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ABSTRACT

Algebras having bases that consist entirely of units (called invertible al-

gebras) are studied. Among other results, it is shown that all finite-

dimensional algebras over a field other than the binary field F2 have this

property. Invertible finite-dimensional algebras over F2 are fully character-

ized. Examples of invertible algebras are shown to include all (non-trivial)

matrix rings over arbitrary algebras. In addition, various families of al-

gebras, including group rings and crossed products, are characterized in

terms of invertibility. Invertibility of infinite-dimensional algebras is also

explored.
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1. Introduction and preliminaries

This paper is an introduction to the study of algebras (over not-necessarily

commutative rings) that satisfy the condition of the title. Some years ago, as

we started the study of this topic, we published the preliminary report [4]; the

results presented here extend and complete those earlier results. While our

paper is written in a mostly self-contained manner so that reading [4] is not

a prerequisite, we make every effort, for historical accuracy, to point out the

connections between the current results and those in the earlier paper whenever

doing so seems appropriate.

In this paper, when we use the expression A is an R-algebra we deviate

from the standard use of that terminology in two ways: one which narrows

the net that we cast and another one that widens it. First, we do not allow a

proper homomorphic image of the ring R to be contained in A; according to the

definition we use in this paper, R itself is contained in A. The second difference

is that R is not necessarily assumed to be contained in the center of A; in fact,

we do not even assume that the ring R is commutative. While not a part of

our definition of an algebra, a feature that for obvious reasons will be common

to all algebras considered here is that they will be free as (left) R-modules.

This expectation seems compatible with not allowing a proper homomorphic

image of R (rather than R itself) to be embeddable in A. So, the setting is

the following: we have a ring A that has a subring R such that A is a free left

R-module. We assume commutativity of neither A nor R.

Readers should rest assured that we are not taking these liberties with termi-

nology lightly. There are two main reasons for using the familiar terminology

in our slightly different setting. First, we could not pass on the opportunity of

pointing out that many natural examples which are not algebras in the tradi-

tional sense experience the phenomenon in which we are interested. Second, it

will eventually be the case that for convenience we will focus only on algebras in

the traditional sense of the expression. The reason for this is that the generality

gained by relaxing our hypotheses does not come without a price and therefore,

on several occasions, we must settle with focusing only on classical algebras for

our results. So, for the most part, readers will do fine if they choose to ignore

the fact that our original aim is a little more ambitious and pretend the paper is

only about algebras in the classical sense if that makes them more comfortable.
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For practical purposes, what we have done is simply to relax the usual defi-

nition of an algebra by removing the condition that R be commutative and by

asking simply that when r ∈ R acts on a, b ∈ A, then r(ab) = (ra)b but not

necessarily r(ab) = a(rb). Technically speaking, every time we refer to bases,

we should be saying left bases. In order to avoid unnecessary pedantry, we will

refrain from the latter.

An important observation is that it is often the case that the set of inverses

of a linearly independent set of units is not linearly independent. For example,

consider F2[x]
〈x3+x+1〉 . The set {1, x2 + 1, x2 + x} is linearly independent, but its

set of inverses {1, x, x+1} is not. Questions related to this notion are discussed

in [3]. In the next paragraph we introduce a hierarchy of notions regarding the

existence of bases that consist of units. One of those notions, that of invertible-2

algebras, pertains to the comments in this paragraph as it addresses an instance

when the set of inverses of certain linearly independent families of units remain

linearly independent.

The following concepts were introduced in [4]. Let A be an algebra over a ring

R and let B be a basis for A over R; B is an invertible basis if each element

of B is invertible in A. If B is an invertible basis such that B−1, the set of the

inverses of the elements of B, also constitutes a basis, then B is an invertible-2

(I2) basis. An algebra with an invertible basis is an invertible algebra and an

algebra with an I2 basis is an I2 algebra. Some similar notions in the literature

include k-good rings (cf. [8]) and S-rings (cf. [7]). A ring is said to be k-good

when every element is a sum of exactly k units. A ring is said to be an S-ring

if every element is a sum of units. Of course when R is a division ring, A is

invertible if and only if it is an S-ring. In general, though, there do not seem to

be any other connections between invertible R-algebras and R algebras that are

S-rings. There also do not seem to be any formal connections between invertible

algebras and k-good rings.

Some of the results obtained in this paper and their relations to those pre-

sented in [4] are outlined in the remaining part of this introduction.

A result obtained in [4] was that, under certain commutativity requirements

(the elements of R had to commute with the elements of the invertible basis

B), an invertible algebra A was indeed a group ring if the invertible basis B is

closed under products. In Section 2, we extend this result and provide similar

characterizations of skew group rings, twisted group rings and crossed products.
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In [4], it is shown that over any ring R, the matrix ring A = Mn(R) (for

any n ≥ 1) is an I2 R-algebra. Considering that R need not be commutative,

this surprising result is perhaps the biggest motivation for the relaxation of the

definition of algebra that we adopted in this project. In Section 3, we extend

this result by showing that if B is any algebra over a ring R having an R-basis

that includes the identity of B, then for any n ≥ 2, A = Mn(B) is an I2 algebra

over R. Notice in particular that this holds even if B itself is not an invertible

R-algebra.

An initial study in [4] of finite-dimensional algebras over a field F led to the

realization that most of those algebras considered were indeed invertible. The

exceptions were always in the case of F = F2 and related to having a quotient

algebra isomorphic to F2 ⊕ F2, which is obviously not an invertible F2-algebra.

Somehow, we did not dare to conjecture that this was always the case until

that possibility was later suggested to us by Miodrag Iovanov in conversation.

We have now proven that indeed almost all finite-dimensional algebras over a

division ring D are I2 algebras. The exceptions are only F2 algebras which have

a quotient isomorphic to F2 ⊕ F2. In addition, we have found characterizations

of invertible semilocal D-algebras, and have shown that all local R-algebras are

invertible for any ring R. These results are in Section 4.

