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ABSTRACT

The subject is partial resolution of singularities. Given an algebraic va-

riety X (not necessarily equidimensional) in characteristic zero (or, more

generally, a pair (X,D), where D is a divisor on X), we construct a functo-

rial desingularization of all but stable simple normal crossings (stable-snc)

singularities, by smooth blowings-up that preserve such singularities. A

variety has stable simple normal crossings at a point if, locally, its irre-

ducible components are smooth and transverse in some smooth embedding

variety. We also show that our main assertion is false for more general

simple normal crossings singularities.
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1. Introduction

The subject of this article is partial resolution of singularities. Let X denote

a (reduced) algebraic variety X over a field of characteristic zero and let D

denote a Q-Weil divisor on X . Our main result (see Theorem 1.8) asserts that

we can resolve all but stable simple normal crossings singularities of (X,D)

by a finite sequence of blowings-up, each of which is an isomorphism over the

stable simple normal crossings points of its target. See Definitions 1.1, 1.4, and

Lemma 1.2. The theorem is functorial (Remarks 1.9) and is obtained by an

algorithm. Theorem 1.8 is false for more general normal crossings singularities;

see Example 1.10. (Of course, a weaker desingularization result may hold in this

case.) We do not assume that X is equidimensional; in particular, we do not

define simple normal crossings singularities in a way that they are necessarily

hypersurface singularities, as in [8]. Our main theorem generalizes [8]; simple

normal crossings hypersurface singularities are necessarily stable. The proof of

the theorem follows the philosophy of [6] that the desingularization invariant of

[3] and [5] can be used together with natural geometric information to compute

local normal forms of singularities.

Pairs (X,D) appear naturally in algebraic geometry when considering, for

example, boundaries of non-closed varieties, markings on varieties in moduli

problems, or loci of indeterminacy of rational mappings.

In birational geometry, partial desingularization is sometimes needed to re-

solve all singularities except those in some class to be preserved or which cannot

be eliminated. For example, in order to simultaneously resolve the singularities

of curves in a parametrized family, one needs to allow special fibres that have

normal crossings singularities. Likewise, log resolution of singularities of a divi-

sor produces a divisor with simple normal crossings, and stable simple normal

crossings singularities appear when studying the higher-dimensional analogues
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of stable curves. There are recent applications of [8] by Fujino to several inter-

esting results in the log minimal model program; e.g., [9], [10], [11]. See also [6]

and [12].

Definition 1.1: A (reduced) algebraic variety X has a stable simple normal

crossings (stable-snc) singularity at a point a (or X is stable-snc at a) if

the irreducible components X(i) of X are smooth at a, and are transverse at a

in some smooth embedding variety Z of a neighbourhood of a in X (i.e., the

sum of the codimensions in Z of the tangent spaces of the X(i) at a equals the

codimension of the intersection of the tangent spaces).

Note that, if X and Z are as in the preceding definition, then Z is necessarily

a minimal local embedding variety. We say that X has a simple normal

crossings (snc) singularity at a if there is a smooth local embedding variety

Z at a with a system of regular coordinates in which each X(i) is a coordinate

subspace. (This is a more general notion than “X is locally isomorphic to a

simple normal crossings divisor”, often used as the definition.)

Lemma 1.2: Let X denote an algebraic variety, and let X(i) denote the irre-

ducible components of X . Let a ∈ X . Assume that each X(i) is smooth at a.

Then the following conditions are equivalent:

(1) X is stable-snc at a.

(2) If Z is a smooth local embedding variety of X at a (of any possible

dimension), then Z admits a system of regular coordinates

(x1, . . . , xp, z1, . . . , zr, w1, . . . , ws)

at a, with respect to which each

X(i) = ({xk = 0}k∈Ii , z1 = · · · = zr = 0),

for some partition
⋃m

i=1 Ii of {1, . . . , p}.
(3) X is snc at a and there is a smooth local embedding variety in which

any two components X(i) are transverse at a.

(4) The intersection of the X(i) is smooth (as a scheme) at a, and X ad-

mits a smooth local embedding variety Z at a in which the sum of the

codimensions of the X(i) equals the codimension of their intersection.

(See also (3.1).)
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(5) X admits a smooth local embedding variety at a in which the X(i) are

smooth and in general position.

Remark 1.3: A local embedding variety satisfying any of the conditions (3)–(5)

is necessarily minimal. It follows from Lemma 1.2 that, if X is stable-snc at a,

then the conditions (3)–(5) and the transversality property of Definition 1.1 are

satisfied in any minimal embedding variety of X at a.

Definition 1.4: Let X denote a (reduced) algebraic variety and let X(i) denote

the irreducible components of X . Let D denote a Q-Weil divisor on X , i.e., D

is a finite linear combination of reduced, irreducible subvarieties of X , each of

codimension one in any X(i) that contains it. We say that (X,D) has (or is)

stable simple normal crossings (stable-snc) at a point a if there is a local

embedding X ↪→ Z at a, where Z is smooth and admits a regular system of

coordinates (x1, . . . , xp, y1, . . . , yq, z1, . . . , zr, w1, . . . , ws) at a in which

(1) each X(i) := ({xk = 0}k∈Ii , z1 = · · · = zr = 0), for some partition⋃m
i=1 Ii of {1, . . . , p};

(2) D =
∑k

j=1 αj(yj = 0)|X (locally at a), for some αj ∈ Q.

We also say that the pair (X,D) is stable-snc if it is stable-snc at every point.

It follows that, if (X,D) is stable-snc at a, then any smooth local embedding

variety at a admits a regular coordinate system as in Definition 1.4.

Observe that in Definition 1.4 we do not assume a priori that D arises from

the intersection with X of a divisor on Z, though of course this property is

satisfied if (X,D) is stable-snc.

Example 1.5: Consider

X := (x = y = 0) ∪ (y = z = 0) ∪ (x = z = 0) ⊂ A3
x,y,z.

Then X is snc at the origin but not stable-snc. On the other hand,

Y := (x = y = 0) ∪ (y = z = 0)

is stable-snc.

Example 1.6: IfX=(xy=0)⊂A3 andD=a1D1+a2D2, whereD1=(x = z = 0)

and D2 = (y = z = 0), then the pair (X,D) is stable-snc if and only if a1 = a2.
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Definition 1.7: Transform of a pair (X,D). Consider a sequence of blowings-

up

(1.1) X = X0
σ1←− X1 ←− · · · σt←− Xt,

where each σj+1 has smooth centre Cj ⊂ Xj . Write D̃0 := D and, for each

j = 0, 1, . . ., set D̃j+1 := the birational transform of D̃j plus the exceptional

divisor σ−1
j+1(Cj) of σj+1.

Theorem 1.8: Let X denote a (reduced) algebraic variety in characteristic

zero and let D denote a Q-Weil divisor on X . Then there is a sequence of

blowings-up (1.1) such that

(1) (Xt, D̃t) has only stable-snc singularities;

(2) each σj+1 is an isomorphism over the locus of stable-snc points of

(Xj , D̃j).

Remarks 1.9: (1) In the special case that D = 0, each D̃j is the exceptional

divisor of the morphism σ1 ◦ · · · ◦ σj , so that condition (1) of Theorem 1.8 is a

stronger assertion than “Xt is stable-snc”.

(2) In the special case that X is smooth, we say that D is a simple normal

crossings or snc divisor on X if (X,D) is stable-snc (i.e., Definition 1.4 is

satisfied with p = 0 at every point of X). This means that the components of

D are smooth and intersect transversely. Theorem 1.8 in this case provides

log resolution of singularities of D by a sequence of blowings-up (1.1) such

that each σj+1 is an isomorphism over the snc locus of D̃j . This is proved in

[1, Thm. 1.5]. Earlier versions can be found in [15], [3, Sect. 12], [12] and [6,

Thm. 3.1].

(3) The desingularization morphism of Theorem 1.8 is functorial in the cat-

egory of pairs (X,D) with a fixed ordering on the components of X , and with

respect to étale morphisms (or smooth morphisms; cf. [7, §6.3]) that preserve

the number of irreducible components ofX andD at every point. If D = 0, then

the sequence of blowings-up is independent of the ordering of the components

of X . Note that desingularization preserving only snc or stable-snc singulari-

ties cannot be functorial with respect to étale morphisms in general (as in the

case of functorial resolution of singularities), because a normal crossings point

becomes snc after an étale morphism.
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The following example shows that Theorem 1.8 does not hold for more general

snc singularities.

Example 1.10: Consider

X := (z = x = 0) ∪ (z = y = 0) ∪ (z + xw = x+ y = 0) ⊂ A4
w,x,y,z.

Then X is snc at every point except the origin (w = x = y = z = 0), so the

only blowing-up permissible as the first in the sequence (1.1) in Theorem 1.8

has centre the origin. In the “w-chart” with coordinates (w, x/w, y/w, z/w),

the strict transform X ′ of X is given by the same equations as X , and the

exceptional divisor D′ = (w = 0). Therefore, (X ′, D′) is snc except at 0, and

the non-snc singularity at 0 cannot be eliminated by continuing to blow up only

non-snc points.

Theorem 1.8 follows from a stronger version, Theorem 1.16 below, for which it

will be convenient to work with triples (X,D,E) that distinguish the birational

transforms of D from the exceptional divisors. In this notation, (X,D) has the

same meaning as in Definition 1.4, and E is an ordered snc divisor on X in the

sense of Definition 1.11 following (usually with all coefficients ak = 1).

Definition 1.11: Let Z denote a smooth variety. An (ordered) snc divisor

E on Z is a finite linear combination
∑

akHk of (ordered) subvarieties Hk,

where each a ∈ Z admits a coordinate neighbourhood in which every Hk is

a coordinate hypersurface. We identify the support of E, suppE :=
∑

Hk,

with the (ordered) set of smooth hypersurfaces {Hk}. The Hk are called the

components of E.

Let X denote a variety. An (ordered) snc divisor E on X is a finite

linear combination
∑

akHk of (ordered) subvarieties Hk, such that each a ∈ X

admits a neighbourhood U and an embedding X |U ↪→ Z, Z smooth, where E|U
is induced by an (ordered) snc divisor EZ on Z (and each nonempty Hk|U is the

restriction of a component of EZ). Note that the components Hk of E need

not be irreducible (or reduced). When all ak = 1, we again identify E with the

(ordered) set of smooth hypersurfaces {Hk}.
We also assume that E is a Weil divisor (as in Definition 1.4).

Remark 1.12: The latter assumption only excludes the possibility that a com-

ponent of E contain an irreducible component of X . This possibility does not

arise, in any case, for the exceptional divisor of a sequence of blowings-up as
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given by our main theorems. If we were to allow it, the proofs of Theorems 1.8

and 1.16 would simply require an additional step to separate and blow up such

irreducible components of X (which contain no stable-snc points of (X,E)).

Let X denote a variety and let E denote an snc divisor on X . Consider a

sequence of blowings-up

(1.2) X = X0
σ1←− X1 ←− · · · σt←− Xt,

where each σj+1 has smooth centre Cj ⊂ Xj . Write E0 = E and, for each

j = 0, 1, . . ., set Ej+1 := the birational transform of Ej (with the induced

ordering) plus the exceptional divisor σ−1
j+1(Cj) of σj+1 (as the last element).

Definition 1.13: A smooth blowing-up σ : X ′ → X (i.e., a blowing-up with

smooth centre C ⊂ X) is admissible (or admissible for (X,E)) if C is snc

with respect to E (where the latter means that, for each a ∈ C, there is a

neighbourhood U of a in X and an embedding X |U ↪→ Z as above, where Z has

a coordinate system in which C is a coordinate subspace and each component

of EZ is a coordinate hyperplane). The sequence of blowings-up (1.2) is ad-

missible if each σj+1 is admissible for (Xj , Ej). We will speak of j as a “year”

in the “history” of blowings-up (1.2).

It follows from Definition 1.13 that, if Ej is snc and σj+1 is admissible, then

Ej+1 is snc.

Definition 1.14: We say that (X,D,E) has (or is) stable simple normal

crossings (stable-snc) at a point a ∈ X if (X,D + E) is stable-snc at a.

We say that (X,D,E) is stable-snc if it is stable-snc at every point.

Definition 1.15: Transform of a triple (X,D,E). Consider a sequence of

blowings-up (1.2) that is admissible for (X,E). Write D0 = D and E0 = E.

For each j = 0, 1, . . ., set Dj+1 := the birational transform of Dj, and define

Ej+1 as above.

Comparing this notation with that of Definition 1.7, note that, if E = 0,

then D̃j = Dj + Ej , for each j. The notation of Definitions 1.7 and 1.15 will

be used throughout the article. Superscripts will be used to denote irreducible

components of varieties.
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Theorem 1.16: Let X denote a (reduced) variety in characteristic zero. Let

D denote a Q-Weil divisor and E an ordered simple normal crossings divisor on

X . Then there is a sequence of admissible smooth blowings-up (1.2) such that

(1) (Xt, Dt, Et) has only stable-snc singularities;

(2) each σj+1 is an isomorphism over the locus of stable-snc points of

(Xj , Dj , Ej).

Moreover, the association of the desingularization sequence (1.2) to (X,D,E) is

functorial in the category of triples (X,D,E) with a fixed ordering on the com-

ponents of X , and with respect to étale (or smooth) morphisms that preserve

the number of irreducible components of X at every point. (In the category of

such triples with D = 0, an ordering of the components of X is not necessary

for functoriality.)

Theorem 1.8 is a consequence of Theorem 1.16.

