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via Trieste 63, I-35121 Padova, Italy

e-mail: alessandra.bertapelle@unipd.it

AND

Cristian D. González-Avilés
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ABSTRACT

If T is an algebraic torus defined over a discretely valued field K with per-

fect residue field k, we relate the K-cohomology of T to the k-cohomology

of certain objects associated to T . When k has cohomological dimension

≤ 1, our results have a particularly simple form and yield, more gener-

ally, isomorphisms between Borovoi’s abelian K-cohomology of a reductive

group G over K and the k-cohomology of a certain quotient of the alge-

braic fundamental group of G.

1. Introduction

Let A be a complete discrete valuation ring with field of fractions K and perfect

residue field k. Let k and Ksep be fixed separable algebraic closures of k and K,

respectively, and let g and G denote the corresponding absolute Galois groups.
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Further, let Knr denote the maximal unramified extension of K in Ksep and let

I = Gal(Ksep/Knr) be the inertia subgroup of G. Then there exists a canoni-

cal isomorphism of groups G/I = g. If M is a G-module, MI will denote the

g-module of I-coinvariants ofM . Now let T be aK-torus and letX∗(T ) (respec-
tively, X∗(T )) denote the G-module of characters (respectively, cocharacters) of

T . Let T denote the Néron model of T over S := SpecA and let i : Spec k → S

be the canonical closed immersion. The group of components of T, i.e., the

(continuous) g-module φ(T ) which corresponds to the étale k-sheaf i∗(T/T0),

was described by Xarles in [31] in terms of X∗(T ). The description given in [31]

is simple when φ(T ) is either torsion or torsion-free, but this is not the case in

general. When k is finite, a much simpler description of φ(T ) was obtained by

Bitan in [2, (3.1)], who showed the existence of an isomorphism of g-modules

φ(T ) � X∗(T )I for such k. In this paper we generalize Bitan’s strikingly simple

formula to the case of any perfect residue field k. That is, we prove

Theorem 1.1: There exists a canonical isomorphism of g-modules

φ(T )
∼→ X∗(T )I .

We note that Bitan [2, (3.1)] obtained his formula by combining work of

Kottwitz [19, §7.2] and of Haines and Rapoport [24, Appendix]. Since [24,

Appendix] depends on Bruhat–Tits theory, so does the proof of [2, (3.1)]. Al-

though Bitan’s method can be extended to yield a proof of his formula for any

perfect field k, in this paper we have chosen to generalize it by means of an

explicit and functorial construction of the isomorphism of Theorem 1.1 which

is independent of Bruhat–Tits theory.

The above theorem has a number of (immediate) consequences which shed

new light on the present subject. For example, the theorem implies that the

functor φ(−) transforms short exact sequences of K-tori into 6-term exact se-

quences of g-modules. See Proposition 3.6 for the precise statement.

In Section 4 we use Theorem 1.1 to relate the K-cohomology of T to the k-

cohomology of X∗(T )I . When k has cohomological dimension ≤ 1, our results

have the following simple form.

Theorem 1.2 (=Theorem 4.5): Assume that k has cohomological dimension

≤ 1. Then, for r = 1 and 2, there exist canonical isomorphisms of abelian

groups

Hr(K,T ) � Hr(k,X∗(T )I).
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If r ≥ 3, the groups Hr(K,T ) vanish.

In Section 5 we generalize the above theorem from K-tori to arbitrary con-

nected reductive algebraic K-groups G. More precisely, let π1(G) be the alge-

braic fundamental group of G. Then the following holds.

Theorem 1.3 (=Theorem 5.1): Assume that k has cohomological dimension

≤ 1 and let G be a connected reductive algebraic group over K. Then, for r = 1

and 2, there exist isomorphisms of abelian groups

Hr
ab(Kfl, G) � Hr(k, π1(G)I).

If r ≥ 3, the groups Hr
ab(Kfl, G) vanish.

Corollary 1.4 (=Corollary 5.2): Assume that k has cohomological dimension

≤ 1 and let G be a connected reductive algebraic group over K. Then there

exists a bijection of pointed sets

H1(K,G) � H1(k, π1(G)I).

In particular, H1(K,G) can be endowed with an abelian group structure.

Acknowledgements. We are very grateful to Mikhail Borovoi for some valu-

able suggestions and for sending us the proof of Lemma 5.4. We also thank

Rony Bitan for helpful comments.

2. Preliminaries

2.1. The Basic Setting. We keep the notation introduced above. If K is any

field and T is a K-torus, let X∗(T ) := HomK(T,Gm,K) be the étale K-sheaf

of characters of T and set X∗(T ) = X∗(T )(Ksep). Note that, since X∗(T ) is

locally constant, it is represented by a unique (commutative) étale K-group

scheme. See [29, Proposition II.9.2.3, p. 153].

There exists a canonical isomorphism of étale K-sheaves

(1) T = HomK(X∗(T ),Gm,K).

See, for example, [5, Theorem 0.3.12, p. 11]. In particular, if L/K is any

Galois subextension of Ksep/K which splits T , then there exists a canonical

isomorphism of Gal(L/K)-modules

(2) T (L) = Hom(X∗(T ), L∗).
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Now let X∗(T ) := HomK(Gm,K , T ) be the étale K-sheaf of cocharacters of

T and set X∗(T ) = X∗(T )(Ksep). We will identify X∗(T ) with X∗(T )∨ :=

HomK(X∗(T ),ZK) and X∗(T ) with X∗(T )∨ = Hom(X∗(T ),Z).
Let S be a scheme and let (Sch/S)

∼
ét be the category of sheaves of sets on

the étale site over S. By [10, I, 1.1] (see also [29, Theorem II.3.1.2, p. 97]), the

functor hS : (Sch/S) → (Sch/S)
∼
ét , Y �→ HomS(−, Y ), is fully faithful. If Y is

an S-scheme, we will identify Y with hS(Y ), i.e., with the étale sheaf that it

represents. If S = SpecF , where F is a field, then

(3) hF : (Sch/F ) → (Sch/F )
∼
ét , Y �→ HomF (−, Y ),

is an equivalence of categories [21, p. 54, last paragraph].