Finally, because of the results of Section 4, it makes sense to shift our attention

to infinite-dimensional algebras, and in light of the successes of Section 3, it

seems reasonable to focus on infinite matrix rings of various types. We do so in

Section 5.

2. A Classification of invertible algebras

In this section we present a hierarchy of invertible algebras in terms of additional

properties of their invertible bases.

Definition 2.1: Let A be an algebra over a ring R and let B be an invertible

basis for A over R.

(1) If for every v ∈ B there exists α ∈ U(R) such that αv−1 ∈ B, then B
is scalarly closed under inverses(SCUI). An algebra with a SCUI

basis is a SCUI algebra. If B is a SCUI basis such that for all v ∈ B,
α = 1, then B is simply closed under inverses(CUI). An algebra

with a CUI basis is an CUI algebra.



Vol. 208, 2015 INVERTIBLE ALGEBRAS 465

(2) If for all v, w ∈ B there exists α ∈ U(R) such that αvw ∈ B, then
B is scalarly closed under products(SCUP). An algebra with a

SCUP basis is a SCUP algebra. If B is a SCUP basis such that for

all v, w ∈ B, α = 1, then B is simply closed under products(CUP).

An algebra with a CUP basis is a CUP algebra.

For algebras and bases with the aforementioned properties, if 1 belongs to

the basis, we indicate this by attaching a 1 to the shorthand version of their

names. For example, a CUI1 basis B is a CUI basis with 1 ∈ B, and an algebra

having a CUI1 basis is a CUI1 algebra.

CUI and CUI1 bases and algebras were respectively called invertible-3 and

invertible-4 in [4].

Example 2.2: Consider the field extension of C over R; B = {1, i} is an invertible

basis for this field extension. Notice that B = {1, i} is both a SCUP and a SCUI

basis.

Proposition 2.3: Let A be an algebra over a ring R with SCUP basis B. Then
|B ∩ U(R)| = 1, and A has a SCUP1 basis. If B is a CUP basis, then 1 ∈ B.
Proof. Let v ∈ B. Now, 1 =

∑k
i=1 αkvk for some αk ∈ R and vk ∈ B. Multi-

plying by v we get

v =

k∑
i=1

αkvkv.

Since B is a SCUP basis, v =
∑k

i=1 αkβ
−1
k (βkvkv) for some βk ∈ U(R) with

βkvkv ∈ B. Since v ∈ B, by the linear independence of B, v = βlvlv for some

1 ≤ l ≤ k. Then 1 = βlvl and so β−1
l = vl ∈ B ∩ U(R). Since β−1

l ∈ U(R),

for a ∈ R, a = aβlβ
−1
l . So, B ∩ U(R) = {β−1

l } ⊂ R, and {1} ∪ B \ {β−1
l } is a

SCUP1 basis for A.

If B is also a CUP basis, then the βk’s in the above argument are all 1, in

particular, vl = 1.

Proposition 2.4: Let A be an algebra over a ring R with SCUP basis B. Then
B is also a SCUI basis. If B is a CUP basis, then B is a CUI basis, and B forms

a group under the multiplication in A.

Proof. Let v ∈ B. Note that Bv is a basis for A. By Proposition 2.3 there exists

some β ∈ U(R)∩B. Then β =
∑k

i=1 αkvkv for some αk ∈ R and vk ∈ B. Since
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B is a SCUP basis, and β ∈ B, β = γvlv for some 1 ≤ l ≤ k and γ ∈ U(R).

Then, γ−1βv−1 = vl ∈ B.
When B is a CUP basis, the same proof with β = γ = 1 shows that B is a

CUI basis. Then vw−1 ∈ B for any v, w ∈ B, therefore B forms a group under

multiplication in A.

We now aim to characterize various types of crossed products in terms of

invertible bases. In fact, we will point out that crossed products are SCUP1

algebras. We start by reminding the reader of the pertinent definitions (see [6]

for more details).

Definition 2.5: Let R be a ring with 1 and let G be a group. Then a crossed

product R ∗ G is an associative ring with G, a copy of G, as an R-basis.

Multiplication is determined by the following two rules ([6]):

(1) For x, y ∈ G there exists a unit τ(x, y) ∈ U(R) such that x̄ȳ = τ(x, y)xy.

This action is called the twisting of the crossed product.

(2) For x ∈ G there exists σx ∈ Aut(R) such that for every r ∈ R, x̄r =

σx(r)x̄. This action is called the skewing of the crossed product.

In order to characterize the various types of crossed products in terms of

invertible bases, we need some terminology to describe the ways in which scalars

interact with elements of a basis, We introduce this terminology in the following

definitions.

Definition 2.6: Let A be an algebra over a ring R, and B an R-basis for A. If

for all v ∈ B there exists σv ∈ Aut(R) such that for all r ∈ R, vr = σv(r)v,

then R scalarly commutes with B. In the case that for all v ∈ B, σv = 1, we

naturally say R commutes with B.
Proposition 2.7: Let A be an algebra over a ring R.

(1) A is a crossed product if and only if A has a SCUP basis that scalarly

commutes with R.

(2) A is a skew group ring if and only if A has a CUP basis that scalarly

commutes with R.

(3) A is a twisted group ring if and only if A has a SCUP basis that com-

mutes with R.

(4) A is a group ring if and only if A has a CUP basis that commutes with

R.
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Proof. (1) Suppose A is a crossed product with basis Ḡ. Then by definition of

a crossed product, Ḡ is scalarly closed under products and R scalarly commutes

with Ḡ.

Now, let B be a SCUP basis for A over R that scalarly commutes with R.

By Proposition 2.3, there exists α ∈ U(R) such that {α} = B ∩ U(R). By the

proof of Proposition 2.3, C = {1} ∪ B \ {α} is a SCUP basis with 1; C clearly

scalarly commutes with R.