An ordering on the set of irreducible components of X in the functoriality

assertion in Theorem 1.16 is needed because of the inductive nature of our

proof; see Section 8. We have no reason to believe that this is an intrinsic

requirement. For example, we can remove the dependence on an ordering in

the simpler setting of [8] (unpublished).

To prove Theorem 1.16, we construct the sequence of blowings-up in two

main parts. We first make the transform of (X,E) stable-snc, and then perform

further blowings-up to make the transform of (X,D,E) stable-snc. Comparing

this article with previous papers, the first part is rather analogous to [1], while

the second is closer to [8]. Nevertheless, the main new arguments here are for

the first part; the second part differs from [8] in a more technical way.

The paper does not rely on technical details of a proof of resolution of sin-

gularities, but does use several basic notions and constructions concerning the

desingularization algorithm and the desingularization invariant. The desingu-

larization algorithm is used in [1], [6], [8] mainly in the case of a hypersurface

or (weak desingularization of) an ideal. For desingularization of more general

varieties as treated here, the notion of presentation of an invariant (of origin

in [3]) is a useful tool that will be recalled in Section 2 below, with examples

needed for the paper. Given a local invariant that admits a presentation, one

can functorially construct a sequence of blowings-up along which the invariant

never increases and eventually decreases [4], [5, Thm. 7.1].
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In Section 2, we also briefly recall several other ideas from resolution of sin-

gularities that we use; in particular, the notions of maximal contact and the

monomial part (or divisorial part) of an ideal with respect to an exceptional

divisor, as well as the inductive construction based on these notions that is

used to define the desingularization invariant. These techniques are used in

Sections 2, 3 and 4. They are relatively elementary, but the desingularization

algorithm involves a delicate recursion that is reflected in Sections 3 and 4. We

will provide references to the expository Crash course on the desingularization

invariant [6, Appendix]. See also the summary of desingularization techniques

in [1, Sect. 2]. We have tried to make the article as self-contained as possible,

though we give detailed references to [8] for certain arguments that are used in

the same way here.

Beyond Theorem 1.16, a number of techniques in this paper may be of inter-

est in other applications, in particular, other partial desingularization problems.

In Section 2.4, for example, we give an algorithm for simultaneous desingular-

ization of a finite collection of closed subvarieties of a given variety.

2. Presentation of an invariant

We will consider several local invariants of algebraic varieties X with values in

partially ordered sets. These invariants ι = ιX provide different measures of

singularity, and the desingularization algorithm for an associated marked ideal

(a presentation of the invariant ι; see §2.2) is used to decrease the maximum

values of ι. The desingularization algorithm for a marked ideal I prescribes a

sequence of blowings-up, determined by the maximum loci of a desingularization

invariant invI [5]. A presentation of ι can be used to extend ι to a desingu-

larization invariant invι (§2.3), and the resulting desingularization algorithm

(blowings-up determined by the maximum loci of invι) reduces the invariant ι

to its value at a general point of X .

In §§2.4 and 2.5, we will illustrate these ideas by constructing presentations for

two local invariants that intervene in our proofs of Theorems 1.8 and 1.16. The

first is used to prove that any algebraic variety can be transformed to a variety

all of whose irreducible components are smooth, by a sequence of blowings-up

that preserve points where all components are already smooth (Theorem 2.4).

This will be the first step in the proof of our main result Theorem 1.8; the

approach is different from that of [1] and [8], so that Theorem 1.8 involves an



242 E. BIERSTONE AND F. VERA PACHECO Isr. J. Math.

algorithm that differs from those of the latter, even in the special case thatX is a

hypersurface. In the following sections, we will remark certain simplifications of

the remaining steps, relative to [1] and [8], that result from the use of Theorem

2.4.

Let Λ denote a partially ordered set, and let ι denote a local invariant with

values in Λ. This means that, given an algebraic variety X , there is a function

ι = ιX : X → Λ such that, for all a ∈ X , ι(a) is an invariant of the local étale

isomorphism class of X at a.

We will assume that ι satisfies the following three properties:

(1) ι is upper-semicontinuous; in particular, for all a ∈ X , (ι(x) ≥ ι(a)) :=

{x ∈ X : ι(x) ≥ ι(a)} is closed;
(2) ι is infinitesimally upper-semicontinuous; i.e., for any smooth

blowing-up σ : X ′ → X such that ι is locally constant on the centre of

σ, ι(a′) ≤ ι(a) whenever a′ ∈ X ′ and a = σ(a′);
(3) any non-increasing sequence in the value set of ι stabilizes.

Properties (1) and (2) are needed for the notion of a presentation of ι. Prop-

erty (3) is needed to guarantee the termination of a desingularization algorithm

based on the invariant ι.

An important example of a local invariant that satisfies the properties above

is the Hilbert–Samuel function ι(a) = HX,a of the local ring OX,a (see

Section 7 and [5, §1.3]). The Hilbert–Samuel function HX,a ∈ NN. The latter is

partially ordered as follows: if H1, H2 ∈ NN, then H1 ≤ H2 if H1(k) ≤ H2(k),

for all k ∈ N.

Definition 2.1: Given a local invariant ι and a variety X with snc divisor E, we

say that a sequence of blowings-up (1.2) of X is admissible for (X, ι) or for ι

(or ι-admissible) if (1.2) is admissible in the sense of Definition 1.13, and ι is

locally constant on each centre of blowing up Cj .

2.1. Marked ideals. The desingularization invariant is calculated using

marked ideals [6, Def. A.5]—collections of data that are computed iteratively

on maximal contact subspaces of increasing codimension [6, Def. A.11]. A

marked ideal I is a quintuple (Z,N,E, I, d), where Z ⊃ N are smooth vari-

eties, E =
∑s

i=1 Hi is an snc divisor on Z that is transverse to N , I ⊂ ON is

an ideal, and d ∈ N. We will sometimes call N a “maximal contact subspace”

by abuse of language, since it typically arises in this way.
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The cosupport cosupp I of the marked ideal I is defined as

{x ∈ N : ordxI ≥ d}. A blowing-up σ of Z is admissible for I if the cen-

tre C of σ is snc with E and C ⊂ cosuppI. A presentation of an invariant ι

(Definition 2.3 following) is a marked ideal whose admissible blowings-up cor-

respond to those that are admissible for the invariant, in the sense of Definition

2.1.

Remark 2.2 (Equivalence of marked ideals): We say that two marked ideals I
and J (with the same ambient variety Z and the same normal crossings divisor

E) are equivalent if they have the same sequences of test transformations (i.e.,

every test sequence for one is a test sequence for the other). Test transfor-

mations are transformations of a marked ideal by morphisms of three possible

kinds: admissible blowings-up, projections from products with an affine line,

and exceptional blowings-up [5, Defns. 2.5]. In particular, if I and J are

equivalent, then they have the same cosupport and their transforms [6, §A.4] by
any sequence of admissible blowings-up have the same cosupport. The remain-

ing two types of test transformations are used to prove functoriality properties

of the desingularization invariant and algorithm. We refer the reader to [5, §2]
for definitions; we do not need these notions explicitly here.

A resolution of singularities of a marked ideal I is a sequence of admis-

sible blowings-up (1.2) after which cosupp I ′ = ∅, where I ′ is the transform of

I. Resolution of singularities of a marked ideal [5] is functorial with respect

to somewhat smaller equivalence classes of marked ideals, called semicoherent

equivalence classes in [3], [4]. (This point was neglected in [5]. It is pointed

out by Nobile in [14].) Two marked ideals I, J as above are semicoherent

equivalent if I|U and J |U are equivalent, for every open subset U of Z. Such

a notion is needed because the desingularization algorithm involves associating

coefficient ideals to certain marked ideals I [6, §A.5]. Coefficient ideals exist

only locally in general; semicoherent equivalence is a way to ensure that the

appropriate equivalence class of a coefficient ideal depends only on that of I.
2.2. Presentation.

Definition 2.3: Let ι denote a local invariant satisfying properties (1) and (2)

above. A presentation of ι at a ∈ X is a marked ideal I = (Z,N, 0, I, d), where
there is an étale open neighbourhood V of a and an embedding X |V ↪→ Z such

that
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(1) for every open subset U of Z, a sequence of blowings-up over U is

admissible for I|U if and only if each centre lies in (ι = ι(a)) (the locus

of points where ι = ι(a));

(2) the semicoherent equivalence class of I is uniquely determined by ι and

(Z,X |V ).
For example, the Hilbert–Samuel function HX,· admits a presentation at any

point. In fact, given a ∈ X , there is a presentation I of HX,· at a, as above,

where N = Z = a minimal embedding variety of X |V at a (see [3, Ch. III]).

Note that a presentation as defined here is called a “semicoherent presentation”

in [3], [4].

In general, even a simple local invariant need not admit a presentation at a

point of an arbitrary algebraic variety X . For example, does the local embedding

dimension eX,a admit a presentation?

The purpose of a presentation is that, according to Definition 2.3, we can

decrease the invariant ι over a given point a by resolution of singularities of a

corresponding presentation. When ι decreases, we choose a new presentation

and repeat the process. Of course, when ι decreases, we have not only the

transform of X but also an exceptional divisor; in general, therefore, we have to

consider a variety together with a simple normal crossings divisor (“boundary”)

E.

We can extend the invariant ι to track also the birational transforms of the

snc divisor E. Consider a sequence of (X,E)-admissible blowings-up (1.2). Let

us write E1
j for successive birational transforms of E, so that each Ej = E1

j +E1j ,
where E1j denotes the exceptional divisor of the morphism given by the first j

blowings-up. If a ∈ X , let s(a) denote the number of components of E at

a. Likewise, if a ∈ Xj , for any j, let s(a) or s1(a) denote the number of

components at a of E1
j . We consider the invariant (ι, s), where such pairs are

ordered lexicographically, defined over an ι-admissible sequence of blowings-up

(1.2). An admissible sequence (1.2) is called (ι, s)-admissible if (ι, s) is locally

constant on each centre of blowing up. If a ∈ Xj , we will write E(a), E1(a) or

E1(a) to denote the set of components at a of Ej , E
1
j or E1j , respectively.

Suppose that I = (Z,N, 0, I, d) is a presentation of ι at a ∈ X , and that

(near a) E is induced by an snc divisor on Z (which, for simplicity, we also

denote E). For each component H of E, let IH denote the ideal of H in OZ

and consider the marked ideal (IH |N , 1) := (Z,N, 0, IH |N , 1). We introduce
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the boundary marked ideal B :=
∑

H�a(IH |N , 1) (see [3, Def. A.8 and §A.9]),
and define I1 := I + B. The equivalence class of the marked ideal I1 depends

only on that of I and on E, so that I1 is a presentation of (ι, s) at a in the

sense of an obvious generalization of Definition 2.3.

2.3. Desingularization invariant. We define a desingularization invari-

ant inv = invι extending the invariant ι by

inv(a) = (ι(a), s(a), invI1(a)),

where invI1 is the desingularization invariant invI1 for the marked ideal I1 (see

[6, App. A] and [5]. The desingularization invariant inv is defined recursively

over a sequence (1.2) of inv-admissible blowings-up: for each j, if inv is defined

over X = X0 ← · · · ← Xj and σj+1 is inv-admissible (i.e., σj+1 is admissible for

(Xj , Ej) and inv is locally constant on the centre Cj of σj+1), then inv extends

to Xj+1, and the properties (1)–(3) analogous to those of ι above are satisfied

by inv in the appropriate sense. The maximum locus of inv provides a global

smooth centre of blowing up.

The desingularization invariant invJ of a marked ideal J depends only on the

semicoherent equivalence class of J and the dimension of the maximal contact

subspace N . In order to get a well-defined semicontinuous invariant invι, it

is necessary to choose N in a way that dimN has a canonical value; e.g., in

a way that dimN depends only on ι at a, or dimN is locally constant on

{x : ι(x) = ι(a)}. This is an important issue in §§2.4, 2.5 below.

Some of the technology of the desingularization invariant will be used in

Sections 3 and 4. Consider a sequence (1.2) of invι-admissible blowings-up. Let

a ∈ Xj. The desingularization invariant inv = invι = (ι(a), s(a), invI1(a)) is

a sequence (ν1(a), s1(a), . . . , νq(a), sq(a), νq+1(a)), where ν1(a) = ι(a), s1(a) =

s(a) and invI1(a) = (ν2(a), s2(a), . . . , νq+1(a)); each sk(a) is a nonnegative

integer counting the number of elements of a certain block Ek(a) of Ej at a,

νk+1(a) is a positive rational number, 1 ≤ k < q, and νq+1(a) is either 0 or

∞. The successive pairs (νk+1(a), sk+1(a)), k ≥ 1, are calculated using marked

ideals Ik = (Z,Nk, Ek, Ik, dk), where N1 = N and Nk+1 had codimension 1 in

Nk, and where E1(a) = E(a)\E1(a) and Ek+1(a) := Ek(a)\Ek+1(a), k > 0.

We also introduce truncations of inv. Let invk+1(a) denote the truncation of

inv(a) after sk+1(a) (i.e., after the (k + 1)st pair), and let invk+1/2(a) denote

the truncation of inv(a) after νk+1(a).
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Given a ∈ Xj , let ai denote the image of a in Xi, i ≤ j. (We will speak of

year i in the history of blowings-up.) The year of birth of invk+1/2(a) (or

invk+1(a)) denotes the smallest i such that invk+1/2(a) = invk+1/2(ai) (respec-

tively, invk+1(a) = invk+1(ai)).

