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ABSTRACT

The harmonic measure ν on the boundary of the group Sol associated

to a discrete random walk of law μ was described by Kaimanovich. We

investigate when it is absolutely continuous or singular with respect to

Lebesgue measure. By ratio entropy over speed, we show that any count-

able non-abelian subgroup admits a finite first moment non-degenerate

μ with singular harmonic measure ν. On the other hand, we prove that

some random walks with finitely supported step distribution admit a reg-

ular harmonic measure. Finally, we construct some exceptional random

walks with arbitrarily small speed but singular harmonic measures. The

two later results are obtained by comparison with Bernoulli convolutions,

using results of Erdős and Solomyak.

1. Introduction

Let Sol denote the semi-direct product R�R
2 with action z.(x, y) = (e−zx, ezy),

endowed with the left-invariant Riemannian metric

ds2 = dz2 + e2zdx2 + e−2zdy2.
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The group Sol is the simplest unimodular solvable non-nilpotent Lie groups.

As a three dimensional manifold, it is one of the eight “Thurston geometries”.

Even though it has both negative and positive sectional curvature, the visual

boundary has been described by Troyanov [T] as the union of two circles inter-

secting at two points. These two circles correspond to the boundaries of two

hyperbolic planes of which Sol is the horocyclic product. Measure-theoretically,

this boundary is not different from the disjoint union of two real lines.

The aim of this article is to study the boundary behavior of discrete random

walks, that is sequences of random variables Wn = X1 · · ·Xn, where Xi are

independent group elements following a probability law μ with discrete support

and finite first moment. Kaimanovich has described the boundary behavior of

such random walks on solvable Lie groups in [K1].

In the present particular case, this behavior depends firstly on the mean

α = Eμz of the projection of μ on the vertical z-axis. If α > 0, then the

x-coordinate of the random walk converges almost surely to a real random

variable ξ(ω). By adding a point at infinity, this real random variable can be

seen as belonging to the boundary circle of the zx-hyperbolic plane. Similarly

if α < 0, the y-coordinates converge to a real random variable ξ′(ω) viewed in

the boundary of the zy-plane. The distribution ν on R of the random variable ξ

or ξ′ is called the harmonic measure on the boundary of Sol. The distribution

ν is supported on one of these two real lines (or equivalently on one of the two

boundary circles) according to the sign of the vertical drift α.

When α �= 0 and the measure μ is non-degenerate on a cocompact lattice,

the measure space (R, ν) is actually the Poisson boundary of the random walk,

as shown by Kaimanovich [K1]. If α = 0, the behavior of the random walk is

not described in terms of the geometric boundary of Sol. In particular, when

α = 0 and the measure μ is supported on a cocompact lattice, the corresponding

Poisson boundary is trivial.

A natural question is to determine the regularity of the harmonic measure ν

with respect to Lebesgue measure on R. A measure is said to be non-degenerate

(resp. non-degenerate on a group Γ) if the semi-group generated by its support

is in fact a group (resp. the group Γ). We present the following results.
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Theorem 1.1: (1) For any countable non-abelian subgroup Γ of Sol, there

exists a non-degenerate probability measure μ on Γ such that the asso-

ciated harmonic measure ν is non-atomic and singular with respect to

Lebesgue measure.

(2) There exists a finitely supported non-degenerate probability measure μ

on Sol such that the harmonic measure ν is absolutely continuous with

respect to Lebesgue measure. In fact for any k ∈ N, there exists such a

μ whose harmonic measure ν admits a density function in the class Ck.

(3) For any α > 0, there exists a finitely supported non-degenerate proba-

bility measure μ on Sol such that the associated random walk has speed

α and the harmonic measure is non-atomic and singular with respect

to Lebesgue measure.

The first part of Theorem 1.1 is proved after Corollary 4.3. The two state-

ments of the second part are Theorem 5.4 and Theorem 5.7. The third part is

stated more precisely as Theorem 6.1.

The measures μ of Theorem 1.1 (2) and (3) are very specific. In particu-

lar, their vertical components are supported on a lattice, and they satisfy an

independence condition between their coordinate components. We are able to

prove regularity by showing that these measures are related to the Bernoulli

convolutions bλ with parameter λ in [ 12 , 1[, i.e., the laws of the real random

variables
∑∞

j=0 xjλ
j , where {xj}j∈N is a sequence of independent variables

equidistributed on {1,−1}. Absolute continuity and existence of Ck-densities

of Bernoulli convolutions bλ for most values of the parameter in appropriate

left-neighborhoods of 1 were proved by Erdős [E2] and Solomyak [S].

On the other hand, for a parameter λ that is the inverse of a Pisot number,

Erdős proved that the Bernoulli convolution is singular with respect to Lebesgue

[E1]. Theorem 1.1 (3) is built on this result.

An interesting feature of the present work is to show the existence of a finitely

supported probability measure on a Lie group, whose harmonic measure is abso-

lutely continuous with respect to the natural measure on the boundary. Recall

that the existence of measures with discrete support and finite first moment

with absolutely continuous harmonic measures dates back to Furstenberg and

the first rigidity results [F] but their supports are a priori infinite.

The question of finding finitely supported measures with absolutely contin-

uous harmonic measure received a great deal of attention after the work of
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Kaimanovich and Le Prince [KL] concerning discrete random walks on SL(d,R).

For special linear groups, the harmonic measure is defined on the full flag man-

ifold B = SL(d,R)/P , where P is the parabolic subgroup of upper triangular

matrices. They prove that any countable Zariski dense subgroup of SL(d,R)

admits a symmetric non-degenerate probability measure whose harmonic mea-

sure is singular with respect to the natural Lebesgue measure on B. Theorem

1.1 (1) gives the same result (without symmetry) for Sol. It is proved by the

same method as in [KL], estimating the Hausdorff dimension of ν in terms of

the ratio entropy by speed for the random walk.

Moreover, Kaimanovich and Le Prince conjectured that the harmonic mea-

sure on the flag space would be singular for any finitely supported non-de-

generate symmetric random walk on SL(d,R). This conjecture was disproved

by Bourgain [Bo] who gave examples of finitely supported symmetric random

walks on SL(2,R) with harmonic measures admitting a density in the class Ck

for arbitrary k in N. Theorem 1.1 (2) is an analogue for Sol. Note, however,

that whereas the size of the support of the measure tends to infinity with the

required Ck regularity in Bourgain’s exemples, the measures of Theorem 1.1 (2)

can all be chosen with a support of size 4 (see Theorems 5.4 and 5.7).

Let us also mention that prior to Bourgain’s examples, Bárány, Pollicott

and Simon constructed examples of finitely supported random walks on semi-

groups of SL(2,R) with absolutely continuous harmonic measure [BPS]. On

the other hand, the statement of the Kaimanovich–Le Prince conjecture turned

out to be true for the Mapping Class Group of an orientable surface. There,

the Poisson boundary is the space of projective measure foliations with hitting

distribution [KM], and the harmonic measure is singular with respect to the

natural Lebesgue measure class provided the step distribution has finite support,

as shown by Gadre [G].

In a discrete vs continuous dichotomy, the present random walks are related

to the Brownian motion associated with a Laplace operator with drift on the

group Sol, studied by Brofferio, Salvatori and Woess [BSW]. The Brownian

motion with vertical drift α on Sol behaves like a random walk with vertical

mean Eμz = α, namely, it converges to the x (resp. y) boundary line when

the drift parameter α is positive (resp. negative). The induced distributions

have similar descriptions as seen by comparing Proposition 4.2 in [BSW] to

Proposition 3.2 below. Moreover, Brofferio, Salvatori and Woess describe an

explicit C∞-density for the harmonic measure of the Brownian motion (Remark
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4.3 in [BSW]), whereas we obtain Ck-densities for larger k by shrinking the size

of the increments (see Theorem 5.7).