Since C is a SCUP basis, for v, w ∈ C there exists αv,w ∈ U(R) and z ∈ C
such that vw = αv,wz. Define � : C × C → C by � : (v, w) �→ z as above. Let

v, w, x ∈ C. Using the facts that C is a SCUP basis and it scalarly commutes

with R along with the associativity of A, we have

v(wx) =(vw)x,

vαw,x(w � x) =αv,w(v � w)x,

σv(αw,x)v(w � x) =αv,wαv�w,x((v � w) � x),

σv(αw,x)αv,w�x(v � (w � x)) =αv,wαv�w,x((v � w) � x),

for some αw,x, αv,w�x, αv,w, αv�w,x ∈ C and σv ∈ Aut(R). Since

(v � (w � x)), ((v � w) � x) ∈ C
and C is a basis,

v � (w � x) = (v � w) � x.

So, � is an associative binary operation on C. The identity of A is clearly an

identity of (C, �). By Proposition 2.4, C is a SCUI basis so (C, �) has inverses as
well showing it is a group. Hence, A is a crossed product. (2)–(4) follow from

(1).

The following diagram shows the class inclusions of the various types of al-

gebras summarized in this section. In the diagram, CP, SGR, TGR and GR

stand for crossed product, skew group ring, twisted group ring and group ring,

respectively. A solid line connecting two classes indicates a proper inclusion,

and the number near the line references the specific example from Example 2.8

that shows the inclusion to be proper. A dotted line indicates that we do not

know at this moment whether the inclusion is proper or the two notions are

actually equivalent. For instance, an example of an invertible algebra which is

not an I2 algebra has thus far remained elusive. We do have examples of invert-

ible bases that are not I2, but we have not been able to confirm that for those
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algebras no invertible basis is I2. Example 5.1 is one of such a basis. There are

only two dotted lines in the diagram, and in both cases we suspect the inclusion

is proper.

Invertible

I2

1

SCUI
2

���
���

�
3

CUI

3

SCUI1
2

���
��� 4

CUI1

4

SCUP
2

���
��� 5

CUP

5

CP
2

���
���

�

SGR TGR
2

���
���

GR

The following examples demonstrate the proper inclusions in the above dia-

gram.

Example 2.8:

(1) (An I2 algebra that is not a SCUI algebra) Consider A = F3[x,y]
〈x2,y2,xy〉 . Let

U(A) be the group of units of A. Then

U(A) = {α+ βx + γy | α, β, γ ∈ F3, α �= 0}.
Note that for a = α+ βx+ γy ∈ U(A),

a−1 = (α+ βx+ γy)−1 = α− βx− γy.

An I2 F3-basis for A is {1 + x, 1 + y, 1 + x + y}. So, A is I2. To see

that there is no invertible basis that is SCUI, we first observe the only

elements that are their own inverses are ±1. Let B be an invertible

basis. Let v ∈ B. If B is SCUI, then δv−1 ∈ B. Since A has dimension

3, the other element of B (aside from v and δv−1) must be its own

inverse. Therefore, one of ±1 is in B. Without loss of generality, let

1 ∈ B. Refer back to how inverses look in A. If v = α + βx + γy then

δv−1 = δα − δβx − δγy. Forming the following linear combination we
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see the set {v, δv−1, 1} will be linearly dependent:

1(v) + δ(δv−1) + α(1) = 0.

Therefore, B is not a basis for A.

(2) (A twisted group ring that is not a CUI algebra) The real quaternions,

H, are an algebra over the field of real numbers, R. The basis B =

{1, i, j, k} is clearly a SCUP basis for H. By Proposition 2.7, since

B commutes with R, H is a twisted group ring. Now, suppose A =

{v1, v2, v3, v4} is a CUI basis for H over R. We have two cases, being

either 1 or −1 is in A or neither are in A. If v1 = 1 or −1, then

without loss of generality v−1
2 = v3. This forces v4 to be its own inverse.

However, in a division ring the only elements that are their own inverses

are 1 and −1, a contradiction. So, assume that neither 1 nor −1 belongs

to A. Note that since A is a CUI basis and considering that for v =

a + bi + cj + dk ∈ H, v−1 = 1
a2+b2+c2+d2 (a − bi − cj − dk), it follows

that no element of A can have a = 0. So, let v1 = a+ bi+ cj + dk with

a �= 0 and v2 = v−1
1 . Then write v3 = α+ βi + γj + δk with α �= 0, so

v4v
−1
3 = 1

α2+β2+γ2+δ2 (α− βi− γj − δk). It is easy to see that the span

of A has dimension at most three, contradicting our assumption that

A is indeed a basis. Therefore H is not a CUI algebra over R.

(3) (A CUI algebra that is not a CUI1 algebra) Consider M2(F2). By

Proposition 3.6, it is a CUI algebra. By process of elimination there are

6 units in this algebra and it can be seen that no basis including the

identity can be a CUI basis.

(4) (A CUI1 algebra that is not a CUP algebra) Consider A = F2[x,y]
〈x2,y2,xy〉 .

Then U(A) = {1, 1 + x, 1 + y, 1 + x + y}. To form a CUI1 basis, B,
we must have 1 ∈ B. Therefore, we must have two of the other three

remaining invertible elements. Since the square of any unit here is 1

and the product of any two non-identity units is the third one, we see

that no CUI1 basis we form can be a CUP basis.

