
ISRAEL JOURNAL OF MATHEMATICS 206 (2015), 413–429

DOI: 10.1007/s11856-014-1145-5

TIGHT LAGRANGIAN HOMOLOGY SPHERES IN
COMPACT HOMOGENEOUS KÄHLER MANIFOLDS
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ABSTRACT

For any irreducible compact homogeneous Kähler manifold, we classify

the compact tight Lagrangian submanifolds which have the Z2-homology

of a sphere.

1. Introduction

Let M be a homogeneous Kähler manifold. Following [Oh91], we call a compact

Lagrangian submanifold L of M globally tight (resp. locally tight or simply tight)

if the cardinality of the set L ∩ g · L is equal to the sum of Z2-Betti numbers

of L, for every isometry g of M (resp. every isometry sufficiently close to the

identity) such that the intersection is transversal.

It turns out that tightness has a bearing on the problem of Hamiltonian vol-

ume minimization. For instance, in [Oh91] it is proved that a tight Lagrangian
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submanifold of CPn must be the totally real embedding of RPn; an argument

of Kleiner and Oh shows that the standard RPn in CPn has the least volume

among its Hamiltonian deformations; Iriyeh [Iri05] then notes that this gives

uniqueness of the Hamiltonian volume minimization problem for Hamiltonian

deformations of RPn ⊂ CPn (similar results have been obtained for the product

of equatorial circles S1×S1 ⊂ S2×S2 = Q2 [IOS03, IS10]). More generally, real

forms of Hermitian symmetric spaces have recently been proved to be globally

tight [TT12]. The question of classification of tight Lagrangian submanifolds in

Hermitian symmetric spaces was already posed in [Oh91] and remains open.

Herein we take a different standpoint in that we allow M to be an arbitrary

compact homogeneous irreducible Kähler manifold but we considerably restrict

the topology of L. A compact homogeneous Kähler manifold M is a Kähler

manifold on which a compact connected Lie group of isometries acts transitively.

A simply-connected compact homogeneous Kähler manifold M is also called a

Kählerian C-space. In this case, it is known that M is a homogeneous space

G/H where G is a compact semi-simple Lie group and H is the centralizer of a

toral subgroup of G (in other words, it is a (generalized) complex flag manifold);

moreover, M is irreducible if and only if G is a simple Lie group. Our main

result is:

Theorem 1: Let M = G/H be a simply-connected irreducible compact homo-

geneous Kähler manifold. Let L be a compact tight Lagrangian submanifold

of M . Assume that L has the Z2-homology of a sphere.

Then L is an orbit of a compact subgroup of G, and M and L are given,

respectively up to biholomorphic homothety and up to congruence, as follows:

(a) M is a complex quadric Qn = SO(n+ 2)/SO(2) × SO(n) (n ≥ 3) and

L ∼= Sn is its standard real form, orbit of a subgroup isomorphic to

SO(n+ 1);

(b) M is the twistor space Z = SU(n+ 1)/S(U(1)×U(1)×U(n− 1)) (n ≥ 3)

of the complex Grassmannian of 2-planes Gr2(C
n+1) endowed with its

standard Kähler–Einstein structure and L ∼= S2n−1 is an orbit of a

subgroup isomorphic to U(n);

(c) M is the full flag manifold SU(3)/T2 endowed with its Kähler–Einstein

homogeneous metric and L ∼= S3 is an orbit of a subgroup isomorphic

to U(2);
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(d) M = Sp(n+ 2)/U(2) × Sp(n) (n ≥ 1) and L ∼= S4n+3 is an orbit of a

subgroup isomorphic to Sp(1)× Sp(n+ 1);

(e) M = F4/T
1 · Spin(7) and L ∼= S15 is an orbit of a subgroup isomorphic

to Spin(9);

(f) M = CP 1 = SU(2)/T1 and L = RP 1 is an orbit of the subgroup T1.

Moreover, L coincides with a connected component of the fixed point set of an

antiholomorphic isometric involution of M .

Remark 1: Note that the space SU(3)/T2 admits only one invariant complex

structure up to equivalence, while the spaces appearing in (d) and (e) carry only

one invariant Kähler structure up to biholomorphism and homothety, so that

it is not necessary to specify which structure we are considering. For further

details we refer to §2.
In section 2, we briefly review some basic facts about homogeneous Kähler

manifolds. The proof of Theorem 1 is scattered throughout sections 3, 4 and 5.

