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ABSTRACT

We obtain the expected asymptotic formula for the number of primes

p < N = 2n with r prescribed (arbitrary placed) binary digits, provided

r < cn for a suitable constant c > 0. This result improves on our earlier

result where r was assumed to satisfy r < c
(

n
log n

)4/7
.

1. Summary

This paper is a follow up on [B1]. We establish the following stronger statement.

Theorem: Let N = 2n, n large enough, and A ⊂ {1, . . . , n− 1} such that

(1.1) r = |A| < cn

(where c is an absolute constant). Then, considering binary expansions x =∑
j<n xj2

j (x0 = 1 and xj = 0, 1 for 1 ≤ j < n) and assignments αj for j ∈ A,

we have

(1.2) |{p < N ; for j ∈ A, the j-digit of p equals αj}| = (1 + o(1))2−r N

logN
.

In [B1], the corresponding result was proven under the more restrictive con-

dition

(1.3) r < c
( n

logn

)4/7

.
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We also refer the reader to [B1], [B2] for some background and motivation. In

particular, the paper of Harman and Katai [H-K] and complexity issues for the

Moebius function and the primes, raised by G. Kalai, were seminal to those

investigations.

The strategy followed here is roughly similar to the one in [B1], except for the

fact that the additive Fourier spectrum (together with Vinogradov’s estimate) is

only used to bound the contribution of the minor arcs. Also, the estimates on the

additive Fourier transform established in §2 are significantly stronger than those

used in [B1]. In the treatment of the major arcs, we switch immediately to mul-

tiplicative characters (see (3.8) below) and are led to study correlations of both

the von Mangoldt function Λ and the given function f = 1[x<N ;xj=αj for j∈A]

with multiplicative characters. This issue for Λ is classical and depends on

Dirichlet L-function theory. We rely here on the same basic facts that were

used in [B1]. As in [B1], we subdivide primitive characters X into two classes

G and B (‘good’ and ‘bad’) depending on the zero-free region of L(s,X ). It

turns out that non-trivial bounds on the multiplicative spectrum of f are only

required if X ∈ B (which is a small set of characters). In order to establish

those bounds, we rely again on estimates on the additive Fourier transform of

f . Also, as in [B1], we are invoking the Gallagher–Iwaniec estimate on the im-

proved zero-free region of L(s,X ) for X (mod q) with q a power of 2, though the

precise quantitative form of [I] (which was responsible for the condition (1.3))

is no longer relevant here. Basically any statement that for q as above, L(s,X )

has a zero-free region 1−σ < c log log qT
log qT , |γ| < T , where ρ = σ+iγ, would suffice

for our purpose. This fact ensures then that no character X ∈ B has conductor

which is a power of 2, which is essential to our analysis. Note that possible

Siegel zeros in any case forces us to introduce the class B, even if r were further

reduced. As in [B1], one needs to evaluate sums of the form

(1.4)
∑

x∈I,q0|x
f(x)

and

(1.5)
∑

x∈I,q0|x
X (x)f(x)

with I ⊂ {1, . . . , N} intervals of a certain size and X ∈ B, X (mod q), (q, q0) = 1.

The main technical innovation compared with [B1] is a more efficient strategy to
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estimate these sums, leading to the required information under a less restrictive

hypothesis on r.

The above theorem may be seen as a relative of Linnik’s result on the least

prime in an arithmetic progression. One key difference is that possible Siegel

zeros do not affect the final statement (though they technically play a role in

the argument).

Our presentation is completely self-contained, apart from basic number the-

oretic results, and we will not refer to [B1].

2. Preliminaries

For x ∈ {1, 2, . . . , 2n − 1}, write x =
∑

0≤j<n xj2
j with xj = 0, 1.

Let

f(x) = 1[x<2n;xj=αj for j∈A] and N = 2n

where

A = {0 = j0 < j1 < . . . < jr} ⊂ {0, 1, . . . , n− 1}.
We assume

(2.1) r + 1 = |A| = ρn

with ρ > 0 bounded by a sufficiently small constant c > 0.

For λ ∈ R, denote

f̂(λ) = 2−n
2n−1∑
x=0

e2πiλxf(x) = 2−|A| ∏
j∈A

e2πiλαj2
j ∏
1≤j<n
j �∈A

1 + eiπλ2
j+1

2
.