Another family of examples is A = Mn(F2) for odd n. By Propo-

sition 3.6, A is a CUI1 algebra. Assume A has a CUP basis B. By

Corollary 2.4, B forms a group under multiplication in A. Furthermore,

F2 commutes with B. By Proposition 2.7, A is a group algebra. But, A

is simple, which would be a contradiction. So, A does not have a CUP

basis.
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(5) (A CUP algebra that is not a crossed product) Let C2 be any subgroup

of order 2 of S3, A be the group algebra F3S3 and R be the group

algebra F3C2. It is not hard to see that A is a CUP algebra over R,

with the subgroup of order 3 of S3 forming the CUP basis. Suppose

now that A is a crossed product over R. Then A = R ∗ C3 where C3 is

the cyclic group of order 3. Then C3 acts on R and, in particular, on

its two primitive idempotents. A group of order 3 can act only trivially

on a set of two elements, so these idempotents are fixed by C3. Hence,

R is central in A, a contradiction.

3. Rings of matrices

In [4] it is shown that over any ring R, the matrix ring A = Mn(R) (for any

n ≥ 1) is an I2 R-algebra. Here we significantly extend that result.

Proposition 3.1: Let A be an algebra over a ring R with a basis that includes

1. Then Mn(A) is an I2 algebra over R for n ≥ 2.

Proof. Let B be a basis for A over R such that 1 ∈ B. For 1 ≤ i, j ≤ n let eij be

the matrix with 1 in the i, j entry and 0 elsewhere. Denote by In the identity

matrix and for 1 ≤ k ≤ n− 1 let Pk = In − ekk − ek+1,k+1 + ek,k+1 + ek+1,k, so

Pk is the permutation matrix that is In with rows k and k+1 interchanged. For

b ∈ B and 1 ≤ i, j ≤ n, i �= j let vijb = In + eijb. For b ∈ B and 1 ≤ i ≤ n− 1

let viib = Pi + eiib. For b ∈ B \ {1}, let vnnb = Pn−1 + ennb. Let vnn1 = In. Let

A = {vijb|1 ≤ i, j ≤ n, b ∈ B}. Notice that A consists of invertible elements.

We will show A is a basis for Mn(A) over R. For any 1 ≤ i, j ≤ n with i �= j,

eij = vij1 − vnn1. and for 2 ≤ k ≤ n, ekk = vnn1 + ek,k−1 + ek−1,k − vk−1,k−1,1.

Since e11 = vnn1 −
∑n

i=2 eii, we have that ekk is in the span of A for any k. So,

for any b ∈ B and 1 ≤ i, j ≤ n, eijb is in the span of A since for 1 ≤ k ≤ n− 1;

Pk is as well. Hence, A spans Mn(A).

Now assume ∑
b∈B,1≤i,j≤n

rijbvijb = 0

for some rijb ∈ R. For fixed 1 ≤ i, j ≤ n, considering the (i, j)-th entry of

the sum, we have 0 =
∑

b∈B\{1} rijbb+ x · 1 for some x ∈ R. So, by the linear

independence of B, for any i, j and b ∈ B \ {1}, rijb = 0. At this point, our
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original sum becomes ∑
1≤i,j≤n

rij1vij1 = 0.

Now, for 2 ≤ k ≤ n, considering the (k, k) and (1, 1) entries of the sum, we have

0 =

[ ∑
1≤i,j≤n

rij1

]
− rk−1,k−1,1

and

0 =
∑

1≤i,j≤n

rij1,

showing rk,k,1 = 0 when 1 ≤ k ≤ n − 1. Then for any 1 ≤ i, j ≤ n where

i �= j, considering the (i, j) entry, we see rij1 = 0. Then we must have that

r111 = 0. So, A is a basis for Mn(A) over R. Finally, v−1
ijb = vi,j,−b when i �= j,

v−1
kkb = Pk − ek+1,k+1b for 1 ≤ k ≤ n − 1, v−1

nnb = vn−1,n−1,−b when b �= 1 and

v−1
nn1 = vnn1. In a similar fashion as above, it can be shown that A−1 is also a

basis for Mn(A) over R, therefore Mn(A) is I2 over R.

Corollary 3.2: Invertibility is not a Morita invariant.

Proof. This follows immediately from Proposition 3.1, as A need not be invert-

ible over R for Mn(A) to be invertible over R.

Direct sums of invertible algebras are not always invertible; F2 ⊕ F2 as an

F2-algebra is an easy example. In [4] the authors define a nice F2-algebra to be

one with an invertible basis such that the sum of some even number of basis

elements is invertible. Interest in this notion comes from the fact that if A

is such an F2-algebra and B is an invertible F2-algebra, then A ⊕ B is also

invertible. Consequently we use the second property to extend this definition

to R-algebras in general.

Definition 3.3: Let R be a ring and let A be an invertible R-algebra. Then A

is nice if A⊕B is invertible over R for any invertible R-algebra B.

Proposition 3.4: Let R be a ring and let A be an R-algebra with a basis

that includes 1. Then for n ≥ 2, Mn(A) is nice. Furthermore, if B is an I2

R-algebra, then Mn(A) ⊕B is also I2.

Proof. Let B be an invertible basis of B, A be a basis with 1 for A and V =

{vija|1 ≤ i, j ≤ n, a ∈ A} be the I2 basis for Mn(A) from Proposition 3.1. Let
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b′ ∈ B and let S be an invertible matrix with only zeros and ones as its entries

and zero diagonal. We claim that

C = {V × {b′}} ∪ {{In} × B \ {b′}} ∪ {(S, b′)}

is an invertible basis of Mn(A)⊕ B. Assume∑
1≤i,j≤n,a∈A

rijab′ (vija, b
′) +

∑
b∈B\{b′}

rnn1b(In, b) + rS(S, b
′) = 0

for some rijab, rS ∈ R. So,

(1)

[ ∑
1≤i,j≤n,a∈A

rijab′ + rS

]
b′ +

∑
b∈B\{b′}

rnn1bb = 0

which implies for b ∈ B\{b′}, rnn1b = 0. Then
∑

1≤i,j≤n,a∈A rijab′vija+rSS = 0.