Now recall S = SpecA and i : Spec k → S. Let j : SpecK → S be the

canonical open immersion. The Néron model T of T over S is a smooth and

separated S-group scheme which represents the sheaf j∗T on the étale (in fact,

small smooth) site over S. See [4, Proposition 10.1.6, p. 292]. With one excep-

tion (namely, in Proposition (2.2)(i)), we will regard j∗T as an étale sheaf on S

and identify it with (the étale sheaf on S represented by) T. Thus we may write

j∗T = T. The identity component T0 of T is a smooth affine S-group scheme

of finite type. See [20, Proposition 3, p. 18] and [10, VIB, Corollary 3.6]. Now

set Ts = T ×S Spec k and T0
s = T0 ×S Spec k. Then T0

s is a smooth, connected

and affine k-group scheme of finite type (see [18, Proposition 17.3.3(iii)], [17,

Proposition 1.6.2(iii)] and [16, Proposition 6.3.4(iii), p. 304]). By [11, II, §5,
no. 1, Proposition 1.8, p. 237], the étale k-group scheme π0(Ts) := Ts/T

0
s has the

following universal property: if E is an étale k-group scheme and Ts → E is a

homomorphism of k-group schemes, then there exists a unique homomorphism

of k-group schemes π0(Ts) → E such that the following diagram commutes:

(4) Ts
�� ��

���
��

��
��

��
π0(Ts)

��
E.

The k-group schemes Ts and T0
s represent the étale k-sheaves i∗T and i∗T0, i.e.,

we have equalities of étale k-sheaves i∗T = Ts and i∗T0 = T0
s . Then the étale

k-sheaf φ(T ) := i∗(T/T0) is represented by π0(Ts), i.e,

φ(T ) = π0(Ts).
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We will often identify the étale sheaf φ(T ) and the g-module φ(T )(k)=π0(Ts)(k)

(see [29, Corollary II.2.2(i), p. 94]). By [5, Theorem 2.3.2, p. 51], φ(T ) is a

finitely generated g-module. Now, since j∗(T/T0) = 0, there exists a canonical

isomorphism of étale sheaves i∗φ(T ) = T/T0 (see [29, proof of Theorem II.8.1.2,

p. 135]). Thus there exists a canonical exact sequence of étale sheaves on S

(5) 0 → T0 → T → i∗φ(T ) → 0.

If T = Gm,K , the preceding sequence is

(6) 0 → Gm,S → j∗Gm,K → i∗Zk → 0,

where the right-hand nontrivial morphism is induced by the valuation v:K∗→Z.

See [4, §10.1, Example 5, p. 291].

2.2. Group Cohomology. Let J be a finite group. We will write |J | for its
order and AJ for the augmentation ideal of Z[J ], i.e., AJ is the kernel of the

homomorphism Z[J ] → Z, Σnσσ �→ Σnσ. If M is a finitely generated (left) J-

module, MJ := M/AJM is the largest quotient of M on which J acts trivially.

Let M∨ = HomZ(M,Z) be the linear dual of M . Then M∨ has a natural

structure of J-module by [7, (1), p. 238] and M∨ = (M/Mtors)
∨ is either zero

or Z-free. We have (see [7, pp. 238–240])

(7) (M∨)J = (MJ)
∨

and

(8) M∨∨ = M/Mtors.

In particular, M∨∨ = M if M is Z-free. The kernel of the canonical norm map

(9) N : M → MJ , m �→
∑
σ∈J

σm,

will be denoted by NM . Now recall the definition of the Tate cohomology groups

Ĥr(J,M) for r ∈ Z: we have Ĥr(J,M) = Hr(J,M) if r ≥ 1, Ĥr(J,M) =

H−r−1(J,M) if r ≤ −2 and

Ĥ0(J,M) =MJ/NM,

Ĥ−1(J,M) =NM/AJM.

Note that, if J acts trivially on M and M is Z-free, then NM = 0 and therefore

Ĥ−1(J,M) = 0. Further, by [7, Chapter XII, Proposition 2.5, p. 236, and
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Exercise 3, p. 263], Ĥr(J,M) is a finite group which is annihilated by |J | for
every r ∈ Z.

Next, if M is an abelian group, we will write MD = HomZ(M,Q/Z). If M

is free and finitely generated, then MD = M∨ ⊗Z Q/Z by [7, Chapter XII,

beginning of §3, pp. 237–238].
Now assume thatM is a Z-free and finitely generated J-module. Since MD =

M∨ ⊗Z Q/Z as noted above, the short exact sequence 0 → Z → Q → Q/Z → 0

induces a short exact sequence of J-modules 0 → M∨ → M∨ ⊗Z Q → MD → 0.

The latter sequence induces, in turn, a canonical isomorphism of abelian groups

Ĥr−1(J,MD) = Ĥr(J,M∨) for every r ∈ Z. On the other hand, by [7, Chap-

ter XII, §6, Theorem 6.4, p. 249], Ĥr−1(J,MD) is canonically isomorphic to

Ĥ−r(J,M)D. Thus, for every r ∈ Z, there exists a canonical isomorphism of

finite abelian groups

(10) Ĥr(J,M)D = Ĥ−r(J,M∨).

Lemma 2.1: Let M be a Z-free and finitely generated J-module.

(i) There exists a canonical exact sequence of abelian groups

0 → H1(J,M)D → (M∨)J → (MJ)∨ → 0.

(ii) If MJ 	= M , then M/MJ is Z-free and (M/MJ)J = 0.

Proof. We apply the snake lemma to the exact commutative diagram

0 �� AJ(M
∨)

��

�� M∨ �� (M∨)J

��

�� 0

0 ��
N (M∨) �� M∨ �� N(M∨) �� 0

and use (10) to obtain an exact sequence

(11) 0 → H1(J,M)D → (M∨)J → N(M∨) → 0.

Now, since N(M∨) is a subgroup of the Z-free group M∨ and H1(J,M)D is

torsion, the latter sequence induces, by (7) and (8), canonical isomorphisms

(12) N(M∨) = (M∨)J/(M∨)J, tors = ((M∨)J )∨∨ = ((M∨∨)J )∨ = (MJ)∨.

Assertion (i) is now clear.

To prove (ii), we first note that, since MJ is Z-free, (12) yields a canonical

isomorphism N(M∨)∨ = (MJ)∨∨ = MJ . Therefore, taking the linear dual of
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the bottom row of the above diagram, we obtain an isomorphism

(13) (N (M∨))∨ = M/MJ .

Consequently, if MJ 	= M , then M/MJ is Z-free. Further, it follows from (11)

that, if M ′ is a Z-free and finitely generated J-module such that NM ′ = 0,

then M ′
J is torsion. Thus (N (M∨))J is torsion. Now, by (7) and (13)

(M/MJ )J = ((N (M∨))∨)J = ((N (M∨))J )∨ = 0,

since (N (M∨))J is torsion.