More generally, our work takes place in the growing subject of random pro-

cesses on horocyclic products, such as the Diestel–Leader graphs, horocyclic

products of regular trees, studied by Bertacchi [B] and Kaimanovich and Woess

[KW], and the treebolic space, the product of a hyperbolic plane and a tree,

studied by Bendikov, Saloff-Coste, Salvatori and Woess [BSCSW]. The group

Sol is the horocyclic product of two hyperbolic planes as a Riemannian man-

ifold [Wo]. In this view point, Sol is realized in the product of two real affine

groups which act on two hyperbolic planes respectively. In particular, since the

boundary behavior of a random walk on Sol is described by the boundary of

only one of the two hyperbolic planes inside, according to the vertical drift, the

same results as Theorem 1.1 hold for the real affine group as well.

The organization of the paper is the following. In Section 2, we describe the

geometry of Sol and in particular its visual boundary. Section 3 is devoted to

the behavior of random walks on Sol, and largely follows Kaimanovich’s paper

[K1]. Theorem 1.1 (1) is proved in Section 4. It follows from Theorem 4.1,

which asserts that the Hausdorff dimension of the harmonic measure is less

than the ratio entropy over speed of the random walk. In Section 5, we describe

briefly Bernoulli convolution, with Erdős and Solomyak’s Theorems and prove

Theorem 1.1 (2). Section 6 focuses on the particular case of “Pisot” vertical

lattices. We prove Theorem 1.1 (3) and present a natural unanswered question

about lattices of Sol. The paper ends with a short appendix devoted to classical

facts about Pisot numbers and random walks on the integers.

Landau asymptotic notation. Throughout the paper, we denote by f(n) =

o(g(n)) if f(n)
g(n) → 0 as n→ ∞, by f(n) = O(g(n)) if there exists some constant

C > 0 independent of n such that f(n) ≤ Cg(n), and by f(n) ∼ g(n) if
f(n)
g(n) → 1.

2. Description of the solvable Lie group Sol

2.1. Description as horocyclic product. Recall that Sol is the semi-

direct product R � R2. We denote its elements by coordinates (z, x, y) in R3,

where z is considered a vertical and x, y horizontal components, with product
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rule

(z, x, y)(z′, x′, y′) = (z + z′, x+ e−zx′, y + ezy′),

and inverse (z, x, y)−1 = (−z,−ezx,−e−zy). The group Sol has a matrix rep-

resentation of the form

Sol =

⎧⎪⎨⎪⎩
⎛⎜⎝ e−z x 0

0 1 0

0 y ez

⎞⎟⎠∣∣∣∣∣x, y, z ∈ R

⎫⎪⎬⎪⎭ .

The Riemannian metric ds2 = dz2 + e2zdx2 + e−2zdy2 is left-invariant. The

zx-planes are totally geodesic hyperbolic planes in Sol. Indeed, the upper half-

plane {(x, ξ)|ξ > 0} with metric 1
ξ2 (dξ

2 + dx2) is turned into R2 with metric

dz2 + e2zdx2 under the change of variable z = − log ξ. The latter is called the

logarithmic model of the hyperbolic plane. Similarly, the zy-planes are totally

geodesic hyperbolic planes in Sol. In this case, the usual upper half-plane

model is obtained by setting z = log ξ. Note that the zx- and zy-planes have

“upside-down” z-coordinate.

As a Riemannian manifold, Sol is the horocyclic product of two hyperbolic

planes, that is the hypersurface {z + z′ = 0} of the direct product of a hyper-

bolic zx-plane with a hyperbolic z′y-plane, which is the 4-manifold H
2 × H

2

homeomorphic to R4 with metric ds2 = dz2 + e2zdx2 + dz′2 + e2z
′
dy2.

An important feature of the geometry of Sol is that contrary to the zx-

and zy-planes the horizontal xy-planes are very far from being totally geodesic.

More precisely:

Lemma 2.1: The horizontal plane H := {(0, x, y)|(x, y) ∈ R2} is embedded in

Sol with exponential distortion, i.e.,

2 log

(
1

4
‖(x, y)‖H +

1

2

)
≤ d (id, (0, x, y)) ≤ 4 log(‖(x, y)‖H + 1),

for any (x, y) ∈ R2, where ‖ · ‖H is the standard Euclidean norm in H .

Proof. A direct calculation using the hyperbolic metric on the zx-plane shows

that

d((0, 0, 0), (0, x, 0)) = 2 log

(√
1 +

|x|2
4

+
|x|
2

)
,

and the same equality holds for (0, 0, y). These equalities yield the lemma.
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2.2. The visual boundary of Sol. A geodesic ray in a metric space X is a

function γ : R+ → X such that d(γ(s), γ(t)) = |t−s| for all s, t ∈ R+. Two geo-

desic rays γ1, γ2 are equivalent if their images are at bounded Hausdorff distance,

i.e., if there exists C such that d(γ1(t), γ2(R
+)) ≤ C and d(γ2(t), γ1(R

+)) ≤ C

for all t ∈ R+. The visual boundary of the space X with respect to the base

point x0 is the set of equivalence classes of geodesic rays starting at x0.

The visual boundary of the hyperbolic plane is a circle S1. In the zx-

logarithmic model of H2, any geodesic ray is equivalent to one of the verti-

cal geodesics γx0(z) = (z, x0) for x0 ∈ R and γ∞(z) = (−z, 0) (and all the

downward vertical geodesics γ(z) = (−z, x0) are equivalent to γ∞). The visual

boundary of Sol was described by Troyanov.

Theorem 2.2 (Troyanov [T]): The visual boundary ∂Sol of Sol with respect

to a given point is the union of two circles that intersect at two points.

Troyanov proved this result by an explicit parametrization of all geodesics of

Sol. An important observation is that the Riemannian geodesics not included

in a zx-plane or a zy-plane are not rays, but only locally geodesic. Moreover,

their z-coordinates are periodic in time.

These two circles consist of the visual boundaries of the zx-plane and the zy-

plane. Following [EFW2], we call a geodesic ray of the form γ+x0,y0
(t) = (t, x0, y0)

an upward vertical geodesic ray, and γ−x0,y0
(t) = (−t, x0, y0) a downward vertical

geodesic ray. The equivalence classes of vertical geodesics are determined by

γ+x0,y0
	 γ+x1,y1

⇔x0 = x1,

γ−x0,y0
	 γ−x1,y1

⇔ y0 = y1.

The first circle can be parametrized by {γ+x0,0
|x0 ∈ R} ∪ {γ−0,0}, corresponding

to the boundary of the zx-plane, the second circle by {γ−0,y0
|y0 ∈ R} ∪ {γ+0,0},

corresponding to zy-plane.

Since we will be interested in measure-theoretic properties on the boundary,

we will describe it as the union of two disjoint real lines, parametrized respec-

tively by the upward and downward vertical geodesics, rather than as a union

of two circles:

∂+Sol ={γ+x0,0
|x0 ∈ R},

∂−Sol ={γ−0,y0
|y0 ∈ R}.
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For further description of the group Sol, we refer to the literature, for instance

[T] for a Riemannian view point, [EFW1], [EFW2] for large-scale geometry and

rigidity, [BSW] for the description of a compactification boundary. Note, how-

ever, that the visual boundary is only a subset of the compactification boundary

of [BSW]. Topologically, the visual boundary is the union of two circles inter-

secting at γ+0,0 and γ−0,0, because γ
+
x0,0

→ γ−0,0 as |x0| → ∞ and γ−0,y0
→ γ+0,0 as

|y0| → ∞. On the other hand, the compactification boundary has the shape of

a figure 8, because it contains an extra point δ (not corresponding to a geodesic)

such that γ+x0,0
→ δ as |x0| → ∞ and γ−0,y0

→ δ as |y0| → ∞. This difference has

no importance measure-theoretically, so the results of the present paper apply

to both boundaries.

3. Boundary behavior of random walks

3.1. Random walks on Sol. Let μ be a probability measure on Sol. We al-

ways assume that μ has a finite first moment, i.e., satisfies
∫
Sol

d(id, x)dμ(x)<∞
where d is the left-invariant Riemannian metric on Sol.

We consider the random walk {Wn}∞n=0 starting at id of increment law μ, i.e.,

the sequence of random variablesWn = X1 · · ·Xn andW0 = id, where {Xj}∞j=0

is a sequence of independent random elements of law μ. With respect to the

R
3-coordinates, we write Xj = (zj, xj , yj) and Wn = (Sn, Un, Vn). Explicitely:

(1)

Sn =z1 + · · ·+ zn,

Un =x1 + x2e
−S1 + · · ·+ xne

−Sn−1 ,

Vn =y1 + y2e
S1 + · · ·+ yne

Sn−1 .

