K,T ) = min

{
N : N ∈ N, ∃x1, . . . , xN ∈ K; K ⊆

N⋃
i=1

(xi + T )

}
.

Clearly, N(K,T ) ≤ N(K,T ), and it is easy to check that for convex bodies1 K

and T , we have N(K,T − T ) ≤ N(K,T ). Furthermore, if T is a Euclidean ball

then N(K,T ) = N(K,T ).

The classical notion of the separation number of T in K is closely related to

covering numbers and is defined to be the maximal number of non-overlapping

translates of T which are centered in K;

M(K,T ) = max{M : N ∈ N, ∃x1, . . . , xM ∈ K; (xi+T )∩ (xj+T ) = ∅ ∀i 	= j}.

It is a standard equivalence relation that N(K,T − T ) ≤ M(K,T ) ≤ N(K,T ).

We also define the less conventional

M(K,T ) = max{M :N ∈ N, ∃x1, . . . , xM ∈K; (xi+T )∩(xj+T )∩K=∅ ∀i 	=j}.

Note that the condition (xi +T )∩ (xj +T ) = ∅ is equivalent to xi−xj 	∈ T −T

which means that M(K,T ) = M(K,−T ) = M(K, T−T
2 ). Moreover, it is easily

checked that for a convex K and for a centrally symmetric convex body L

(i.e., L = −L) we have M(K,L) = M(K,L) and thus by the last remark

M(K,T ) = M(K,T ) for any convex body T . In the sequel, we will define

weighted counterparts for M(K,T ) and M(K,T ) which will not necessarily be

equal, even in the convex and centrally symmetric case.

In order to define the weighted versions, let �A denote the indicator function

of a setA ⊆ Rn, equal to 1 if x ∈ A and 0 if x 	∈ A.

Definition 1.1: A sequence of pairs S = {(xi, ωi) : xi ∈ Rn, ωi ∈ R+}Ni=1 of

points and weights is said to be a weighted covering of K by T if for all

x ∈ K we have
∑N

i=1 ωi�xi+T (x) ≥ 1. The total weight of the covering is

denoted by ω(S) =
∑N

i=1 ωi. The weighted covering number of K by T is

defined to be the infimal total weight over all weighted coverings of K by T and

is denoted by Nω(K,T ).

1 By convex body we mean, here and in the sequel, a compact convex set with non-empty

interior.
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One may consider only coverings S = {(xi, ωi) : xi ∈ K, ωi ∈ R+}Ni=1 with

centers of T in K. The corresponding weighted covering number for such cov-

erings, denoted here by Nω(K,T ), is defined to be the infimal total weight

over such coverings. Clearly, Nω(K,T ) ≤ Nω(K,T ). The weighted notions

of covering and separation numbers corresponding to N(K,T ) and M(K,T )

were introduced in [2]. In this note, we shall focus on the weighted versions of

N(K,T ) and M(K,T ).

Let us reformulate the above definitions in the language of measures. Note

that the covering condition
∑N

i=1 ωi�xi+T (x) ≥ 1 for all x ∈ K is equivalent

to ν ∗ �T ≥ �K , where ν =
∑N

i=1 ωiδxi is the discrete measure with masses ωi

centered at xi and where ∗ stands for the convolution

(ν ∗ �T )(x) =

∫
Rn

�T (x− y)dν(y).

Let Dn
+ denote all non-negative discrete and finite measures on Rn and let

supp(ν) ⊆ Rn denote the support of a measure ν on Rn. Thus, the weighted

covering numbers of K by T can be written as

Nω(K,T ) = inf{ν(Rn) : ν ∗ �T ≥ �K , ν ∈ Dn
+}

and

Nω(K,T ) = inf{ν(Rn) : ν ∗ �T ≥ �K , ν ∈ Dn
+ with supp(ν) ⊆ K}.

It is natural to extend this notion of covering to general non-negative mea-

sures. Let Bn
+ denote all non-negative Borel regular measures on Rn.

Definition 1.2: Let K ⊆ R
n be compact and let T ⊂ Rn be compact with

non-empty interior. A non-negative measure μ ∈ Bn
+ is said to be a covering

measure of K by T if μ ∗ �T ≥ �K . The corresponding weighted covering

number is defined by

N∗(K,T ) = inf

{∫
Rn

dμ : μ ∗ �T ≥ �K , μ ∈ Bn
+

}
.

Clearly, N∗(K,T ) ≤ Nω(K,T ). In Proposition 2.6, we show that the above

infimum is actually a minimum, that is, there exists an optimal covering Borel

measure of K by T . Note that the set of optimal covering measures is clearly

convex.
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The weighted notions of the separation are defined similarly; a measure

μ ∈ Bn
+ is said to be T -separated if μ ∗ �T ≤ 1. The weighted separation num-

bers, corresponding to Nω(K,T ), Nω(K,T ) and N∗(K,T ), are respectively

defined by

Mω(K,T ) = sup

{∫
K

dν : ν ∗ �T ≤ 1, ν ∈ Dn
+

}
,

Mω(K,T ) = sup

{∫
K

dν : ∀x ∈ K, (ν ∗ �T )(x) ≤ 1, ν ∈ Dn
+

}

and

M∗(K,T ) = sup

{∫
K

dμ : μ ∗ �T ≤ 1, μ ∈ Bn
+

}
,

where again clearly Mω(K,T ) ≤ M∗(K,T ).

1.3. Main results. Our first main result is a strong duality between weighted

covering and separation numbers; it turns out that N∗(K,T ) and M∗(K,−T )

can be interpreted as the outcome of two dual problems in the sense of linear

programming. Indeed, as in [2], this observation is a key ingredient in the proof

of our first main result below, which states that the outcome of these dual

problems is the same (we call this “strong duality”).

Theorem 1.3: Let K ⊆ Rn be compact and let T ⊆ Rn be a compact with

non-empty interior. Then

Mω(K,T ) = M∗(K,T ) = N∗(K,−T ).

Remark 1.4: While it is not clear, so far, whether strong duality also holds for

fractional covering numbers with respect to discrete measures, namely whether

Nω(K,T ) = Mω(K,−T ), one may show that

lim
δ→0+

Nω(K,−(1 + δ)T ) = lim
δ→0

Mω(K, (1 + δ)T ) ≤ Mω(K,T ).

In particular, for almost every t > 0

Mω(K, tT ) = M∗(K, tT ) = N∗(K,−tT ) = Nω(K, tT ).

See discussion in Section 2.2, Remark 2.5.

As a consequence of Theorem 1.3, together with the well-known homothety

equivalence between classical covering and separation numbers N(K,T − T ) ≤
M(K,T ) ≤ N(K,T ), we immediately get the following equivalence relation
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between the classical and weighted covering numbers (which has also appeared

in [2] for the pair Mω, Nω).

Corollary 1.5: Let K ⊆ R
n be compact and let T ⊆ Rn be compact with

non-empty interior. Then

N(K,T − T ) ≤ Nω(K,T ) ≤ N(K,T ).

We remark that Corollary 1.5 is actually implied by the weak duality

M∗(K,−T ) ≤ N∗(K,T )

which we prove in Proposition 2.1 below, the proof of which is relatively sim-

ple. Similarly, we shall prove in Proposition 2.1 that Mω(K,−T ) ≤ Nω(K,T )

providing an alternative short proof for the weak duality result in [2, Theorem

6].