Since S does not have entries on its diagonal, it can be shown in a fashion similar

to that used in the proof of Proposition 3.1 that this implies rijab′ = 0 and

rii1b′ = 0 for 1 ≤ i, j ≤ n and a ∈ A\{1}. So,∑1≤i,j≤n,i�=j rij1b′vij1 + rSS = 0.

Considering the (1, 1) entry in the above sum we have
∑

1≤i,j≤n,i�=j rij1b′ = 0.

From (1),

0 =

[ ∑
1≤i,j≤n,a∈A

rijab′ + rS

]
=

[ ∑
1≤i,j≤n,i�=j

rij1b′ + rS

]
= rS .

Since vij1 is the only possible basis vector left where the (i, j) entry is nonzero

in this case, rij1b′ = 0 when i �= j. To see that C spans Mn(A) ⊕ B note the

following. For i �= j, (eij , 0) = (vij1, b
′)− (In, b

′). Then for 2 ≤ k ≤ n,

(eii, 0) = (In, b
′)− [(vi−1,i−1,1, b

′)− (ei−1,i, 0)− (ei,i−1.0)].

Since S has no (1, 1) entry, (0, b′) can be produced from (S, b′). Then (e11, 0) =

(In, b
′) − (0, b′) − (

∑n
i=2 eii, 0). The spanning set result then easily follows.

Finally, if B is I2 then of course C is as well.

At this point we can characterize the invertible semilocal algebras over a

division ring, but we save this for Proposition 4.2.

First introduced in [1] and [2], Leavitt path algebras are a subject of much

current research. These algebras include direct sums of matrix rings. So, in

light of Propositions 3.1 and 3.4, it is natural to wonder which Leavitt path

algebras are invertible. This is the subject of [5].
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The only condition on Mn(A) assumed under Proposition 3.1 is that A has

an R-basis with 1, but imposing a few additional conditions on R,A, or n can

give results beyond I2 on Mn(A).

Proposition 3.5: Let A be an algebra over a ring R with basis that includes

1. Assume n is even and char(R) = 2. Then Mn(A) is a CUI algebra over R.

Proof. Let B be a basis for A over R such that 1 ∈ B. For 1 ≤ k ≤ n
2 let

P2k−1 = P2k = In − e2k−1,2k−1 − e2k,2k + e2k−1,2k + e2k,2k+1, the permutation

matrix that is In with rows 2k−1 and 2k interchanged. For b ∈ B and 1 ≤ i ≤ n

let viib = Pi + eiib. For b ∈ B and 1 ≤ i, j ≤ n, i �= j let vijb = In + eijb. Let

A = {vijb|1 ≤ i, j ≤ n, b ∈ B}. We will show A is a basis for Mn(A) over R.

First note In =
∑n

2

k=1 v2k−1,2k−1,1−v2k,2k,1, showing In is in the span of A. So,

for any i, j such that i �= j and any b ∈ B, eijb is in the span of A. For any k

that is odd, ekk = In − [vk+1,k+1,1 − ek+1,k − ek,k+1] and for any k that is even,

ekk = In − [vk−1,k−1,1 − ek−1,k − ek,k−1]. So, for any k, ekkb is in the span of

A. Hence, A spans Mn(A).

Now assume ∑
b∈B,1≤i,j≤n

rijbvijb = 0

for some rijb ∈ R. For fixed 1 ≤ i, j ≤ n, considering the (i, j)-th entry of

the sum, we have 0 =
∑

b∈B\{1} rijbb+ x · 1 for some x ∈ R. So, by the linear

independence of B, for any i, j and b ∈ B \ 1, rijb = 0. Also, if |i − j| > 1 or

(i, j) = (2k, 2k+1) for some k or (i, j) = (2k+1, 2k) for some k, then rij1 = 0.

At this point, our original sum becomes

0 =
∑

1≤k≤ n
2

r2k−1,2k−1,1v2k−1,2k−1,1 + r2k,2k,1v2k,2k,1

+ r2k,2k−1,1v2k,2k−1,1 + r2k−1,2k,1v2k−1,2k,1.

Now, for 1 ≤ k1, k2 ≤ n where k1 is odd and k2 is even, considering the

(k1 +1, k1 + 1)-th, (k2 − 1, k2 − 1)-th and the (2, 2) entries of the sum, we have

0 =
∑

1≤i,j≤n

rij1 − rk1,k1,1,

0 =
∑

1≤i,j≤n

rij1 − rk2,k2,1
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and

0 =
∑

1≤i,j≤n

rij1 − r111,

showing rk1,k1,1 = rk2,k2,1 = r111. Also, for any non-diagonal entry (2k, 2k − 1)

we have r2k,2k−1,1 + r2k−1,2k−1,1 + r2k,2k,1 = 0, so

r2k,2k−1,1 = −2r2k−1,2k−1,1 = −2r111

and similarly, r2k−1,2k,1 = −2r111. Consider the (2, 2) entry in the sum. We

have

0 =

[ ∑
1≤k≤ n

2

r2k−1,2k−1,1 + r2k,2k,1 + r2k,2k−1,1 + r2k−1,2k,1

]
− r111

=− (n+ 1)r111

=(n+ 1)r111.

Since char(R) = 2 and n is even, r111 = 0. So, A is a basis for Mn(A) over R.

Finally, v−1
ijb = vijb when i �= j and v−1

2k−1,2k−1,b = v2k,2k,b for 1 ≤ k ≤ n
2 , so A

is a CUI basis.

Proposition 3.6: For all n, Mn(F2) is a CUI algebra over F2. For odd n,

Mn(F2) is a CUI1 algebra over F2.

Proof. Assume n is even. For 1 ≤ k ≤ n
2 let

P2k−1 = P2k = In − e2k−1,2k−1 − e2k,2k + e2k−1,2k + e2k,2k+1,

the permutation matrix that is In with rows 2k − 1 and 2k interchanged. For

1 ≤ i, j ≤ n, if i = j let vij = vii = Pi + eii, and if i �= j let vij = In + eij .