We denote by Ω the space of sample paths {Wn}∞n=0 of random walks emanating

from id, and by P the associated probability distribution on Ω given as the push-

forward measure of μ×∞ on Sol×∞ under the map {Xj}∞j=0 �→ {Wn}∞n=0.

Let μz (respectively μx, μy) be the image measure under the projection to the

z-component Sol → R, (z, x, y) �→ z (respectively to the x- and y-components).

As μ has a finite first moment, the measure μz admits a finite mean α = Eμz

which plays a crucial role in the boundary behavior, since it is the vertical drift

of the random walk (see Theorem 3.4 and Corollary 3.6).

Let π denote the projection (z, x, y) �→ (z, x) of Sol onto the zx-plane. We

say that the measure μ gives independence to the z- and x-components if the
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projected measure on the zx-plane is the product of the image measures on the

z- and x-components, i.e., π∗μ = μz × μx.

The assumption of finite first moment of μ gives a geometric control on the

behavior of the sequence {Xj}∞j=0. In particular:

Lemma 3.1: For an i.i.d. sequence {Xj = (zj , xj , yj)}∞j=1 of law μ with finite

first moment, we have |xj |, |yj | = eo(j), P-a.s.

Proof. The law of large numbers shows the convergence P-a.s. of

lim
n→∞

1

n

n∑
j=1

d(id,Xj) =

∫
Sol

d(id, x)dμ(x) <∞,

thus d(id,Xj)=o(j) and by Lemma 2.1, we get log |xj |=o(j) and log |yj|=o(j),
P-a.s.

3.2. Hitting distribution on the boundary. In this section, we describe

the boundary behavior of a random walk with finite first moment on Sol. It

is a particular case of results by Kaimanovich [K1] applying to a certain class

of solvable Lie groups. For completeness, we give short proofs in our simplified

setting. The description below should be compared with the boundary behavior

of the Brownian motion studied in [BSW].

Recall that the random walk at the time n, Wn = (Sn, Un, Vn), has the form

(1) by the product law. By the law of large numbers, the vertical drift α = Eμz

determines P-a.s. the behavior of the vertical component lim 1
nSn = α, and thus

which part ∂+Sol or ∂−Sol of the boundary is hit by the random walk. The

asymptotic behavior of horizontal components Un (resp. Vn) is described by its

almost sure limit ξ (resp. ξ′) which has the form of a random infinite series.

The limits ξ and ξ′ will be regarded as the hitting points of random walks on

the boundary.

Proposition 3.2: If α > 0, the sequence (Un) converges P-a.s. to

ξ =
∞∑
j=1

xje
−Sj−1 .

If α < 0, the sequence (Vn) converges P-a.s. to

ξ′ =
∞∑
j=1

yje
Sj−1 .
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Proof. For α > 0 and using Lemma 3.1, for any small ε > 0, there exists

P-a.s. an integer N , depending on the sample, such that for any n > N ,

|Sn/n− α| ≤ ε, |xn|, |yn| ≤ eεn. Thus, we have e−Sn−1 |xn| ≤ e−(α−2ε)neα−ε

and the series converges.

Denote by ν (resp. ν′) the distribution of the random variable ξ (resp. ξ′)
on R, i.e., for any Borel set A, set ν(A) = P(ξ ∈ A). We can now describe

the hitting distribution on the boundary of Sol, which we call the harmonic

measure on the boundary associated to the random walk of increment law μ.

Theorem 3.3: If α > 0, the harmonic measure is given by the measure ν on

∂+Sol = R and gives no mass to ∂−Sol. If α < 0, the harmonic measure is

given by the measure ν′ on ∂−Sol = R and gives no mass to ∂+Sol.

By abuse of langage, we call the measures ν or ν′ on R the harmonic measure

of the random walk. This theorem follows from the global law of large numbers

on solvable Lie groups stated as Theorem 4.2 in [K1]. In our setting:

Theorem 3.4 (Kaimanovich [K1]): If α > 0, set g = (0, ξ, 0)(α, 0, 0)(0,−ξ, 0).
If α < 0, set g = (0, 0, ξ′)(α, 0, 0)(0, 0,−ξ′). If α = 0, set g = id. In all cases:

lim
n→∞

1

n
d(gn,Wn) = 0, P-a.s.

Theorem 3.4 implies Theorem 3.3. Indeed if α > 0, consider the Borel mea-

surable map from Ω to ∂+Sol given by ω �→ γ+ξ(ω),0. Since d(g
n, γ+ξ(ω),0(nα)) =

d(id, (0, ξ, 0)) < ∞, we have P-a.s. that d(Wn, γ
+
ξ(ω),0(nα)) = o(n), showing

that the random walk Wn behaves asymptotically as the vertical geodesic γ+ξ,0
(whereas non-equivalent vertical geodesics diverge linearly d(γ+x0,0

(t),γ+x1,0
(t))∼ t

when x0 �= x1). The case α < 0 is similar.

Proof of Theorem 3.4. By Proposition 3.2, the map ω �→ g(ω) from the space

of sample paths Ω to Sol is measurable. We treat the case α > 0. We have

d(gn,Wn) ≤d(id, (−nα+ Sn, 0, 0))

+ d((−nα+ Sn, 0, 0), (−nα+ Sn, ξ − enα(ξ − Un), e
−nαVn)).

The first term of the right hand side equals | − nα + Sn|, which is o(n), P-a.s.

By left-invariance of the metric, the second one is equal to

d(id, (0, e−nα+Sn(ξ − enα(ξ − Un)), e
−SnVn)),
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which is bounded from above by

4 log

(∣∣∣∣e−nα+Snξ − eSn

∞∑
j=n+1

xje
−Sj−1

∣∣∣∣+ 1

)
+ 4 log

(∣∣∣∣e−Sn

n∑
j=1

yje
Sj−1

∣∣∣∣+ 1

)
,

using Lemma 2.1 and the inequality

log(|x|+ |y|+ 1) ≤ log(|x|+ 1) + log(|y|+ 1).

For any n ≥ N , the first term and the second one are less than or equal to

2 log(|ξ|eεn+Ce3εn+1) and 2 log(Ce3εn+1), respectively for some constant C>0

which does not depend on n. This shows that d(gn,Wn)=o(n), P-a.s.

Remark 3.5: If the probability measure μ with finite first moment is supported

on a cocompact lattice Γ of the group Sol, then the boundary ∂Sol endowed

with the harmonic measure is the Poisson boundary of (Γ, μ). If α = 0, then the

Poisson boundary on the cocompact lattice Γ with measure μ is trivial. This

follows from the Kaimanovich ray approximation argument (see Theorem 5.5

in [K2] and Theorem 4.3 in [K1]).

Theorem 3.4 permits to compute the speed of the random walk.

Corollary 3.6: The speed of the random walk of law μ on the group Sol is

the absolute value of the vertical drift α = Eμz, that is

lim
n→∞

1

n
d(id,Wn) = |α|, P-a.s.

Proof. We treat the case α > 0. By Lemma 2.1 and the triangular inequality,

nα ≤ d(id, gn) ≤ nα + 4 log(‖(ξ − e−nαξ, 0)‖H + 1), thus d(id, gn) ∼ αn, and

by Theorem 3.4, d(id,Wn) ∼ αn.

3.3. Elementary properties of the harmonic measure. The group Sol

acts affinely on the boundary by g.ξ = x+e−zξ for ξ ∈ ∂+Sol and g.ξ′ = y+ezξ′

for ξ′ ∈ ∂−Sol, with notation g = (z, x, y). By symmetry in Theorem 3.3, we

restrict our considerations to the case α > 0 and the subset R = ∂+Sol of the

boundary. The measure ν is pushed by the action of g to the measure gν given

by gν(A) = ν(g−1.A) = P(g.ξ ∈ A).

The harmonic measure ν is μ-stationary, i.e., satisfies ν =
∫
g∈Sol gνdμ(g).