2.3. A Canonical Resolution of T . Let L be the minimal splitting field

of T , i.e., L is the fixed field of the kernel of the canonical homomorphism

G → Aut(X∗(T )). We will write TL for the (split) L-torus T ×SpecK SpecL.

Let J be the inertia subgroup of Gal(L/K). Then I acts on the free and finitely

generated Z-module X∗(T ) through the finite quotient J and (9) is a map

(14) N : X∗(T ) → X∗(T )J .

Note that, since H1(I ′, X∗(T )) = Hom(I ′, X∗(T )) = 0 for any subgroup I ′ of
I which acts trivially on X∗(T ) (since I ′ is torsion and X∗(T ) is torsion-free),
the inflation-restriction exact sequence [25, VII, §6, Proposition 4, p. 117] shows

that H1(J,X∗(T )) = H1(I,X∗(T )).
A K-torus T is said to have multiplicative reduction if the special fiber

T0
s of T0 is a k-torus. An equivalent condition is that I act trivially on X∗(T ),
i.e., T splits over Knr. If this is the case, the g-module of characters of T0

s is

X∗(T ) [23, Proposition-Definition 1.1, p. 462]. Further, there exists a canonical

isomorphism of g-modules

(15) φ(T )
∼→ X∗(T ).

See [5, Theorem 1.1.2, p. 29] and recall the identification X∗(T )∨ = X∗(T ).

Proposition 2.2: Let 0 → T1 → T2 → T3 → 0 be an exact sequence of K-tori.

Assume that the following conditions hold:

(i) R1j∗T1 = 0 for the smooth topology on S, and

(ii) φ(T1) is torsion-free.

Then the induced sequence of g-modules 0 → φ(T1) → φ(T2) → φ(T3) → 0 is

exact.
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Proof. By (i), the sequence of Néron models 0 → T1 → T2 → T3 → 0 is exact in

the smooth topology. Thus, by [5, Theorem 2.3.1, p. 50], the induced sequence

of g-modules φ(T1) → φ(T2) → φ(T3) → 0 is exact. On the other hand, by

[5, Theorem 2.3.4, p. 52], Ker[φ(T1) → φ(T2)] is a finite g-submodule of φ(T1),

which is therefore zero by (ii). This completes the proof.

Corollary 2.3: Let 0 → T1 → T2 → T3 → 0 be an exact sequence of K-tori,

where T1 has multiplicative reduction. Then the induced sequence of g-modules

0 → φ(T1) → φ(T2) → φ(T3) → 0 is exact.

Proof. Since T1 splits over Knr, R1j∗T1 = 0 for the smooth topology on S by

[5, Corollary 4.2.6, p. 82]. On the other hand, by (15), φ(T1) � X∗(T1), which

is torsion-free. The corollary is now immediate from the proposition.

A K-torus T is said to have unipotent reduction if the special fiber T0
s of

T0 is a unipotent k-group scheme.

Lemma 2.4: A K-torus T has unipotent reduction if, and only if, X∗(T )I = 0.

Proof. By [23, proof of Theorem 1.3], T has unipotent reduction if, and only

if, T contains no nontrivial K-subtorus having multiplicative reduction, i.e.,

X∗(T ) admits no free quotient on which I (or, equivalently, J) acts trivially.

Assume that the latter holds and recall the norm map (14). Since NX∗(T ) is a
quotient of X∗(T ) with trivial J-action, we have NX∗(T ) = 0. Thus X∗(T )J =

X∗(T )J/NX∗(T ) = Ĥ0(J,X∗(T )) is a finite subgroup of the free group X∗(T ),
i.e., X∗(T )I = X∗(T )J = 0. Conversely, assume that X∗(T )I = 0 and let Y

be an I-submodule of X∗(T ) such that I acts trivially on X∗(T )/Y . Then the

I-cohomology sequence associated to 0 → Y → X∗(T ) → X∗(T )/Y → 0 shows

that X∗(T )/Y is isomorphic to a subgroup of the finite group H1(I, Y ). In

particular, it is not free.

What follows is an elaboration of [31, Lemma 2.13].

Let T be any K-torus. The maximal quotient torus T (m) of T having multi-

plicative reduction is the K-torus with character module X∗(T )I . On the other

hand, the maximal subtorus T(u) of T having unipotent reduction is the K-

torus with character module X∗(T )/X∗(T )I . This follows from Lemmas 2.1(ii)

and 2.4 together with the fact that, if Y is an I-submodule of X∗(T ) such that

X∗(T )/Y is free and (X∗(T )/Y )I = 0, then X∗(T )I ⊂ Y . Now the exact se-

quence of G-modules 0 → X∗(T )I → X∗(T ) → X∗(T )/X∗(T )I → 0 induces an



Vol. 206, 2015 COHOMOLOGY OF TORI OVER LOCAL FIELDS 439

exact sequence of K-tori

(16) 0 → T(u) → T → T (m) → 0.

Recall now the minimal splitting field L of T . The normmapNL/K : L∗ → K∗

induces an epimorphism of K-tori RL/K(TL) → T whose kernel is denoted by

R
(1)
L/K(TL) and called the norm one torus associated to T . See [5, Theorems

0.4.4, p. 16, and 0.4.7, p. 18]. Thus there exist canonical exact sequences

(17) 0 → R
(1)
L/K(TL) → RL/K(TL) → T → 0

and

(18) 0 → R
(1)
L/K(TL)(u) → R

(1)
L/K(TL) → R

(1)
L/K(TL)

(m) → 0,

where (18) is the sequence (16) associated to the K-torus R
(1)
L/K(TL). Set

(19) P = R
(1)
L/K(TL)

(m)

and let Q be the pushout of the canonical morphisms R
(1)
L/K(TL) ↪→ RL/K(TL)

and R
(1)
L/K(TL) � R

(1)
L/K(TL)

(m) = P appearing in (17) and (18), respectively.

Thus there exists a canonical exact commutative diagram

0 �� R(1)
L/K(TL)

����

�� RL/K(TL)

����

�� T �� 0

0 �� P �� Q �� T �� 0,

where the top row is (17). By (18), the kernel of the left-hand vertical map in

the above diagram equals R
(1)
L/K(TL)(u). This immediately yields the formula

(20) Q = RL/K(TL)/R
(1)
L/K(TL)(u).