Let A = {vij|1≤i,j≤n}. We will show A is a basis for Mn(A) over R. First note

In =
∑n

2

k=1 v2k−1,2k−1 − v2k,2k, so In is in the span of A. So, for any i, j with

i �= j, eij is in the span of A. For any k that is odd,

ekk = In − [vk+1,k+1 − ek+1,k − ek,k+1],

and for any k that is even,

ekk = In − [vk−1,k−1 − ek−1,k − ek,k−1].

So, for any k, ekk is in the span of A. Hence, A spans Mn(F2). Then, since

dimMn(F2) = |A| = n2, A is a basis. Finally, v−1
ij = vij when i �= j and

v−1
2k−1,2k−1 = v2k,2k for 1 ≤ k ≤ n

2 , so A is a CUI algebra.
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Now assume n is odd. For 1 ≤ k ≤ n−1
2 let

P2k−1 = P2k = In − e2k−1,2k−1 − e2k,2k + e2k−1,2k + e2k,2k+1,

the permutation matrix that is In with rows 2k − 1 and 2k interchanged. For

1 ≤ i, j ≤ n, if i = j and i < n let vij = vii = Pi + eii, let vnn = In, and if i �= j

let vij = In + eij . Using arguments similar to those used in the case when n is

even, it can be shown that A = {vij |1 ≤ i, j ≤ n} is a CUI1 basis for Mn(F2)

over F2.

Proposition 3.7: Let R be a ring such that 2 is invertible in R. Then Mn(R)

is a CUI1 algebra over R.

Proof. Let vnn = In. For 1 ≤ i, j ≤ n where (i, j) �= (n, n), if i = j let

vij = vii = vnn − 2eii, if i > j let vij = vjj + eij and if i < j let vij = vii + eij .

Clearly, B = {vij|1≤i,j≤n} is a spanning set.

Now assume ∑
1≤i,j≤n

rijvij = 0

for some rij ∈ R. For fixed 1 ≤ i, j ≤ n such that i �= j, considering the (i, j)-th

entry of the sum, we see rij = 0. Now for 1 ≤ k ≤ n − 1, considering the

(k, k) and (n, n) entries in the sum, we have that 0 = 2rkk +
∑

1≤i≤n,i�=k rii and

0 = rkk +
∑

1≤i≤n,i�=k rii, showing rkk = 0. So, rnn = 0 as well so B is a basis.

Finally, it is easy to see the square of any basis element is the identity, hence B
is a CUI1 basis.

Example 3.8:

(
1 0

0 1

)
,

(
2 0

0 1

)
,

(
1 0

1 2

)
,

(
1 1

0 2

)
is a CUI1 basis for

M2(F3).

4. (Almost) all finite-dimensional algebras over a division ring are

invertible-2

In the majority of this section, we restrict our attention to algebras over a

division ring D. Characterizations of invertible semilocal D-algebras are given.

While it is not known whether all invertible algebras are also I2, we show that

this is the case for all finite-dimensional D-algebras. Finally, we show that

all local R-algebras are invertible. Before proceeding to our main results, we
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provide Proposition 3.5 from [4] which is needed to prove Proposition 4.2. In

this section, for a ring R, we will denote the Jacobson radical of R by J(R).

Lemma 4.1 (Proposition 3.5 in [4]): Let R be a ring such that 1 is the sum of

two units and let A and B be invertible algebras over R. Then A ⊕ B is an

invertible algebra over R.

In [4] it was assumed that the algebras in the above lemma were finite-

dimensional, but the proof holds without this assumption.

Proposition 4.2: Let D be a division ring and let A be a semilocal D-algebra.

If D �= F2, then A is invertible. If D = F2, then A is invertible if and only if A

does not admit an algebra epimorphism to F2 ⊕ F2.

Proof. First observe that if there exists an algebra epimorphism f : A → F2⊕F2,

then f(J(A)) ⊆ J(F2⊕F2) = 0. So, A admits an algebra epimorphism to F2⊕F2

if and only if A/J(A) does as well. In this case f(A) is not invertible, hence

neither is A.

Assume then that A does not admit such an algebra epimorphism, and let

J = J(A). Since A is semilocal, we have an algebra isomorphism

A/J ∼=
m⊕
i=1

Mni(Di)

for some division rings Di. Clearly,
⊕m

i=1 Mni(Di) admits an algebra epimor-

phism to F2 ⊕F2 if and only if D = F2 and Mni(Di) = Mnj (Dj) = F2 for some

i �= j. By assumption A/J ∼= ⊕m
i=1 Mni(Di) does not admit such an algebra

epimorphism, so there are no such distinct Mni(Di) and Mnj (Dj), hence A/J

is I2 over D by Proposition 3.4 and Lemma 4.1. It is not hard to see that such

an I2 basis for A/J can be chosen that includes 1. So, choose {1, u2, . . . , um}
from A\J such that their images in A/J give an I2 basis for A/J over D. Since

the image of every ui is invertible in A/J, every ui is invertible in A. Then for

any basis {bi|i ∈ I} of J ,

G = {1, u2, . . . , um} ∪
⋃
i∈I

{1− bi}

is a set of units spanning A over D, and since D is a division ring G contains a

basis of A.

When A is finite-dimensional over D, we can conclude more.
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Proposition 4.3: Let D be a division ring and let A be a finite-dimensional

D-algebra. If D �= F2, then A is I2. If D = F2, then A is I2 if and only if A

does not admit an algebra epimorphism to F2 ⊕ F2.