In particular, in § 5 we also show that a real flag manifold can be always

embedded as a tight real form of a suitable complexification given by a complex

flag manifold; see Proposition 3.

Notation: For a compact Lie group, we denote its Lie algebra by the corre-

sponding lowercase gothic letter. If a group G acts on a manifold M , for every

X ∈ g we denote by X∗ the corresponding vector field on M induced by the

G-action.

Acknowledgements. The first author wishes to thank Laura Geatti for some

useful discussions.

2. Preliminary material

Let M = G/H be a generalized flag manifold, where G is a compact connected

semisimple Lie group and H is the centralizer of a toral subgroup of G. We

shall recall the standard description of invariant Kähler structures on M (see,

e.g., [BFR86, Ale97]).

Denote by p the basepoint and by 〈, 〉 the negative of the Cartan–Killing

form of g. Then there is a reductive decomposition g = h ⊕ m where m is

the orthogonal complement of h, and we can as usual identify m ∼= Tp(G/H)

via X 
→ X∗
p . Since h is of maximal rank in g, there is a maximal Abelian
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subalgebra s of g contained in h. Then the complexification sC is a Cartan

subalgebra of gC and we denote by Δ the corresponding root system. Each root

space of gC is either contained in hC or in mC and thus there is an associated

partition Δ = ΔH ∪ΔM . Define the real subspace

t = i z(h) ⊂ sC

where z(h) is the center of h. Every root α ∈ Δ is real valued when restricted

to t and the restriction α|t ∈ t∗ is called a T -root (note that the elements of ΔH

restrict to zero). Note that the set ΔT ⊂ t∗ of all T -roots is not a root system.

Its significance for us lies in the fact that there is a natural bijective correspon-

dence between the set of G-invariant complex structures on M and the set of

T -chambers in t, where a T -chamber is a connected component of the regular

set treg of t, namely, the complement of the union of the hyperplanes kerλ

for λ ∈ ΔT . For later reference, we recall that in case dim t = 1 or h is Abelian,

any two G-invariant complex structures on M are biholomorphic [BH58, 13.8]

(see also [Nis84, p. 57]).

On the other hand, there is a natural bijective correspondence between the

set of G-invariant symplectic structures ω on M and the set of regular elements

ξ ∈ i treg given by

ωp(X
∗
p , Y

∗
p ) = 〈[X,Y ], ξ〉

where X , Y ∈ g. Finally the G-invariant Kähler metrics on M are all given by

gp = ωp(·, J ·)
where ω is the invariant symplectic structure associated to ξ ∈ i treg and J is

the invariant complex structure associated to the T -chamber containing −i ξ.

Henceforth we fix an invariant Kähler structure on M . Since h coincides with

the centralizer of ξ in g, there is a canonical embedding of M into g as the

adjoint orbit Ad(G) · ξ mapping p to ξ. Now for each X ∈ g, the vector field

X∗ on M is given by X∗
q = [X, q], where q ∈ M , and it is easily seen that

ωq(X
∗
q , Y

∗
q ) := 〈[X,Y ], q〉,

showing that ω coincides with the Kirillov–Kostant–Souriau symplectic struc-

ture. It follows that X∗ is Hamiltonian with corresponding potential function

given by the height function hX(q) = 〈q,X〉 for q ∈ M . Thus the moment map

μ : M → g∗ ∼= g, μ(q)(X) = hX(q)
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is just the inclusion (above we have identified g with its dual via the Cartan–

Killing form).

For later reference, we quote the following result due to Onishchik [Oni94,

p. 244].

Theorem 2: If G is a compact connected simple Lie group and acts effectively

on M = G/H , then G coincides, up to covering, with the identity component

of the full isometry group Q, with the following exceptions:

(a) M = CP 2n+1 and g = sp(n+ 1), h = u(1)⊕ sp(n), q = su(2n+ 2) ;

(b) g = so(2n− 1), h = u(n− 1), q = so(2n), n ≥ 4;

(c) M = Q5 and g = g2, h = u(2), q = so(7).