In fact, the harmonic measure ν is the unique such probability measure on

R = ∂+Sol. It also has a law of pure type, i.e., either absolutely continuous or

completely singular with respect to Lebesgue measure.
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Proposition 3.7: Assume that μ satisfies α = Eμz > 0. Then the harmonic

measure ν is the unique μ-stationary probability measure on R = ∂+Sol. More-

over, the harmonic measure ν is either absolutely continuous or completely

singular with respect to Lebesgue measure.

Proof. Suppose that λ is a μ-stationary probability measure on R. First, we

will show the uniqueness; λ = ν. Note that a sequence of measures Wnλ

on R converges to the point measure δξ weakly, P-a.s., since for any bounded

continuous function f : R → R,∫
R

f(x)dWnλ(x) =

∫
R

f(x1 + x2e
−S1 + · · ·+ xne

−Sn−1 + e−Snx)dλ(x) → f(ξ),

P-a.s., by the Lebesgue dominated convergence theorem. Here

ξ =

∞∑
j=1

xje
−Sj−1 , P-a.s.

Now λ is μ-stationary; by induction, for any n, λ =
∫
Sol gλdμ

∗n(g) =
∫
ΩWnλdP.

Since Wnλ converges to δξ weakly, P-a.s., again by the Lebesgue dominated

convergence theorem,
∫
Ω
WnλdP converges to

∫
Ω
δξdP = ν weakly, and thus

λ = ν.

Next, to prove that ν is either absolutely continuous or singular with respect

to Lebesgue measure, take the Lebesgue decomposition ν = νac + νs, where

νac (resp. νs) is the absolutely continuous (resp. singular) part. Also take the

Lebesgue decomposition gν = (gν)ac + (gν)s for g in Sol. Here we have

(gν)ac + (gν)s = gνac + gνs.

Since for any Lebesgue measure 0 set C and for any g in Sol, g.C has also

the Lebesgue measure 0, (gν)ac, gνac are absolutely continuous with respect

to Lebesgue measure and (gν)s, gνs are mutually singular with Lebesgue mea-

sure. Therefore, (gν)ac = gνac and (gν)s = gνs. Now ν is μ-stationary, ν =∫
Sol

gνdμ(g), and it follows that νac =
∫
Sol

(gν)acdμ(g) and νs =
∫
Sol

(gν)sdμ(g).

The equalities (gν)ac = gνac and (gν)s = gνs imply that νac and νs are μ-

stationary. By the uniqueness of μ-stationary probability measure, if neither

νac nor νs is 0, then νac and νs are equal up to normalization. This contradicts.

Hence either νac or νs has to be 0.

We focus on the case where μ has countable support, generating (as a semi-

group) a countable subgroup Γ of Sol. The inherited action of Γ on R = ∂+Sol
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is non-elementary if each orbit contains infinitely many points, i.e., for each

p ∈ R, #{g.p‖ g ∈ Γ} = ∞.

Proposition 3.8: If the countable subgroup Γ of Sol generated by Supp(μ)

acts non-elementarily on R, then the harmonic measure ν is non-atomic.

Proof. Suppose that ν has atoms on R. Let m > 0 be the maximal weight of

atoms and p a point which has ν(p) = m. Since ν is μ-stationary, m = ν(p) =∑
g μ(g)gν(p), hence for g ∈ Supp(μ), ν(g−1.p) = m, and by induction, for

any g ∈ Γ, ν(g−1.p) = m. This is impossible if we assume that Γ acts on R

non-elementarily.

We give a simple criterion for a countable group to have a non-elementary

action at the boundary. For g = (z, x, y) in Sol with z �= 0, set:

p+(g) =
x

1− e−z
and p−(g) =

y

1− ez
.

Fact 3.9: If p+(g′) �= p+(g) (resp. p−(g′) �= p−(g)), the group generated by

g, g′ and their inverses has a non-elementary action on ∂+Sol (resp. ∂−Sol).

Proof. The affine action on ∂+Sol of powers of g is given by

gn(ξ) = e−nz(ξ +
x

e−z − 1
) +

x

1− e−z
,

so the g-orbit of any point p ∈ R \ {p+(g)} is infinite. The hypothesis ensures

that p+(g) has an infinite g′-orbit.

Here is a criterion ensuring that the harmonic measure has full support in

the boundary. Recall from Section 3.1 that the measure μ is said to give inde-

pendence to the z- and x-components if its projection onto the zx-plane is a

product measure π∗μ = μz × μx .

Proposition 3.10: Assume that μ gives independence to the z- and x-com-

ponents and that α = Eμz > 0, μx(R
+
∗ ) > 0, μx(R

−
∗ ) > 0, μz(R

+
∗ ) > 0,

μz(R
−
∗ ) > 0, μz(0) > 0. Then the group Γ generated by Supp(μ) acts non-

elementarily on ∂+Sol = R and the harmonic measure has full support

Supp(ν) = R.

Proof. Since ν(R) = 1, there exists t such that ν([−t, t]) > 0. Given

ξ ∈ R and ε > 0, set z ∈ R such that e−zt ≤ ε, and choose X1, . . . , Xk in

Supp(μ) such that Sk = z(X1 · · ·Xk) ≥ z. Then choose Xk+1, . . . , Xn such that
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zk+1 = · · · = zn = 0 and |ξ−Un| ≤ ε, where Un =
∑n

j=1 xje
−(z1+···+zj−1). Now

if ξ∞ = ξ(Xn+1Xn+2 · · · ) has law ν, then ξ(X1 · · ·XnXn+1 · · · ) = Un+e
−Skξ∞

belongs to [x−2ε, x+2ε] as soon as ξ∞ ∈ [−t, t]. This shows ν([x−2ε, x+2ε]) ≥
P(X1 · · ·Xn)ν([−t, t]) > 0. In particular, the orbit of any ξ∞ is dense in R.

4. Singular harmonic measures

In this section, we provide an upper bound for the Hausdorff dimension of the

harmonic measure in terms of entropy and speed of the random walk. We de-

duce a sufficient criterion for singularity of this measure, and deduce that any

countable subgroup of Sol admits a probability measure μ such that the asso-

ciated random walk has a harmonic measure singular with respect to Lebesgue

measure on the boundary.

4.1. Upper bound on the Hausdorff dimension. The Hausdorff dimen-

sion of a measure ν on R is defined by

dim ν := inf{dimH A | A ⊂ R, ν(AC) = 0},
where dimH A denotes the Hausdorff dimension of the set A.

The Shannon entropy of the countable supported probability measure μ is

the quantity H(μ) := −∑s μ(s) logμ(s). When it is finite, the entropy of the

random walk of law μ is

hμ = lim
k→∞

H(μ∗k)
k

= inf
k

H(μ∗k)
k

.

The entropy of the random walk measures how fast the convolution measures

μ∗k diffuse the mass in the countable group (see for instance [KV] about entropy

on countable groups).

The speed of the random walk is the quantity limn→∞ Ed(id,Wn)/n measur-

ing the expected value of the distance in Sol between the random walk and its

starting point. By Corollary 3.6, the speed of the random walk of law μ on the

group Sol is equal to |α| = |Eμz |.
The Hausdorff dimension of the harmonic measure can be bounded from

above in terms of entropy and speed by the:

Theorem 4.1: Let μ be a countably supported probability measure on Sol

with finite first moment and finite entropy and such that α = Eμz �= 0. Let ν
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be the harmonic measure on ∂Sol corresponding to the pair (Γ, μ). Then

dim ν ≤ hμ
|α| .

Estimation of dimension in terms of entropy and speed is classical (see for

instance [L1] for discrete subgroups of SL(2,C), [KL] for SL(d,R) and the

expository introduction of [KL] for more information about when the above

inequality holds). In the case of free groups, the Hausdorff dimension of the

harmonic measure is precisely equal to the asymptotic entropy divided by the

speed (see Ledrappier [L2]). However, the inequality of Theorem 4.1 has to be

strict in the case hμ/|α| > 1, since the Hausdorff dimension of ν cannot exceed

the dimension 1 of the boundary ∂Sol.