Thus

(2.2) |f̂(λ)| = 2−|A| ∏
1≤j<n
j �∈A

| cosπλ2j |.

Lemma 1:

(2.3) 2r+1
2n−1∑
k=0

∣∣∣f̂( k

2n

)∣∣∣ < 2Cρ(log 1
ρ )n

for some constant C.
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Proof. By (2.2), the left side of (2.3) equals

(2.4)

2n−1∑
k=0

∏
1≤j<n
j �∈A

∣∣∣ cosπ k

2n−j

∣∣∣.

Writing k = k′ + 2n−j1�, 0 ≤ k′ < 2n−j1 , 0 ≤ � < 2j1 , we get

(2.4) =
∑

k′<2n−j1

∑
�<2j1

j1−1∏
j=1

∣∣∣ cosπ( k′

2n−j
+

�

2j1−j

)∣∣∣ ∏
j1<j<n
j �∈A

∣∣∣ cosπ k′

2n−j

∣∣∣.

Evaluate the inner sum with fixed k′ as

∑
�<2j1

j1−1∏
j=1

∣∣∣ cosπ( k′

2n−j
+

�

2j1−j

)∣∣∣ ≤max
θ

∑
�<2j1

j1−1∏
j=1

∣∣∣ cosπ 2j(�+ θ)

2j1

∣∣∣

=max
θ

{ ∑
�<2j1

2−j1

∣∣∣∣
2j1−1∑
x=0

e2πix2
−j1 (�+θ)

∣∣∣∣
}

≤max
θ

{ ∑
�<2j1

4

2j1‖ �+θ
2j1

‖+ 1

}
< Cj1

for some constant C. Hence

(2.4) < C(j1 − j0)
∑

k′<2n−j1

∏
j1<j<n
j �∈A

∣∣∣ cosπ k′

2n−j

∣∣∣

and we repeat the process with the k′-sum, replacing n by n− j1, j1 by j2 − j1

etc. It follows that

(2.5) (2.4) < Cr
r∏

s=1

(js+1 − js)

where we have set jr+1 = n. Since u ≤ 1
θ2

θu for u ≥ 0, θ ≥ 0,

(2.5) <
(C
θ

)r

2θn =
((C

θ

)ρ

2θ
)n

< 2Cρ(log 1
ρ )n

for an appropriate choice of θ, proving (2.3).

Lemma 2:

(2.6) 2r
∫ 1

0

|f̂(θ)|dθ < 2Cρ(log 1
ρ )n−n.
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Proof. Since f̂(θ) is a trigonometric polynomial with spectrum in {0,1,. . .,2n−1},

f̂(θ) = 2−n
2n−1∑
k=0

f̂
( k

2n

)
Dn

(
θ − k

2n

)

with Dn(θ) =
∑2n−1

k=0 e2πikθ the Dirichlet kernel. It follows from Lemma 1 that

2r
∫ 1

0

|f̂(θ)|dθ ≤ ‖Dn‖1 2Cρ(log 1
ρ )n−n < Cn2Cρ(log 1

ρ )n−n

proving (2.6).

Lemma 3: Let Q < 2n/100. Then

(2.7) 2r
∑

q<Q,q odd
1≤a<q,(a,q)=1

∣∣∣f̂(a
q

)∣∣∣ < QCρ log 1
ρ .

Proof. Take m such that

2m−1 ≤ Q2 < 2m.

Clearly there is 0 < j∗ < n − 2m so that the interval I = {j∗, . . . , j∗ +m− 1}
satisfies

(2.8) r′ = |A′| = |A ∩ I| < 2ρm.

We note that

2r
∣∣∣f̂(a

q

)∣∣∣ ≤ ∏
j∈I\A′

∣∣∣ cos πa2j
q

∣∣∣ = 2r
′∣∣∣ĝ(a2j∗

q

)∣∣∣
where

g = 1[x<2m;xj=αj+j∗ for j∈A′−j∗].

It follows then from (2.6), (2.8) that

(2.9) 2r
′
∫ 1

0

|ĝ(θ)|dθ < 2Cρ(log 1
ρ )m−m.