Thus there exists a canonical exact sequence of K-tori

(21) 0 → P → Q → T → 0,

which will be referred to as the canonical resolution of T . Since P has

multiplicative reduction, the following lemma is an immediate consequence of

Corollary 2.3.

Lemma 2.5: The canonical resolution (21) induces an exact sequence of g-

modules

0 → φ(P ) → φ(Q) → φ(T ) → 0.
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Lemma 2.6: The canonical resolution (21) induces an exact sequence of g-

modules

0 → X∗(P ) → X∗(Q)I → X∗(T )I → 0.

Proof. The J-homology sequence associated to the short exact sequence of J-

modules 0 → X∗(P ) → X∗(Q) → X∗(T ) → 0 corresponding to (21) is

· · · → H1(J,X∗(Q)) → H1(J,X∗(T )) → X∗(P )I → X∗(Q)I → X∗(T )I → 0.

Since H1(J,X∗(T )) is torsion and X∗(P )I = X∗(P ) is torsion-free, the lemma

follows.

Lemma 2.7: H1(I,X∗(Q)) = 0.

Proof. By [5, Theorem 0.4.3, p. 14, and proof of Theorem 0.4.4, p. 16], there

exists a canonical isomorphism of G-modules X∗(RL/K(TL)) = Zd[Gal(L/K)],

where d is the dimension of T . Thus (20) yields a canonical exact sequence of

G-modules

0 → X∗(Q) → Zd[Gal(L/K)] → X∗(R(1)
L/K(TL)(u)) → 0.

Since X∗(R(1)
L/K(TL)(u))

J = 0 by Lemma 2.4, the J-cohomology sequence asso-

ciated to the above short exact sequence yields an injection

H1(I,X∗(Q)) = H1(J,X∗(Q)) ↪→ H1(J,Zd[Gal(L/K)]).

Finally, since Zd[Gal(L/K)] is a free (right) Zd[J ]-module of finite rank, the

latter cohomology group vanishes by Shapiro’s lemma [30, Lemma 6.3.2, p. 171],

which completes the proof.

3. Proof of Theorem 1.1

By Lemma 2.1(i), there exists a canonical exact sequence of g-modules

(22) 0 −→ H1(I,X∗(T ))D −→ X∗(T )I
qT−→ (X∗(T )I)∨ −→ 0.

We will write X∗(T )I and X∗(T )I , respectively, for the étale k-sheaves that

correspond to the continuous g-modules X∗(T )I and X∗(T )I (see [29, Corol-

lary II.2.2(i), p. 94]). Now recall the canonical immersions i : Spec k → S and

j : SpecK → S.



Vol. 206, 2015 COHOMOLOGY OF TORI OVER LOCAL FIELDS 441

Lemma 3.1: There exists a canonical exact sequence of étale sheaves on S

0 → HomS(j∗X
∗(T ),Gm,S) → T → i∗(X∗(T )I)∨ → 0.

Proof. Since Ext1Sét
(j∗X∗(T ),Gm,S) = 0 by [5, Theorem B.3, p. 131], (6) induces

an exact sequence of étale sheaves on S

0 → HomS(j∗X
∗(T ),Gm,S) → HomS(j∗X

∗(T ), j∗Gm,K)

→ HomS(j∗X
∗(T ), i∗Zk) → 0.

Now, since X∗(T ) = j∗j∗X∗(T ) and i∗j∗X∗(T ) = X∗(T )I by [29, Proposition

II.8.1.1, p. 134] and [21, Example II.3.12, p. 75] (respectively), (1) and [21,

Exercise II.3.22(a), p. 80] yield canonical isomorphisms of étale sheaves on S

(23) HomS(j∗X
∗(T ), j∗Gm,K) = j∗HomK(j∗j∗X∗(T ),Gm,K) = j∗T = T

and

(24) HomS(j∗X
∗(T ), i∗Zk) = i∗Homk(i

∗j∗X∗(T ),Zk) = i∗(X∗(T )I)∨.

The lemma is now clear.

Remark 3.1: The same argument that proves (23) yields a canonical isomor-

phism of étale sheaves on S

j∗X∗(T ) = HomS(j∗X
∗(T ), j∗ZK).

Let

(25) vT : T → i∗(X∗(T )I)∨

be the epimorphism of étale sheaves which appears in the exact sequence of

Lemma 3.1. If T = Gm,K , then vT = vGm,K : j∗Gm,K → i∗Zk is the morphism

appearing in the exact sequence (6). For arbitrary T , and via the identifications

(23) and (24), vT is the morphism

HomS(j∗X
∗(T ), vGm,K ) : HomS(j∗X

∗(T ), j∗Gm,K) → HomS(j∗X
∗(T ), i∗Zk).

Now, since (X∗(T )I)∨ = i∗i∗(X∗(T )I)∨ by [29, Proposition II.8.1.1, p. 134],

the exact sequence of Lemma 3.1 induces an exact sequence of étale k-sheaves

0 −→ i∗HomS(j∗X
∗(T ),Gm,S) −→ i∗T i∗vT−→ (X∗(T )I)∨ −→ 0.

Since (3) is an equivalence, i∗vT : i∗T → (X∗(T )I)∨ corresponds to a homomor-

phism of k-group schemes Ts → E, where E is the étale k-group scheme which

represents (X∗(T )I)∨ (see [29, Proposition II.9.2.3, p. 153]). By diagram (4),
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the latter homomorphism factors (uniquely) through a homomorphism of k-

group schemes π0(Ts) → E. Thus there exists a commutative diagram of étale

k-sheaves

(26) i∗T �� ��

i∗vT �� ����
���

���
��

φ(T )

����
(X∗(T )I)∨.

Let

(27) αT : φ(T ) � (X∗(T )I)∨

be the epimorphism of g-modules which corresponds to the vertical morphism

in (26).

Proposition 3.2: The map

α∨
T : X∗(T )I ↪→ φ(T )∨

induced by (27) is an isomorphism of g-modules.

Proof. See [5, Theorem 5.1.6, p. 93] and note that the g-module E(T ) =

Cokerα∨
T which appears there vanishes if k is perfect, by [5, Theorem 5.3.8,

p. 104].

Corollary 3.3: The map (27) induces an isomorphism of g-modules

φ(T )/φ(T )tors
∼→ (X∗(T )I)∨.

Proof. This is immediate from the proposition and (8).

Lemma 3.4: If H1(I,X∗(T )) = 0, then there exists a canonical isomorphism

of g-modules

βT : φ(T )
∼→ X∗(T )I .