3. Lagrangian submanifolds

We keep the notation from the previous section and consider a compact La-

grangian submanifold L ofM through the basepoint p. Denote byK the identity

component of the stabilizer subgroup of L in G. Then K is a closed subgroup

of G that acts effectively on L by the Lagrangian property of L. Define the

linear map

(1) σ : g → Γ(νL), X 
→ (X∗|L)⊥,
where Γ(νL) is the space of sections of the normal bundle νL and ()⊥ denotes

the normal component to L. The map (1) is clearly K-equivariant; note that its

kernel coincides with the Lie algebra k of K. Choose a reductive complement

k⊥ and K-equivariantly identify k⊥ with the image V of σ. Now we can write

(2) g = k+ V.

Lemma 1: For X ∈ g, the critical points of the height function hX |L are pre-

cisely the zeros of the vector field σ(X) ∈ V .

Proof. A point q ∈ L is a critical point of hX |L if and only if X is perpendicular

to TqL. Given v ∈ TqL, there exists Y ∈ g such that Y ∗
q = v and then

ωq(X
∗
q , v) = 〈[X,Y ], q〉 = 〈X, [Y, q]〉 = 〈X, v〉. Now q is a critical point of

hX |L if and only if ωq(X
∗
q , TqL) = 0. Since L is Lagrangian, this implies that

X∗
q ∈ TqL, as desired.

Let ϕ : L → V be the restriction of the orthogonal projection g → V .

We elaborate on an idea of Oh, use the previous lemma to translate the tight
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Lagrangian property of L to the taut property of ϕ(L), and apply known results

to the latter.

Proposition 1: The map ϕ : L → V is a K-equivariant full embedding.

Moreover, if L is tight Lagrangian in M then ϕ(L) is a taut submanifold of the

Euclidean space V ; the converse holds in the case G coincides, up to covering,

with the identity component of the isometry group of M .

Proof. Since (2) is a reductive decomposition, it is clear that ϕ isK-equivariant.

The moment map of the restricted K-action on M is πk ◦ μ, where πk : g → k

is the orthogonal projection; since L is a K-invariant Lagrangian submanifold,

we have

πk ◦ μ(L) = η,

where η is a constant central element of k. Denote by πV : g → V the orthogonal

projection. Then

(3) μ|L = (πk + πV ) ◦ μ|L = η + ϕ.

Since μ|L is the inclusion into g, this shows that ϕ is an embedding.

If ϕ : L → V is not full, then ϕ(L) is contained in an affine hyperplane of

V , namely, 〈ϕ(q), ζ〉 = 〈q, ζ〉 is a constant for every q ∈ L and some nonzero

ζ ∈ V . This implies that the height function hζ is constant on L and thus, by

Lemma 1, σ(ζ) is everywhere zero, namely ζ ∈ k, a contradiction to k∩V = {0}.
This proves that ϕ : L → V is full.

Recall that ϕ : L → V is by definition a tight embedding if and only if

every height function hX |ϕ(L) for X ∈ V which is a Morse function is also

perfect, i.e., has the minimum number of critical points allowed by the Morse

inequalities [CC97]. By Lemma 1, this is equivalent to X∗|L having a number

of zeros equal to the sum of Z2-Betti numbers of L for generic X ∈ V . Since

such X are the infinitesimal generators of one-parameter groups of isometries of

M , the latter condition follows from the tightness of L in M , and is equivalent

to it in case g coincides with the Lie algebra of all isometries of M .

Finally, note that M is a G-orbit so it is contained in a round sphere of g.

By (3) also ϕ(L) is contained in a round sphere of V . A submanifold con-

tained in a round sphere in a Euclidean space is tight if and only if all distance

functions are perfect Morse functions, namely, if and only if it is taut [CC97].

Furthermore, in this situation the set of critical points of a distance function will

also occur as the set of critical points of a height function, and vice versa.
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Remark 2: It follows from (3) that L ⊂ V if k is centerless.

Remark 3: If K is a symmetric subgroup of G, then its orbits in V are taut

submanifolds (see, e.g., [GT03]). Thus it easily follows from Proposition 1 that

real forms of Hermitian symmetric spaces of compact type are locally tight; we

omit the details. Note that this result already follows from the work of Takeuchi

and and Kobayashi [TK68]. Moreover, it has been recently proved by Tanaka

and Tasaki that those real forms are indeed globally tight [TT12].