For a centrally symmetric convex set T , Corollary 1.5 reads N(K, 2T ) ≤
Nω(K,T ) ≤ N(K,T ). Although this “constant homothety” equivalence of clas-

sical and weighted covering is useful, it turns out to be insufficient in certain

situations. To that end, we introduce our second main result, in which the

homothety factor 2 is replaced by a factor 1 + δ with δ > 0 arbitrarily close

to 0. This gain is diminished by an additional logarithmic factor; such a result

is a reminiscent of Lovász’s [17] well-known inequality for fractional covering

numbers of hypergraphs.

Theorem 1.6: Let K ⊆ Rn be compact and let T1, T2 ⊆ Rn be compact with

non-empty interior. Then

N(K,T1+T2)≤ ln(4N(K,T2))(Nω(K,T1)+1)+

√
ln(4N(K,T2))(Nω(K,T1)+1).

We remark that for the proof of our application in Section 3 below, we shall

use T1 = δT and T2 = (1 − δ)T for 0 < δ < 1 and a single convex body T . It

is also worth mentioning that Theorem 1.6 holds for Nω(K,T ) and N(K,T ) as

well (with the exact same proof).

1.4. Additional inequalities. Let Vol(A) denote the Lebesgue volume of

a set A ⊆ Rn. The classical covering and separation numbers satisfy simple

volume bounds. Such volume bounds also hold for the weighted case, and turn

out to be quite useful.
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Theorem 1.7: Let K ⊆ Rn be compact and let T ⊆ Rn be compact with

non-empty interior. Then

max

{
Vol(K)

Vol(T )
, 1

}
≤ N∗(K,T ) ≤ Vol(K − T )

Vol(T )
.

Remark 1.8: Let us show, by using the above volume bounds, that classical and

weighted covering numbers are not equal in general, even for centrally symmetric

convex bodies such as a cube and a ball (for a simple 2-dimensional example,

see the last part of Remark 2.7). Namely, we show that Nω(K,T ) 	= N(K,T ),

where T = Bn
2 is the unit ball in Rn and K = [−R,R]n for a large enough R.

Indeed, it was shown in [11] that the lower limit of the density of covering a cube

by balls, defined as the limit of the ratio N([−R,R]n, Bn
2 )·Vol(Bn

2 )/(2R)n, as R

tends to infinity is bounded from below by 16/15− εn where εn → 0 as n → ∞.

However, by our volume bounds in Theorem 1.7, it follows that the weighted

covering density Nω([−R,R]n, Bn
2 ) · Vol(Bn

2 )/(2R)n approaches 1 as R → ∞.

Note that by Proposition 2.1 below, this also means thatM(Q,Bn
2 ) 	= N(Q,Bn

2 )

for a large enough cube and dimension.

1.5. An application. A famous conjecture, known as the Levi–Hadwiger or

the Gohberg–Markus covering problem, was posed in [16], [13] and [12]. It

states that in order to cover a convex set by slightly smaller copies of itself, one

needs at most 2n copies.

Conjecture: Let K ⊆ Rn be a convex body with non empty interior. Then

there exists 0 < λ < 1 such that

N(K,λK) ≤ 2n.

Equivalently, N(K, int(K)) ≤ 2n. Moreover, equality holds if and only if K is

a parallelotope.

This problem has drawn much attention over the years, but only little has

been unraveled so far. We mention that Levi confirmed the conjecture for the

plane, and that Lassak confirmed it for centrally symmetric bodies in R3. The

currently best known general upper bound for n ≥ 3 is

(
2n

n

)
(n lnn+ n ln lnn+ 5n)
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and the best bound for centrally symmetric convex bodies is

2n(n lnn+ n ln lnn+ 5n),

both of which are simple consequences of Rogers’ bound for the asymptotic lower

densities for covering the whole space by translates of a general convex body;

see [20]. For a comprehensive survey of this problem and the aforementioned

results, see [8].

It is natural, after introducing weighted covering, to formulate the Levi–

Hadwiger covering problem for the case of weighted covering.

Conjecture 1.9: Let K ⊆ Rn be a convex body. Then

lim
λ→1−

Nω(K,λK) ≤ 2n.

Moreover, equality holds if and only if K is a parallelotope.

For centrally symmetric convex bodies, we verify Conjecture 1.9, including

the equality case. We show

Theorem 1.10: Let K ⊆ Rn be a convex body. Then

lim
λ→1−

Nω(K,λK) ≤
⎧⎨
⎩2n, K = −K,(

2n
n

)
, K 	= −K,

Moreover, for centrally symmetric K, limλ→1− Nω(K,λK) = 2n if and only if

K is a parallelotope.

It is worth mentioning that the classical covering problem of Levi–Hadwiger

is equivalent to the problem of the illumination of a convex body (for surveys

see [18, 6]) which asks how many directions are required to illuminate the entire

boundary of a convex body K (a direction u ∈ Sn−1 is said to illuminate a point

b in the boundary of K if the ray emanating from b in direction u intersects the

interior of K). A fractional version of the illumination problem was considered

in [19], where it was proven that the fractional illumination number of a convex

body K, denoted by i∗(K), satisfies that i∗(K) ≤ (
2n
n

)
and that i∗(K) ≤ 2n for

all centrally symmetric bodies (with parallelotopes attaining equality). It was

further conjectured [19, Conjecture 7] that i∗(K) ≤ 2n for all convex bodies

and that equality is attained only for parallelotopes. However, as no relation

between fractional and usual illumination numbers was proposed, this result re-

mained isolated. Also, it seems that the equality conditions were not analyzed.
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In fact, one may verify that the proof of the equivalence between the illumination

problem and the Levi–Hadwiger covering problem (see [7, Theorem 7]) carries

over to the fractional setting and conclude that i∗(K) = limλ→1− Nω(K,λK).

Thus, Theorem 1.10 actually verifies the aforementioned results about frac-

tional illumination and also verifies [19, Conjecture 7] for the case of centrally

symmetric convex bodies, including the equality hypothesis.

Combining the inequality in Theorem 1.6 with the volume inequality in Theo-

rem 1.7, we prove the following bound for the classical Levi–Hadwiger problem,

in the case of centrally symmetric convex bodies, which is the same as the

aforementioned (best known) general bound of Rogers.

Corollary 1.11: Let K ⊆ Rn be a centrally symmetric convex body. Then

for all n ≥ 3,

lim
λ→1−

N(K,λK) ≤ 2n(n ln(n) + n ln ln(n) + 5n).

We remark that the above bound and Rogers’ bound are asymptotically

equivalent, and that in both cases the constant 5n above may be improved

by performing more careful computations, improving and optimizing over vari-

ous constants. We avoid such computations as they will not affect the order of

magnitude of this bound, and complicate the exposition.

The remainder of this note is organized as follows. In Section 2.1 we show

weak duality between weighted covering and separation numbers. In Section

2.2 we prove Theorem 1.3. In Section 2.3 we discuss the existence of optimal

covering measures. In Section 2.4 we discuss the approximation of uniform

covering measures by discrete covering measures. In Section 2.5 we prove The-

orem 1.7. In Section 2.6 we prove Theorem 1.6. In Section 2.7 we discuss the

weighted notions of covering and separation in the setting of general metric

spaces. In Section 3 we discuss both the classical and weighted versions of the

Levi–Hadwiger covering problems, proving Theorem 1.10 and Corollary 1.11.
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2. Weighted covering and separation

2.1. Weak duality.

Proposition 2.1: Let K ⊆ R
n be compact and let T ⊆ Rn be compact with

non-empty interior. Then

M∗(K,T ) ≤ N∗(K,−T ) and Mω(K,T ) ≤ Nω(K,−T ).