In order to estimate the dimension of ν, we use the following lemma (see [P],

Theorem 7.1. Chapter 2, p. 42):

Lemma 4.2 (Frostman): Let Br(x) denote the ball of radius r centered at x.

If for ν-a.e. x, the inequalities

δ1 ≤ lim inf
r→0

log ν(Br(x))

log r
≤ δ2

hold, then δ1 ≤ dim ν ≤ δ2.

Proof of Theorem 4.1. We treat the case α > 0.

Given two integers n and k, we say two trajectories ω and ω′ in Ω are

equivalent if Xik+1Xik+2 · · ·X(i+1)k(ω) = Xik+1Xik+2 · · ·X(i+1)k(ω
′) for all

0 ≤ i ≤ n, that is if the (n + 1) first k-step increments of the random walk

coincide. This equivalence relation defines a partition Pk
n of Ω. Note that for

m > n, the partition Pk
m is a refinement of Pk

n.

Recall that Sn is the vertical component of the random walk at time n. Given

ε > 0 and an integer N , define the set

AN
ε := {ω ∈ Ω|∀n ≥ N,Sn(ω)/n ≥ α− ε and |xn| ≤ eεn}.

The sequence of sets {AN
ε }N is increasing, that is, AN

ε ⊂ AN+1
ε for any N . By

Lemma 3.1 and as the law of large numbers implies limn→∞ Sn/n = α almost

surely, we have P(
⋃

N AN
ε ) = 1. Therefore, for any ε > 0, there exists N(ε)

such that P(A
N(ε)
ε ) ≥ 1− ε. We write A for A

N(ε)
ε and take (n+ 1)k > N(ε).
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With the notations of Section 3.1 and by Proposition 3.2, we have

ξ = U(n+1)k +
∑

j>(n+1)k xje
−Sj−1 . For ω ∈ A, this ensures

|ξ(ω)− U(n+1)k(ω)| ≤
∑

j>(n+1)k

ejεe−j(α−ε) ≤ Ce−nk(α−2ε)

for some constant C > 0.

Let Pk
n(ω) be the element of the partition Pk

n containing ω. For any ω′∈Pk
n(ω),

we have U(n+1)k(ω) = U(n+1)k(ω
′), and so for any ω′ ∈ A ∩ Pk

n(ω), we have

|ξ(ω)− ξ(ω′)| ≤ 2Ce−nk(α−2ε). Finally, for any ω ∈ A

(2) P(A ∩ Pk
n(ω)) ≤ P({ω′ ∈ Ω||ξ(ω)− ξ(ω′)| ≤ rkn}) = ν(Brkn

(ξ(ω))).

Define rkn := 2Ce−nk(α−2ε); then rkn → 0 as n→ ∞. By the Frostman Lemma

4.2, our proof is reduced to give an upper bound for

lim inf
n→∞

log ν(Brkn
(x))

log rkn
, ν-a.e. x.

For rkn < 1, inequality (2) implies that

log ν(Brkn
(ξ(ω)))

log rkn
≤ logP(A ∩ Pk

n(ω))

log(2Ce−nk(α−2ε))
.

Now the martingale convergence theorem ensures that for P-a.e. ω,

P(A ∩ Pk
n(ω))

P(Pk
n(ω))

−→
n→∞ P(A|F∞)(ω),

where F∞ is the σ-algebra generated by {Xik+1Xik+2 · · ·X(i+1)k, i ≥ 0}. Note
that F∞ is a sub-σ-algebra of the standard one generated by the cylinder sets

in Ω. Here P(A|F∞)(ω) > 0 for P-a.e. ω ∈ A, so we obtain

(3) lim inf
n→∞

logP(A ∩ Pk
n(ω))

−nk(α− 2ε)
= lim inf

n→∞
logP(Pk

n(ω))

−nk(α− 2ε)
.

On the other hand, by definition of the partition Pk
n , we have

P(Pk
n(ω)) = μ∗k(X1X2 · · ·Xk(ω)) · · ·μ∗k(Xnk+1Xnk+2 · · ·X(n+1)k(ω)),

and as −E logμ∗k(X1X2 · · ·Xk) = H(μ∗k) < ∞, by the strong law of large

numbers, we get

− 1

n
logP(Pk

n(ω)) −→
n→∞ H(μ∗k),
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P-a.e. ω ∈ Ω. Thus the right hand side of (3) is bounded from above by

H(μ∗k)/k(α− 2ε), P-a.e. Here ε > 0 is an arbitrary positive value, and k is an

arbitrary integer, so

lim inf
n→∞

log ν(Brn(x))

log rn
≤ hμ

α
,

ν-a.e. x ∈ R. This proves the Theorem.

4.2. Countable subgroups. A random walk of law μ is considered non-

degenerate if the semigroup generated by the support Supp(μ) is in fact a

subgroup of Sol. Theorem 4.1 permits to deduce the

Corollary 4.3: Any countable subgroup Γ of Sol not included in the hori-

zontal plane R2 = {z = 0} admits a non-degenerate finite first moment random

walk μ with harmonic measure singular on the boundary. Moreover, μ can be

chosen to be finitely supported when Γ is finitely generated.

The same result for the group SL(d,R) instead of Sol was proved by Kaima-

novich and Le Prince in [KL]. We use the same strategy, constructing random

walks that have uniformly bounded entropy and arbitrary large speed. On the

other hand, we will construct in Section 6 random walks having arbitrary small

speed and singular harmonic measure by using specific measures μ.

Proof. By choosing sufficiently fast decay of mass towards infinity, the countable

group Γ admits a non-degenerate probability measure μ̄ with finite entropy

and finite first moment. When Γ is finitely generated, μ̄ can be chosen to

be finitely supported. By assumption, Γ contains an element g with non-zero

vertical component z(g). For an integer l, take μl = 1
2 (μ̄ + δgl), where δgl

denotes the Dirac mass at gl. The entropy of the associated random walk

is bounded above by hμl
≤ H(μl) = 1

2H(μ̄) + log 2, and its speed is given

by αl = E(μl)z = 1
2 (E(μ̄)z + lz(g)). By Theorem 4.1, the dimension of the

harmonic measure is less than

dim νl ≤
1
2H(μ̄) + log 2

|αl| −→
l→∞

0.

For l large enough, we have dim νl < 1, so the harmonic measure is singular

with respect to Lebesgue measure by Proposition 3.7.
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Remark 4.4: By choosing negative or positive powers of l in the above proof,

the support of the singular harmonic measure νl for the random walk of law μl

on Γ can be chosen to be either included in ∂+Sol or included in ∂−Sol.

Proof of Theorem 1.1 (1). A non-abelian subgroup Γ of Sol is not contained in

the horizontal plane, so by Corollary 4.3 there exists a non-degenerate finite

first moment measure μ with completely singular harmonic measure. There

remains to prove that ν has no point mass, which amounts by Proposition 3.8

to verifying that the action of Γ on the boundary is non-elementary.

Let g be an element of Γ with non-zero vertical component. By Fact 3.9,

the action at a boundary is non-elementary unless for any g′ in Γ, we have

p+(g) = p+(g′) and p−(g) = p−(g′). But in this case, we have g′ = g
z′
z which

belongs to {gt = (tz, x( e
−tz−1
e−z−1 ), y(

etz−1
ez−1 )}t∈R, which is a 1-dimensional abelian

Lie subgroup, so Γ is abelian.

Remark 4.5: More precisely, the above proof and Remark 4.4 show that if the

countable non-abelian group Γ is included in a hyper-surface {p+(g) = c}
(resp. {p−(g) = c}) for a constant c, then there exists a non-degenerate fi-

nite first moment probability measure μ on Γ such that the harmonic measure

is non-atomic singular with support included in ∂−Sol (resp. ∂+Sol). If Γ is

not included in such hypersurfaces, then we can find a non-degenerate measure

μ+ with non-atomic singular harmonic measure ν+ on ∂+Sol, as well as μ−

with non-atomic singular ν− on ∂−Sol.

5. Absolute continuity of harmonic measures

The aim of this section is to give exemples of probability measures for which the

random walk has an associated harmonic measure absolutely continuous with

respect to Lebesgue measure. By symmetry, we focus on the case α > 0 and

identify the boundary with R = ∂+Sol.