Recall that the Chern–Lashof theorem [CL57] implies that a taut and sub-

stantial smooth embedding of a Z2-homology sphere into an Euclidean sphere

must be round and have codimension one (see also [NR72]). Hence:

Corollary 1: If L is a compact tight Lagrangian Z2-homology sphere, then

ϕ(L) is a codimension one round sphere in V . In particular

dimV = dimL+ 1.

4. The Ohnita–Gotoh formula

Keep the notation from the previous two sections and assume for the moment

that L is an arbitrary compact Lagrangian submanifold of M . We introduce

the subspace l of m corresponding to TpL. The G-invariant Riemannian metric

on M corresponds to an Ad(H)-invariant inner product in m; let l⊥ be the

orthogonal complement of l in m. Also, denote the normalizer subalgebra of

l in h by n.

The following proposition elaborates on results by Ohnita [Ohn87] and Go-

toh [Got99].

Proposition 2: We have

(4) dim V ≥ dimL+ dim h− dim n.

Moreover, if equality holds then L is homogeneous under the action of K and

n ⊂ k ∩ h.
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Proof. Throughout we identify TpL ∼= l and νpL ∼= l⊥ whenever clear from

context. We consider the diagram

(5)

g
Ψ=Ψ1⊕Ψ2 � l⊥ ⊕Hom(l, l⊥)

V

σ

�

Φp

� νpL⊕Hom(TpL, νpL)

∼=
�

where Ψ1 : g → l⊥ is the projection with respect to the vector space direct sum

decomposition g = h+ l+ l⊥, the map Ψ2 : g → Hom(l, l⊥) is given by

Ψ2(X)(Y ) = (∇Y ∗X∗
m)|⊥p + [Xh, Y ]⊥ −B(Xl, Y ),

where B : l× l → l⊥ is the second fundamental form of L in M at p, and

Φp(η) = (ηp,∇⊥η|p)

for X ∈ g, Y ∈ l and η = (X∗|L)⊥ ∈ V .

The commutativity of diagram (5) follows from σ(X)|p = (X∗
p )

⊥ and

(6) (∇Y ∗X∗
m)

⊥|p + [Xh, Y ]⊥ −B(Xl, Y ) = ∇⊥
Y ∗σ(X)|p

for X ∈ g and Y ∈ l. In turn, we check (6) as follows:

(∇Y ∗X∗
m)

⊥|p =(∇Y ∗X∗)⊥|p − (∇Y ∗X∗
h)

⊥|p
=(∇Y ∗(X∗)�)⊥|p + (∇Y ∗(X∗)⊥)⊥|p − (∇Y ∗X∗

h)
⊥|p

=B(Xl, Y ) +∇⊥
Y ∗σ(X)|p − (∇Y ∗X∗

h)
⊥|p.

Finally, the result follows from the formula

(∇W∗U∗)|p = [U,W ]∗p

for U ∈ h and W ∈ m, which is easily proved using (7.27) in [Bes87] and the

fact that ad(U) ∈ End(m) is skew-symmetric with respect to the metric in m.

It follows from the commutativity of diagram (5) and the surjectivity of σ

that im(Ψ) = im(Φp) and thus

(7) dimV ≥ dim im(Φp) = dim im(Ψ).
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It is obvious that Ψ(l⊥) ∩Ψ(h+ l) = {0}. Therefore

(8)

dim im(Ψ) =dimΨ(l⊥) + dimΨ(h+ l)

≥ dim l⊥ + dimΨ(h)

= dimL+ dim h− dimker(Ψ|h)
= dimL+ dim h− dim n,

proving (4).

In the case of equality in (4), we follow [Got99]. Use (7) and (8) to see that

Φp is injective and Ψ(h+ l) = Ψ(h). Now for given v ∈ TpL we can find X ∈ l

and Y ∈ h with X∗
p = v and Ψ(Y ) = −Ψ(X). Therefore σ(X + Y ) = 0,

namely, X + Y ∈ k. This proves that K acts transitively on L. Moreover,

n = ker(Ψ|h) ⊂ kerσ = k.

Corollary 2: If L is a compact tight Lagrangian Z2-homology sphere, then

L is homogeneous under K and n = k ∩ h is the isotropy subalgebra of k at p

and a codimension one ideal of h. Moreover, (g, k) is either a symmetric pair of

rank one or (g2, su(3)) or (so(7), g2).