The set of points

F =
{a2j∗

q
(mod 1); q < Q, q odd, (a, q) = 1}

are clearly pairwise 2−m-separated. Write for ξ ∈ F

|ĝ(ξ)| ≤ 2m
∫
|θ−ξ|<2−m−1

|ĝ(θ)|dθ + 2m
∫
|θ−ξ|<2−m−1

|ĝ(θ)− ĝ(ξ)|dθ
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and

∑
ξ∈F

|ĝ(ξ)| ≤ 2m
∫ 1

0

|ĝ|+
∫ 1

0

|(ĝ)′|,

2r
′ ∑
ξ∈F

|ĝ(ξ)| � 2m+r′
∫ 1

0

|ĝ| < 2Cρ(log 1
ρ )m < Q2Cρ log 1

ρ ,

where we used Bernstein’s inequality and (2.9). This proves (2.7).

For small q, there is the following individual bond.

Lemma 4: Let 1 < q < n
1

10ρ and odd, (a, q) = 1. Then

(2.10) 2r
∣∣∣f̂(a

q

)∣∣∣ < 2−
√
n.

Proof. Clearly

(2.11) 2r
∣∣∣f̂(a

q

)∣∣∣ = ∏
1≤j<n
j �∈A

∣∣∣ cosπ2j a
q

∣∣∣ ≤ γ
1
2

n
� with � = [log2 q] + 1

where γ is an upper bound on

(2.12)
∏

0≤j<�
j �∈E

∣∣∣ cosπ2j a′
q

∣∣∣,

where (a′, q) = 1 and E ⊂ {0, 1, . . . , �− 1} satisfies |E| < 2ρ�.

Take 0 ≤ j∗ ≤ 2ρ� such that j∗ �∈ E and set 2−�′−1 ≤
∥∥∥2j∗ a′

q

∥∥∥ < 2−�′ ,

0 ≤ �′ ≤ �.

Then ∥∥∥2j a′
q

∥∥∥ ∼ 2j−j∗−�′ for 0 ≤ j − j∗ < �′ − 1.

If �′ > 10 + 2ρ�, we can find j such that �′ − 2ρ� ≤ j − j∗ < �′ − 1 and j �∈ E.

Then
∥∥2j a′

q

∥∥ � 2−2ρ�. Hence, in either case we find some 0 ≤ j < �, j �∈ E,

such that ‖2j a′
q ‖ > c2−2ρ� > cq−2ρ. It follows that

(2.12) ≤
∣∣∣ cosπ2j a′

q

∣∣∣ < 1− 1

2

∥∥∥2ja′
q

∥∥∥2 < 1− cq−4ρ.

Substituting in (2.11) gives the bound e
− cn

q4ρ log q and the Lemma follows.
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3. Minor arcs contribution

Let N = 2n. Write

(3.1)
∑
k≤N

Λ(k)f(k) =

∫ 1

0

S(α)Sf (α)dα,

denoting

(3.2) S(α) =
∑

Λ(k)e(kα)

and

(3.3) Sf (α) =
∑

f(k)e(kα) = Nf̂(α).

We assume f(k) = 0 for k even, since obviously k ≡ 1(mod2) is a necessary

condition for f to capture primes.

We fix a parameter B = B(n) which will be specified later, B at most a small

power of N .

The major arcs are defined by

(3.4) M(q, a) =
[∣∣∣α− a

q

∣∣∣ < B

qN

]
where q < B.

Given α, there is q < N
B such that

∣∣∣α− a

q

∣∣∣ < B

qN
<

1

q2
.

From Vinogradov’s estimate (Theorem 13.6 in [I-K])

(3.5)

|S(α)| < (q
1
2N

1
2 + q−

1
2N +N

4
5 )(logN)3

< C
( N√

B
+

N√
q
+N4/5

)
(logN)3.

Hence if q ≥ B,

(3.6) |S(α)| < C
N√
B
(logN)3.

Thus the minor arcs contribution in (3.1) is at most

(3.7) C
N√
B
(logN)3‖Sf‖1.

Since by (2.16)

(3.8) ‖Sf‖1 < 2−rNCρ log 1
ρ ,
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we take

(3.9) logB > 3Cρ
(
log

1

ρ

)
n

which takes care of the minor arcs contribution.