Recall that a probability measure μ on Sol gives independence to the z-

and x-components if the projection π∗μ on the zx-plane is a product measure

μz × μx. In this case, and if the support of the vertically projected measure μz

is included in a lattice γZ in R, the harmonic measure ν is tightly related to

the Bernoulli convolution of parameter e−γ .



Vol. 208, 2015 DISCRETE RANDOM WALKS ON THE GROUP SOL 309

5.1. Bernoulli convolutions. The Bernoulli convolution bλ with parameter

λ ∈]0, 1[ is the convolution measure (12δλj + 1
2δ−λj )∗j∈N, where δa denotes the

Dirac mass at point a. In other terms, bλ is the probability distribution of

the random variable
∑∞

j=0 xjλ
j , where {xj}j∈N is a sequence of independent

variables equidistributed on the set {1,−1}.
These measures have been studied since the 1930’s. Simple observations show

that if λ belongs to ]0, 12 [, the measure bλ is singular with respect to Lebesgue

measure, since it is supported on a Cantor set, and b 1
2
is the Lebesgue measure

itself on the interval [−2, 2].

The most famous question about Bernoulli convolution is to determine for

which λ in ] 12 , 1[ the measures bλ are absolutely continuous or completely sin-

gular with respect to Lebesgue measure. The relevance of this question was

pointed out by Erdős, who proved the two following results. Definition and

basic facts about Pisot numbers are presented in the Appendix 7.1.

Theorem 5.1 (Erdős 1939 [E1]): Let λ be the inverse of a Pisot number. Then

the Bernoulli convolution bλ is singular with respect to Lebesgue measure.

However, Pisot numbers are measure theoretically exceptional numbers, and

Erdős proved that absolute continuity, and even existence of regular densities,

hold for almost all parameters in a neighborhood of 1.

Theorem 5.2 (Erdős 1940 [E2]): For any k ∈ N, there exists λk < 1 such that

bλ has a density of class Ck for Lebesgue a.e. λ ∈ [λk, 1].

In particular, this implies that almost all Bernoulli convolutions in a left-

neighborhood of 1 are absolutely continuous. This left-neighborhood is as big

as one can expect as shown by Solomyak [S] (see also [PS] for a simple proof).

Theorem 5.3 (Solomyak 1995 [S]): For Lebesgue a.e. λ in [ 12 , 1[, the Bernoulli

convolution bλ = (12δλn + 1
2δ−λn)∗n∈N is absolutely continuous with respect to

Lebesgue measure.

It is still an open question whether Pisot numbers are the only parameters in

[ 12 , 1[ for which bλ is singular. More information about Bernoulli convolutions

can be found in the expository article by Peres, Schlag and Solomyak [PSS].

These three theorems permit to prove similar results in the context of harmonic

measures at the boundary of Sol.
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5.2. Absolute continuity via Bernoulli convolutions. Recall from

Section 3 that the harmonic measure ν is the law of the random variable

ξ =
∑∞

j=1 xje
−Sj−1 , where Xj = (zj , xj , yj) are independent of law μ, and

Sj = z1 + · · ·+ zj are the partial sums of vertical components.

When the measure π∗μ inherited on the zx-plane is a product measure be-

tween the Dirac mass μz = δlog( 1
λ ) and μx = 1

2δ1+
1
2δ−1, we recover exactly the

Bernoulli convolution of parameter λ. Note that this situation is degenerate in

the sense that Supp(μ) only generates a semi-group in Sol. However, we prove

the following, related to Solomyak’s Theorem 5.3.

Theorem 5.4: Assume that μ has finite first moment and that π∗μ = μz ×μx

is a product measure between

(1) μz = pδγ + (1− p)δ−γ with p > 1
2 (thus α = Eμz = (2p− 1)γ > 0),

(2) and μx = 1
2δ1 +

1
2δ−1.

Then for Lebesgue-a.e. choice of parameter γ ∈]0, log(2)], the harmonic measure

ν on R corresponding to the pair (Sol, μ) is absolutely continuous with respect

to Lebesgue measure (for any p > 1
2 ).

Given ω in Ω, define the sequence ζ = (Sj)
∞
j=0 of integers Sj = (z1+· · ·+zj)/γ.

Let Ω0 be the set of semi-infinite paths emanating from zero in Z. The map

proj : Ω → Ω0 given by proj(ω) = ζ describes the random walk obtained by

projection on the z-axis. Denote P0 = P ◦ proj−1 the push-forward measure of

P by this map.

If π∗μ is a product measure, the harmonic measure can be decomposed along

conditional probability measures {νζ}ζ∈Ω0 such that

(4) ν =

∫
Ω0

νζdP0(ζ),

and νζ is the distribution of the random variable ξζ =
∑∞

j=1 xje
−γSj−1 , where

ζ = {Sj}∞j=0 is fixed, and {xj}∞j=0 are independent variables of law μx. By this

decomposition, Theorem 5.4 is a direct consequence of Solomyak’s Theorem 5.3.

Proof of Theorem 5.4. Denote E the set of λ ∈ [ 12 , 1[ such that bλ is absolutely

continuous with respect to Lebesgue measure. It is sufficient to prove that ν is

absolutely continuous when e−γ ∈ E.



Vol. 208, 2015 DISCRETE RANDOM WALKS ON THE GROUP SOL 311

We use decomposition (4) and note that νζ is a convolution:

νζ =

(
1

2
δe−γSj−1 +

1

2
δ−e−γSj−1

)∗j∈N

.

It is sufficient to check that νζ is absolutely continuous for P0-a.e. ζ.

For any real numbers λ1, λ2, we have commutation of convolutions:

(
1

2
δλ1 +

1

2
δ−λ1) ∗ (

1

2
δλ2 +

1

2
δ−λ2) = (

1

2
δλ2 +

1

2
δ−λ2) ∗ (

1

2
δλ1 +

1

2
δ−λ1).

This permits to rewrite

(5) νζ =

((
1

2
δe−γk +

1

2
δ−e−γk

)∗n(ζ,k))∗k∈Z

,

where n(ζ, k) = #{j ∈ N|Sj−1 = k} is the time spent by the vertical random

walk at position k. Almost surely with respect to P0, it satisfies n(ζ, k) ≥ 1 for

all k ≥ 0 and there exists k0 with n(ζ, k) = 0 for all k ≤ k0 P0-almost surely

(see Appendix 7.2).

Using commutation once more, for P0-a.e. choice of ζ, we can factorize νζ =

be−γ ∗ νaux for some auxiliary measure νaux. The measure be−γ is absolutely

continuous with respect to Lebesgue because e−γ belongs to E. By convolution,

νζ is also absolutely continuous with respect to Lebesgue measure for P0-a.e. ζ.

Thus by (4), ν is absolutely continuous.

Remark 5.5: As observed by Kahane [Ka] (see also Section 6 in [PSS]), the

Hausdorff dimension of the set of parameters λ in an interval [λ0, 1] with bλ

singular tends to zero as λ0 approaches 1. By the above proof, this guarantees

a similar result in our setting, namely that the Hausdorff dimension of the set

of parameters γ in an interval [0, γ0] such that the conclusion of Theorem 5.4

does not hold tends to 0 when γ0 approaches 0. A recent notable result by

Shmerkin states that the Hausdorff dimension of the set of parameters λ in the

interval [1/2, 1] with bλ singular is in fact zero [Sh]. Again, a similar result in

our setting holds for the set of parameter γ in the interval ]0, log(2)].

Remark 5.6: The particular choice of measures μz and μx in the hypothesis of

Theorem 5.4 is due to the necessity to apply results about Bernoulli convolution.

By Theorem 1.3 and Corollary 5.2 in [PS2], Theorem 5.4 can be generalized to

the case μx =
∑m

i=1 piδdi , for which the harmonic measure ν is absolutely

continuous for Lebesgue-a.e. choice of parameter log(1 +
√
b) ≤ γ ≤ H(μx),
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where

b = sup

{∣∣∣∣di − dj
dk − dl

∣∣∣∣, 1 ≤ i, j, k, l ≤ m, dk �= dl

}
.