Proof. We see that n � h by noting that ξ �∈ n. Indeed if [ξ, l] ⊆ l then

(9) 0 = ωp(TpL, TpL) = 〈[ξ, l], l〉,
which implies [ξ, l] = {0}, contradicting the facts that the centralizer of ξ in g

is h, and h ∩ l = {0}.
Further, it follows from Corollary 1 and Proposition 2 that dim n = dim h−1,

L is K-homogeneous and n ⊂ k∩h = kp. The reverse inclusion kp ⊂ n is obvious

and therefore n = k ∩ h.

It also follows from Corollary 1 that K acts on V with cohomogeneity one

and the last claim follows (see, e.g., [HPTT94, 3.12]).

5. End of the proof of Theorem 1

First we explain a standard construction which allows one to construct compact

tight Lagrangian submanifolds in suitable complex flag manifolds.

LetK be a connected symmetric subgroup of a compact connected semisimple

Lie group G and consider the decomposition g = k+ V into eigenspaces of the

involution. Any orbit of K on V , say L = Ad(K) · ξ for some ξ ∈ V , is called

a (generalized) real flag manifold. There is a natural “complexification” of L,
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namely, we next show that the adjoint orbit M = Ad(G) · ξ is a complex flag

manifold containing L as the connected component of the fixed point set of an

anti-holomorphic involutive isometry.

Since G is compact, it embeds into its complexification GC as a maximal

compact subgroup. The Lie algebra ofGC is gC = g⊗C and admits g0 = k+iV as

a non-compact real form; let G0 denote the corresponding connected subgroup

of GC and τ the associated conjugation of GC over G0.

Fix a maximal Abelian subalgebra a of iV containing a := iξ and consider the

restricted root decomposition g0 = Zk(a) + a+
∑

λ∈Σ g0,λ where Zk(a) denotes

the centralizer of a in k. Choose a positive restricted root system Σ+ ⊂ Σ so

that g0 = k + a + n is an Iwasawa decomposition, where n =
∑

λ∈Σ+ g0,λ. As

a homogeneous space, L = K/ZK(a), where ZK(a) is the centralizer of a in K

and its Lie algebra is

Zk(a) = Zk(a) +
∑
λ∈Σ+

λ(a)=0

kλ, where kλ = (g0,λ + g0,−λ) ∩ k.

It turns out that G0 acts on L. To see that, recall that a minimal parabolic

subalgebra of g0 is any subalgebra conjugated to p0,min = Zk(a) + a + n, and

a parabolic subalgebra of g0 is any subalgebra containing a minimal parabolic

subalgebra (see, e.g., [War72, §1.2.3 and 1.2.4]). Now

p0 := Zk(a) + a+ n+
∑
λ∈Σ+

λ(a)=0

g0,−λ

is a parabolic subalgebra of g0. The normalizer P0 of p0 in G0 is called a

parabolic subgroup. Let Θ be the set of simple restricted roots λ satisfying

λ(a) = 0, and let aΘ be the subspace of a that Θ annihilates. By Theorem 1.2.4.8

in [War72], P0 = MΘAN where A = exp(a), N = exp(n) and MΘ is the

centralizer ZK(aΘ) of aΘ in K (loc. cit., p. 73). Note that a is a generic element

in aΘ, so ZK(aΘ) = ZK(a). In particular, K ∩ P0 = MΘ = ZK(a). The

group K acts by left translations on G0/P0 with an orbit that is open (by

counting dimensions, since dim kλ = dim gλ) and closed (by compactness of K),

so K/ZK(ξ) = K/ZK(a) = K/K ∩P0 = G0/P0. This realizes the real flag L as

a G0-homogeneous space.

On the other hand, GC acts on M . Indeed, let tk be a maximal Abelian

subalgebra of Zk(a). Then s = tk + a is a Cartan subalgebra of g0, and sC is a
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Cartan subalgebra of gC with root system Δ and root decomposition

gC = sC +
∑
α∈Δ

gCα.