In particular, we also have that Mω(K,T ) ≤ Nω(K − T ).

Proof. Let μ be a covering measure of K by −T . Let ρ be a T -separated

measure. By our assumptions we have that �T ∗ρ ≤ 1 and �−T ∗μ ≥ �K . Thus∫
K

dρ(x) =

∫
�K(x) · dρ(x) ≤

∫
(�−T ∗ μ)(x)dρ(x)

=

∫
dρ(x)

∫
�−T (x− y)dμ(y)

=

∫
dμ(y)

∫
�T (y − x)dρ(x)

=

∫
(�T ∗ ρ)(y)dμ(y)

≤
∫

dμ(y)

and so M∗(K,T ) ≤ N∗(K,−T ). Similarly, by considering �T ∗ ρ ≤ 1 only on

K and μ which must be supported only on K, the exact same inequality yields

Mω(K,T ) ≤ Nω(K,−T ).

2.2. Strong duality. In this section we prove Theorem 1.3. By Proposition

2.1 it is enough to show an inequality Mω(K,T ) ≥ Nω(K,−T ).

We start with the discretized versions of our weighted covering and separation

notions. Let Λ = {xi}di=1 ⊆ Rn be some finite set, which will be chosen later,

and define

Nω(K,T,Λ)

= inf

{ N∑
i=1

ωi : ∃(xi, ωi)
N
i=1 ⊆ (Λ, R+),

N∑
i=1

ωi�T (x− xi) ≥ 1K(x)∀x ∈ Λ

}
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and

Mω(K,T,Λ)

= sup

{ N∑
i=1

ωi : ∃(xi, ωi)
N
i=1 ⊆ (Λ ∩K, R+),

N∑
i=1

ωi�T (x− xi)≤1 ∀x∈Λ

}
.

In this setting, linear programming duality gives us an equality of the form

(2.1) Nω(K,T,Λ) = Mω(K,−T,Λ).

Indeed, define the vectors b, c ∈ R
d by

ci =

⎧⎨
⎩1, xi ∈ K,

0, otherwise,
bi = 1

and the d× d matrix M by

Mij =

⎧⎨
⎩1, xi ∈ xj + T,

0, otherwise.

Note that

MT
ij =

⎧⎨
⎩1, xi ∈ xj − T,

0, otherwise.

Let 〈·, ·〉 denote the standard Euclidean inner product in Rd. Then, in the

language of vectors and matrices, the above discretized weighted covering and

separation notions read

Nω(K,T,Λ) =min{〈b, x〉 : Mx ≥ c, x ≥ 0},
Mω(K,−T,Λ) =max{〈c, y〉 : MT y ≤ b, y ≥ 0},

which are equal by the well-known duality theorem of linear programming; see,

e.g., [5].

Next, we shall use this observation with a specific family of sets Λ(δ). A set

Λ(δ) ⊆ Rn is said to be a δ-net of a set A ⊆ Rn if for every x ∈ A there exists

y ∈ Λ(δ) for which |x − y| ≤ δ. In other words, A ⊆ Λ + δBn
2 . We shall make

use of the two following simple lemmas, corresponding to [2, Lemmas 14–15].

Lemma 2.2: Let K ⊆ Rn be compact, T ⊆ Rn compact with non-empty inte-

rior and let Λ(δ) ⊆ K be some δ-net for K. Then

Nω(K,T + δBn
2 ) ≤ Nω(K,T,Λ(δ)).
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Proof. Indeed, we have that

Nω(K,T + δBn
2 ) ≤Nω(K ∩ Λ(δ) + δBn

2 , T + δBn
2 )

≤Nω(K ∩ Λ(δ), T ) ≤ Nω(K,T,Λ(δ)).

Lemma 2.3: Let K ⊆ Rn be compact, T ⊆ Rn be compact with non-empty

interior and let Λ(δ) ⊆ Rn be some δ-net for K + T . Then

Mω(K,T ) ≥ Mω(K,T + δBn
2 ,Λ(δ)).

Proof. Suppose that {(xi, ωi)}Mi=1 ⊆ (K ∩ Λ(δ),R+) satisfies the condition in

the definition of Mω(K,T + δBn
2 ,Λ), namely for all x ∈ Λ(δ) we have that∑N

i=1 ωi�T+δBn
2
(x− xi) ≤ 1. Then it is also weighted T -separated in the usual

sense (that is, satisfying for all x ∈ Rn that
∑N

i=1 ωi�T (x − xi) ≤ 1). Indeed,

otherwise we would have a point in x ∈ Rn such that
∑M

i=1 ωi�T (x − xi) > 1.

Since xi ∈ K, it follows that x ∈ K + T and so there exists a point y ∈ Λ(δ)

for which y − x ∈ δBn
2 , which means that

∑M
i=1 ωi�T+δBn

2
(y − xi) > 1, a

contradiction to our assumption.

Finally, to prove Theorem 1.3 we shall need the following continuity result

for weighted covering numbers:

Proposition 2.4: Let K ⊆ R
n be compact and let T ⊆ R

n be compact with

non-empty interior. Then

lim
δ→0+

N∗(K,T + δBn
2 ) = N∗(K,T ).

Proof. Clearly we have that

lim
δ→0

N∗(K,T + δBn
2 ) ≤ N∗(K,T ).

For the opposite direction, let δk −→
k→∞

0 and let fk be a sequence of continuous

functions satisfying �T ≤ fk ≤ �T+δkD so that fk −→
k→∞

�T point-wise mono-

tonically. Let (μk)k∈N be a sequence of covering Borel regular measures of K

by fk (the definition is straightforward: replace �T in the original definition by

fk) such that
∫
Rn dμk(x) = N∗(K, fk)+εk with 0 < εk → 0. By the well-known

Banach–Alaoglu theorem and passing to a subsequence we may assume without

loss of generality that μk
w∗−→ μ for some non-negative regular Borel measure.

We claim that μ is a covering measure of K by T . Indeed, let x ∈ K. For k ≥ l
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we have that

1 ≤ (μk ∗ fk)(x) ≤ (μk ∗ fl)(x).
By the weak* convergence of μk to μ, taking the limit k → ∞ implies that

1 ≤ (μ ∗ fl)(x) and hence, by the monotone convergence theorem, taking the

limit l → ∞ implies that 1 ≤ (μ ∗ �T )(x). Thus, μ is a covering measure of K

by T . This means that

lim
k→∞

N∗(K, fk) = lim
k→∞

∫
Rn

dμk ≥
∫
Rn

dμ ≥ N∗(K,T ),

which in turn implies the equality limδ→0+ N∗(K,T + δBn
2 ) = N∗(K,T ), as

claimed.

Proof of Theorem 1.3. We use Lemmas 2.2–2.3 together with (2.1) as follows;

let Λ(δk) be a sequence of δk-nets for K +T with δk → 0+ such that K ∩Λ(δk)

are δk-nets for K. For each k we have

(2.2)

Mω(K,T ) ≥ Mω(K,T + δkB
n
2 ,Λ(δk))

= Nω(K,−(T + δkB
n
2 ),Λ(δk))

≥ Nω(K,−(T + 2δkB
n
2 )).