In terms of inv and its truncations, the terms sk(a) have the following mean-

ing. Let i denote the birth-year of inv1/2(a) = ν1(a), and let E1(a) denote

the collection of components at a of the birational transform of Ei. Then

s1(a) = #E1(a). We define sk+1(a), in general, by induction on k: Let i de-

note the year of birth of invk+1/2(a) and let Ek+1(a) denote the components

at a of the birational transform of Eki . Set sk+1(a) := #Ek+1(a). This defini-

tion is consistent with that of s1(a) = s(a) above because, in the year of birth

of inv1/2(a) = ι(a), a new presentation of ι is chosen and the construction is

started again. See [5] or [6, Appendix] for further details.

We write Ik as the productM(Ik) · R(Ik) of its monomial and residual

parts. M(Ik) is the monomial part with respect to Ek; i.e., the product of the

ideals IH , H ∈ Ek, each to the power ordH,aIk, where ordH,a denotes the order

along H at a. We set

νk+1(a) :=
ordaR(Ik)

dk
and μH,k+1(a) :=

ordH,aIk
dk

, H ∈ Ek;

both are invariants of the equivalence class of Ik and dimNk (see [6, Def. 5.10]).

The marked ideals Ik are constructed iteratively (on the maximal contact

subspaces Nk of decreasing dimension); the construction terminates when

νk+1(a) = 0 or ∞.

The passage from Ik to Ik+1 actually involves two steps: first, from Ik to a

companion ideal G(Ik) defined using the product decomposition of Ik above,

and secondly, from G(Ik) to Ik+1 as the coefficient ideal plus boundary.

For more details, see [6, Appendix] and [1, Sect. 2].

2.4. Simultaneous desingularization of a collection of varieties.

Theorem 2.4: Let X denote a (reduced) algebraic variety X . Then there is a

finite sequence of admissible smooth blowings-up (1.1) such that

(1) every irreducible component of Xt is smooth;

(2) each σj+1 is an isomorphism over the locus of points where all compo-

nents of Xj are smooth.
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Moreover, given an snc divisor E on X , there is a sequence of smooth blowings-

up as above which is admissible for (X,E). The association of the desingular-

ization sequence to (X,E) is functorial with respect to étale morphisms that

preserve the number of irreducible components of X at every point.

Remark 2.5: Consider two local invariants ι1, ι2 with values in partially-ordered

sets Λ1, Λ2, respectively. Given a variety X , we have (ι1, ι2) : X → Λ1 × Λ2.

There are two natural partial orders on Λ1 × Λ2: (1) the product order,

(λ1, λ2) ≥ (κ1, κ2) if λ1 ≥ κ1 and λ2 ≥ κ2, and (2) the lexicographic order.

Clearly, for either order, (ι1, ι2) is semicontinuous, and infinitesimally semi-

continuous, and any non-increasing sequence in its value set stabilizes. The

maximal loci of (ι1, ι2) with respect to the two orders coincide locally at a point

of X , but not necessarily globally.

Suppose that I1, I2 are presentations of ι1, ι2 (respectively) at a point a ∈ X .

Assume that I1, I2 have common ambient variety Z and common maximal

contact subvariety N . Then I1 + I2 is a presentation of (ι1, ι2), with respect

to either order, but the desingularization algorithms based on (ι1, ι2), for the

two orders, need not coincide: the invariant tells us in what order to assemble

the local centres of blowing up given by presentations, and this depends on the

partial order on Λ1 × Λ2.

Proof of Theorem 2.4. Let X(1), . . . , X(m) denote the irreducible components

of X . Consider the local invariant ιX,a := (HX,a, HX(1),a, . . . , HX(m),a), a ∈ X ,

given by the Hilbert–Samuel functions of the local rings of X and the X(i) at a

(with HX(i),a = 0 if a /∈ X(i)).

We consider (H,H1, . . . , Hm) ∈ (NN)m+1 as a pair

(H, (H1, . . . , Hm)) ∈ NN × (NN)m,

and we use the product order on {(H1, . . . , Hm) ∈ (NN)m}, but the lexicographic
order on pairs in NN × (NN)m.

Given a ∈ X , there is a local embedding X |U ↪→ Z such that E is induced

by an snc divisor on Z, and the Hilbert–Samuel functions HX,· and HX(i),·,
i = 1, . . . ,m, admit presentations I=(Z,N, 0, I, d) and I(i) = (Z,N, 0, I(i), di),
i = 1, . . . ,m, where N is a minimal embedding variety for X at a. Then

H := I +
∑

{i: a∈X(i)}
I(i)
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is a presentation of ιX,· at a. We can extend ι = ιX,· to a desingularization

invariant invι = (ιX,a, s(a), invI1(a)), as above, where I1 = H + B. Since we

are using the product order on (NN)m, invι and the resulting desingularization

algorithm do not depend on the ordering of the components X(i).

We modify this desingularization algorithm by making a selection from the

sequence of centres of blowings-up, in the following way. At each step, con-

sider the locus of points W where all components of (the transform of) X are

smooth. Of course, W is open in X . Moreover, the maximum locus of invι in

X\W is closed in X , because the Hilbert–Samuel function distinguishes smooth

from singular points, so that ιX,· distinguishes points where all components are

smooth from points where at least one component is singular. Therefore, at

each step, we can blow up the maximum locus of invι in X\W , and eventually

W = X .

Remark 2.6: More general families of varieties can also be simultaneously desin-

gularized as in Theorem 2.4. See Step 3 of the proof of Theorem 5.1 for another

application of the idea above.

2.5. Presentation of the number of irreducible components. Let X

denote a reduced algebraic variety. Assume that all irreducible components

X(i) of X are smooth. For all a ∈ X let κ(a) = κX(a) denote the number of

irreducible components of X at a.

Let a ∈ X . Consider a local embedding X |U ↪→ Z at a, and a smooth

subvariety N of Z containing
⋂

{i:a∈X(i)} X
(i) (restricted to U). For each i, let

I(i) denote the marked ideal I(i) = (Z,N, 0, I(i)|N , 1), where I(i) is the ideal

of X(i) in OZ . Define INΠ(X) :=
∑

{i:a∈X(i)} I(i). Clearly, cosuppINΠ(X) is the

constant locus (κ(x) = κ(a)) of κ if U is small enough.

Consider a blowing-up σ :X ′→X over U , with smooth centre in cosuppINΠ(X).

Then the transform of each marked ideal I(i) is given by the ideal u−1·σ∗(I(i))|N ′ ,

where u is (a local generator of the ideal of) the exceptional divisor of σ, and

N ′ is the strict transform of N . Since X(i) is smooth, u−1 · σ∗(I(i)) defines the
strict transform of X(i). Therefore, the transform of the marked ideal INΠ(X)

equals IN ′
Π(X′), where X

′ is the strict transform of X . It is then easy to see that

INΠ(X) is a presentation of the invariant κ at a.
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We can use the marked ideal INΠ(X) to extend κ to a desingularization invari-

ant invNκ (a) = (κ(a), s(a), invI1(a)), as above. (In particular, I1 = INΠ(X) plus

boundary, where we are allowing a given snc divisor E.)

Remark 2.7: Recall that the desingularization invariant invJ of a marked ideal

J depends only on the semicoherent equivalence class of J and the dimension

of its maximal contact subvariety N . We have therefore written invNκ to note

the dependence on the dimension of the subvariety N involved in the marked

ideal INΠ(X). Note that cosupp INΠ(X) is the intersection of all components of X

at a. In order to get a global desingularization algorithm based on the invariant

κ, we need to choose N in a way that dimN has a canonical value. We can

achieve this simply by taking N = X(i), for any i such that X(i) is of minimal

dimension among the components of X at a. With N chosen in this way, the

equivalence class of the marked ideal INΠ(X) plus boundary depends only on X

and E at a, and invκ := invNκ is globally semicontinuous.

In Section 3, we will use invκ to give a characterization of the condition

stable-snc.

3. Characterization of stable-snc singularities of a variety with snc

divisor

Consider an algebraic variety X with snc divisor E. Assume that all irreducible

components ofX are smooth. The main purpose of this section is to characterize

stable-snc singularities of (Xj , Ej), over a sequence (1.2) of admissible blowings-

up (see Theorem 3.9). This section is a generalization of [1, Sect. 3], but a

presentation of the invariant κ = κX (§2.5) plays a new role, and the assumption

of smooth irreducible components allows some simplification.

Recall the following geometric characterization of stable-snc singularities of

X , from Lemma 1.2. Let a ∈ X and let Z denote a smooth local embedding

variety of X at a. Let X(1), . . . , X(m) denote the irreducible components of

X at a and let ci denote the codimension of X(i) in Z, for each i. Then X

is stable-snc at a if and only if (the scheme-theoretic intersection)
⋂m

i=1 Xi is

smooth and of codimension

(3.1) c =

m∑
i=1

ci − (m− 1)(dimZa − eX,a)

at a, where eX,a denotes the minimal embedding dimension of X at a.
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Example 3.1: Let X = X(1) ∪ X(2) ⊂ A5, where X(1) = (x = y = 0) and

X(2) = (x+ uz = y + ut = 0). Then A5 is a minimal embedding variety at the

origin, and X(1) ∩ X(2) = (x = y = uz = ut = 0). Since X(1) ∩ X(2) is not

smooth at 0, X is not stable-snc at 0. On the other hand, X(1)∩X(2) coincides

with (x = y = z = t = 0) at a nonzero point a of the latter, so that X is

stable-snc at a, by (3.1).

The following definition describes the special values (denoted invc,s) that

invκ can take at a stable-snc point in any year j of a history of invκ-admissible

blowings-up (see Lemma 3.5).

Definition 3.2: Consider c = (c1, c2, . . . , cm) ∈ Nm, and s = (s1, . . . , sd) ∈ Nd.

Set

invc,s := (m, s1, 1, s2, . . . , 1, sd, 1, 0, . . . , 1, 0,∞),

where the total number of pairs (before ∞) is

r := |c|+ |s| −max{ci}, |c| :=
m∑
i=1

ci, |s| :=
d∑

k=1

sk

(cf. [1, Def. 2.1]).

The sk in Definition 3.2 will represent the sizes of certain blocks of exceptional

divisors. The ci will eventually be the codimensions of the components of X in a

local minimal embedding variety. The term max{ci} appears in the expression

for r because we are using a presentation of κ with maximal contact variety

N = a component of X of smallest dimension (see Remark 2.7).

Theorem 3.9 shows, in particular, that in year zero (i.e., before any blowings-

up), stable-snc singularities can be characterized using the invariant invκ to-

gether with the dimensions of a minimal embedding variety and the irreducible

components of X . The first example following shows that invκ alone is not

enough to characterize stable-snc, while the second shows that we cannot re-

place invκ by the desingularization invariant invX based on the Hilbert–Samuel

function.

Examples 3.3: (1) Consider X = (xyz = 0) and Y = (x = yz = 0) ∪ (z = 0)

in A3. In each case, κ has a presentation at 0 given by the marked ideal

(A3, (z = 0), 0, (x, y), 1) (see Remark 2.7) and invκ(0) = (3, 0, 1, 0, 1, 0,∞). But

X is stable-snc while Y is snc but not stable-snc at 0.
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(2) Consider

X = (x = y = 0)∪(w = z = 0) and Y = (x = y = 0)∪(x+w2 = y+wz = 0)

in A4, with E = 0. The X is stable-snc, while Y is not because the scheme-

theoretic intersection of its components is not smooth at 0. X and Y each have

minimal embedding dimension 4 and two components of dimension 2 at 0. The

ideal of Y is (x, y)∩ (x+w2 , y+wz) = (x2+xw2, xy+ yw2, y2+ ywz, yw−xz).

Then HX,0 = HY,0, and invX(0) = invY (0) = (H, 0, 1, 0, 1, 0, 1, 0,∞), where

H = HX,0.

Definition 3.4: We consider sequences Ω = (e, c1, . . . , cm), where e ∈ N and

c1 ≥ c2 ≥ · · · ≥ cm ≥ 0 are integers. Let ΣΩ = ΣΩ(X) denote the set of

points a ∈ X where X has local embedding dimension eX,a = e and exactly m

irreducible components ofX of codimensions c1, . . . , cm in a minimal embedding

variety. See also Definition 6.1.

The sequence of codimensions ci is taken in decreasing order in this definition

because we do not want ΣΩ to depend on an ordering of the ci (since invc,s does

not depend on an ordering).

The following results deal with stable-snc singularities of the transforms

(Xj , Ej) of (X,E) over a sequence (1.2) of invκ-admissible blowings-up. We

are assuming that all irreducible components of X are smooth. For brevity of

notation, we will write (Xj , Ej) simply as (X,E). See Section 2 above for the

definition of the blocks of exceptional divisors Ei(a) that are counted by the

invariants si(a).

Lemma 3.5 (Compare with [1, Lemma 3.1]): Suppose that all irreducible com-

ponents of X are smooth. Consider (X,E) = (Xq, Eq), in some year q of a

history (1.2) of invκ-admissible blowings-up. Let a ∈ X . If (X,E) is stable-snc

at a, then invκ(a) = invc,s, for some s = (s1, . . . , sd), with c = (c1, . . . , cm),

where m = κ(a) and each ck is the codimension of an irreducible component

X(k) of X at a in a local minimal embedding variety for X (so that a ∈ ΣΩ(X),

where Ω = (eX,a, c1, . . . , cm)).