Proof. Our algebra A is semilocal, so in light of Proposition 4.2 we need only

show that A is I2 when A is invertible. Assume then that A is invertible,

and let J = J(A). Since A is artinian, J is a nilpotent ideal, so let l be the

nilpotency of J . It is not hard to see that J i/J i+1 is a finite-dimensional vector

space over D for 1 ≤ i ≤ l − 1. Given i, let d(i) = dimD(J i/J i+1), and choose

bi1, . . . , bi,d(i) ∈ J i such that their images in J i/J i+1 give a basis for J i/J i+1

over D. Then the set
⋃

1≤i≤l−1
1≤j≤d(i)

bij spans J over D, and is a basis for J since

its cardinality is precisely dimD(J). Then choosing {1, u2, . . . , um} from A \ J
as in the proof of Proposition 4.2,

B = {1, u2, . . . , um} ∪
⋃

1≤i≤l−1
1≤j≤d(i)

{1− bij}

spans A over D. Since m = dimD(A/J) = dimD(A)− dimD(J), we have |B| =
dimD(A), therefore B is a basis for A over D. We claim that B is I2.

Since J is nilpotent with nilpotency l, (1 − bij)
−1 = 1 + cij where cij =

bij + b2ij + · · ·+ blij . So,

B−1 = {1, u−1
2 , . . . , u−1

m } ∪
⋃

1≤i≤l−1
1≤j≤d(i)

{1 + cij}.

Notice that bij ≡ cij modulo J i+1 for every i, j and the arguments used on⋃
1≤i≤l−1
1≤j≤d(i)

bij also show that
⋃

1≤i≤l−1
1≤j≤d(i)

cij is a basis for J over D. Since the

images of {1, u−1
2 , . . . , u−1

m } also give a basis for A/J, the same arguments used

on {1, u2, . . . , um} also show that A \ J is also spanned by B−1. Finally, since

|B−1| = |B|, the set B−1 is a basis for A over D.

The last result of this section may appear redundant in light of Proposition

4.2, but now R need not be a division ring.

Proposition 4.4: Let R be a ring and let A be a free local R-algebra. Then

A is invertible.

Proof. Let B be a basis for A over R. Since A is local, there exists v ∈ B∩U(A).

It is not hard to see v−1B is also an R-basis of A which includes 1. So, assume
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that 1 ∈ B. Since A is local, for any x ∈ A, either x or 1− x is a unit. Define a

map f : B → U(A) by f(x) = x if x ∈ U(A) and f(x) = 1 − x otherwise. Let

B′ = f(B). Given any b ∈ B \ U(A), we have b = 1 − (1 − b), so B is in the

span of B′. Assume then that r · 1+∑n
i=1 rif(bi) = 0 for some bi ∈ B \ {1} and

r, ri ∈ R. Then

0 =r +

n∑
i=1

rif(bi)

=r +
m∑
i=1

ribi +
n∑

i=m+1

ri(1 − bi)

=

[
r +

n∑
i=m+1

ri

]
· 1 +

m∑
i=1

ribi −
n∑

i=m+1

ribi

for some 1 ≤ m ≤ n. Since B is a basis with 1, r = ri = 0 for 1 ≤ i ≤ n. Hence,

B′ is a basis. By construction B′ ⊂ U(A), so B′ is an invertible basis.

5. Some invertible infinite-dimensional algebras

Having characterized which finite-dimensional algebras over a division ring were

invertible in the previous section, it seems natural to transfer our study to

infinite-dimensional invertible algebras. However, in this section we revert back

to algebras over arbitrary rings, and not just division rings.

There are already several well known classes of infinite-dimensional invertible

algebras. As stated before, group rings provide an example of an invertible

algebra, and when the group is infinite, we have an infinite-dimensional invert-

ible algebra. Also, any infinite division ring extension is an infinite-dimensional

invertible algebra. The next example has come to be a rather important infinite-

dimensional invertible algebra. Its significance arises from the fact that it pro-

vides an example of an invertible basis that is not I2.

Example 5.1: Let F be a field. Consider the F -algebra F (x), the field of rational

functions over F. Notice that

G =

{
xn

f(x)
|n ∈ {0, 1, 2, . . .}, f(x) ∈ F [x] \ {0}

}

generates F (x). However, G−1 ⊂ F [x, x−1]. As a consequence, G−1 does not

generate F (x), so any basis B contained in G is an invertible basis that is not

I2.
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Our central result in this section, Proposition 5.3, is a generalization of Propo-

sition 3.3 of [4]. Before presenting Proposition 5.3, we give Proposition 3.3 of

[4] here since it is used in the proof of Proposition 5.3.

Lemma 5.2 (Proposition 3.3 in [4]): Let A0, A1, A2 be rings such that A2 is an

invertible algebra over A1 with invertible A1-basis B2 and A1 is an invertible

algebra over A0 with invertible A0-basis B1. Then A2 is an invertible A0-algebra

and B1B2 is an invertible A0-basis of A2.

Proposition 5.3: Let A0, A1, . . . be a chain of rings such that for i ≥ 1, Ai is

an invertible algebra over Ai−1. Then A =
⋃

i≥0 Ai is an invertible A0-algebra.

Proof. For i ≥ 1, let Bi be an invertible basis which includes 1 for Ai over

Ai−1 (it is not hard to see that any invertible algebra has such a basis) and let

Ci = B1B2 · · · Bi. Since 1 ∈ Bi, we have a chain C1 ⊆ C2 ⊆ · · · . Let C =
⋃

i≥1 Ci
and let α ∈ A. Then there exists some k such that α ∈ Ak. Clearly, Ck generates

α over A0, so C is a generating set. Assume
∑n

i=1 γivi = 0 for some n ∈ N,

vi ∈ C and γi ∈ A0. Then there exists some l such that {vi}ni=1 ⊆ Cl. By

Lemma 5.2, Cl is a basis for Al over A0. Therefore, we must have γi = 0 for all

i. Thus C is a linearly independent set and therefore a basis for A over A0.

Corollary 5.4: Let A0, A1, . . . be a chain of rings such that for i ≥ 1, Ai is

an algebra over Ai−1 with an I2 Ai−1-basis that commutes with all elements of

Ai−1. Then A =
⋃

i≥0 Ai is an I2 A0-algebra.