The roots are real valued on sR = itk + a, and we take a lexicographic order

that takes a before itk. The point is that a restricted root of the form λ = α|a
for α ∈ Δ is positive if and only if α ∈ Δ+. Now

p :=p0 ⊗ C

=Zk(a)
C + aC + nC +

∑
λ∈Σ+

λ(a)=0

g0,−λ ⊗ C

=

(
tCk +

∑
α|a=0

gCα

)
+ aC +

∑
α∈Δ+

α|a �=0

gCα +
∑

α∈Δ+

α|a �=0,α(a)=0

gC−α

= sC +
∑

α∈Δ+

gCα

︸ ︷︷ ︸
Borel subalgebra

+
∑

α∈Δ+

α(a)=0

gC−α

is a parabolic subalgebra of gC, since it contains a Borel subalgebra of gC. The

normalizer P of p in GC is called a parabolic subgroup of G. It is closed and

connected. As in the real case above, it follows (even easier) that G∩P = ZG(ξ)

(cf. [Wol69, Corollary 2.7]) and G/ZG(ξ) = G/G ∩ P = GC/P . This realizes

the complex flag M as a GC-homogeneous space.

The involution τ of GC stabilizes P so induces an involution τ̄ of M whose

connected component through the basepoint coincides with L [Wol69, Theo-

rem 3.6].

Consider the Kirillov–Kostant–Souriau invariant symplectic form on M de-

fined at ξ by

ωξ(X,Y ) = 〈[X,Y ], ξ〉
for X , Y ∈ TξM . Since τ preserves the Killing form of g and maps ξ to −ξ,

we see that τ̄ is antisymplectic and thus L is a Lagrangian submanifold of M .

Note that τ̄ is also antiholomorphic with respect to the complex structure J

on M given by the T -chamber containing ξ, and hence it is an isometry with

respect to the Kähler metric g induced by ω and J .

The real flag manifold L is called a real form of the complex flag manifold M

endowed with the Kähler metric g. In case L is already a complex flag manifold

viewed as a real flag manifold (namely, G0 is a complex semisimple Lie group
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viewed as a real Lie group), M can be identified with L×L̄, where L̄ is equipped

with the opposite complex structure and L sits in M as the diagonal.

Remark 4: Note that we can start with any real flag manifold and “complexify”

it to a complex flag manifold. Conversely, if we start with a complex flag GC/Q

and fix a real form G0, it is not always true that there is a G0-orbit in GC/Q

which is a real form; it is not true, for instance, for a full flag GC/B where

GC is a complex semisimple Lie group with Lie algebra gC, and B is a Borel

subgroup such that its Lie algebra contains the complexification of a maximally

split Cartan subalgebra tk + a of a real form g0, and a contains no regular

element of gC [Wol69, p. 1139]. On the other hand, if G0 is the Cartan normal

real form, we can always find a G0-orbit in GC/Q which is a real form.

As far as we know, real forms of complex flags manifolds other than Hermitian

symmetric spaces have not been explicitly classified (see [Wol69, Theorem 3.6],

though). Compare the next result with Remark 3.

Proposition 3: Consider the real form L of the complex flag manifold M

constructed above. Then L is a tight Lagrangian submanifold of M .

Proof. We need only prove the tightness. A symmetric space of compact type

splits into the direct product of irreducible symmetric spaces of compact type,

and the linear isotropy representation splits accordingly, so we may assume

G/K is irreducible.

Suppose first G/K is type of I, namely, G is simple. Since K is a symmet-

ric subgroup of G, its orbits in V are taut submanifolds [GT03]. If the pair

(g, h) is not listed in Theorem 2, Proposition 1 already implies that L is tight.

Otherwise, the center of h is one-dimensional and therefore M = G/H ad-

mits precisely one invariant complex structure up to biholomorphism and one

invariant compatible Kähler metric up to homothety. The complex manifold

M = G/H = GC/P can also be written as M = Q/H ′, where Q denotes the

connected group of all biholomophisms ofM and the space Q/H ′ is a Hermitian

symmetric space. The symmetric metric g̃ on Q/H ′ (unique up to homothety)

is also G-invariant and is a scalar multiple of g. This means that the subman-

ifold L is a real form of M also with respect to the symmetric metric g̃, and

therefore it is tight (see Remark 3).

In case G/K is of type II, M=L×L̄ (see above) and the proof is analogous.
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The case of interest for us is that in which (g, k) has rank one. Here L is a

sphere, umbilic in V , for ξ �= 0.