One may naturally ask about generalization to other measures, but already for

Bernoulli convolution, this seems to be a difficult task.

5.3. Densities in the class Ck
. Erdős Theorem 5.2 permits to construct

random walks on Sol with harmonic measure admitting a density function of

class Ck.

Theorem 5.7: Let μ satisfy the hypothesis of Theorem 5.4. For any k ∈ N,

there exists γk > 0 such that for Lebesgue-a.e. choice of parameter γ ∈]0, γk[,
the harmonic measure ν admits a density of class Ck.

The regularity of the density function of a distribution ν is classically related

to the asymptotic decay of its Fourier transform ν̂(t) =
∫
R
eitξdν(ξ), where

i =
√−1. For instance:

Lemma 5.8 (Riemann–Lebesgue Lemma): If the measure ν is absolutely con-

tinuous with respect to Lebesgue measure, then the Fourier transform ν̂ is

continuous and ν(t) → 0 as |t| tends to infinity.

Though rarely stated in this form, the following lemma underlies the well-

known fact that the Fourier transform maps the Schwartz space into itself.

Lemma 5.9: If the measure ν has a density in the class Ck, then ν̂(t) = o(|t|−k).

Conversely, if ν̂(t) = O(|t|−k), then the measure ν has a density in the class

Ck−2.

Roughly, the first assertion holds because differentiating k times a function

multiplies its Fourier transform by tk. The second hypothesis ensures that

tk−2ν̂(t) is integrable, hence has continuous Fourier transform tending to zero

at infinity. This is also the case of the (k − 2)nd derivative of the density of ν

because the Fourier transform is essentially an involution. We refer to Section

II-29 in [D] for detailed statements.

Proof of Theorem 5.7. Following [E2], we consider the Fourier transform ν̂(t) =∫
R
eitξdν(ξ) of the harmonic measure ν. Using decomposition (4), it is given by

(6) ν̂(t) =

∫
Ω0

ν̂ζ(t)dP0(ζ).
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The Fourier transform of the measure νζ conditioned by ζ = {Sj}∞j=0, de-

scribed above in (5) as a convolution, is computed as a product, using the

Fourier transform cos(ta) of the measure 1
2 (δa + δ−a). We get

(7) ν̂ζ(t) =

∞∏
k=−∞

cos(te−γk)n(ζ,k),

where the last line is obtained by setting n(ζ, k) = #{j ∈ N|Sj−1 = k}, which
satisfes n(ζ, k) ≥ 1 for k ≥ 0 and P0-a.e. ζ (see Section 7.2).

On the other hand, the Fourier transform of the Bernoulli convolution of

parameter λ = e−γ is given by b̂e−γ (t) =
∏∞

k=0 cos(te
−γk). This shows that

|ν̂ζ(t)| ≤ |b̂e−γ (t)| for P0-a.e. sample path ζ, so |ν̂(t)| ≤ |b̂e−γ (t)|.
Now take k ∈ N and let λk+2 and E ⊂ [λk+2, 1] of full measure be given by

Theorem 5.2 such that bλ has a density in the class Ck+2 for all λ in E.

Finally set γk = − log λk+2. If γ belongs to the set − logE ⊂]0, γk[ of full

measure, then by Lemma 5.9, the Fourier transform b̂e−γ is o(|t|−k−2), as well

as ν̂(t), so ν admits a density in the class Ck.

Remark 5.10: Stated in these forms, Theorem 5.4 and Theorem 5.7 do not pro-

vide an explicit description of random walks μ with regular harmonic measure,

but only existence for almost all values of parameters. Explicit measures can

be obtained by the same proof as above, using the following:

Theorem 5.11 (Wintner 1935 [W]): The Bernoulli convolution bλ with param-

eter λ = (12 )
1
m admits a density function in the class Cm−2.

In particular, a measure satisfying the hypothesis of Theorem 5.4 with

γ = log 2
k+4 admits a density function of class Ck.

6. The case of “Pisot” vertical lattices

Inspired by Erdős Theorem 5.1, we focus on the case where the vertical mea-

sure μz has support in a lattice γZ where eγ is a Pisot number. It permits

to construct random walks on Sol with arbitrarily small speed, but harmonic

measures which are singular with respect to Lebesgue measure. This hypothe-

sis, which may seem odd at first sight, is necessarily satisfied if the support of

μ generates a lattice in Sol.
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6.1. Singular harmonic measures with small speed. We prove singular-

ity of the harmonic measure in the case where μ gives independence to μz and

μx, and both these measures are supported on a lattice. The following theo-

rem generalizes Erdős Theorem 5.1, which corresponds to the (degenerate) case

μz = δγ below.

Theorem 6.1: Assume that μ has finite first moment and that π∗μ = μz ×μx

is a product measure between

(1) μz such that Eμz = α > 0 and with support Supp(μz) ⊂ γZ for a real

number γ such that eγ is a Pisot number,

(2) and μx = q1δ1 + q1δ−1 + q0δ0 with q0 >
1
2 .

Then the harmonic measure ν on R corresponding to the pair (Sol, μ) is singular

with respect to Lebesgue measure.

Theorem 1.1 (3) follows from Theorem 6.1, Proposition 3.7 and 3.8, since μ

can be chosen to be a finitely supported, non-degenerate measure such that the

group generated by Supp(μ) acts non-elementarily on R, keeping conditions (1)

and (2) in Theorem 6.1.

Proof of Theorem 6.1. By Riemann–Lebesgue Lemma 5.8, it is sufficient to

prove that ν̂(t) does not tend to 0 as t tends to ∞. To ease notations, we

write β = e−γ and note that β−1 is a Pisot number.

As in the previous proof, we use (4)–(7) to compute the Fourier transform.

The law of xjβ
k is

q1(δβk + δ−βk) + q0,

with Fourier transform

2q1 cos(tβ
k) + q0,

so (7) becomes

ν̂ζ(t) =

∞∏
k=−∞

(2q1 cos(tβ
k) + q0)

n(ζ,k),

with the notation of Section 7.2. All the terms in the product are ≤ 1 and

greater than −2q1 + q0 > 0 because q0 >
1
2 and 2q1 + q0 = 1. By (6), we get

(8) ν̂(t) =

∫
Ω0

∞∏
k=−∞

(2q1 cos(tβ
k) + q0)

n(ζ,k)dP0(ζ).
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By the Jensen inequality and the Fubini theorem,

log ν̂(t) ≥
∫
Ω0

log

( ∞∏
k=−∞

(2q1 cos(tβ
k) + q0)

n(ζ,k)

)
dP0(ζ)

=

∫
Ω0

∞∑
k=−∞

n(ζ, k) log(2q1 cos(tβ
k) + q0)dP0(ζ)

=
∞∑

k=−∞

∫
Ω0

n(ζ, k)dP0(ζ) log(2q1 cos(tβ
k) + q0).

Lemma 7.3 gives 0 <
∫
Ω0
n(ζ, k)dP0(ζ) = En(ζ, k) ≤M <∞. As

log(2q1 cos(tβ
k) + q0) < 0,

we get

log ν̂(t) ≥M

∞∑
k=−∞

log(2q1 cos(tβ
k) + q0) =M log

( ∞∏
k=−∞

(2q1 cos(tβ
k) + q0)

)
,

thus

(9) ν̂(t)
1
M ≥

∞∏
k=−∞

(2q1 cos(tβ
k) + q0).

The right-hand side is almost the Fourier transform of the Bernoulli convolution

with parameter the inverse of a Pisot number, so the remainder of our proof

follows Erdős [E1]. For any integer l, set tl = 2πβl. We prove that there exists

c > 0 such that ν̂(tl)
1
M ≥ c for all l in Z.

By Lemma 7.2, there exists θ < 1 and L such that

ν̂(tl)
1
M ≥

∞∏
k=−∞

(2q1 cos(2πβ
l+k) + q0)

≥
∏

|k|≥L

(2q1(1− θ|k|) + q0)
∏

|k|<L

(2q1 cos(2πβ
k) + q0) = c > 0,

where l disappears by translation invariance. The first product∏
|k|≥L

(1− 2q1θ
|k|) > 0

is non-zero by exponential decay and the second has finitely many positive

factors.
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Remark 6.2: Theorem 6.1 is still true for μx a symmetric measure on Z where

q0 >
1
2 and the sequence μx(r) = μx(−r) = qr has a finite η-moment for some

η > 1.