Thus, by Proposition 2.4

Mω(K,T ) ≥ lim
k→∞

N∗(K,−T + 2δkB
n
2 ) = N∗(K,−T ).

Taking the above inequality into account together with Proposition 2.1, the

proof is thus complete.

Remark 2.5: In [2], Proposition 22 is analogous to Proposition 2.4 above with

Nω instead of N∗. We mention that replacing T + δBn
2 by (1 + δ)T is of no

significance because any two bodies in fixed dimension are equivalent. The proof

presented in [2] is not correct, as it is based on [2, Lemma 20] which contains

an error.

Note, however, that since the function N∗(K, tT ) is monotone in t > 0, it is

clearly continuous almost everywhere. This, combined with the reasoning in [2,

Proof of Theorem 7] (or, similarly, the reasoning above for N∗), implies that

for almost every t > 0 we have

Mω(K, tT ) = Nω(K,−tT ).
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By taking the limit as t → 1+ we get that

lim
δ→0+

Mω(K, (1 + δ)T ) = lim
δ→0+

Nω(K,−(1 + δ)T ),

which, combined with Theorem 1.3, yields the following row of equalities (as

N∗, and so also Mω, are continuous), holding for all convex bodies K,T ⊂ Rn:

Mω(K,T ) = M∗(K,T ) = N∗(K,−T ) = lim
δ→0+

Nω(K,−(1 + δ)T ).

2.3. Optimal measures.

Proposition 2.6: Let K ⊆ R
n be compact and let T ⊆ Rn be compact with

non-empty interior. Then there exists a (non-empty) convex set C ⊆ Bn
+ of

optimal regular Borel covering measures of K by T . That is, for every μ ∈ C
we have that μ ∗ �T ≥ �K and

N∗(K,T ) =

∫
Rn

dμ.

Proof. The proof follows the same lines as the proof of Proposition 2.4 Let

(μk) ⊆ Bn
+ be a sequence of covering measures of K by T such that

μk (R
n) −→

k→∞
N∗(K,T ).

By using the Banach-Alaoglu theorem and passing to a converging subsequence

we may assume without loss of generality that μk
w∗−→ μ for some measure

μ ∈ Bn
+. Let us show that μ is a covering measure of K by T , that is

μ ∗ �T ≥ �K . Indeed, let x ∈ K and let f ≥ �T be a compactly supported

continuous function. Then 1 ≤ (μk ∗ f) (x) → (μ ∗ f) (x) as k → ∞. Taking a

monotone sequence (fl) of compactly supported continuous functions satisfying

fl ≥ �T and point-wise converging to �T , it follows by the monotone conver-

gence theorem that (μ ∗ �T ) (x) ≥ 1. To see that μ (Rn) = N∗(K,T ), note

that μ (Rn) ≤ lim
k→∞

μk (R
n) = N∗(K,T ) (lower semi-continuity of a norm with

respect to weak* convergence). Clearly, we also have that μ (Rn) ≥ N∗(K,T ).

Since the covering condition μ ∗ �T ≥ �K is preserved under convex com-

binations, as is the total measure, it follows that the set of optimal covering

measures of K by T is convex.

Remark 2.7: One might be tempted to ask whether there exists a measure

which is simultaneously optimal-separating and optimal-covering; this turns

out to be, in general, not correct. Indeed, one may consider the following
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example. Let T be the cross polytope in R3, that is, conv(±e1,±e2,±e3), and

let K = conv(e1, e2, e3) (where conv(A) denotes the convex hull of A). That

is, K is a two-dimensional triangle in R3. Clearly, N(K,T ) = N∗(K,T ) = 1.

However, if there existed a measure μ which was both optimal-separating and

optimal-covering, then in particular it would have had to be supported in K,

therefore we would get that the weighted covering of K by the central section of

T with the plane (1, 1, 1)⊥ is also 1. This section, which can also be written as

L = conv((ei − ej)/2 : i, j = 1, 2, 3), is the hexagon K−K
2 . We claim, however,

that N∗(K,L) > 1. Indeed, the vertex e1, for example, is covered by the copies

of L centered at the triangle conv(e1,
e1+e2

2 , e1+e3
2 ) = Δ1 and similarly define

Δ2,Δ3. By the assumption of covering, μ(Δi) ≥ 1. On the other hand, if it

were true that μ(K) = 1 we would get, for example, that

μ
(e1 + e2

2

)
= μ(Δ1 ∩Δ2) = μ(Δ1) + μ(Δ2)− μ(Δ1 ∪Δ2) ≥ 2− 1 = 1.

As this would also apply to e1+e3
2 , e2+e3

2 , it is a contradiction. Note that this

argument actually shows that N∗(K,L) = 3
2 and further that the only optimal

weighted covering ofK by L is given by the measure 1
2δ e1+e3

2
+ 1

2δ e2+e3
2

+ 1
2δ e1+e2

2
.

Moreover, note that K and L satisfy thatNω(K,L) 	= N(K,L), hence providing

a simple example for the fact that classical and weighted covering numbers are

not equal in general. By Proposition 2.1, K and L also provide a simple example

for the fact that classical covering and separation numbers are not equal in

general.

2.4. A Glivenko–Cantelli class. In this section our goal is somewhat tech-

nical. We wish to use a uniform measure to bound Nω(K,T ), however it is not

a member of Dn
+. We claim that if we find some uniform covering measure of a

set K by a convex set T (supported on some compact Borel set) with total mass

m, then Nω(K,T ) ≤ m. This is because uniform measures can be approximated

well by discrete ones, and requires a proof. To this end, we need to recall the

definition of a Glivenko–Cantelli class. Let ξ1, ξ2, . . . be a sequence of i.i.d. Rn-

valued random vectors having common distribution P . The empirical measure

Pk is formed by placing mass 1/k at each of the points ξ1(ω), ξ2(ω), . . . , ξk(ω) .

A class A of Borel subsets A ∈ A of Rn is said to be a Glivenko–Cantelli class

for P if

sup
A∈A

|Pn(A)− P (A)| a.s.−→ 0.
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In the following lemma, we will invoke a Glivenko–Cantelli theorem for the

class Cn of convex subsets of Rn. Namely, in [10, Example 14] it is shown that

if a probability distribution P satisfies that P (∂K) = 0 for all K ∈ Cn, then Cn
is a Glivenko–Cantelli class for P .

Lemma 2.8: Let K ⊆ R
n and let T ⊆ Rn be a convex set. Let μ be a uniform

measure on some compact Borel set A ⊆ Rn, that is dμ = c�Adx for some

c > 0. Suppose that μ is a covering measure of K by T . Then

Nω(K,T ) ≤ μ(Rn).