Proof. By [31, Proposition 2.7], φ(T ) is torsion free. Thus, by Corollary 3.3,

αT : φ(T ) → (X∗(T )I)∨ is an isomorphism. On the other hand, by (22),

qT : X∗(T )I → (X∗(T )I)∨ is an isomorphism as well. Thus

βT := q−1
T ◦ αT : φ(T ) → X∗(T )I

is the required isomorphism of g-modules.
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We note that, if T has multiplicative reduction (i.e., I acts trivially onX∗(T )),
then the isomorphism of the lemma is the isomorphism (15). Further, since the

isomorphism of the previous lemma is canonical (i.e., functorial in T ), given a

morphism of K-tori T1 → T2 such that H1(I,X∗(T1)) = H1(I,X∗(T2)) = 0,

the induced diagram

(28) φ(T1)

βT1

��

�� φ(T2)

βT2

��
X∗(T1)I �� X∗(T2)I

commutes.

Now recall the canonical resolution (21)

0 → P → Q → T → 0,

where P and Q are given by (19) and (20), respectively. Since P has multi-

plicative reduction, we have H1(I,X∗(P )) = 0. Further, H1(I,X∗(Q)) = 0 by

Lemma 2.7. Thus, by (28) and Lemmas 2.5, 2.6 and 3.4, there exists a canonical

exact commutative diagram

(29) 0 �� φ(P )

βP�
��

�� φ(Q)

βQ�
��

�� φ(T ) �� 0

0 �� X∗(P )I �� X∗(Q)I �� X∗(T )I �� 0.

It is now clear that there exists a unique isomorphism of g-modules

βT : φ(T )
∼→ X∗(T )I

such that the following diagram, derived from (29),

0 �� φ(P )

βP�
��

�� φ(Q)

βQ�
��

�� φ(T )

βT�
��

�� 0

0 �� X∗(P )I �� X∗(Q)I �� X∗(T )I �� 0,

commutes.
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The isomorphism thus defined fits into a commutative diagram

φ(T )

βT�
��

αT

�� ����
���

���
��

X∗(T )I
qT �� �� (X∗(T )I)∨,

where qT and αT are the epimorphisms given by (22) and (27), respectively.

The proof of Theorem 1.1 is now complete.

The following consequence of Theorem 1.1 was previously established in [31,

Corollary 2.18].

Corollary 3.5: There exists a canonical exact sequence of g-modules

0 → H1(I,X∗(T ))D → φ(T ) → (X∗(T )I)∨ → 0.

In particular, φ(T )tors is canonically isomorphic to H1(I,X∗(T ))D.

Proof. This follows from Theorem 1.1 together with (22).

Remark 3.2: By Lemma 2.4 and the corollary, T has unipotent reduction if,

and only if, φ(T ) is finite. If this is the case, then there exists a canonical

isomorphism of finite g-modules φ(T ) = H1(I,X∗(T ))D.

The following result clarifies the exactness properties of the functor φ(−).

Proposition 3.6: Let 0 → T1 → T2 → T3 → 0 be an exact sequence of K-tori.

Then the given sequence of K-tori induces an exact sequence of g-modules

0 → H2(I,X∗(T1))
D → H2(I,X∗(T2))

D → H2(I,X∗(T3))
D

→ φ(T1) → φ(T2) → φ(T3) → 0.

Proof. The exactness of the sequence

0 → H2(I,X∗(T1))
D→ H2(I,X∗(T2))

D→ H2(I,X∗(T3))
D,

which is induced by the short exact sequence of I-modules

0 → X∗(T3) → X∗(T2) → X∗(T1) → 0,

follows from the fact that H3(I,X∗(T3)) = 0 since Knr has cohomological

dimension ≤ 1 [26, II, beginning of §4.3, p. 85]. On the other hand, by

the right exactness of the functor (from G-modules to g-modules) M �→ MI

(see [30, Exercise 6.1.1(2), p. 160]), the short exact sequence of G-modules
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0 → X∗(T1) → X∗(T2) → X∗(T3) → 0 induces an exact sequence of g-modules

X∗(T1)I → X∗(T2)I → X∗(T3)I → 0. By Theorem 1.1, the latter sequence can

be identified with a sequence φ(T1) → φ(T2) → φ(T3) → 0. Now the connect-

ing homomorphism H2(I,X∗(T3))
D → φ(T1) = X∗(T1)I in the sequence of the

proposition factors as

H2(I,X∗(T3))
D → H1(I,X∗(T1))

D ↪→ X∗(T1)I

(see (22)), and its kernel is therefore equal to the kernel of

H2(I,X∗(T3))
D → H1(I,X∗(T1))

D,

i.e., to the image of H2(I,X∗(T2))
D → H2(I,X∗(T3))

D. It remains only to

check exactness at φ(T1). By [5, Theorem 2.3.4, p. 52], the kernel of

φ(T1) → φ(T2) is a finite g-module. Thus it agrees with

Ker[φ(T1)tors → φ(T2)tors] = Ker[H1(I,X∗(T1))
D → H1(I,X∗(T2))

D]

(see Corollary 3.5). Since the latter group agrees with the image of the homo-

morphism H2(I,X∗(T3))
D → H1(I,X∗(T1))

D, the proof is complete.

The following corollary of the proposition generalizes Lemma 2.3.

Corollary 3.7: Let 0 → T1 → T2 → T3 → 0 be an exact sequence of K-tori.

If φ(T1) is torsion-free, then the induced sequence of g-modules

0 → φ(T1) → φ(T2) → φ(T3) → 0

is exact.

Proof. It was shown in the above proof that the connecting homomorphism

H2(I,X∗(T3))
D → φ(T1) which appears in the exact sequence of the proposition

factors through H1(I,X∗(T1))
D = φ(T1)tors = 0.

Remark 3.3: Let 0 → T1 → T2 → T3 → 0 be as in the corollary, i.e., φ(T1)

is torsion-free. Further, for i = 1, 2 and 3, let Ti denote the Néron model of

Ti over S. By the corollary and [21, Theorem II.2.15, p. 63], the sequence

0 → i∗φ(T1) → i∗φ(T2) → i∗φ(T3) → 0 is an exact sequence of étale sheaves on

S. On the other hand, since R1j∗T1 = 0 for the étale topology on S (see [31,

Lemma 2.3]), 0 → T1 → T2 → T3 → 0 is an exact sequence of étale sheaves on

S. Thus there exists a canonical exact commutative diagram of étale sheaves
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on S

0 �� T1

����

�� T2

����

�� T3

����

�� 0

0 �� i∗φ(T1) �� i∗φ(T2) �� i∗φ(T3) �� 0.