Proof. For i ≥ 1, let Bi be an I2 Ai−1-basis which includes 1 and commutes

with Ai−1 for Ai. (It is not hard to see here that an I2 basis that has this

commuting property can produce a basis with 1 having the same properties.)

Let Ci = B1B2 · · · Bi. Since 1 ∈ Bi, we have a chain C1 ⊆ C2 ⊆ · · · . Let

C =
⋃

i≥1 Ci. By the proof of Proposition 5.3, C is a an invertible basis for A

over A0. Now let Di = B−1
1 B−1

2 · · · B−1
i and D =

⋃
i≥1 Di. Since B−1

i is an

invertible Ai−1-basis, again by the proof of Proposition 5.3, D is an invertible

basis for A over A0. Let v ∈ C. Then v = v1v2 · · · vl for some l and vi ∈ Bi.

So, v−1 = v−1
l · · · v−1

2 v−1
1 ∈ C−1 and by the commuting property of the Bi we

have v−1 = (v1v2 · · · vl)−1 = (vl · · · v2v1)−1 = v−1
1 v−1

2 · · · v−1
l ∈ D. A similar

argument shows D ⊂ C−1, so D = C−1. So, A is an I2 A0-algebra.
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Remark 5.5: In Corollary 5.4, if I2 is replaced by CUI1, SCUI1 or SCUP, using

similar arguments, the result holds. It will not hold necessarily for CUI or

SCUI, since the bases used need 1 in them and these classes of algebras strictly

contain CUI1 and SCUI1, respectively.

Next we consider a specific subring of the ring of row and column finite

matrices over any ring. We make use of Proposition 5.3 to show this ring is, in

fact, invertible over its base ring.

Corollary 5.6: Let R be a ring and let

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

X 0 0 . . .

0 X 0 . . .

0 0 X
. . .

...
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦ |X ∈ Mn(R), n ≥ 1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Then A is an invertible R-algebra.

Proof. Let {p1, p2, . . .} be the set of prime numbers in some ordering. Let

n0 = 1 and for i ≥ 1 let ni = (p1 · p2 · · · pi)i and qi =
ni

ni−1
. For i ≥ 0 let

Ai =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

X 0 0 . . .

0 X 0 . . .

0 0 X
. . .

...
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦ |X ∈ Mni(R)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Then

Ai =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

X 0 0 . . .

0 X 0 . . .

0 0 X
. . .

...
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦ |X ∈ Mqi(Mni−1(R))

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

when i ≥ 1. Viewing Ai this way, we see A0 ⊆ A1 ⊆ A2 ⊆ · · · and ⋃i≥0 Ai ⊆ A.

To show the reverse inclusion, let B ∈ A. There exists k ∈ N such that B

consists of the same k× k matrix down the diagonal, so k =
∏r

j=1 p
mj

j for some

r and mj’s. Let t = max{r,m1, . . . ,mr}. Since k|nt, B ∈ At and A ⊆ ⋃i≥0 Ai.

This proves A =
⋃

i≥0 Ai. For i ≥ 0, Ai
∼= Mni(R), so by Proposition 3.1,

Mni+1(R) = Mqi+1(Mni(R)) is invertible over Mni(R). Hence, for i ≥ 0, Ai+1

is invertible over Ai. The conclusion follows from Proposition 5.3.
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Our next proposition handles a family of matrices we nickname “kite ma-

trices” (for hopefully obvious reasons). This provides another class of infinite

matrix rings that are invertible algebras.

Proposition 5.7: Let R be a ring and let

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

X 0 0 . . .

0 r 0 . . .

0 0 r
. . .

...
...

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎦ |n ∈ N, X ∈ Mn(R), r ∈ R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Then A is an invertible algebra over R.

Proof. We denote the identity matrix by I. For i, j ∈ N with i �= j, define vij =

I + eij . For i ∈ N let vii = I − eii + ei,i+1 + ei+1,i. Let B = {I} ∪ {vij |i, j ∈ N}.
We will show B is a basis for A over R. For any i, j ∈ N such that i �= j we have

eij = vij − I and eii = I − vii + ei,i+1 + ei+1,i. So, for any i, j ∈ N, eij is in the

span of B. Also, we can generate the “tails” of the elements as r(I −∑n
i=1 eii)

for r ∈ R and any n. Hence, B spans A over R.

Now assume

rI +
∑
i,j∈N

rijvij = 0

for some r, rij ∈ R where only a finite number of the rij ’s are nonzero. Then

there exists an n such that for i, j > n, rij = 0. So,

rI +
∑

1≤i,j≤n

rijvij = 0.

Now, for 1 ≤ k ≤ n, considering the (k, k) and (n+1, n+1) entries of the sum,

we have

rI +
∑

1≤i,j≤n

rij − rkk = 0

and

rI +
∑

1≤i,j≤n

rij = 0,

showing rkk = 0 for 1 ≤ k ≤ n. Then, for 1 ≤ i, j ≤ n, considering the (i, j)

entry of the sum, we have rij = 0. Finally, r = 0. Hence, B is a basis for A

over R. It is not hard to see that the elements in B are invertible, so A is an

invertible algebra over R.



482 S. R. LÓPEZ-PERMOUTH ET AL. Isr. J. Math.

Acknowledgements. The authors would like to thank Miodrag Iovanov and

Yuval Ginosar for helpful conversations. In particular, Mio’s comments moti-

vated Section 4 and Yuval suggested Example 2.8(5). We also want to express

our appreciation to the anonymous referee whose feedback helped us prepare a

better final version of this paper.

References

[1] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, Journal of Algebra

293 (2005), 319–334.

[2] P. Ara, M. A. Moreno and E. Pardo, Nonstable K-theory for graph algebras, Algebras

and Representation Theory 10 (2007), 157–178.
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