4. Major arcs analysis

Next, we analyze the major arcs contributions (q < B)

(4.1)
∑

(a,q)=1

∫

|α−a
q |< B

qN

S(α)Sf (α)dα.

Write α = a
q + β. Defining

τ(χ) =

q∑
m=1

χ(m)eq(m)

we have (see [D], p. 147)

(4.2) S(α) =
1

φ(q)

∑
χ

τ(χ)χ(a)

[ ∑
k≤N

χ(k)Λ(k)e(kβ)

]
+O((logN)2).

Assume χ is inducted by χ1 which is primitive (mod q1), q1|q. Then from [D],

p. 67

(4.3) τ(χ̄) = μ
( q
q1

)
χ̄1

( q
q1

)
τ(χ̄1)

which vanishes, unless q2 = q
q1

is square free with (q1, q2) = 1.

The contribution of χ in (4.1) equals

(4.4)

τ(χ)

φ(q)

∫

|β|< B
qN

[ ∑
k≤N

χ(k)Λ(k)e(kβ)

][ ∑
k<N

f(k)

( q∑
a=1

χ(a)eq(−ak)
)
e(−kβ)

]
dβ.

We have

(4.5)

q∑
a=1

eq(ak)χ(a) =
∑

(a,q)=1

eq(ak)χ1(a)

=

[ ∑
(a1,q1)=1

eq1(a1k)χ1(a1)

][ ∑
(a2,q2)=1

eq2(a2k)

]
X1(q2)

= χ1(k)τ(χ1)cq2(k)X1(q2),
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where

(4.6) cq2(k) =
μ
(

q2
(q2,k)

)
φ(q2)

φ
(

q2
(q2,k)

) .

From (4.3), (4.5), (4.6)

(4.7)

τ(χ)

φ(q)

[ q∑
a=1

χ(a)eq(−ak)
]
=

|τ(χ1)|2
φ(q1)

1

φ
(

q2
(q2,k)

) μ((q2, k))χ1(−k)

=
q1

φ(q1)

1

φ( q2
(q2,k)

)
μ((q2, k))χ1(−k).

Returning to (4.2), rather than integrating in β over the interval |β| < B
qN ,

we introduce a weight function

w
( qN
B
β
)

where 0 ≤ w ≤ 1 is a smooth bumpfunction on R such that w = 1 on [−1, 1],

supp w ⊂ [−2, 2] and

|ŵ(y)| < Ce−|y|1/2.

See [I] for the existence of such function.

(Note that this operation creates in (4.1) an error term that is captured by

the minor arcs contribution (3.7).)

Hence, substituting (4.7), (4.4) becomes

(4.8)
q1

φ(q1)

B

qN

∑
k1,k2<N

ŵ
( B

qN
(k1 − k2)

)
X (k1)Λ(k1)f(k2)

μ((q2, k2))

φ( q2
(q2,k2)

)
X1(k2)

and we observe that by our assumption on ŵ the k1, k2 summation in (4.8) is

restricted to |k1 − k2| < qN
B n3, up to a negligible error.

We first examine the contribution of the principal characters.

For X = X0, q1 = 1 and (4.8) becomes

(4.9)
B

qN

∑
k1,k2<N

ŵ
( B

qN
(k1 − k2)

)
Λ(k1)f(k2)

μ((q, k2))

φ( q
(q,k2)

)
.

Fixing k2, perform the k1-summation in (4.9). Writing

(4.10) ψ(x) = x−
∑

ζ(ρ)=0

|γ|<B2

xρ

ρ
+O

( x

B2
(log x)2

)
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for x > N
B and assuming also

(4.11) logB <
n

1000
,

partial summation, together with the usual zero-density and zero-free region

estimate, give

(4.9) =
∑
k≤N

f(k)
μ((q, k))

φ( q
(q,k) )

(4.12)

+O

{[ ∑
k≤N

f(k)

φ( q
(q,k) )

]
exp(−(logN)

1
2 )}.(4.13)

Let κ(q) be a function satisfying the following:

Assumption A: Let q0 < B be odd and square free. Then

(4.14)
∑

q0|k,k<N

f(k) = E[f ]
N

q0
+O(κ(q0)NE[f ]),

where E[f ] denotes the normalized average 2−r
∑

1≤x≤2r f(x).