By (5), the above diagram yields an exact sequence 0 → T0
1 → T0

2 → T0
3 → 0

of étale sheaves on S and therefore an exact sequence of (representable) étale

k-sheaves

(30) 0 → i∗T0
1 → i∗T0

2 → i∗T0
3 → 0.

Since (3) is an equivalence, the latter sequence corresponds to a sequence of

smooth, affine, commutative and connected algebraic k-group schemes

(31) 0 → T0
1,s

f→ T0
2,s

g→ T0
3,s → 0.

The exactness of (30) implies that g is surjective and that f identifies T0
1,s with

Kerg := T0
2,s ×T0

3,s
Spec k. See, for example, [1, Lemma 2.21]. Now [1, Lemma

2.24] shows that the sequence of representable presheaves on Spec k induced by

(31) is an exact sequence of fppf and fpqc sheaves on Spec k. In other words,

(31) is exact for the étale, fppf and fpqc topologies on Spec k.

4. The cohomology of tori

All cohomology groups below are taken with respect to the étale topology on

the relevant scheme.

Let T be a K-torus and recall the minimal splitting field L of T , i.e., L is

the fixed field of the kernel of the canonical homomorphism G → Aut(X∗(T )).
Let J be the inertia subgroup of Gal(L/K). The maximal subtorus T(m) of T

having multiplicative reduction is the K-torus with character module NX∗(T )
(see [23, Proposition 1.2]). On the other hand, the maximal quotient torus T (u)

of T having unipotent reduction is the K-torus with character module NX∗(T ).
Indeed, if Y is a G-submodule of X∗(T ) such that Y I = Y J = 0, then NY = 0,

i.e., Y ⊂ NX∗(T ). Now the exact sequence of G-modules

0 → NX∗(T ) → X∗(T ) → NX∗(T ) → 0

induces an exact sequence of K-tori

(32) 0 → T(m) → T → T (u) → 0.
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Let T(m), T and T(u) denote, respectively, the Néron models of T(m), T and T (u)

over S. Since X∗(T(m)) = NX∗(T ) is torsion-free, Remark 3.3 yields a sequence

of smooth, affine, commutative and connected algebraic k-group schemes

(33) 0 → T0
(m),s → T0

s → (T(u))0s → 0.

The latter sequence is exact for the étale, fppf and fpqc topologies on Spec k.

Set

(34) τ = T0
(m),s,

which is the unique maximal k-torus of T0
s . Note that the g-module of characters

of τ is NX∗(T ). In particular, if T has multiplicative reduction, so that J = 1

and NX∗(T ) = X∗(T ), the character module of τ is X∗(T ) regarded as a

g-module.

Lemma 4.1: For every r ≥ 1, there exists a canonical isomorphism of abelian

groups Hr(k,T0
s) = Hr(k, τ).

Proof. Since k is perfect, the sequence (33) splits (see [10, XVII, Theorem

6.1.1]), i.e., there exists an isomorphism of k-group schemes T0
s � τ ×U , where

U = (T(u))0s. Since U is algebraic, smooth, connected and unipotent, it has

a composition series whose successive quotients are k-isomorphic to Ga,k (see

[10, XVII, Corollary 4.1.3]). Thus, since Hr(k,Ga) = 0 for every r ≥ 1 by [25,

Chapter X, §1, Proposition 1, p. 150], we have Hr(k, U) = 0 for every r ≥ 1.

The lemma is now clear.

Now, since Rsj∗T = 0 for the étale topology on S for all s > 0 by [31, Lemma

2.3], the Leray spectral sequence in étale cohomology

Hr(S,Rsj∗T ) =⇒ Hr+s(K,T )

yields isomorphisms Hr(S,T) = Hr(S, j∗T ) = Hr(K,T ) for every r ≥ 0. On

the other hand, Hr(S,T0) = Hr(k,T0
s ) = Hr(k, τ) for every r ≥ 1 by Lemma

4.1 and [15, Theorem 11.7]. Further, Hr(S, i∗φ(T )) = Hr(k, i∗i∗φ(T )) =

Hr(k, φ(T )) for every r ≥ 0 by [22, Proposition II.1.1(b), p. 149]. Thus, by

(5), there exists a canonical exact sequence of abelian groups

(35) · · · → Hr(k, τ) → Hr(K,T ) → Hr(k, φ(T )) → · · · ,
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where r ≥ 1 and τ is the k-torus (34). By Theorem 1.1, the preceding sequence

is canonically isomorphic to a sequence

(36) · · · → Hr(k, τ) → Hr(K,T ) → Hr(k,X∗(T )I) → · · · .
We now derive some consequences of (35) and (36).

Proposition 4.2: Assume that T has unipotent reduction. Then, for every

r ≥ 1, there exists a canonical isomorphism of abelian groups

Hr(K,T ) = Hr(k,H1(I,X∗(T ))D).

Proof. This is clear from (35) and Remark 3.2 since τ = 0 in this case.

The next proposition generalizes [21, Example III.2.22(c), p. 108] (at least

when the ring A appearing there is complete).

Proposition 4.3: Assume that T has multiplicative reduction. Then, for every

r ≥ 1, the sequence of abelian groups induced by (36)

0 → Hr(k, τ) → Hr(K,T ) → Hr(k,X∗(T )) → 0

is split exact.

Proof. Since I acts trivially on X∗(T ), (25) is a morphism

vT : T → i∗(X∗(T )I)∨ = i∗X∗(T )

and the map Hr(K,T ) → Hr(k,X∗(T )) appearing in the sequence of the propo-

sition can be identified with the homomorphism

Hr(vT ) : H
r(S,T) → Hr(S, i∗X∗(T ))

induced by vT . Recall also that, via the identifications (23) and (24), vT can

be identified with the morphism

HomS(j∗X
∗(T ), vGm,K ) : HomS(j∗X

∗(T ), j∗Gm,K) → HomS(j∗X
∗(T ), i∗Zk),

where vGm,K : j∗Gm,K → i∗Zk is the morphism intervening in the exact sequence

(6). Now choose a uniformizer π ∈ A, let u : ZK → Gm,K be the homomor-

phism of K-group schemes which maps 1 ∈ Z to π ∈ Gm,K(K) = K∗ and let

uGm,K : j∗ZK → j∗Gm,K be the morphism of étale sheaves on S induced by u.