Proof. Let ε > 0. We need to show that there exists a finite discrete measure

ν such that

(ν ∗ �T )(x) ≥ 1

and ν(Rn) ≤ 1
1−εμ(R

n). To this end, let μ0 = 1
cVol(A)μ be the uniform probabil-

ity measure on A, let ξ1, ξ2, . . . be a sequence of i.i.d. Rn-valued random vectors

having common distribution μ0, and let μn be the corresponding empirical mea-

sure. The assumption that μ is a covering measure of K by T is equivalent to

the condition that μ0(x + T ) ≥ 1
cVol(A) for all x ∈ K. Since μ(∂L) = 0 for all

L ∈ Cn, it is implied by [10, Example 14] that Cn is a Glivenko–Cantelli class

for μ0 and so, for some k > 1,

sup
L∈Cn

|μ0(L)− μk(L)| < ε

cVol(A)

almost surely. In particular, there exists a discrete measure (one of the μk’s)

ν0 =
∑k

i=1
1
k δxi for which

(ν0 ∗ �T )(x) = v0(x+ T ) ≥ 1− ε

cVol(A)

for all x ∈ K. Thus the measure ν = cVol(A)
1−ε ν0 is a covering measure of K by

T with ν(Rn) = 1
1−εμ(R

n), as required.

2.5. Volume bounds. In this section we divide the proof Theorem 1.7 into

the following two propositions.

Proposition 2.9: Let K ⊆ Rn be compact and let T ⊆ Rn be compact with

non-empty interior. Then

N∗(K,T ) ≤ Vol(K − T )

Vol(T )
.
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Additionally, if T is convex then

Nω(K,T ) ≤ Vol(K − T )

Vol(T )
.

Proof. By Theorem 1.3, it suffices to prove that M∗(K,T ) ≤ Vol(K+T )
Vol(T ) . Let

μ ∈ Bn
+ be a T -separated measure, that is, �T ∗ μ ≤ 1. Then∫

K

Vol(T )dμ(x) =

∫
K

dμ(x)

∫
K+T

�T (y − x)dy =

∫
K+T

dy

∫
K

�T (y − x)dμ(x)

≤
∫
K+T

(�T ∗ μ)(y)dy ≤
∫
K+T

dy = Vol(K + T )

and so Vol(T )M∗(K,T ) ≤ Vol(K + T ) as claimed.

Alternatively, one may verify that the measure μ0 = �K−T
dx

Vol(T ) is a covering

measure ofK by T , from which the claim also follows. By Lemma 2.8, the latter

argument implies that

Nω(K,T ) ≤ Vol(K − T )

Vol(T )
.

Proposition 2.10: Let K ⊆ Rn be compact and let T ⊆ Rn be compact with

non-empty interior. Then

max

{
Vol(K)

Vol(T )
, 1

}
≤ Mω(K,T ).

Proof. By Theorem 1.3, it suffices to prove that

max

{
Vol(K)

Vol(T )
, 1

}
≤ N∗(K,T ).

Let μ ∈ Bn
+ be a covering measure of K by T , that is, μ ∗ �T ≥ �K . Then∫

Vol(T )dμ(x) =

∫
dμ(x)

∫
Rn

�T (y − x)dy =

∫
Rn

dy

∫
�T (y − x)dμ(x)

≥
∫
�K(y)dy = Vol(K)

and so N∗(K,T ) ≥ Vol(K)
Vol(T ) . Moreover, let x ∈ K. Then

1 ≤ (μ ∗ �T )(x) =

∫
Rn

�T (x − y)dμ(y) ≤
∫
Rn

dμ

and so N∗(K,T ) ≥ 1.
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Alternatively, one may verify that the measure μ0 = �K
dx

Vol(T ) is T -separated

in K, from which the claim also follows. The fact that 1 ≤ N∗(K,T ) also

follows from

1 ≤ M(K,T ) ≤ M∗(K,T ) = N∗(K,T ).

2.6. An equivalence between classical and weighted covering. In

this section we prove Theorem 1.6.

Proof of Theorem 1.6. Fix δ > 0. Let (xi, ωi)i∈I be a finite weighted discrete

covering of K by T1 with ∑
i∈I

ωi < Nω(K,T1) + ε.

Without loss of generality we may assume that ωi are rational numbers and

moreover, by allowing repetitions of the covering points, we may assume that

for all i, ωi =
1
M for some arbitrarily large M ∈ N. Denote N = �Nω(K,T1)�

and let 0 < ε < 1 be small enough so that N + 1 ≤ Nω(K,T1) + ε. Our aim

is to generate a classical covering of K by T1 + T2 from the above fractional

covering by a random process, with cardinality not larger than

ln(4N(K,T2))Nω(K,T1) +

√
ln(4N(K,T2))Nω(K,T1).

To this end, let S be an integer to be determined later and let L > 1 be some

real number also to be determined later. Each point will be chosen indepen-

dently with probability p = S
M . We claim that with positive probability, for

S = ln(4N(K,T2)) and L = 1 + 1√
S(N+1)

, the generated set is a covering of

K by T1 + T2 and at the same time the cardinality of the generated set is not

greater than

LS(N + 1) ≤ LS
(∑

ωi + 1
)
≤ LS(Nω(K,T1) + ε+ 1).

First, we bound the probability that more than LS(N+1) will turn out positive.

Let Xi denote the Bernoulli random variable corresponding to xi and let X

denote their sum. Note that there are at most M(N + 1) trials as

∑
i∈I

1

M
< Nω(K,T1) + ε ≤ N + 1.
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Denote the cardinality of I by |I|. A standard Chernoff bound tells us that this

probability can be bounded as follows. For any t > 0

P(X ≥ LS(N + 1)) =P(eXt ≥ eLSNt)

≤min
t>0

E(etX1 · · · etX|I|)

eLS(N+1)t

≤min
t>0

[pet + (1− p)]M(N+1)

eLS(N+1)t

=

(
1

L

)LS(N+1)[
(1− p)

1− Lp

](N+1)M(1−Lp)

=

(
1

L

)LS(N+1)[
1 +

S(L− 1)

M − LS

](N+1)(M−LS)

�
(
eL−1

LL

)S(N+1)

,

where at the third equality the minimum is attained at et = L · 1−p
1−Lp and the

last step holds for sufficiently large M compared with S. Set L = 1 + ξ; then

for 0 < ξ ≤ 1, one can verify that

P(X ≥ LS(N + 1)) ≤
(
eL−1

LL

)S(N+1)

≤ e−S(N+1)ξ/3.

Next, we show that with sufficiently high probability our generated set is a

covering of K by T1 + T2. To this end, pick a minimal covering {yi} ⊆ K (we

insist the points of the net belong to K) of K by T2. The cardinality of such

a minimal net is N(K,T2). If every point yi is covered by a translate xj + T1,

then the whole of K is covered by the translates xj + T1 + T2 of our randomly

generated set, as we desire. Let us consider one specific point yi = y and check

the probability that it is covered by our randomly generated set. Since we

insisted that y ∈ K we know that

∑
{i∈I:y∈xi+T1}

1

M
≥ 1,

which means that at least M of the original translates xi+T include y. There-

fore, the probability that y is not covered is less than or equal to (1− S
M )M ≤e−S.

Thus, the probability that one or more of the T2-covering points {yi} is not cov-

ered is bounded from above by N(K,T2)e
−S .
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To summarize the above, we bounded the probability that either K is not

covered or the generated set consists of more than LS(N + 1) points by

e−S(N+1)ξ/3 +N(K,T2)e
−S

and so it is left to choose S and ξ so that this bound is less than 1. As one can

verify, the choices ξ = 1√
S(N+1)

and S = ln(4N(K,T2)) satisfy this requirement.