Proof. Suppose that X has m (smooth) irreducible components X(1), . . . , X(m)

at a (so that κX(a) = m), of codimensions c1, . . . , cm, respectively, in a local

minimal embedding variety Z of X at a. Assume (without loss of generality)

that c1 = max{ci}. Let I(k) denote the ideal of X(k) in OZ at a, k = 1, . . . ,m.
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As in §2.2, invκ(a) = (κ(a), s1(a), invI1(a)), where I1 =
∑ I(i)|N1+ boundary

and N1 = X(1).

Let fk,l, l = 1, . . . , ck, denote generators of the ideal I(k) (with linearly inde-

pendent gradients), k = 1, . . . ,m. Let uj
1, j = 1, . . . , s1(a), denote generators

of the ideals of the components of E1(a). Then

(3.2) I1 = (Z, N1 = X(1), E1(a), I1 = ({fk,l : k ≥ 2}, {uj
1})|N1 , 1),

where E1(a) = E(a) \ E1(a) (cf. Section 2). The argument is now very similar

to the proof of [1, Lemma 3.1].

We factor I1 as the product M(I1) · R(I1) of its monomial and residual

parts; in particular,M(I1) is generated by a monomial m1 in the components

of E1(a).
Since (X,E) is stable-snc at a, the generators of I1 in (3.2) are part of

a regular coordinate system. It follows that M(I1) = 1 (since none of these

generators define elements of E1(a)); i.e., all μH,2(a) = 0. Since I1 has maximal

order, (invκ)3/2(a) = (m, s1, 1), and the companion ideal J 1 = I1.
We can continue the computation of invκ, choosing the fk,l and the uj

i succes-

sively as hypersurfaces of maximal contact to pass to the coefficient ideal plus

boundary Ip, p = 2, . . .. At each step, M(Ip) = 1 (in particular, μH,p(a) = 0

for every H), and Ip is of maximal order, = 1. Therefore, νp+1 = 1 and Ip
equals the following companion ideal J p. Once all fk,l and uj

i have been used

as hypersurfaces of maximal contact, we get coefficient ideal = 0. Therefore,

invκ(a) has last entry =∞ and r pairs before ∞.

Lemma 3.6 (Compare with [1, Lemma 3.3]): Again consider (X,E) = (Xq, Eq),

in some year q of a history (1.2) of invκ-admissible blowings-up, and let a ∈ X .

Assume that X has m irreducible components X(1), . . . , X(m) at a (all smooth).

Let fh, h = 1, . . . , p, denote generators of the ideal of
⋂m

k=1 X
(k) in ON at a,

where N is a component X(k) of smallest dimension (say N = X(1), without

loss of generality). Let uj
i , j = 1, . . . , si, denote generators of the ideals of the

elements of Ei(a)|N , i = 1, . . . , d, and write s = (s1, . . . , sd).

Assume that invκ(a) = invc,s, with c = (c1, . . . , cm). Set

r := |c|+ |s| −max{ci}.

Then there is an injection {1, . . . , r} → {fh, uj
i}, which we denote l �→ gl, and
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a regular system of coordinates (x1, . . . , xn) for N at a (n ≥ r), such that

(3.3) gl = ξl + xl ·
l−1∏
i=1

mi, l = 1, . . . , r,

where each ξl is in the ideal generated by (x1, . . . , xl−1) and each mi is a mono-

mial in generators of the ideals of the elements H of E i(a), each raised to the

power μH,i+1(a) (cf. Section 2).

Remark 3.7: Suppose that the irreducible components X(k) of X have codi-

mensions ck in a minimal embedding variety for X at a. Then we can take

{fh} := {fk,j|N}k≥2, where the fk,j , j = 1, . . . , ck denote local generators of

the ideal I(k) of X(k) in a minimal embedding variety for X at a. In this case,

the mapping l �→ gl of the lemma is bijective.

Proof of Lemma 3.6. As in the proof of Lemma 3.5,

invκ(a) = (κ(a), s1(a), invI1(a)),

where I1 =
∑I(i)|N1+ boundary, N1 = N and

I1 = (Z, N1, E1(a), I1 = ({fh}, {uj
1}), 1)

(with Z a local embedding variety). If (invκ)3/2(a) = (m, s1, 1), then there

exists g1 ∈ {fh} ∪ {uj
1} such that x1 := (m1)

−1 · g1|N1 ∈ R(I1) has order 1 at

a, and the companion ideal J 1 = (Z,N1, E1(a),R(I1), 1). We can take N2 :=

(x1 = 0) ⊂ N1 as the next maximal contact subspace. Then the coefficient

ideal plus boundary is

I2 = (Z,N2, E2(a) = E1(a) \E2(a),
(R(I1) + (u1

2, . . . , u
s2
2 )

) |N2 , 1).

We can again repeat the argument, as in [1, Sect. 3], and the process ends after

r steps.

Remark 3.8: In the proof above, we see that, if the truncated invariant

(invκ)k+1/2(a) = (invc,s)k+1/2,

where 0 ≤ k < r = |c|+|s|−c1, then, for every p ≤ k+1, the coefficient ideal plus

boundary Ip (or an equivalent marked ideal) has associated multiplicity = 1.

Comparing with [1, Remark 3.6], note that a condition analogous to “a ∈ Σp” in

the latter is not needed here because we are assuming all irreducible components

of X at a are smooth.
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Theorem 3.9 (Characterization of stable-snc): Consider (X,E) = (Xq, Eq), in

some year q of a history (1.2) of invκ-admissible blowings-up. Let a ∈ X , and let

e = eX,a. Assume that the irreducible components, X(k), k = 1, . . . ,m = κ(a)

of X at a are smooth and of dimensions e − ck, respectively. Then (X,E) is

stable-snc at a if and only if

(1) a ∈ ΣΩ(X), where Ω = (e, c1, . . . , cm);

(2) κ-inv(a) = invc,s, for some s = (s1, . . . , sd);

(3) μH,i+1(a) = 0, for all i ≥ 1 and all H ∈ E i(a).
Proof. “Only if” is immediate from Lemma 3.5. On the other hand, assume

conditions (1), (2) and (3). By (3), (3.3) holds with all mi = 1. Then, by

Lemma 3.6, the scheme-theoretic intersection of the components of X and E at

a is smooth, and (3.1) holds. So (X,E) is stable-snc.

4. Cleaning

We recall the cleaning technique introduced in [6] and developed in [1, Section 4]

under conditions that also apply here (in fact, in a more straightforward way).

Assume that all irreducible components of X are smooth. According to The-

orem 3.9, if a ∈ ΣΩ(X) and invκ(a) = invc,s, then (X,E) is stable-snc at a if

and only if the invariants μH,k+1(a) = 0, for every k ≥ 1. In this section we

study the cleaning blowings-up used to get the latter condition.

Cleaning blowings-up are not necessarily invκ-admissible. In the general

cleaning algorithm of [6, Sect. 2], therefore, the invariant inv = invX that is used

is not defined in a natural way over a cleaning sequence, so that, after cleaning,

we assume we are in year zero for the definition of the invariant. Over the par-

ticular cleaning sequences needed here, however, we can define a modified invκ

which remains upper semicontinuous and infinitesimally upper semicontinuous,

and show that maximal contact subspaces exist in every codimension involved;

this is a consequence of Lemma 3.6 and Remark 3.8 (see Remarks 4.2).

Consider a point a in the locus S := ((invκ)k = (invc,s)k) for the truncated

invariant, where k ≥ 1 (in some year q of a history (1.2) of invκ-admissible

blowings-up). In some neighbourhood of a, S is the cosupport of a marked

ideal (a coefficient ideal plus boundary) Ik = (Ik, dk) = (Z,Nk, Ek(a), Ik, dk),
where Nk is a maximal contact subspace of codimension k−1 in N1 and dk = 1
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(see Remark 3.8). Recall that Ek(a) = E(a) \ E1(a) ∪ · · · ∪ Ek(a), where the

block Ek(a) defines the boundary.

The ideal Ik = M(Ik) · R(Ik) (the product of its monomial and residual

parts). The monomial part M(Ik) is the product of the ideals IH |Nk (where

H ∈ Ek(a)), each to the power μH,k+1(a) (since dk = 1).

Let M(Ik) denote the monomial marked ideal (M(Ik), dk) = (M(Ik), 1).
Then cosuppM(Ik) ⊂ cosupp Ik and any admissible sequence of blowings-up

ofM(Ik) is admissible for Ik.
Definition 4.1: Cleaning of the locus S = ((invκ)k = (invc,s)k) means the se-

quence of blowings-up obtained from desingularization of the monomial marked

ideal M(Ik) (in a neighbourhood of any point of S) [5, Sect. 5, Step II, Case

A], [6, Sect. 2].

The centres of the cleaning blowings-up are invariantly defined closed sub-

spaces of ((invκ)k ≥ (invc,s)k). Definition 4.1 is simpler than the analogous

definition [1, Def. 4.2] because of our assumption that all components of X are

smooth.

Remarks 4.2: The blowings-up σ involved in desingularization of M(Ik) are

(invκ)k-admissible: Let C denote the centre of σ. Then C is snc with re-

spect to E because, in the notation above, C lies inside every element of

E1(a) ∪ · · · ∪Ek(a) and C is snc with respect to Ek(a). Since C ⊂ S, it follows

that σ is (invκ)k-admissible. By Lemma 3.5, C contains no stable-snc points

(since some μH,k+1(a) �= 0, for all a ∈ C).

Since dk = 1, C is of the form Nk ∩ H , for a single H ∈ Ek(a); i.e., C is

of codimension 1 in Nk. Therefore, σ induces an isomorphism (Nk)′ → Nk,

where (Nk)′ denotes the strict transform of Nk.

Lemma 4.3: Assume that invκ ≤ invc,s on X = Xq, in some year q of a

history (1.2) of invκ-admissible blowings-up. Consider the cleaning sequence

for (κ-invk = (invc,s)k) (Definition 4.1). Then, over the cleaning sequence, we

can define maximal contact subspaces of every codimension involved, as well as

(a modification of) invκ which remains both semicontinuous and infinitesimally

semicontinuous.

The proof is the same as that of [1, Lemma 3.20] (changing inv to invκ).
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Remark 4.4: After cleaning the loci ((invκ)k = (invc,s)k), for all k, we will

apply further blowings-up to make (X,E) stable-snc on (invκ = invc,s) (see

Section 5, Step 3). We will then continue to blow up with closed centres which

lie in the complement of the stable-snc locus {stable-snc} (Section 5). The

purpose of defining invκ over the cleaning sequences is to ensure that, in the

complement of {stable-snc}, we will only have to consider values invc′,s′ < invc,s

in order to resolve all but {stable-snc} after finitely many steps. If, after cleaning

(invκ = invc,s), we were to apply the resolution algorithm in the complement

of {stable-snc}, beginning as if in year zero, we might introduce points where

invκ = invc′,s′ > invc,s.

5. Desingularization of a variety preserving stable-snc singularities

The purpose of this section is to give an algorithm for our main theorem in the

case that D = 0. We prove the following result.

Theorem 5.1: Let X denote a reduced algebraic variety and let E be an snc

divisor on X . Then there is a sequence of admissible smooth blowings-up (1.2),

such that

(1) (Xt, Et) has only stable-snc singularities;

(2) each blowing-up σj+1 is an isomorphism over the locus of stable-snc

points of (Xj , Ej).

Proof. We will break the algorithm into three main steps, with the second and

third to be iterated several times.

Step 1. We first reduce to the case that all irreducible components of X are

smooth, using Theorem 2.4.

Now let S denote the set of all special values invc,s, c = (c1, . . . , cm),

s = (s1, . . . , sd) (see Definition 3.2). Then S is totally ordered (lexicograph-

ically).

Consider the desingularization sequence determined by the invariant invκ,

defined in §2.5.
Step 2. We follow the desingularization algorithm determined by invκ (i.e., the

sequence of blowings-up with successive centres given by the maximum locus

of invκ) until the maximum of invκ is a value τ in S for the first time. We

then blow up any irreducible component of the maximum locus (invκ = τ) that
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contains no stable-snc points. The result is that (X,E) (= (Xj , Ej), for some

j) is generically stable-snc on every component of the locus (invκ = τ). (The

latter may now be empty.)

We now clean the locus ((invκ)k = (τ)k) of the truncated invariant, for every

k, beginning with the largest k; see Section 4. The result of cleaning is that

the invariants μH,k+1 = 0 on (invκ = τ), for all H ∈ E and k ≥ 1. Recall

that, for each k, the cleaning blowings-up are given by desingularization of

a monomial marked ideal M(Ik) with cosupport in ((invκ)k ≥ (τ)k). The

cleaning blowings-up may be nontrivial even in the case that (invκ = τ) = ∅,
but are needed even in this case to guarantee functoriality.

Cleaning involves blowing up only points where μH,k+1 > 0, for some k, so

never involves blowing up stable-snc points (by Theorem 3.9). After cleaning,

we have the normal forms of Lemma 3.6 with all monomials mi = 1.

Recall that the characterization of stable-snc points a given by Theorem 3.9

involves the the minimal embedding dimension eX,a. After Step 2 above, it

need not be true that eX is constant on each irreducible component of the locus

(invκ = τ) (although the number of irreducible components of X is constant).

The purpose of Step 3 following is to make eX constant on components of the

maximal locus, in order to apply Theorem 3.9.