By Remark 3.1, there exists a canonical isomorphism (of étale sheaves on S)

j∗X∗(T ) = HomS(j∗X
∗(T ), j∗ZK). Thus

HomS(j∗X
∗(T ), uGm,K ) : HomS(j∗X

∗(T ), j∗ZK) → HomS(j∗X
∗(T ), j∗Gm,K)
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can be identified with a morphism uT : j∗X∗(T ) → T. Clearly, the morphism

of étale sheaves on S

vT ◦ uT : j∗X∗(T ) → i∗X∗(T )

can be identified with the morphism HomS(j∗X
∗(T ), vGm,K ◦ uGm,K ), where

vGm,K ◦ uGm,K : j∗ZK → i∗Zk. On the other hand, by [29, Proposition II.8.2.1,

p. 142], for any étale sheaf F on S there exists a canonical exact exact sequence

of étale sheaves on S

0 → j!j
∗F → F → i∗i∗F → 0.

Setting F = j∗X∗(T ) above and observing that j∗j∗X∗(T ) = X∗(T ) and

i∗j∗X∗(T ) = X∗(T ), we obtain a canonical exact sequence of étale sheaves

on S

0 −→ j!X∗(T ) −→ j∗X∗(T )
wT−→ i∗X∗(T ) −→ 0.

It is immediate that vGm,K ◦ uGm,K = wGm,K , which implies that vT ◦ uT = wT

for any T . On the other hand, since Hr(S, j!X∗(T )) = 0 for every r ≥ 1 by [22,

Proposition II.1.1(a), p. 149], the map

Hr(wT ) : H
r(S, j∗X∗(T )) → Hr(S, i∗X∗(T ))

induced by wT is an isomorphism for every r ≥ 1. We conclude that

Hr(uT ) ◦Hr(wT )
−1

is a section (i.e., right inverse) of Hr(vT ), and this completes the proof.

The following lemma is well-known but we were unable to find an appropriate

reference.

Lemma 4.4: Assume that k has cohomological dimension ≤ 1. If τ is a k-torus,

then Hr(k, τ) = 0 for every r ≥ 1.

Proof. Since k is perfect, k is a field of dimension ≤ 1 by [26, Chapter II,

§3.1, Proposition 6(b), p. 78]. Thus, by [26, Chapter II, §3.1, Proposition

5(iii), p. 78], for any finite Galois extension l/k, l∗ is a cohomologically trivial

Gal(l/k)-module. Let l be the minimal splitting field of τ . Then, since X∗(τ)
is a free (and therefore projective) Z-module, we have Ext1Z(X

∗(τ), l∗) = 0,

whence τ(l) = Hom(X∗(τ), l∗) (see (2)) is cohomologically trivial as well by

[25, Chapter IX, §5, Theorem 9, p. 145]. Finally, since Hr(k, τ) is the inductive
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limit of the groups Hr(Gal(l/k), τ(l)) as l/k ranges over the set of all finite

Galois subextensions of k/k, the proof is complete.

Theorem 4.5: Assume that k has cohomological dimension ≤ 1. Then:

(i) The sequence 0 → T0(A) → T (K) → φ(T )(k) → 0 is exact.

(ii) For r = 1 and 2, there exist canonical isomorphisms

Hr(K,T ) � Hr(k,X∗(T )I).

If r ≥ 3, the groups Hr(K,T ) vanish.

Proof. The last assertion follows from (35) since Hr(k, τ) = Hr(k, φ(T )) = 0

for r ≥ 3. Assertions (i) and (ii) are immediate from (35), (36) and Lemma

4.4.

Remark 4.1: If k has cohomological dimension ≤ 1, then Hr(k,H1(I,X∗(T ))D)

is trivial for r ≥ 2 since H1(I,X∗(T ))D is a finite g-module. Thus, by (22) and

assertion (ii) of the theorem,

H2(K,T ) = H2(k,X∗(T )I) = H2(k, (X∗(T )I)∨).

The preceding remark can be generalized as follows.

Proposition 4.6: Assume that k has finite cohomological dimension n ≥ 1.

Then there exists a canonical isomorphism of divisible abelian groups

Hn+1(K,T ) = Hn+1(k, (X∗(T )I)∨).

If r ≥ n+ 2, the groups Hr(K,T ) vanish.

Proof. The group on the right above is divisible by [27, Corollary 1, p. 55].

Now, since τ(k) is divisible, we have Hr(k, τ) = 0 for every r ≥ n + 1 by

[27, Proposition 14, p. 54]. Thus (36) yields a canonical isomorphism of abelian

groupsHr(K,T ) = Hr(k,X∗(T )I) for every r ≥ n+1. On the other hand, since

H1(I,X∗(T ))D is finite, we have Hr(k,H1(I,X∗(T ))D) = 0 for all r ≥ n + 1

and (22) yields isomorphisms

Hr(k,X∗(T )I) = Hr(k, (X∗(T )I)∨)

for each r ≥ n+ 1. The latter group vanishes if r ≥ n+ 2 by [27, Proposition

14, p. 54], which completes the proof.
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5. Abelian cohomology of reductive groups

Assume that k has cohomological dimension ≤ 1. Recall that a K-torus F

is called flasque if the G-module X∗(F ) is H1-trivial. See [8, Lemma 1(iv),

p. 179]. By [9, Proposition-Definition 3.1, p. 88, and Proposition 2.2, p. 86], any

connected reductive algebraic group G over K admits a flasque resolution,

i.e., there exists a central extension

(37) 1 → F → H → G → 1,

where F is a flasque K-torus and H is a connected reductive algebraic over K

such that the derived group Hder of H is simply connected and R := H/Hder is

a quasi-trivial K-torus. The finitely generated (continuous) G-module π1(G) :=

Coker[X∗(F ) → X∗(R)] is independent (up to isomorphism) of the choice of

resolution (37) and is called the algebraic fundamental group of G. See

[9, Proposition-Definition 6.1, p. 102]. Recall from [13, Corollary 4.3] that, if

r ≥ 1 is an integer, the r-th (flat) abelian cohomology group of G may be

defined as the flat hypercohomology group

Hr
ab(Kfl, G) := Hr(Kfppf , π1(G)⊗LGm,K).

These abelian groups are of interest because they can be related to the pointed

Galois cohomology sets Hr(K,G) for r = 1 and 2. See Corollary 5.2 below for

the case r = 1.