Thus, N(K,T1 + T2) is bounded by

LS(N + 1) =

(
1 +

1√
S(N + 1)

)
ln(4N(K,T2))(N + 1)

=

(
1 +

1√
ln(4N(K,T2))(N + 1)

)
ln(4N(K,T2))(N + 1)

≤ ln(4N(K,T2))(Nω(K,T1) + 1)

+

√
ln(4N(K,T2))(Nω(K,T1) + 1).

2.7. The metric-space setting. The notions of covering and separation

make sense also in the metric space setting. Let(X, d) be a metric space (with

the induced metric topology), and K ⊂ X some compact subset. We shall

denote the ε-covering number of K by

N(K, ε) = min

{
N ∈ N : ∃x1, . . . , xN ∈ R

n; K ⊆
N⋃
i=1

B(xi, ε)

}
,

where B(x, ε) = {y ∈ X : d(x, y) ≤ ε}. Similarly

N(K, ε) = min

{
N ∈ N : ∃x1, . . . , xN ∈ K; K ⊆

N⋃
i=1

B(xi, ε)

}
.

The corresponding notion of the separation number is defined to be the max-

imal number of non-overlapping ε-balls centered in K:

M(K, ε) = max{M ∈ N : ∃x1, . . . , xM ∈ K, B(xi, ε) ∩B(xj , ε) = ∅ ∀i 	= j}.
In this case it makes sense also to define

M(K, ε) = max{M ∈ N : ∃x1, . . . , xM ∈ K, B(xi, ε)∩B(xj , ε)∩K = ∅ ∀i 	= j},
and one should note that in the case K = X these notions of course coincide.

Also note that the metric setting is inherently centrally symmetric. However,

since we no longer work in a linear space, some of the arguments in the preceding

sections need to be altered.
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Let us define weighted covering and separation in the metric setting, and list

the relevant theorems corresponding to those proved in previous sections which

hold in this setting. We shall remark only on the parts of the proofs which are

not identical to those from the linear realm.

Definition 2.11: Let (X, d) be a metric space and K ⊂ X compact. A sequence

of pairs S = {(xi, ωi) : xi ∈ X, ωi ∈ R+}Ni=1 with N ∈ N points and weights is

said to be a weighted ε-covering of K if for all x ∈ K,
∑

{i:x∈B(xi.ε)} ωi ≥ 1.

The total weight of the covering is denoted by ω(S) =
∑N

i=1 ωi. The weighted ε-

covering number of K is defined to be the infimal total weight over all weighted

ε-coverings of K and is denoted by Nω(K, ε).

Similarly, we may define (in a slightly different language)

Nω(K, ε)

= inf

{∫
X

dν : ∀x
∫
�B(y,ε)(x)dν(y)≥�K (x), ν∈D+(X) with supp(ν) ⊆ K

}

where D+(X) denotes all non-negative finite discrete measures on X . Let

B+(X) denote all non-negative Borel measures on X . The weighted covering

number with respect to general measures is defined by

N∗(K, ε) = inf

{∫
X

dμ : ∀x
∫
�B(y,ε)(x)dμ(y) ≥ �K(x), μ ∈ B+(X)

}
.

The weighted notions of the separation number are defined similarly; a mea-

sure ρ is said to be ε-separated if for all x ∈ X ,
∫
�B(y,ε)(x)dρ(y) ≤ 1 and ε-

separated in K if
∫
�B(y,ε)(x)dρ(y) ≤ 1 for all x ∈ K. The weighted separation

numbers, corresponding to Nω(K, ε), Nω(K, ε) and N∗(K, ε), are respectively

defined by

Mω(K, ε) = sup

{∫
K

dρ : ∀x ∈ X

∫
�B(y,ε)(x)dρ(y) ≤ 1, ρ ∈ D+(X)

}
,

Mω(K, ε) = sup

{∫
K

dρ : ∀x ∈ K

∫
�B(y,ε)(x)dρ(y) ≤ 1, ρ ∈ D+(X)

}

and

M∗(K, ε) = sup

{∫
K

dρ : ∀x ∈ X

∫
�B(y,ε)(x)dρ(y) ≤ 1, ρ ∈ B+(X)

}
.

Our first result is a weak duality between weighted covering and separation

numbers:
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Theorem 2.12: Let (X, d) be a metric space, K ⊆ X compact and let ε > 0.

Then

Mω(K, ε) ≤ M∗(K, ε) ≤ N∗(K, ε) ≤ Nω(K, ε).

Proof. The first and last inequalities follow by definition, and so we should only

prove the center inequality. To this end let μ be a weighted ε-covering measure

of K and let ρ be a weighted ε-separated measure. By our assumptions we have

that
∫
�B(y,ε)(x)dρ(y) ≤ 1 and

∫
�B(y,ε)(x)dμ(y) ≥ �K(x) for all x ∈ X . Thus

∫
K

dρ(x) =

∫
�K(x) · dρ(x) ≤

∫ ∫
�B(y,ε)(x)dμ(y)dρ(x)

=

∫
dρ(x)

∫
dμ(y)�B(y,ε)(x)

=

∫
dμ(y)

∫
dρ(x)�B(x,ε)(y)

≤
∫

dμ(y)

and so M∗(K, ε) ≤ N∗(K, ε). Similarly, one may show that

Mω(K, ε) ≤ Nω(K, ε).

As a corollary of Theorem 2.12, we immediately get the following equivalence

relation between the classical and weighted covering numbers:

Corollary 2.13: Let (X, d) be a metric space, K ⊆ X compact and let ε > 0.

Then

N(K, 2ε) ≤ Nω(K, ε) ≤ N(K, ε).

Proof. By Theorem 2.12, M(K, ε) ≤ Mω(K, ε) ≤ Nω(K, ε) ≤ N(K, ε) and so

we only need to verify the inequality

N(K, 2ε) ≤ M(K, ε).

Indeed, let (xi)
N
i=1 ⊆ K be ε-separated. Hence, for every x ∈ K there exists

some i ∈ 1, . . . , N such that B(x, ε) ∩ B(xi, ε) 	= ∅ which by the triangle in-

equality means that x ∈ B(xi, 2ε). Thus, (xi)
N
i=1 is a 2ε-covering of K and so

N(K, 2ε) ≤ M(K, ε), as needed.
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3. The Levi–Hadwiger problem

In this section we prove Theorem 1.10 and Corollary 1.11. To this end, we shall

need some preliminary results, and before that, some notation.

3.1. Preliminary results.

3.1.1. A homothetic intersection. Denote the segment between two vectors

x, y ∈ Rn by [x, y] = {λx + (1 − λ)y : 0 ≤ λ ≤ 1}. Let ∂A denote the

boundary of a set A ⊆ Rn. We will need the following lemma, the proof of

which was kindly shown to us by Rolf Schneider and is reproduced here.

Lemma 3.1 (Schneider): Let K ⊆ Rn be a centrally-symmetric convex body.

Let a ∈ K and let p be the intersection point of ∂K with the ray emanating

from 0 and passing through a. Assume that (a +K) ∩K is homothetic to K.

Then there exists a closed convex cone C ⊆ Rn (with vertex {0}) such that

K = (p− C) ∩ (C − p).

Proof. Denote the homothety h defined by hK = K ∩ (K + a). Since K is

centrally symmetric, it follows that hK is symmetric about a
2 , and since hK

is homothetic to K it follows that hK = a
2 + αK, where α = p−a/2

p . Thus

hK = α(K − p) + p, which means that p = hp is the center of homothety of

h(x) = α(x− p) + p.