Step 3. If the locus T := (invκ = τ) is nonempty after Step 2, then T is the

maximum locus of invκ, each irreducible component of T is generically stable-

snc, and all μH,k+1 = 0 on T . We now apply the algorithm for simultaneous

desingularization of the pair (X,T ), as in §2.4; i.e., the sequence of blowings-up
given by the maximum loci of the invariant invι determined by ι := (HX , HT ),

with the lexicographic ordering of such pairs. Since T is smooth, the invari-

ant invι has the form (ι, s, invI1), where I1 is the marked ideal given by a

presentation of the Hilbert–Samuel function HX restricted to N = T , plus a

boundary. We blow up following the algorithm until HX and therefore the

embedding dimension eX,a is constant on every component of T . The centres

of all blowings-up involved lie in T (thus are invκ-admissible) and contain no

stable-snc points; all μH,k+1 remain zero on T .

After Step 3, every component of T = (invκ = τ) lies in some ΣΩ. By

Theorem 3.9, (X,E) is stable-snc at every point of T , and therefore in some

neighbourhood of T .
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We can now iterate Steps 2 and 3 in the complement of T . All centres of

blowing up involved are closed in X because they contain no stable-snc points

and X is stable-snc in a neighbourhood of T . The process terminates after

finitely many iterations of Steps 2 and 3 (see Remark 4.4), when (X,E) becomes

stable-snc.

Remarks 5.2: (1) The desingularization algorithm of Theorem 5.1 is functo-

rial with respect to étale or smooth morphisms that preserve the number of

irreducible components of X at every point; cf. [8, Sect. 9].

(2) If a ∈ Cj , where Cj ⊂ Xj is the centre of the blowing-up σj+1, then the

component of Cj at a lies in all irreducible components of Xj at a.

6. Characterization of stable-snc singularities of a triple

The remainder of the paper is devoted to an algorithmic proof our main theorem

1.16 for a general triple (X,D,E). We will begin by making (X,E) stable-

snc, using Theorem 5.1. The remainder of the proof is by induction on the

number of irreducible components of X , so we will henceforth assume that the

components of X have a given ordering X = X(1) ∪ · · · ∪X(m). Theorem 1.16

will be functorial with respect to triples (X,D,E) where the components of X

have a fixed ordering.

The proof involves a characterization of stable-snc points (Proposition 6.7

below) that plays a role similar to that played by Theorem 3.9 in the proof of

Theorem 5.1, but in the inductive setting needed here; in particular, Proposition

6.7 involves the assumption that (X,D,E) is stable-snc after dropping the last

component X(m) of X together with the components of D that lie in X(m).

Proposition 6.7 will be used after reducing the main problem to the case that

(X,E) is stable-snc and D is a reduced divisor on X with no components in

SingX∪SuppE. Proposition 6.7 treats points lying in at least two components

of X and in the support of D. Points lying outside the support of D are already

stable-snc by assumption, and points lying in only one component of X can be

studied using Proposition 3.9.

The inductive proof of Theorem 1.16 begins with the case that X is smooth

and irreducible. In this case, stable-snc means that D is snc. Snc points

of a divisor can be characterized either using the desingularization invariant

[1, Thm. 3.4] or (as a particular case of stable-snc) by Theorem 3.9 with
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c1 = · · · = cκX(a) = 1, or c1 = 0 if κX(a) = 1; Theorem 1.16 in the case

that X is smooth and irreducible follows from [1, Thm. 1.4] or from Theorem

5.1.

In the inductive setting of the proof of our main theorem, we will use a

partition of the last component X(m) of X that is similar but not identical to

the partition in Definition 3.4.

Definition 6.1: Consider Ω = (e, c), where e ∈ N and c := (c1, c2, . . . , cn) with

n ≤ m and c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. Assume that (X,E) is stable-snc and

that D has no components in SingX ∪ SuppE. Let q ∈ N. We define ΣΩ,q =

ΣΩ,q(X,D) = ΣΩ,q(X,D,E) as the set of points a ∈ X(m) such that:

(1) there are precisely n different components X(i1), . . . , X(in) of X such

that, for each j, either X(ij) = X(m) or X(ij) contains a component of

D at a;

(2) e is the minimal embedding dimension of
⋃n

j=1 X
(ij) at a;

(3) c1, . . . , cn are the codimensions of X(i1), . . . , X(in), respectively, in a

minimal embedding variety for
⋃n

j=1 X
(ij) at a;

(4) q is the minimum number of components of D at a which lie in any one

of the X(ij).

As in Definition 3.4, we list the ci in decreasing order so that the stratum ΣΩ,q

corresponds to a value of the Hilbert–Samuel function (Definition 6.3 below),

which does not depend on an ordering of the ci.

Example 6.2: Consider X := X(1) ∪X(2) ∪X(3) ⊂ A6, where

X(1) = (x1 = x2 = 0), X(2) = (x4 = 0) and X(3) = (x3 = 0),

and let D = (x1 = x2 = y1 = 0) + (x3 = y1y2 = 0). Let a = 0. Then

a ∈ Σ(6,2,1),1. D has two components, one in each of X(1) and X(3). The latter

have codimensions 2 and 1, respectively, in A6, which is a minimal embedding

variety already for X(1) ∪X(3).

Definition 6.3: Consider Ω = (e, c), with c = (c1, . . . , cn), and q ∈ N, as in

Definition 6.1. Assume that |c|+ q ≤ e, where |c| = c1 + · · ·+ cn. We let HΩ,q

denote the Hilbert–Samuel function of the ideal

n⋂
i=1

(xi,1, . . . , xi,ci , y1 · · · yq)
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in the ring of formal power series K[[x1,1, . . . , xn,cn , y1, . . . , ye−|c|]]. (See Section

7).

The HΩ,q are precisely the values that the Hilbert–Samuel function of SuppD

can take at stable-snc points.

See [8, Example 5.6] for an illustration of the kind of information provided by

the Hilbert–Samuel function. The condition that the Hilbert–Samuel function

of SuppD equal HΩ,q at a point of ΣΩ,q is necessary for stable-snc. But it

is not sufficient, as shown by [8, Example 5.6]. Additional geometric data

are needed; these will be given using an ideal sheaf that is an obstruction to

stable-snc (Definition 6.5). This obstruction will be eliminated using “cleaning-

type” blowings-up similar to those used in [8, Sect. 7] to eliminate an analogous

obstruction; see Proposition 9.1.

Lemma 7.5 in the following section is used in the proof of Proposition 6.7,

and provides some initial control over the divisor D at a point of ΣΩ,q where X

has ≥ 2 components and the Hilbert–Samuel function has the “correct” value

HΩ,q.

Definition 6.4: Assume that no irreducible component of D lies in SingX . Set

X i := X(1) ∪ · · · ∪X(i), 1 ≤ i ≤ m. Let Di denote the sum of all components

of D lying in X(i); i.e., Di is the divisorial part of the restriction of D to X(i).

We will sometimes write Di = D|X(i) . Set Di :=
∑i

j=1 Dj .

Definition 6.5: Obstruction ideal. Assume that X is stable-snc, and that no

irreducible component of D lies in SingX . Let J = J(X,D) denote the quotient

ideal sheaf

J = J(X,D) :=
⋂

1≤i,j≤m

[IDi + IX(j) : IDj + IX(i) ],

where IDi , IX(j) , IDj and IX(i) are the ideal sheaves of SuppDi, X
(j), SuppDj

and X(i) (respectively) in OX .

Note that, at a point which does not lie in some component X(i) of X , all

quotients involving X(i) in the intersection above are equal to OX and can

therefore be ignored.

An ideal sheaf defined in a similar way to J(X,D) above was used in [8].

Definition 6.5 is more suitable here, and in fact also simplifies the argument in

[8].
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We consider decompositions X = Y ∪ T , where Y and T are two closed

subvarieties with no common components. The inductive characterization of

stable-snc will be formulated using a 4-tuple of the form (Y,D,E, T ), where

X = Y ∪ T , (X,E) is stable-snc, and D is a Weil divisor on Y such that

(Y,D,E|Y ) is stable-snc.
Definition 6.6: We say that (Y,D,E, T ) is stable-snc at a if there exists a

Weil divisor DT on T such that (Y ∪ T,D + DT , E) is stable-snc at a. The

transform of (Y,D,E, T ) by a sequence of admissible blowings-up for (X,E)

is given by the transform of (X,D,E) as in Definition 1.15.

Proposition 6.7 (Inductive characterization of stable-snc): Consider a triple

(X,D,E) satisfying the hypotheses of Theorem 1.16 and let X(i), i = 1, . . . ,m,

denote the irreducible components of X (ordered, as above). Assume m ≥ 2.

Let a ∈ Xm−1 ∩X(m) (in the notation above). Then:

(1) (X,D,E) is stable-snc at a if and only if both (Xm−1, Dm−1, E,X(m))

and (X,D) are stable-snc at a.

(2) Suppose that D is reduced, with no irreducible component in SingX .

Assume that a belongs to at least two components of D, one in X(m)

and the other in X(i), for some i �= m. Then (X,D) is stable-snc at a

if and only if

(a) (Xm−1, Dm−1, 0, X(m)) is stable-snc at a;

(b) there exist Ω and q as in Definition 6.1, such that a ∈ ΣΩ,q(X,D)

andHSuppD,a = HΩ,q, whereHSuppD,a is the Hilbert–Samuel func-

tion of SuppD at a;

(c) Ja = OX,a.

Proposition 6.7 will be proved at the end of Section 7. The inductive struc-

ture of this characterization of stable-snc is the main reason that the resulting

resolution algorithm (Theorem 1.8) depends on an ordering of the components

of X.

Remarks 6.8: Consider assertion (2) of the theorem. (1) If a lies in X(m) but

in no other X(i), then of course (a) is vacuous and Ja = OX,a. In this case,

Theorem 3.9 applied to (X(m), SuppD) replaces Proposition 6.7.

(2) We will use Proposition 6.7 to remove unwanted singularities at points

lying in at least two components ofX , by first blowing up to get either a /∈ X(m),
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or a ∈ X(m) satisfying (b), and then applying further blowings-up to get (c);

see Section 9.1.

(3) Note that, assuming (a), J as given in Definition 6.5 coincides with the

intersection for i = 1, . . . ,m− 1 and j = m.

7. The Hilbert–Samuel function and stable simple normal crossings

Lemma 7.5 of this section plays an important part in our use of the Hilbert–

Samuel function to characterize stable-snc points. See [8, Example 5.6] for

an example that motivates the lemma. We begin with the definition of the

Hilbert–Samuel function and its relationship with the diagram of initial ex-

ponents (cf. [2]). At the end of the section, we use Lemma 7.5 to prove the

inductive characterization of stable-snc (Lemma 6.7).

Definition 7.1: Let A denote a Noetherian local ring A with maximal ideal m.

The Hilbert–Samuel function HA ∈ NN of A is defined by

HA(k) := length
A

mk+1
, k ∈ N.

If I ⊂ A is an ideal, we sometimes write HI := HA/I . If X is an algebraic

variety and a ∈ X is a closed point, we define HX,a := HOX,a , where OX,a

denotes the local ring of X at a.

Definition 7.2: Let F,G ∈ NN. We say that F > G if F (n) ≥ G(n), for every

n, and F (m) > G(m), for some m. This relation induces a partial order on the

set of all possible values for the Hilbert–Samuel functions of Noetherian local

rings.

Note that F � G if and only if either F > G or F is incomparable to G.

Let Â denote the completion of A with respect to m. Then HA = HÂ [13,

§24.D]. If A is regular, then we can identify Â with a ring of formal power series,

K[[x]], where x = (x1, . . . , xn). Then

HI(k) := dimK

K[[x]]

I + nk+1
,

where n := (x1, . . . , xn) is the maximal ideal of K[[x]].

If α = (α1, . . . , αn) ∈ Nn, set |α| := α1 + · · · + αn. The lexicographic

order of (n + 1)-tuples, (|α|, α1, . . . , αn) induces a total ordering of Nn. Let

f ∈ K[[x]] and write f =
∑

α∈Nn fαx
α, where xα denotes xα1

1 · · ·xαn
n . Define
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supp(f) = {α ∈ Nn : fα �= 0}. The initial exponent exp(f) is defined as

the smallest element of supp(f). If α = exp(f), then fαx
α is called the initial

monomial mon(f) of f .

Definition 7.3: Consider an ideal I ⊂ K[[x]]. The initial monomial ideal

mon(I) of I denotes the ideal generated by {mon(f) : f ∈ I}. The diagram

of initial exponents N (I) ⊂ Nn is defined as

N (I) := {exp(f) : f ∈ I \ {0}}.
Clearly, N (I) + Nn = N (I). For any N ⊂ Nn such that N = N + Nn, there

is a smallest set V ⊂ N such that N = V +N ; moreover, V is finite. We call V
the set of vertices of N .

Proposition 7.4: For every k ∈ N, HI(k) = Hmon(I)(k) is the number of

elements α ∈ Nn such that α /∈ N (I) and |α| ≤ k.

Proof. See [3, Corollary 3.20].

Lemma 7.5: Consider a ∈ ΣΩ,q, where Ω = (e, (c1, . . . , cm)) and m ≥ 2.

Assume that X is embedded locally in a coordinate chart of a smooth vari-

ety Z of minimal dimension, with a system of coordinates {xi,j}1≤i≤m, 1≤j≤ci ,

{yi}1≤i≤r, {wi}1≤i≤n−|c|−q. Assume X = V (
⋂m

i=1(xi,1, . . . xi,ci)). Suppose that

D is a reduced divisor (so we view it as a subvariety), with no component in

SingX , given at a = 0 by an ideal ID of the form

(7.1) ID =

[m−1⋂
i=1

(xi,1, . . . xi,ci) + (y1 · · · yr)
]
∩ (xm,1, . . . , xm,cm , f).