Now, since R is quasi-trivial, we have H1(K,R) = 0. Further, Hr(K,F ) = 0

for every r ≥ 3 by the last assertion of Theorem 4.5. Thus, by [13, Proposition

4.2], Hr
ab(Kfl, G) = 0 for every r ≥ 3 and (37) induces an exact sequence of

abelian groups

(38) 0 → H1
ab(Kfl, G) → H2(K,F ) → H2(K,R) → H2

ab(Kfl, G) → 0.

Now, by [9, Proposition 6.2, p. 102], there exists a canonical exact sequence of

G-modules

(39) 0 → X∗(F ) → X∗(R) → π1(G) → 0

which induces a short exact sequence of g-modules

(40) 0 → X∗(F )I/M → X∗(R)I → π1(G)I → 0,

where M is a finite submodule of X∗(F )I which is isomorphic to a quotient of

H1(J, π1(G)) (see the proof of Lemma 2.6). Since Hr(k,M) = 0 for every r ≥ 2,

we have H2(k,X∗(F )I/M) = H2(k,X∗(F )I) and Hr(k,X∗(F )I/M) = 0 for
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r ≥ 3 (see [27, Proposition 14, p. 54]). Further, H1(k,X∗(R)I) = H1(K,R) = 0

by Theorem 4.5(ii). Thus (40) induces an exact sequence of abelian groups

(41) H1(k, π1(G)I) ↪→ H2(k,X∗(F )I) → H2(k,X∗(R)I) � H2(k, π1(G)I).

Now consider the exact commutative diagram

0 �� H1
ab(Kfl, G) �� H2(K,F )

�
��

�� H2(K,R)

�
��

�� H2
ab(Kfl, G) �� 0

0 �� H1(k, π1(G)I) �� H2(k,X∗(F )I) �� H2(k,X∗(R)I) �� H2(k, π1(G)I) �� 0

whose top and bottom rows are the sequences (38) and (41), respectively,

and vertical maps are the isomorphisms of Theorem 4.5(ii). Clearly, the maps

H2(K,F )
∼→ H2(k,X∗(F )I) and H2(K,R)

∼→ H2(k,X∗(R)I) induce isomor-

phisms

Hr
ab(Kfl, G)

∼→ Hr(k, π1(G)I)

for r = 1 and 2. Thus the following holds.

Theorem 5.1: Assume that k has cohomological dimension ≤ 1 and let G be

a connected reductive algebraic group over K. Then the flasque resolution (37)

induces isomorphisms of abelian groups

Hr
ab(Kfl, G) � Hr(k, π1(G)I)

for r = 1 and 2. If r ≥ 3, the groups Hr
ab(Kfl, G) vanish.

Corollary 5.2: Assume that k has cohomological dimension ≤ 1. Then there

exists a bijection of pointed sets

H1(K,G) � H1(k, π1(G)I).

In particular, H1(K,G) can be endowed with an abelian group structure.

Proof. Let G̃ be the simply connected central cover of Gder (see [13, p. 1161] for

the definition of G̃ ). By [6, Theorem 4.7(ii), p. 697, and Remark 3.16(3), p. 695],

the Galois cohomology set H1(K, G̃) is trivial. Further, by [12, VII, Theorem

3.1, p. 99], K is a field of Douai type in the sense of [14, Definition 5.2]. Thus, by

[14, Theorem 5.8(i)], the first abelianization map ab1 : H1(K,G) → H1
ab(Kfl, G)

is bijective. The corollary is now immediate from the theorem.

Corollary 5.3: Assume that k is quasi-finite. Then there exists a bijection

of pointed sets H1(K,G) � π1(G)G,tors.



Vol. 206, 2015 COHOMOLOGY OF TORI OVER LOCAL FIELDS 453

Proof. Since a quasi-finite field is perfect and of cohomological dimension≤ 1 by

[25, XIII, p. 190] and [27, III, §2, Corollary 3, p. 69], the corollary is immediate

from the previous corollary and the next lemma.

Lemma 5.4: Assume that k is quasi-finite and let M be a continuous g-module.

Then there exists a canonical isomorphism of abelian groupsH1(k,M)�Mg,tors.

Proof. Let σ be a free generator of g. By [25, XIII, §1, Proposition 1, p. 189],

there exists a canonical isomorphism of abelian groups

H1(k,M) = M ′/(σ − 1)M,

where M ′ is the subgroup of M consisting of those x ∈ M for which there exists

an integer n ≥ 1 such that (1 + σ + · · ·+ σn−1)x = 0. Thus it remains only to

check that M ′/(σ−1)M is the full torsion subgroup of Mg = M/(σ−1)M . Let

x ∈ M be such that mx = (σ−1)y for some positive integer m and some y ∈ M

and choose a positive integer r such that σrx = x and σry = y. The latter

is possible since M is a continuous g-module [25, X, beginning of §3, p. 154].
Then

(1 + σ + · · ·+ σmr−1)x

=(1 + σ + · · ·+ σr−1)(1 + σr + · · ·+ σ(m−1)r)x

=(1 + σ + · · ·+ σr−1)mx = (1 + σ + · · ·+ σr−1)(σ − 1)y

=(σr − 1)y = 0.

Thus x ∈ M ′, thereby completing the proof.

Remarks 5.1:

(a) When K is a finite extension of Qp, Corollary 5.3 is due to Borovoi. See

[3, Corollary 5.5(i)].

(b) Assume that k has finite cohomological dimension n ≥ 1 and let μ be the

kernel of the canonical morphism G̃ → G. Then μ is a finite and commu-

tative K-group scheme. By [26, §II.4.3, Proposition 12, p. 85] and [28,

Theorem 4, p. 593], Hr(Kfl, μ) = 0 for every r ≥ n+ 2. Consequently,

the exact sequence in [13, p. 1174, line 8] yields an isomorphism of

abelian groups Hn+1
ab (Kfl, G) � Hn+1(K,Gtor), where Gtor = G/Gder.

Thus, by the proof of Proposition 4.6, there exists an isomorphism

Hn+1
ab (Kfl, G) � Hn+1(k,X∗(Gtor)I). On the other hand, it follows

from [9, Proposition 6.4, p. 104] that there exists an isomorphism of



454 A. BERTAPELLE AND C. D. GONZÁLEZ-AVILÉS Isr. J. Math.

g-modules X∗(Gtor)I � π1(G)I/M
′, where M ′ is a finite submodule of

π1(G)I . Thus there exists an isomorphism of abelian groups

Hn+1
ab (Kfl, G) � Hn+1(k, π1(G)I)

which generalizes the case r = 2 of Theorem 5.1.
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