Conversely, we now proceed to the proof of Theorem 1 and examine to which

extent the above construction supplies the possible examples. So let M = G/H

and L be as in the statement of the theorem and write g = k+V as in section 3.

We view M as the adjoint orbit through ξ ∈ g and assume ξ ∈ L. Corollary 2

says that L is homogeneous under K, h = kξ ⊕ u(1) and (g, k) is a symmetric

pair of rank one or one of two other pairs.

Note that if k is centerless, then we must have ξ ∈ V by Remark 2; if,

in addition, the dimension of the center of h is one, then ξ lies in the u(1)-

summand of h and the Kähler structure on M is unique, up to biholomorphic

homothety. This is the situation for the symmetric pairs (so(n+ 2), so(n+ 1))

(n ≥ 3), (sp(n+ 2), sp(1) ⊕ sp(n+ 1)) (n ≥ 1) and (f4, so(9)) (in these cases

(g, h) is not listed in Theorem 2), for which the construction above yields the

examples described in parts (a), (d) and (e) in the statement of the theorem.

In case (g, k) = (g2, su(3)), the center of su(3) is zero and that of h = u(2) is

one-dimensional, so we also must have ξ ∈ V . Since su(3) ⊂ g2 is spanned by

the long roots of g2, h is the centralizer of a short root and thus M = G2/U(2)

is again the quadric Q5 = SO(7)/SO(2)× SO(5) and L ∼= SU(3)/SU(2) ∼= S5.

In case (g, k) = (so(7), g2) again ξ ∈ V , so h ∼= u(3) is the centralizer of a short

root of so(7). It is known that M = SO(7)/U(3) ∼= SO(8)/U(4) and an outer

automorphism τ of so(8) induces a diffeomorphism between M and, again, the

quadric Q6 = SO(8)/SO(2)× SO(6). Since G2 acts with cohomogeneity one on

SO(7)/U(3) [Kol02, p. 573], G2 and SO(7) share the same orbits in Q6 and L

is congruent to the standard real form S6.

The last case we need to consider is (g, k) = (su(n+ 1), s(u(1) ⊕ u(n))).

This case is somewhat more involved because the center of k is non-trivial and

h ∼= u(1) ⊕ u(1) ⊕ su(n− 1) has a center of dimension bigger than one. We

distinguish between two cases, namely, n ≥ 3 and n = 2 (the case n = 1 is

trivial and corresponds to the item (f) in Theorem 1).

(a) n ≥ 3. The flag manifold M is known to admit precisely two inequivalent

SU(n+ 1)-invariant complex structures (see, e.g., [Nis84]). We note that the

tangent space TξM splits under the isotropy representation of

H = S(U(1)×U(1)×U(n− 1))
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as the sum
⊕3

i=1 Vi where Vi are mutually inequivalent complex H-submodules

with dimC V1 = 1 and dimC V2 = dimC V3 = n− 1. It is relatively easy to apply

the machinery of section 2 to show that the two inequivalent invariant complex

structures J0, J1 on M can be described as follows (compare [BH58, §13.9]): if
(u, z, w) ∈ ⊕3

i=1 Vi, then Jα(u, z, w) = (iu, iz, (−1)αiw) for α = 0, 1.

We now consider the standard SU(n+ 1)-equivariant fibration π : M → W ,

where W denotes the complex Grassmannian

Gr2(C
n+1) = SU(n+ 1)/S(U(2)×U(n− 1)).

It is clear that the projection π is holomorphic when we endow M with the

complex structure J0 and W with its standard complex structure JW as a Her-

mitian symmetric space. On the other hand, the spaceW is also a homogeneous

quaternion-Kähler manifold, a so-called Wolf space, endowed with an invariant

quaternion Kähler structure Q, namely a rank three subbundle Q ⊂ End(TW )

locally spanned by three local complex structures {I, J,K} with IJK = −Id.

It is well known that JW is not even a local section of Q (see, e.g., [Bes87,

14.53(b)]) and therefore (M,J1) is biholomorphic to the twistor space Z of W .

Lemma 2: If M has an invariant Kähler structure (g, J) admitting a compact

tight Lagrangian Z2-homology sphere L, then J is equivalent to J1 and g is

Kähler-Einstein, i.e., (M, g, J) is biholomorphically homothetic to the twistor

space of W .