(In particular, q is the minimum of r and the number of irreducible factors of

f |(xm,1=···=xm,cm=0).)

Let HD denote the Hilbert–Samuel function HID . Then HD = HΩ,q (see

Definition 6.3) if and only if we can choose f so that ord f = q, r = q and

f ∈ J :=

m−1⋂
i=1

(xi,1, . . . xi,ci) + (y1 · · · yr) + (xm,1, . . . , xm,cm).

Moreover, if either ord f > q, r > q or f /∈ J , then HD � HΩ,q.

Remark 7.6: It follows immediately from the conclusion of the lemma that

HD �< HΩ,q at a point in ΣΩ,q.
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Proof of Lemma 7.5. First we give a more precise description of the ideal ID.

Write Ii := (xi,1, . . . , xi,ci), i = 1, . . . ,m. LetK⊂{1, 2, . . . ,m−1}×{1, 2, . . . , r}
denote the set of all (i, j) such that f ∈ Im + Ii + (yj). If (i, j) ∈ K, then any

element of Im + (f) belongs to the ideal Im + Ii + (yj). Set

G :=
⋂

(i,j)∈K

(Ii + (yj)) and H :=
⋂

(i,j)/∈K

(Ii + (yj))

(where the intersections are taken to be the local ring OZ,a if the index set is

empty); note that these are the prime decompositions. Then any element of

Im + (f) belongs to
⋂

(i,j)∈K(Im + Ii + (yj)) = Im +G. Therefore we can take

f ∈ G. Observe that we still have f /∈ Ii+(yj) for (i, j) /∈ K. By a computation

the same as in [8, Proof of Lemma 5.7], replacing xi, p in the latter by Ii,m

(respectively) here, we get

(7.2) ID = Im · [H ∩G] +H · (f).
The remainder of the proof is also quite similar to the hypersurface case

treated in [8, Proof of Lemma 5.7], but we include it because it is not a direct

translation as above. In particular, the diagrams of initial exponents here are

more complicated.

We can pass to the completion of OZ,a because this does not change the

Hilbert–Samuel function, the order of f or ideal membership. So we assume we

are working in a formal power series ring, where {xi,j}1≤i≤m, 1≤j≤ci , {yi}1≤i≤r,

{wi}1≤i≤n−|c|−q are the indeterminates. For simplicity, we use the same nota-

tion for ideals and their generators before and after completion.

We can compute the Hilbert–Samuel function HD using the diagram of initial

exponents N (ID). The latter should be compared to the diagram of the ideal⋂m
i=1 Ii + (y1 · · · yq), whose Hilbert–Samuel function is HΩ,q.

A. First, we show that HD � HΩ,q in the following three cases:

Case 1. H �= (1) or ord f > q. Then all elements of H · (f) have order > q.

Moreover, all elements of

Im · [G ∩H ] = Im ·
(m−1⋂

i=1

Ii + (y1 · · · yr)
)

of order less than q + 1 have initial monomials in N (
⋂m

i=1 Ii).

It follows that, if H �= (1) (i.e., f /∈ ⋂m−1
i=1 Ii + (y1 · · · yr)) or if ord f > q,

then HD � HΩ,q. In fact, in N (ID), below degree q + 1, we have at most the
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vertices of N (
⋂m

i=1 Ii), while in N (
⋂m

i=1 Ii + (y1 · · · yq)), below degree q+1, we

have also the vertex corresponding to the monomial y1 · · · yq.
Case 2. H = (1) (i.e., f ∈ ⋂m−1

i=1 Ii + (y1 · · · yr)), ord f = q and r > q. Then

mon(f) ∈ ⋂m−1
i=1 Ii + (y1 · · · yr), after perhaps adding an element of Im to f . A

simple computation shows that

mon(ID) = Im ·
(m−1⋂

i=1

Ii + (y1 · · · yr)
)
+ (mon(f)).

This follows from the fact that cancelling the initial monomial of f using ele-

ments of I ′ := Im ·(
⋂m−1

i=1 Ii+(y1 · · · yr)) leads to a function whose initial mono-

mial is already in I ′. In fact, f ∈ ⋂m−1
i=1 Ii + (y1 · · · yr) but, since ord(f) = q,

then mon(f) ∈ ⋂m−1
i=1 Ii. This means that to eliminate the initial monomial of

f , we multiply f by an element of Im and then subtract an element of I ′. This
results again in an element of I ′, and therefore contributes no new vertices to

N (ID).

It follows that HD � HΩ,q. In fact, since mon(f) ∈ ⋂m−1
i=1 Ii, there exists

b ∈ ⋂m
i=1 Ii (any b that is not relatively prime to mon(f)) such that

there are points in N (ID) that correspond to monomials that are multiples

of both mon(f) and b, but not of mon(f) · b. This implies that, in

degree deg(lcm(mon(f), b)) = q + 1, there are fewer vertices in N (ID) than

N (
⋂m

i=1 Ii + (y1 · · · yq)); therefore HD(q + 1) > HΩ,q(q + 1).

B. Secondly, we show

HD = HΩ,q,

assuming that H = (1) (i.e., f ∈ ⋂m−1
i=1 Ii + (y1 · · · yr)), ord f = q and r = q.

The first assumption implies that

(7.3) ID =

m⋂
i=1

Ii + Im · (y1 · · · yq) + (f).

Therefore, either mon(f) = y1y2 · · · yq or mon(f) ∈ ⋂m−1
i=1 Ii.

In both cases, by the same argument as in Case 2 above,

mon(ID) =
m⋂
i=1

Ii + Im · (y1 · · · yq) + (mon(f)).

We want to prove that Hmon(ID) = HΩ,q. If mon(f) = y1y2 · · · yq, then

Hmon(ID) = HΩ,q, by the definition of HΩ,q. On the other hand, if mon(f) ∈⋂m−1
i=1 Ii, then the Hilbert–Samuel function of I ′′ :=

⋂m
i=1 Ii+(mon(f)) is larger



266 E. BIERSTONE AND F. VERA PACHECO Isr. J. Math.

than HΩ,q because, for each monomial b representing a vertex of N (
⋂m

i=1 Ii)

that is not relatively prime to mon(f), the monomials that are multiples of

both mon(f) and b are not only those that are multiples of mon(f) · b. We will

count the additional monomials (for each degree), and show that this number

equals the number of monomials in Im · (y1 · · · yq) that are not already in I ′′;
i.e., the number of points of N (I ′′+Im ·(y1 · · · yq)) additional to those of N (I ′′).
Write a representative of a vertex of N (

⋂m
i=1 Ii) that is not relatively prime

to mon(f) as axm,ib, where mon(f) = ac and xm,ib, c are relatively prime.

The monomials to be counted are of the form axm,ibcM = mon(f)xm,ibM , for

some monomial M /∈ ⋂m−1
i=1 Ii. Now, y1 · · · yqxm,iM ∈ mon(ID) has the same

degree as axm,ibcM , but does not lie in
⋃m−1

i=1 Ii+(mon(f)). This implies that,

in each degree, N (ID) and N (I ′′ + Im · (y1 · · · yq)) have the same number of

points. Therefore HD = Hmon(ID) = HΩ,q. This completes the proof of Lemma

7.5.

Corollary 7.7: In the setting of Lemma 7.5, if there exists q′ such that

HΩ,q′ ≥ HSuppD,a at a ∈ ΣΩ,q, then HΩ,q′ ≥ HΩ,q. If, moreover, q′ = q,

then HΩ,q = HSuppD,a.

Proof. As in the proof of Lemma 7.5, we pass to the completion of OZ,a. We

have

(7.4) ID =

m⋂
i=1

Ii + Im · (y1 · · · yr) + (f) ·H,

with H as in the proof of the lemma. Recall that r ≥ q and ord f ≥ q. In

the right-hand side of (7.4), the first two terms are generated by monomials of

degrees m and r + 1, respectively, while the last term is an ideal of order at

least q + 1. We compare N (ID) with N (I), where

(7.5) I :=

m⋂
i=1

Ii + (y1 · · · yq′)

and where we assume HI = HΩ,q′ . Then N (I) has the same vertices in degree

m as N (
⋂m

i=1 Ii), and these vertices are the same as those of N (ID) in degree

m. In addition, N (I) has a vertex in degree q′. Since HΩ,q′ ≥ HSuppD,a we

have

(7.6) q′ ≥ min(r + 1, ord((f) ·H)).

This implies that HΩ,q′ ≥ HΩ,q.
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If, moreover, q′ = q, then (7.6) implies that H = (1) and ord(f) = q. As at

the end of the proof of the lemma, it follows that HSuppD,a = HΩ,q.

Proof of Proposition 6.7. In (1), the “only if” direction is obvious. Suppose

that (X,D) is stable-snc at a. Then (X,D,E) is stable-snc at a if and only if

D|Z + E|Z , where Z denotes the intersection of the components of X at a, is

an snc divisor on Z. Since (X,D) is stable-snc at a, the restriction of D to Z is

the same as that of Dm−1. But, if (Xm−1, Dm−1, E,X(m)) is stable-snc at a,

then Dm−1|Z + E|Z is an snc divisor.

For (2), first assume that (X,D) is stable-snc at a. Then (a) is obvious. The

ideal of Supp D has the form
⋂m

i=1(Ii +(y1 · · · yq)), where Ii := (xi,1, . . . , xi,ci),

i = 1, . . . ,m, in suitable coordinates for a minimal embedding variety Z of X

at a = 0 (recall that D is reduced). Then (b) follows and, for (c), we compute

Ja =
⋂

1≤i�=j≤m

[(Ii + Ij + (y1 · · · yq)) : (Ii + Ij + (y1 · · · yq)] = OX,a.

Conversely, assume the conditions (a)–(c). By (a), there is a system of co-

ordinates {xi,j}1≤i≤m, 1≤j≤ci , {yi}1≤i≤q, {zi}1≤i≤n−|c|−q for Z at a, in which

X(m) = (xm,1 = · · · = xm,cm = 0) and SuppD is defined by the ideal

ID = (Im + (f)) ∩
m−1⋂
i=1

(Ii + (y1 · · · yq)).

By (b) and Lemma 7.5, we can choose f ∈ ⋂m−1
i=1 (Ii + (y1 · · · yq)) + Im, and

therefore we can choose f ∈ ⋂m−1
i=1 (Ii+(y1 · · · yq)) =

⋂m−1
i=1 Ii+(y1 · · · yq). Write

f in the form f = g1 + y1 · · · yqg2, where g1 ∈
⋂m−1

i=1 Ii. Then

Ja =

m−1⋂
i=1

[(Im + Ii + (f)) : (Im + Ii + y1 · · · yq)]

=

m−1⋂
i=1

[(Im + Ii + (y1 · · · yqg2)) : (Im + Ii + (y1 · · · yq))]

=

m−1⋂
i=1

(Im + Ii + (g2)).

Since no component of D lies in SingX , then g2 /∈ Im + Ii, i = 1, . . . ,m − 1.

Therefore, Ja = Im + (g2) +
⋂m−1

i=1 Ii.
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The condition Ja = OY,a means that g2 is a unit. Then

ID =

[m−1⋂
i=1

Ii + (y1 · · · yqg2)
]
∩ (Im + (f))

=

[m−1⋂
i=1

Ii + (g1 + y1 · · · yqg2)
]
∩ (Im + (f))

=

[m−1⋂
i=1

Ii + (f)

]
∩ (Im + (f)).

Since no component of D lies in SingX , then f /∈ Im + Ii, for every i =

1, . . . ,m− 1. Therefore, ID =
⋂m

i=1 Ii + (f).

By Lemma 7.5, since a ∈ ΣΩ,q, ord f = q. It follows that f |V (Im) is a

product f1 · · · fq of q irreducible factors each of order one. For each i =

1, . . . , q, set Ai := {(j, k) : fi ∈ Ij + (yk)|V (Im), j ≤ m − 1, k ≤ q}. Then

fi ∈
⋂

(j,k)∈Ai
(Ij + (yk))|V (Im), where the intersection is understood to be the

entire local ring if Ai = ∅. Note that
⋃

i Ai = {(j, k) : j ≤ m− 1, k ≤ q}, since
f ∈ ⋂m−1

i=1 (Ii + (y1 · · · yq)).
We will extend each fi to a regular function on Z (still denoted fi) preserving

the condition that fi ∈
⋂

(j,k)∈Ai
(Ij + (yk)). In fact,

⋂
(j,k)∈Ai

(Ij + (yk))|V (Im)

is generated by a finite set of monomials {mr} in the xα,β |V (Im) and yk|V (Im).

Then fi is a combination
∑

mrar. So we can get an extension of fi as desired,

using arbitrary extensions of the ar to regular functions on Z. This means we

can assume that f = f1 · · · fq ∈
⋂m−1

i=1 Ii + (y1 · · · yq) (using the extended fi).

Since f |V (
∑m−1

i=1 Ii)
= y1 · · · yqg2, where g2 is a unit, it follows that f =

y1 · · · yqg2 mod
∑m−1

i=1 Ii, where g2 is a unit. Since ID =
⋂m

i=1 Ii + (f), it

remains to check only that {xi,j}1≤i≤m, 1≤j≤ci , f1, . . . , fq are part of a coordi-

nate system. We can pass to the completion of OZ,a, which we identify with a

ring of formal power series in variables including {xi,j}1≤i≤m, 1≤j≤ci , {yi}1≤i≤q.