Define the cone

Co = {λ(p− y) : y ∈ intK,λ ≥ 0}
and denote its closure by C. Let us prove that (p−Co)∩ (Co− p) ⊆ K; assume

towards a contradiction that there exists x ∈ (p − Co) ∩ (Co − p) such that

x 	∈ K. Let y, z ∈ K be the points for which

[p, y] = K ∩ [p, x], [−p, z] = K ∩ [−p, x]

and consider the quadrangle T in K with vertices ±p, y, z. Since p is the center

of homothety of h, the point y′ = α(y − p) + p ∈ (hK) ∩ [p, x] belongs to the

boundary of hK. However, since the point w = α(y+p)−p is in the interior of T ,

it follows that, for some ε > 0, both w+u ∈ T and y′+u ∈ T , where u = ε·(y−p)

(see Figure 3.1). Since y′ = w+a, it follows that y′+u = (w+u)+a ∈ T+a, and

hence y′+u ∈ K∩(K+a), a contradiction to the fact that [p, y′] = (hK)∩[p, x].
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x

K

−p 0 p

w
y′

y

z
u

−p+ a

T

Figure 3.1. the vector w + u belongs to K and so y′ + u ∈ K ∩ (K + a).

We have proved that (p−Co)∩(Co−p) ⊆ K and hence (p−C)∩(C−p) ⊆ K.

The inclusion K ⊆ (p− C) ∩ (C − p) trivially holds, and thus

K = (p− C) ∩ (C − p).

We remark that if K is not centrally symmetric, one may slightly adjust

Lemma 3.1 and its proof in order to conclude the following lemma.

Lemma 3.2: Let K ⊆ R
n be a convex body containing the origin in its interior.

Let a ∈ K and assume that the intersection point of ∂K with the ray emanating

from 0 and passing through a is an exposed point of K, denoted by p. Let q

denote the point in ∂K for which 0 ∈ (q, p). Assume that (a + K) ∩ K is

homothetic to K. Then there exist closed convex cones C1, C2 ⊆ Rn (both with

vertex {0}) such that K = (p+ C1) ∩ (q + C2).

The main difference between the proof of Lemma 3.1 and the proof of Lemma

3.2 is that, in the latter, in order to prove that p is the center of homothety of

h, we need to use the assumption that p is an exposed point of K. This is done
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by using the exact same argument as in the equality case of Rogers–Shepard

inequality in [21]. We shall not have use of Lemma 3.2 in this note, and we

omit the proof’s details.

3.1.2. Covering a convex body by its interior. It will be convenient to work with

the weighted covering number of a set K by its interior int(K): Nω(K, int(K)).

The definition of this number is literally the same as for compact sets:

Nω(K, int(K)) = inf{ν(Rn) : ν ∗ �int(K) ≥ �K , ν ∈ Dn
+}.

We claim that covering a compact set, fractionally, by its interior is the limit

of fractionally covering it by infinitesimally smaller homothetic copies of itself.

More precisely, we prove the following.

Lemma 3.3: Let K ⊆ Rn be compact with non-empty interior. Then

Nω(K, int(K)) = lim
λ→1−

Nω(K,λK).

Proof. Assume without loss of generality that 0 ∈ int(K). The inequality

Nω(K, int(K)) ≤ lim
λ→1−

Nω(K,λK)

is straightforward by definition. For the opposite direction, let μ =
∑N

i=1 αiδxi

be a covering measure of K by int(K), i.e., μ ∗ �int(K) ≥ �K , and denote the

Euclidean open ball of radius r > 0 and centered at x by B(x, r) ⊆ Rn. Note

that if x ∈ K, x ∈ ⋂
i∈A(xi + int(K)) for some set of indices A, then

B(x, r) ⊆
⋂
i∈A

(xi + int(K))

for some open ball B(x, r). Since 1 ≤ (μ ∗ �int(K))(x), it follows that for all

y ∈ B(x, r) we also have

1 ≤ (μ ∗ �int(K))(y) =

N∑
i=1

αi�xi+int(K)(y).

Hence, as K is compact, there exists δ > 0 such that for all x ∈ K,

1 ≤
N∑
i=1

αi�xi+int(K)((1 + δ)x)

=

N∑
i=1

αi� 1
1+δ int(K)

(
x− xi

1 + δ

)
= (ν ∗ � 1

1+δ int(K))(x)
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where ν =
∑N

i=1 αiδ xi
1+δ

. Therefore, 1 ≤ μ ∗ � 1
1+δ int(K) ≤ μ ∗ �λ0K for some

0 < λ0 < 1, and so

lim
λ→1−

Nω(K,λK) ≤ Nω(K, int(K)),

from which the desired equality is implied.

3.1.3. Antipodal sets. In this section we recall a beautiful result by Danzer and

Grünbaum, which we will need to invoke later on. To state their result, recall

that given a convex body K ⊆ Rn, a set of points A ⊆ K is said to be an

antipodal set in K if for each distinct pair of points in A there is a pair of

distinct parallel supporting hyperplanes of K, each containing one of the two

points.

Danzer and Grünbaum [9] proved the following theorem.

Theorem 3.4 (Danzer and Grünbaum): The maximal cardinality of an an-

tipodal set in a convex body K ⊆ Rn is bounded from above by 2n. Moreover,

equality holds if and only if K is a parallelotope.

3.2. Completing the proofs. We now prove the weighted version of the

Levi–Hadwiger problem.

Proof of Theorem 1.10. Suppose first that K is not centrally symmetric. Then

the volume inequality in Proposition 2.9 immediately implies that

lim
λ→1−

Nω(K,λK) ≤ lim
λ→1−

Vol(K − λK)

Vol(λK)
=

(
2n

n

)
,

as required. Of course, in the symmetric case the same argument gives the

bound 2n. But we proceed differently so as to be able to analyze the equality

case.

Suppose thatK is centrally symmetric. Without loss of generality, we assume

that K has non-empty interior and that an open ball B(0, r) of radius r > 0

is contained in K. By Lemma 3.3, we may work with the weighted covering

number of K by its interior Nω(K, int(K)), and by Lemma 2.8 we may also con-

sider uniform covering measures to bound Nω(K, int(K)) from above. Indeed,

consider the uniform measure μ on K with density 2n

Vol(K) , that is

(3.1) dμ(y) = 2n
�K(y)

Vol(K)
dy.
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Let us verify that μ is a covering measure of K by int(K). Indeed, let x ∈ K.

Then

(μ ∗ �int(K))(x) =
2n

Vol(K)

∫
�int(K)(y)�K(x− y)dy = 2n

Vol(K ∩ (x+K))

Vol(K)
.

Since

(3.2) K ∩ (x+K) ⊇ K

2
+

1

2
[K ∩ (2x+K)] ⊇ K + x

2
,

it follows that

(3.3) 2n
Vol(K ∩ (x+K))

Vol(K)
≥ 2n

Vol(K/2)

Vol(K)
= 1,

as required. This means that Nω(K, int(K)) ≤ μ(Rn) = 2n. To address the

equality case, assume that for some centrally symmetric convex body K we

have Nω(K, int(K)) = 2n. In particular, for no 0 < c < 1 is cμ (for μ given

in (3.1)) a covering measure of K by int(K). Therefore, the inequality in (3.3)

must be an equality for some x ∈ K. Indeed, if not, a standard compactness

argument shows that there exists c ∈ (0, 1) such that for all x ∈ K,

c2n
Vol(K ∩ (x +K))

Vol(K)
≥ 1,

which means that cμ is a covering measure of K by int(K), a contradiction to

the assumption Nω(K, int(K)) = 2n.