Proof. We know there is a subgroup K ⊂ SU(n+ 1) isomorphic to U(n) which

acts transitively on L. We claim that there exists v ∈ Cn+1, v �= 0, such that

K = {g ∈ SU(n+ 1)| gv ∈ C∗v}. Indeed we first note that K acts reducibly on

Cn+1 because otherwise the center of K ⊂ SU(n+ 1) would act as a multiple of

the identity by Schur’s Lemma and therefore it would be finite. The claim now

follows from the fact that any irreducible representation of SU(n) has dimension

at least n.

Note that the semisimple part of H is contained in K, and non-trivial because

n ≥ 3. Therefore v ∈ Span{e1, e2}, where {e1, . . . , en+1} is the canonical basis

of Cn+1. Moreover, H is not contained in K, so v �∈ Ce1 and v �∈ Ce2. This

implies that

H ∩K = {(z, z, A) ∈ S(U(1)×U(1)×U(n− 1))}.
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The isotropy representation of H restricted to H ∩K preserves the subspaces

V2, V3 endowed with the invariant complex structure J and it is of real type on

V2 ⊕ V3. We can suppose that J is either J0 or J1 and therefore (V2, J) and

(V3, J) are either equivalent or dual to each other as H ∩ K-modules. Since

the center of H ∩K acts as a scalar multiple of the identity on V2 ⊕ V3 and it

is of real type, we see that (V2, J) and (V3, J) are dual to each other and thus

J = J1.

The Kähler metric g induces a J-Hermitian scalar product on
⊕3

i=1 Vi such

that this is an orthogonal decomposition. We denote by gi the restriction of

g on Vi for i = 1, 2, 3. As H ∩ K-modules, we can write V3 = V ∗
2 and

g3 = α · g∗2 , where α ∈ R+ and g∗2 is the Hermitian metric induced by g2 on

V ∗
2 . We may assume that the H ∩K-invariant real form  of V2 ⊕ V ∗

2 is given

by  = {(v, v∗)| v ∈ V2}, where v∗ ∈ V ∗
2 is the dual of v ∈ V2 with respect

to g2. Writing the condition that  is Lagrangian relative to the metric g, we

immediately see that α = 1. This completely determines the metric by the

Kähler condition (see, e.g., [WG68, Theorem 9.4(2)]) and it turns out that the

projection π : (M, g) → W is a Riemannian submersion when we choose a

suitable multiple of the symmetric metric on W . This means that the metric g

is (up to a multiple) the standard Kähler–Einstein metric on the twistor space

(see, e.g., [Bes87, 14.80]).

Now Lemma 2 shows that the standard construction described above provides

the twistor spaceZ with a tight Lagrangian sphere L ∼= U(n)/U(n− 1) ∼= S2n−1.

It is interesting to remark that L coincides with a natural lift in Z of a totally

complex projective space CPn−1 ⊂ W [ET05].

(b) n = 2. The flag manifold M is the full flag manifold SU(3)/T 2 which

admits only one invariant complex structure J , up to equivalence. The standard

construction shows that M , endowed with a suitable invariant Kähler metric

g, admits a tight Lagrangian sphere L ∼= S3 which is an orbit of a subgroup

K ∼= U(2) of SU(3) and a connected component of the fixed point set of an

antiholomorphic isometry τ . Arguments like those in the proof of Lemma 2

show that g is Kähler–Einstein.

We are left with proving that the tight Lagrangian spheres are unique up

to the G-action. This is clear for the real form Sn in the quadric Qn, so we

will focus on the remaining cases. If L′ is another tight Lagrangian sphere, we

know that L′ is homogeneous under the action of a subgroup K ′ with (G,K ′)
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a symmetric pair of rank one. This implies that K ′ is unique up to conjuga-

tion and we can suppose that (G,K ′) = (G,K), where (G,K) is one of the

standard pairs (SU(n+ 1),U(n)), (Sp(n+ 1), Sp(1) × Sp(n)) or (F4, Spin(9)),

respectively. Therefore it is enough to show that the standard subgroup K

has a unique orbit which is a Lagrangian sphere, and this follows from [BG08,

Theorem 1.2].
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