It is enough to prove that the images of the fi and xi,j in m̂/m̂2 are linearly

independent, where m̂ is the maximal ideal of the completed local ring. If we

put xi,j = 0 for every (i, j) in the power series representing each fi we get

(f1 · · · fq)|V (
∑

m
i=1 Ii) = y1 · · · yq.

This means that, after reordering the fi, each fi|V (
∑m

i=1 Ii) ∈ (yi), and the

desired conclusion follows.
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8. Algorithm for the main theorem

In this section we prove Theorem 1.16. The proof will depend on the results

given in Sections 9 and 10 following. We divide the proof into several steps or

subroutines each of which specifies certain blowings-up.

Step 1. Make (X,E) stable-snc. This is an application of Theorem 5.1. The

blowings-up involved preserve stable-snc singularities of (X,E) and therefore

also of (X,D,E). As a result of Step 1, we can assume that (X,E) is stable-

snc.

In the following steps, all blowings-up will be both admissible and snc with

respect to X , to preserve the property that (X,E) is stable-snc.

Step 2. Remove irreducible components ofD lying in SingX or SuppE. Given

a triple (X,D,E), consider the union Z of the supports of the (irreducible)

components ofD lying in SingX∪SuppE. Any such component is a component

either of the intersection of two components of X , or of the intersection of a

component of X and a component of E. Therefore, Z is snc, in general with

components of different dimensions. Blowings-up as needed can simply be given

by the usual desingularization of Z, followed by blowing up the final strict

transform.

The point is that, locally, there is a smooth ambient variety, with coordinates

(x1, . . . , xp, . . . , xn) in which each component of Z is of the form

(xi1 = · · · = xik = 0), i1 < · · · < ik ≤ p. Let C denote the set of irre-

ducible components of intersections of arbitrary subsets of components of Z.
Elements of C are partially ordered by inclusion, and are snc with respect to

X and E. Desingularization of Z involves blowing up elements of C starting

with the smallest, until all components of Z are separated. Then blowing up

the final (smooth) strict transform removes all components of Z.
As a result of Step 2, we can assume that no component of D lies in SingX

or in SuppE.

Step 3. Make (X,Dred, E) stable-snc (i.e., transform (X,D,E) by the

blowings-up needed to make (X,Dred, E) stable-snc). The algorithm for Step 3

is given following Step 4 and the paragraph on functoriality below.

We can therefore now assume that (X,Dred, E) is stable-snc and that D has

no irreducible components in SingX or SuppE.
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Step 4. Make (X,D,E) stable-snc. A simple combinatorial argument for Step

4 will be given in Section 10. This completes the algorithm.

Functoriality. (See also [8, Sect. 9].) The steps above involve several ap-

plications of the general desingularization algorithm. Beginning with a local

étale invariant ι (e.g., the Hilbert–Samuel function), the centres of blowing up

are determined by a corresponding étale invariant invι defined recursively over

a sequence of admissible blowings-up. The monomial marked ideals used in

cleaning (Section 4) are étale-invariant. The obstruction ideal J(X,D) (Section

6) is an invariant of étale morphisms preserving the number of irreducible com-

ponents of X at every point (see Remark 9.6). The functoriality assertion of

Theorem 1.16 follows because the blowing-up sequence given by the four steps

above depends, at a given point, only on the preceding objects and the desin-

gularization invariant, as well as the number of components of X and D, and

their codimensions in a local minimal embedding variety.

The theorem is functorial for triples (X,D,E) with a given ordering of the

components of X because Theorem 8.1 used in the following algorithm for

Step 3 is proved by induction on the number of components; the corresponding

algorithm resolves non-stable-snc singularities of (X,Dred, E) successively in

the ordered components. Proposition 9.1 of the following section is used in the

proof of Theorem 8.1, and involves the inductive characterization of stable-snc

of Proposition 6.7.

Algorithm for Step 3. The input is a triple (X,D,E), where (X,E) is

stable-snc, D is reduced and no irreducible component of D lies in

SingX ∪ SuppE. We will argue by induction on the number of components

of X . Since D is reduced, we make no distinction between D and SuppD. The

algorithm for Step 3 is given in the proof of Theorem 8.1 below, applied to the

4-tuple (X,D,E, ∅).
Theorem 8.1: Assume that (X,D,E, Y ) is a 4-tuple as in Definition 6.6, such

that (W := X ∪ Y,E) is stable-snc, and D is a reduced Weil divisor on X with

no component in SingW ∪ SuppE. Then there is a morphism τ : W ′ → W

given by a composite of admissible smooth blowings-up whose centres are snc

with respect to W , such that:

(1) Each blowing-up is an isomorphism over the stable-snc points of its

target 4-tuple.
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(2) The transform (X ′, D′, E′, Y ′) of (X,D,E, Y ) by τ is everywhere stable-

snc.

Proof. The proof is by induction on the number of components m of X . We

use the notation of Definitions 6.4 and 6.6.

Case m = 1. For m = 1 (i.e., X = X(1)), we apply Theorem 5.1 to

(D ∪ Y |X , E|X), and end up with (D′ ∪ Y ′|X′ , E′|X′) stable-snc. Since D is

a divisor on X , then D′ is a divisor on X ′, and we have (X ′, D′, E′, Y ′) stable-
snc. All centres of blowing up involved are snc with respect to W = X ∪ Y , by

Remarks 5.2(2).

General case. The sequence of blowings-up will depend on the ordering of

the components X(i) of X .

By induction, we can assume that (Xm−1, Dm−1, E,X(m) ∪ Y ) is stable-snc.

We want to construct a sequence of admissible blowings-up after which the

transform (X ′, D′, E′, Y ′) of (X,D,E, Y ) is stable-snc. For this purpose, we

only have to remove the unwanted singularities of D in X(m).

A. We will first reduce to the case that (X,D,E, Y ) is stable-snc at every

point of Xm−1. For this purpose, we use the partition of X(m) by the sets

ΣΩ,q = ΣΩ,q(X,D) (see Definition 6.1). Clearly, the ΣΩ,q with rΩ := r ≥ 2,

where Ω = (e, c1, . . . , cr), form a partition of X(m) ∩Xm−1.

We use the ordering of the set of Hilbert–Samuel functions HΩ,q (Definitions

7.2 and 6.3) to order the set of tuples (Ω, q) and thus the strata ΣΩ,q (Definition

6.1).

Definition 8.2: We say that (Ω1, q1) ≥ (Ω2, q2) and also that ΣΩ1,q1 ≥ ΣΩ2,q2 ,

if (Ω1, HΩ1,q1) ≥ (Ω2, HΩ2,q2) in the lexicographic order, where we compare Ω1,

Ω2 also lexicographically, and HΩ1,q1 , HΩ2,q2 by Definition 7.2.

The order above corresponds to that in which we will eliminate the non-

stable-snc points from the strata ΣΩ,q, rΩ ≥ 2.

Clearly for all Ω and q, the closure ΣΩ,q of ΣΩ,q has the property

(8.1) ΣΩ,q ⊂
⋃

(Ω′,q′)≥(Ω,q)

ΣΩ′,q′ .

Definition 8.3: Let M denote the set of all possible values of (Ω, q), and let

M(X,D) := {(Ω, q) ∈ M : ∅ �= ΣΩ,q(X,D) ⊂ X(m) ∩ Xm−1}. Let K(X,D)

denote the set of maximal elements ofM(X,D).
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Note that K(X,D) consists only of incomparable pairs (Ω, q), and that, after

an admissible blowing-up σ, all points of σ−1(a), where a ∈ ΣΩ,q, lie in strata

≤ ΣΩ,q.

We apply Proposition 9.1 of the following section to construct a morphism

X ′ → X given by a sequence of admissible blowings-up such that (X ′, D′, E′, Y ′)
is stable-snc on the strata ΣΩ,q(X

′, D′), where (Ω, q) ∈ K(X,D),

Let U ′ := X ′ \ ⋃(Ω,q)∈K(X,D) ΣΩ,q(X
′, D′). By (8.1), U ′ is open. Clearly,

M(U ′, D′|U ′) =M(X ′, D′) \K(X,D). The set Fin(M) of finite subsets ofM,

ordered by inclusion, is a partially ordered set in which every nonempty subset

has a minimal element. We can therefore assume by induction on Fin(M)

that (U ′, D′|U ′ , E′, Y ′) is stable-snc at every point in Xm−1. The blowings-up

involved have centres that are nowhere stable-snc and are, therefore, closed not

only in U ′ but also in X ′.

B. Under the assumption that (X,D,E, Y ) is stable-snc at every point ofXm−1,

we complete the proof as follows: Let U = X(m)\Xm−1. We apply Theorem 5.1

to (D|U ∪ Y |U , E) (regarding D|U ∪ Y |U as a subvariety of the smooth variety

U), to get (D′|U ′ ∪ Y ′|U ′ , E′) stable-snc. Since D|U is a divisor on U , then

D′|U ′ is a divisor on U ′. Therefore, (U ′, D′|U ′ , E′|U ′ , Y ′|U ′) is stable-snc. The

centres of blowing up involved contain no stable-snc points. Since (X,D,E, Y )

is stable-snc at every point of X \ U and the stable-snc locus is open, these

centres are closed not only in U but also in X .

9. Desingularization at the singular locus of X

In this section, we complete the proof of Theorem 8.1 by showing how to elim-

inate non-stable-snc singularities from the strata ΣΩ,q with rΩ ≥ 2. We recall

that these strata consist of points belonging to at least 2 components ofD which

lie in different components of X . We will use the notation of Section 8.

Proposition 9.1: Let (X,D,E, Y ) denote a 4-tuple as in Definition 6.6, satis-

fying the hypotheses of Theorem 8.1. Assume that (Xm−1, Dm−1, E,X(m)∪Y )

is stable-snc. Then there is a sequence of admissible smooth blowings-up whose

centres are snc with respect to W = X ∪ Y , such that:

(1) each centre of blowing-up contains only non-stable-snc points;
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(2) the transform (X ′, D′, E′, Y ′) of (X,D,E, Y ) by the blowing-up se-

quence is stable-snc at all points of the strata ΣΩ,q(X
′, D′), where

(Ω, q) ∈ K(X,D).

The proof will involve several lemmas. We will use the assumptions of Propo-

sition 9.1 throughout the section.

Let a ∈ X . There is a minimal smooth local embedding variety Z of X at a,

with a system of coordinates {xi,j}1≤i≤m, 1≤j≤ci , {yk}1≤k≤q, {wl}1≤l≤n−|c|−q,

|c| = c1 + · · ·+ cm, in which a = 0 and

X = X(1) ∪ · · · ∪X(m),

D = D1 + · · ·+Dm,

where X(i) = (xi,1 = · · · = xi,ci = 0), i = 1, . . . ,m, Di = (xi,1 = · · · = xi,ci =

y1 · · · yq = 0), i = 1, . . . ,m − 1, and Dm = (xm,1 = · · · = xm,cm = f = 0), for

some f ∈ OZ,a. This notation will be used throughout the section.

9.1. Reduction of the obstruction ideal J(X,D) to OX . Recall Defi-

nition 6.5 and Proposition 6.7.

Since (Xm−1, Dm−1, 0, X(m)) is stable-snc, cosuppJ ⊂ X(m) ∩Xm−1 (where

cosupp J := suppOX/J). Let W1, . . . ,Ws denote the irreducible components

of (Xm−1 ∪ Y )|X(m) , and let D(1), D(2), . . . , D(q) denote the restrictions to

X(m) ∩ Xm−1 of the components of Di, for any given i = 1, . . . ,m − 1 (the

definition is independent of such i). Let Hi ⊂ OX(m) denote the ideal of

D(i) ⊂ X(m), i = 1, . . . , q, and let Kj ⊂ OX(m) denote the ideal of Wj ,

j = 1, . . . , s.

Consider the marked ideal

(9.1) I := (X(m), X(m), E|X(m) , J +H +K, 1),

where H :=
∑q

i=1Hi and K =
∑s

j=1Kj . We can use desingularization of the

marked ideal I (treating (H+K, 1) as a “boundary”; cf. Section 2) to desingular-

ize (J, 1) after perhaps moving the D(i), i = 1, . . . , q, and Wj ,

j = 1, . . . , s, away from cosupp (J, 1). The blowings-up involved are admissible

for (X,D,E, Y ), and snc with respect to W = X ∪ Y (since the boundary in-

cludes K). The final transform J(X,D)′ = OX′ . It is not necessarily true, how-

ever, that J(X,D)′ = J(X ′, D′), so we do not necessarily have J(X ′, D′) = OX′ .

Additional “cleaning” blowings-up (given by Lemma 9.5) will be needed.
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Example 9.2: Consider X = X(1) +X(2) = (x1 = 0)∪ (x2 = 0) and D1 +D2 =

(x1 = y = 0) + (x2 = x1 + yzw = 0). Then J(X,D) = (x1, x2, zw). The

desingularization algorithm for J first blows up (x1 = x2 = z = w = 0). In the

z-chart, we get X ′ = (x1x2 = 0) and D′ = (x1 = y = 0)+ (x2 = x1 + yzw = 0).

Then the desingularization of J is completed by blowing up (x1 = x2 = w = 0).

In the w-chart we have

X ′′ = (x1x2 = 0) and D′′ = (x1 = y = 0) + (x2 = x1 + yz = 0).

Note that J(X ′′, D′′) = (x1, x2, z) �= (1) = J(X,D)′′. Since z = 0 is now a

component of the exceptional divisor, we can blow up with centre

X(1) ∩X(2) ∩ (z = 0).