Next, note that the inequality (3.3) is strict if and only if at least one of the

inclusions in (3.2) is strict and, moreover, the rightmost inclusion in (3.2) is

strict as long as x ∈ K is not an extremal point of K. Thus, the preceding

two arguments imply that K has at least one extremal point x0 ∈ K for which

(x0 +K) ∩K = K
2 + 1

2 [K ∩ (2x0 +K)] = K+x0

2 .

Our aim for the remaining part of the proof is to show that K actually has

at least 2n extremal points x1, . . . , x2n ∈ K such that (xi + K) ∩ K = K+xi

2

for all i = 1, . . . , 2n, and use the characterization given in Lemma 3.1 for K in

order to deduce that A = {x1, . . . , x2n} is an antipodal set of K. Finally, we

shall invoke Theorem 3.4 to conclude that K is a parallelotope.

Assume that there exists exactly k extremal points of K x1, . . . , xk ∈ K such

that

(xi +K) ∩K =
K

2
+

1

2
[K ∩ (2xi +K)] =

K + xi

2
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for all i = 1, . . . , k. Then, by using the same compactness argument as before, it

follows that there exists 0<c<1 such that for all x∈K\{B(x1, r), . . . , B(xk, r)},
((cμ) ∗ �int(K))(x) = cμ(x+ int(K)) ≥ 1.

Since B(0, r) ⊆ int(K), we have that B(xi, r) ⊆ xi + int(K), and so it follows

that the measure ν = cμ + (1 − c)
∑k

i=1 δxi is a covering measure of K by

int(K). Therefore, the equality assumption Nω(K, int(K)) = 2n implies that

ν(Rn) = c2n + (1 − c)k ≥ 2n which implies that k ≥ 2n. Concluding the

above, there exist at least 2n extremal points A = {x1, . . . , x2n} in K such that

K ∩ (xi +K) = K+xi

2 for all i ∈ A. By Lemma 3.1, for each i ∈ A there exists

a closed convex cone Ci such that K = (xi − Ci) ∩ (Ci − xi).

Let us next prove that if xj 	= xi, then xj belongs to the boundary of Ci−xi.

Indeed, if xj belonged to the interior of Ci−xi, then it would have to belong to

the boundary of xi−Ci as it belongs to ∂K. However, since xj 	= xi, there exists

a segment (a, b) ⊆ xi − Ci on the ray emanating from xi and passing through

xj which contains xj . Together with the assumption that xj belongs to the

interior of Ci − xi, it follows that there exists a segment (a′, b′) ⊆ (a, b) which

both contains xj and is contained in K = (xi −C) ∩ (Ci − xi), a contradiction

to the fact that xj is an extremal point of K.

It remains to show that A is an antipodal set of K. Indeed, since xj belongs

to the boundary of Ci−xi, the segment [−xi, xj ] is contained in the boundary of

Ci−xi and so there exists a supporting hyperplane H of Ci−xi which contains

both −xi and xj . In particular, H supports K. In other words, there exists a

vector v ∈ Rn \ {0} such that for all x ∈ Ci − xi,

〈x, v〉 ≤ 〈xj , v〉 = 〈−xi, , v〉.
Hence, for all x ∈ xi − Ci,

〈x, v〉 ≥ 〈−xj , v〉 = 〈xi, , v〉,
which means that

H ′ =H + (xi − xj) = {x+ xi − xj ∈ R
n : 〈x, v〉 = 〈xj , v〉}

={y ∈ R
n : 〈y, v〉 = 〈xi, v〉}

contains xi, supports xi−Ci, and in particular supports K. Thus, we conclude

that A is an antipodal set of K. By Theorem 3.4, the maximal cardinality of an

antipodal set of a convex body is 2n and equality holds only for parallelotopes,

and thus K is a parallelotope.
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Proof of Corollary 1.11. Fix 0 < δ < 1 and let n ≥ 3. By Theorem 1.6, for any

0 < λ < 1

N(K,λK) ≤ ln(4N(K, δλK))(Nω(K, (1− δ)λK) + 1)

+

√
ln(4N(K, δλK))(Nω(K, (1− δ)λK) + 1)

≤ ln(4N(K, δλK))Nω(K, (1 − δ)λK)

+

√
ln(4N(K, δλK))Nω(K, (1− δ)λK) + 2 ln(4N(K, δλK)).

By Theorem 1.7, we have that

Nω(K, (1− δ)λK) ≤ Vol(K + (1− δ)λK)

Vol((1 − δ)λK)
=

(
1 +

1

(1− δ)λ

)n

.

By classical volume bounds we have that

N(K, δλK) ≤ M

(
K,

δ

2
λK

)
≤ Vol(K + δ

2λK)

Vol( δ2λK)
=

(
1 +

2

λδ

)n

and so

N(K,λK) ≤
(
1 +

1

(1− δ)λ

)n[
n ln(41/n +

2 · 41/n
λδ

)

]

+

√√√√√(1 +
1(

1− δ)λ

)n[
n ln

(
41/n +

2 · 41/n
λδ

)]

+ 2n ln

(
41/n +

2 · 41/n
λδ

)
.

Taking the limit λ → 1− implies that

lim
λ→1−

N(K,λK) ≤
(
1 +

1

(1− δ)

)n[
n ln

(
41/n +

2 · 41/n
δ

)]

+

√(
1 +

1

(1− δ)

)n

[n ln

(
41/n +

2 · 41/n
δ

)]

+ 2n ln

(
41/n +

2 · 41/n
δ

)
.
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By plugging δ = 1
n ln(n) we get

lim
λ→1−

N(K,λK) ≤
(
2 +

1

n lnn− 1

)n

[n ln(41/n + 2 · 41/nn lnn)]

+

√(
2 +

1

n lnn− 1

)n

[n ln(41/n + 2 · 41/nn lnn)]

+ 2n ln(41/n + 2 · 41/nn lnn).

Since, for all n ≥ 3,(
2 +

1

n lnn− 1

)n

≤ 2ne1/(2 lnn−2/n) ≤ 2n
(
1 +

1

lnn− 1/n

)
≤ 2n

(
1 +

2

lnn

)
and

n ln(41/n + 2 · 41/nn lnn) ≤ n ln(4n lnn) = n ln 4 + n lnn+ n ln lnn,

it follows that(
2 +

1

n lnn− 1

)n

n ln(41/n + 2 · 41/nn lnn)

≤2n
(
1 +

2

n lnn

)
(n lnn+ n ln ln n+ n ln 4)

≤2n(n lnn+ n ln lnn+ 3.1n).

Moreover, one may also check that√(
2 +

1

n lnn− 1

)n

n ln(41/n + 2 · 41/nn lnn) ≤ 2n0.5n

and that

2n ln(41/n + 2 · 41/nn lnn) ≤ 2n0.7n.

Thus, it follows that

lim
λ→1−

N(K,λK) ≤ 2n(n lnn+ n ln lnn+ 5n).
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