More precisely, let β−1 be a Pisot number and consider θ < 1 from Lemma

7.2. Under the moment condition, there exists 1 < σ < θ−1 such that

∞∑
k=1

∑
r≥σk

qr <∞.

We deduce that the harmonic measure ν is singular. Indeed, (9) becomes

ν̂(tl)
1
M ≥

∞∏
k=−∞

(
q0 +

∞∑
r=1

2qr cos(2πrβ
k)

)
.

By Lemma 7.2, there exists L′ such that for |k| ≥ L′ and 1 ≤ r ≤ σ|k|, we have

| cos(2πβkr)− 1| ≤ rθ|k| ≤ (σθ)|k|. Then

ν̂(tl)
1
M ≥

∏
|k|≥L′

(
q0 +

σ|k|∑
r=1

2qr(1 − (σθ)|k|)−
∑

r>σ|k|
2qr

)

×
∏

|k|<L′

(
q0 +

∞∑
r=1

2qr cos(2πrβ
k)

)

≥
∏

|k|≥L′

(
1− 2(σθ)|k| − 4

∑
r>σ|k|

qr

) ∏
|k|<L′

(
q0 +

∞∑
r=1

2qr cos(2πrβ
k)

)
=c > 0.

The left-side product converges by the assumption on the decay of (qr)r and

because σθ < 1.

6.2. Cocompact lattices. For any matrix T in SL(2,Z) with trace satisfying

Tr(T ) > 2, denote ΓT the semi-direct product Z �T Z2, where r ∈ Z acts on

(p, q) ∈ Z2 by r.(p, q) = T r(p, q). The abstract group ΓT can be realized as a

cocompact lattice in Sol.

Indeed, let 0 < e−γ < 1 and eγ be the the eigenvalues of T . Note that they

are the roots of X2 − Tr(T )X + 1, so eγ is a Pisot number. By change of basis

B, we diagonalize T as

BTB−1 =

(
e−γ 0

0 eγ

)
.
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The homomorphism ψ : ΓT → Sol given by ψ(r, p, q) = (rγ,B(p, q)) is injective.

Its image ψ(ΓT ) is a cocompact lattice since the quotient space is a torus fiber

bundle over the circle.

In fact, any cocompact lattice in Sol has this form by [MR] or [MS]. Moreover,

any finitely generated group quasi-isometric to Sol is virtually (up to taking

finite index subgroup) a cocompact lattice in Sol by [EFW1].

A random walk on the finitely generated group ΓT can be viewed in Sol via

the above homomorphism ψ. In this case, the visual boundary ∂Sol with the

harmonic measure ν from Theorem 3.3 is actually the Poisson boundary of ΓT

by Kaimanovich ([K1],[K2]). By Corollary 4.3, there exists a non-degenerate

measure μ on ΓT such that the harmonic measure ν on the boundary is sin-

gular with respect to Lebesgue measure. However, we have not answered the

following:

Question 6.3: Does there exist a random walk μ (with finite support) on a

cocompact lattice of Sol such that the harmonic measure ν on the boundary is

absolutely continuous with respect to Lebesgue?

Neither Theorem 5.4 nor its extension in Remark 5.6 applies to this question

because the set of Pisot numbers has zero Lebesgue measure. Theorem 6.1

either, since for a non-degenerate random walk on ψ(ΓT ), the projected measure

μx generates a dense subgroup of R, rather than a lattice.

7. Appendix: Classical facts

7.1. About Pisot numbers. A real number α > 1 is a Pisot number if there

exists a polynomial P (X) = Xr + ar−1X
r−1 + · · ·+ a0 with integer coefficients

and roots {α, α2, . . . , αr} satisfying |αs| < 1 for all 2 ≤ s ≤ r. For instance,

the Golden ratio is a Pisot number, root of X2 − X − 1. These numbers are

interesting because their powers are very close to being integers.

Fact 7.1: If α is a Pisot number, there exists θ̃ < 1 such that dist(αk,Z) ≤ θ̃k

for all k ∈ N.

Proof. For each k, the quantity αk + αk
2 + · · ·+ αk

r is a symmetric polynomial

in the roots of P , which can be expressed as a polynomial expression of the

coefficients of P , hence is an integer. This shows dist(αk,Z) ≤ αk
2 + · · ·+αk

r ≤
(r − 1)δk where δ = maxs=2,...,r |αs| < 1.
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This Fact 7.1 will be more handy to us in the following form.

Lemma 7.2: For any parameter 0 < β < 1 such that 1
β is Pisot, there exists

θ < 1 and L such that |k| ≥ L implies | cos(2πβk)− 1| ≤ θ|k|.

Proof. For k ≥ 0 large enough, | cos(2πβk)− 1| ≤ 2πβk as β < 1. On the other

hand

dist(2πβ−k, 2πZ) = 2πdist

((
1

β

)k

,Z

)
≤ 2πθ̃k

by Fact 7.1, hence | cos(2πβ−k)− 1| ≤ 2πθ̃k. Take θ > max{β, θ̃}.

7.2. About random walks on the integers. Let μz be a probability

measure on Z of mean α = Eμz , and consider the associated random walk

Sj = z1+ · · ·+ zj, where zi are independent μz-distributed integers. We denote

P0 the inherited measure on the space Ω0 of paths in Z emanating from zero.

For a sample path ζ = {Sj}∞j=0 and an integer k, denote

n(ζ, k) = #{j ∈ N|Sj = k}
the amount of time spent in position k by the random walk. For each fixed k,

the function n(., k) : Ω0 → N is measurable.

By the law of large numbers, Sj ∼ αj almost surely. Therefore if α �= 0 for

each integer k and for P0 almost every path ζ, we have n(ζ, k) <∞. Moreover,

if α > 0 (respectively α < 0) there almost surely exists an integer k0, depending

on the sample ζ such that n(ζ, k) = 0 for all k ≤ k0 (resp. k ≥ k0).

The average time spent in position k is estimated in the following lemma.

Lemma 7.3: If Eμz = α �= 0, then En(ζ, 0) = M < ∞. Moreover, if α > 0

(resp. α < 0), we have En(ζ, k) = M for all k ≥ 0 (resp. k ≤ 0) and

En(ζ, k) ≤M for all k ≤ 0 (resp. k ≥ 0).

Proof. By definition, En(ζ, k) =
∑∞

m=1mP0[n(ζ, k) = m]. Conditioning by the

first hitting time τk = min{j ≥ 0|Sj = k}, we get

P0[n(ζ, k) = m] = P0[n(ζ, k) = m|τk <∞]P0[τk <∞].

By the strong Markov property and translation invariance,

P0[n(ζ, k) = m|τk <∞] = P0[n(ζ, 0) = m].

We deduce En(ζ, k) = P0[τk < ∞]En(ζ, 0). For α > 0 (resp. α < 0), we have

P0[τk <∞] = 1 for k ≥ 0 (resp. k ≤ 0). This proves the second part.
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To get the first part, consider the first return time ρ0 = min{j ≥ 1|Sj = 0}. As
the randomwalk is transient, this return time is infinite with positive probability

P0[ρ0 = ∞] = 1− p > 0 and P0[ρ0 <∞] = p < 1.

These equalities provide the case m = 1 in the statement

P0[n(ζ, 0) = m] = (1− p)pm−1 and P0[n(ζ, 0) > m] = pm,

which we prove by induction, using the strong Markov property:

P0[n(ζ, 0) = m+ 1] =P0[n(ζ, 0) = m+ 1|n(ζ, 0) > m]P0[n(ζ, 0) > m]

=(1 − p)pm,

P0[n(ζ, 0) > m+ 1] =P0[n(ζ, 0) > m+ 1|n(ζ, 0) > m]P0[n(ζ, 0) > m] = pm+1.

In conclusion, M = En(ζ, 0) = (1− p)
∑∞

m=1mp
m−1 = 1

1−p ≥ 1.
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