After this “cleaning” blowing-up, we have

X ′′′ =(x1x2 = 0),

D′′′ =(x1 = y = 0) + (x2 = x1 + y) = (x1 = x1 + y = 0) + (x2 = x1 + y),

and J(X ′′′, D′′′) = (1); in particular (X ′′′, D′′′) is stable-snc.

Lemma 9.3: Consider the morphismX ′ → X given by a sequence of admissible

blowings-up for (9.1). Then

(9.2) J(X ′, D′) ⊂ J(X,D)′.

Moreover, if J(X,D)′ = OX′ and a′ ∈ X ′, then

J(X ′, D′)a′ =
⋂

1≤i�=j≤m

(Ii + Ij + (uαi,j )),

where the uαi,j are monomials in generators up of the ideals of the components

of the exceptional divisor of X ′ → X .

Remark 9.4: By (9.2), if J(X,D)′ �= OX′ , then J(X ′, D′) �= OX′ . Therefore,

by Lemma 6.7, we never blow-up stable-snc points of the transforms of (X,D)

while desingularizing J(X,D).

Proof of Lemma 9.3. It is enough to prove the lemma for one of the “factors”

[IDi + IX(j) : IDj + IX(i) ] of J . The proof is then the same as that of [8, Proof

of Lemma 7.3], replacing xi in the latter by Ii here.

Lemma 9.5: Consider the transform (X ′, D′, E′, Y ′) of (X,D,E, Y ) by the

desingularization sequence for (9.1) above. Then:
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(1) For every (Ω, q), ΣΩ,q(X
′, D′) lies in the inverse image of ΣΩ,q(X,D).

(2) Let a′ ∈ X ′. Then

J(X ′, D′)a′ =
⋂

1≤i�=j≤m

(Ii + Ij + (uα
i,j)),

where each Ii denotes the ideal of the component X(i)′ of X ′, and the

uαi,j are monomials in generators up of the ideals of the components

of E′. Thus the variety V (J(X ′, D′)) consists of certain components of

intersections of pairs of components of X ′ and components of E′.
(3) After finitely many blowings-up of components of V (J(X ′, D′)) (and

its successive transforms), the transform (X ′′, D′′) of (X,D) satisfies

J(X ′′, D′′) = OX′′ . (For functoriality, the components to be blown up

can be chosen according to the order on the components of E.)

Proof. (1) has already been remarked in the previous section. (2) and (3) can

be proved in the same way as the corresponding assertions of [8, Lemma 7.5]

replacing xi in the latter by Ii here, and multiples of xi by linear combinations

with coefficients in OX of the xi,j here. (2) follows from the second assertion

of Lemma 9.3 and, for (3), we can directly compute the effect of the blowings-

up.

Remark 9.6: The desingularization algorithm of Theorem 9.1 is functorial with

respect to étale morphisms that preserve the number of irreducible components

at every point, since J has an étale-invariant meaning and the algorithms in-

volved in desingularizing J and in cleaning are controlled by étale invariants.

9.2. Simplification of SuppD. In order to prove Proposition 9.1 above, we

need to construct a blowing-up sequence that will allow us to decrease and

control the Hilbert–Samuel function on the strata ΣΩ,q, where (Ω, q) ∈ K(X,D).

We can use the desingularization of SuppD to decrease the Hilbert–Samuel

function, but we will blow up only certain irreducible components of the centres

prescribed by this desingularization, in a convenient way.

At every point a ∈ X(m), we introduce the invariant

ι(a) = (e(a), c(a), HSuppD,a),

where (e(a), c(a)) = (e, c) is defined as in Definition 6.1. The set of values of

this invariant is partially ordered, lexicographically (using the partial ordering

of the set of Hilbert–Samuel functions given by Definition 7.2).
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Clearly, the invariant ι = ((e, c), HSuppD) is upper-semi-continuous on X(m).

Since (e, c) is constant on {x ∈ SuppD : HSuppD,x = HSuppD,a} near a (i.e., on

the cosupport of a presentation of HSuppD at a), a presentation of the Hilbert–

Samuel function of SuppD at a is also a presentation of the invariant ι. In

particular, we can extend ι to a desingularization invariant invι.

The centres of blowing-up involved in the desingularization algorithm for invι

are locally the same as in the standard desingularization algorithm, correspond-

ing to the invariant determined by HSuppD, but the use of ι instead of HSuppD

means that, globally, the centres may have components that are blown up in a

different order.

Given a ∈ X(m), ι admits a presentation of the form I = (X(m), X(m), 0, I, d)
at a. We will consider the desingularization invariant inv and desingularization

algorithm determined by this presentation of ι, treating the restrictions to X(m)

of the components of E and the remaining components of W = X ∪ Y as a

“boundary” B (even though the latter are not necessarily codimension one in

X(m)). In other words, we let B denote the marked ideal (X(m), X(m), 0,B, 1),
where B denotes the sum of the ideals on X(m) of the components of E and

the components of W \X(m), and we consider the desingularization algorithm

given locally by desingularization of the marked ideal I + B. The effect of

the algorithm is to decrease ι after perhaps moving the components of E and

W \ X(m) away from SuppD. The blowings-up involved are admissible for

(X,D,E, Y ) and snc with respect to W .

Proposition 9.7: Given (X,D,E, Y ) as in Proposition 9.1, there is a sequence

of admissible blowings-up (X ′, D′, E′, Y ′)→ (X,D,E, Y ), with centres snc with

respect to W = X ∪ Y and containing no stable-snc points, such that for every

ΣΩ,q ∈ K(X,D) and a ∈ ΣΩ,q(X
′, D′), HSuppD,a = HΩ,q.

Lemma 9.8: Let C be an irreducible smooth subvariety of SuppD. Given

(Ω, q), suppose that ι = (Ω, HΩ,q) at every point of C. If C ∩ ΣΩ,q �= ∅, then
C ⊂ ΣΩ,q.

Proof. Let a ∈ C∩ΣΩ,q . Since HSuppD is constant on C, a has a neighbourhood

U ⊂ C such that each point of U lies in precisely those components of D

containing a. Therefore, U ⊂ ΣΩ,q. Since the closure of ΣΩ,q lies in the union

of the ΣΩ′,q′ with (Ω′, q′) ≥ (Ω, q), any b ∈ C \ U belongs to ΣΩ′,q′ , for some

(Ω′, q′) ≥ (Ω, q). Moreover, Ω′ = Ω, since ι is constant on C. Thus HSuppD,b =
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HΩ,q < HΩ,q′ . But, by Corollary 7.7, the Hilbert–Samuel function cannot be

< HΩ,q′ on ΣΩ,q′ . Therefore b ∈ ΣΩ,q.

Proof of Proposition 9.7. We consider the desingularization algorithm preced-

ing Proposition 9.7, but will blow up only certain components of the centres of

blowing-up involved in the algorithm. The centres of blowing-up given by the

algorithm are the maximum loci of inv. The maximum locus of inv includes

points with all maximal values of ι. The maximum locus of inv can be written

as a disjoint union A ∪B in the following way: A is the union of those compo-

nents of the maximum locus containing no stable-snc points, and B is the union

of the remaining components. Thus B is the union of those components of the

maximum locus of inv with generic point stable-snc. Each component of B has

Hilbert–Samuel function HΩ,q, for some (Ω, q), and lies in the corresponding

ΣΩ,q by Lemma 9.8.

In each year j of the blowing-up history, write A = Aj , B = Bj . We will

blow up with centre Aj only. Then inv decreases in the preimage of Aj . In the

following year j +1, Bj+1 may acquire new components in addition to those of

Bj , but eventually Ak = ∅. So we reduce to the case that A = ∅.
Lemma 9.9: Suppose A = ∅. If (Ω, q) ∈ K(X,D), then HSuppD,a = HΩ,q, for

all a ∈ ΣΩ,q.

Proof. Let a ∈ ΣΩ,q, where (Ω, q) ∈ K(X,D). Set H = HSuppD,a. Assume that

H �= HΩ,q. Recall that, for every b ∈ B, HSuppD,b = HΩ′,q′ for some (Ω′, q′), and
b∈ΣΩ′,q′ . Therefore a /∈B, so that inv(a) is not maximal. Thus there exists b∈B
such that ι(b) = (Ω′, HΩ′,q′) and (Ω′, HΩ′,q′) ≥ (Ω, H), for some (Ω′, q′), and
b ∈ ΣΩ′,q′ . If Ω′ > Ω then (Ω′, q′) > (Ω, q); this contradicts (Ω, q) ∈ K(X,D).

If Ω′ = Ω then, by Corollary 7.7, HΩ′,q′ ≥ HΩ,q. If HΩ′,q′ > HΩ,q, then

(Ω′, q′) > (Ω, q), again contradicting (Ω, q) ∈ K(X,D). If HΩ′,q′ = HΩ,q, then

H = HΩ,q, by Corollary 7.7, as desired.

Lemma 9.9 finishes the proof of Proposition 9.7.

Proof of Proposition 9.1. We first reduce to the case J = OX , using Lemma

9.5. The proof then has two steps:

(1) We apply Proposition 9.7 to make HSuppD,a = HΩ,q, for all a ∈ ΣΩ,q

and all (Ω, q) ∈ K(X,D).

(2) We use Lemma 9.5 to reduce to J = OX .
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The initial reduction to J = OX is for the purpose of functoriality: The

centres of blowing-up involved in desingularization of J may include points

outside the strata of K(X,D). Therefore, on an open set U outside the strata

of K(X,D), the centres of blowing-up from desingularization of J (in Step (2),

for example) may play a role when applying Step (1) for K(U,D|U ) (in the

inductive step of Case B in the proof of Theorem 8.1).

After Step (1), HSuppD,a = HΩ,q, for all a ∈ ΣΩ,q and all (Ω, q) ∈ K(X,D).

Then, by Lemma 7.5, at each a ∈ ΣΩ,q, where (Ω, q) ∈ K(X,D), we have

IDm + IDm−1 = IDm−1 + Im,

where IDm , IDm−1 and Im are the ideals of Dm, Dm−1 and X(m), respec-

tively. In the notation of Lemma 7.5, IDm = (xm,1, . . . , xm,cm , f), IDm−1 =⋂m−1
i=1 (xi,1, . . . , xi,ci) + (y1 · · · yr) and Im = (xm,1, . . . , xm,cm), and the lemma

says that f ∈ IDm−1 . This property is preserved by blowings-up as involved

in Step (2). By Lemma 7.5, we also have ord(f) = ord(SuppD(1)) = q. This

property is preserved by blowings-up with smooth centres in SuppDm that are

normal crossings to Dm−1; this is the case for the blowings-up from desingular-

ization of J (see Section 9.1). Thus the properties above are preserved by Step

(2).

We can therefore apply Theorem 3.9 to conclude that (X,D,E, Y ) is stable-

snc at every point of ΣΩ,q, for (Ω, q) ∈ K(X,D).

10. The non-reduced case

The previous sections establish Theorem 1.16 in the case that D is reduced. In

this section we describe the blowings-up necessary to establish the non-reduced

case. In other words, we assume that (X,Dred, E) is stable-snc, and we prove

Theorem 1.16 under this assumption.

The algorithm is a simple modification of that in [8, Section 8], to account

for the fact that the components of X and therefore of D are not necessarily of

the same dimension here. For this reason, we only give the modified algorithm

and refer to [8] for the proof.

We define an equivalence relation on the components of D at a point of X .

Definition 10.1: Let a ∈ X and let D1, D2 denote components of D at a.

Assume that, for each i = 1, 2, Di ⊂ X(i), where X(i) is a component of X

of codimension ci in a minimal local embedding variety Z of X at a. We say
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that D1 and D2 are equivalent (at a) if either D1 = D2 or the irreducible

component of D1 ∩D2 at a has codimension c1 + c2 + 1 in Z.

Given a ∈ X , let κX(a) denote the number of components of X at a, and let

q(a) denote the number of equivalence classes present in the set of components

of D at a. Define ι : X → N2 by ι(a) := (κX(a), q(a)). We give N2 the partial

order where (κ1, q1) ≥ (κ2, q2) means that κ1 ≥ κ2 and q1 ≥ q2. Then ι is upper

semi-continuous. Therefore, the maximal locus of ι is a closed set.

Each irreducible component Q of the maximal locus of ι consists of only

stable-snc points or only non-stable-snc points, because all points of Q belong

to the same irreducible components ofD. We blow up with centre C = the union

of the components of the maximal locus of ι that contain only non-stable-snc

points. In the preimage of C, ι decreases.

Let W be the union of the components of the maximal locus consisting of

stable-snc points. The blowing-up above is an isomorphism on W , so (X ′, D′)
is stable-snc on W ′ = W , and therefore in a neighbourhood of W ′. For this

reason, the union of the components of the maximal locus of ι on X ′ \W ′ that
contain only non-stable-snc points is closed in X ′. Therefore, we can repeat the

procedure on X ′ \W ′.
Clearly, N2 has no infinite decreasing sequences with respect to the order

above. After the blowing-up above, the maximal values of ι on the non-stable-

snc locus of (X,D) decrease. Therefore, after a finite number of iterations of

the procedure above, the non-stable-snc locus becomes empty.

Remark 10.2: Suppose that (X,Dred) is stable-snc. Then the blowing-up se-

quence in this section is given simply by the desingularization algorithm for

SuppD, but blowing up only those components of the maximal locus of the

invariant on the non-stable-snc locus.
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