Assuming q square-free (sf) and odd, (4.12) equals

∑
q′|q

μ(q′)
φ( q

q′ )

[ ∑
(q,k)=q′

f(k)

]
=

∑
q′|q

φ(q′)
φ(q)

μ(q′)
∑
q′′| q

q′

μ(q′′)
[ ∑
q′q′′|k
k<N

f(k)

]
,

and substituting (4.14) we obtain

N E[f ]
∑
q′|q

μ(q′)
φ(q/q′)

∑
q′′| q

q′

μ(q′′)
q′q′′

(4.15)

+O

(
N 2−r

∑
q′|q

φ(q′)
φ(q)

∑
q′′| q

q′

κ(q′q′′)
)
.(4.16)

Next,

(4.17)

(4.15) = N E[f ]
∑
q′|q

μ(q′)
φ(q/q′)

1

q′
∏
p| q

q′

(
1− 1

p

)

= 2NE[f ]
∑
q′|q

μ(q′)
q

=

⎧⎨
⎩
N E[f ] if q = 1,

0 otherwise.
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Summing (4.16) over q < B sf and odd, we have the estimate (setting q1 =

q′q′′)

(4.18)

2−rN
∑
q1<B
q1 sf

κ(q1)

[ ∑
q′′|q1,(q1,q2)=1

q2<B sf

1

φ(q′′)φ(q2)

]

< 2−rN(logB)2
[ ∑

q<B
q sf, odd

κ(q)

]
.

For q sf and even, set q = 2q1 and note that (4.12) equals

∑
q′|q1

μ(q′)
φ
(
q1/q′)

[ ∑
(q1,k)=q′

f(k)

]
,

and we proceed similarly as above with the same conclusion and q replaced by

q1.

The first factor in (4.13) contributes for

∑
q<B,q sf

∑
q′|q,q′ odd

1

φ( q
q′ )

∑
k≤N
q′|k

f(k)
(4.14)

≤ N2−r
∑

q′,q′′<B
q′,q′′ sf, q′ odd

1

φ(q′′)

( 1

q′
+ κ(q′)

)

< N2−r

[
(logB)2 + (logB)

( ∑
q<B

q sf, odd

κ(q)

)]
.(4.19)

Thus, from the preceding, the contribution of the principal characters equals

(4.20) 2E[f ]N + CN2−rn2

{ ∑
q<B

q sf, odd

κ(q)

}
+ CN2−rn2 exp(−n 1

2 ).

Next, consider non-principal characters, i.e., q1 > 1.

Estimate (4.8) by

(4.23)
q1

φ(q1)

B3

N
(4.21).(4.22) +O

( N

qB2

)

with

(4.21) = max
|I|∼ N

B3

∣∣∣∣
∑
k∈I

X (k)Λ(k)

∣∣∣∣
and

(4.22) =
∑
I

∣∣∣∣
∑
k∈I

f(k)
μ((q2, k))

φ( q2
(q2,k)

)
X̄1(k)

∣∣∣∣,
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where I runs over a partition in intervals of size ∼ N
B3 .

Obviously

(4.22) ≤
∑
k≤N

f(k)

φ( q2
(q2,k)

)

and summing over q2 < B, q2 sf, gives the estimate (4.19).

The factor (4.21) is bounded by

(4.24) max
N
B2 <x<N

|ψ(x+ h,X )− ψ(x,X )| with h ∼ N

B3
.

Choose a parameter B < T < N
1

100 and denote by N(α, T ;X ) the number of

zeros of L(s,X ) such that

α ≤ σ ≤ 1, |t| ≤ T (s = σ + it).

Then (see [Bom], Theorem 14)

(4.25) N(α) =
∑
q≤Q

∑∗

χ(mod q)

N(α, T ;χ) < C(TQ)8(1−α),

where
∑∗

refers to summation over primitive characters.

Let χ be a non-principal character. From Proposition 5.25 in [I-K], for T ≤ x

(4.26) ψ(x, χ) = −
∑

L(ρ,χ)=0
|γ|≤T

xρ − 1

ρ
+O

( x
T
(log xq)2

)
,

where ρ = β + iγ. We denote

η = η(χ) = min(1− β)

with min taken over all zeros ρ of L(s, χ) with |γ| ≤ T .

Taking T = B5, we get from (4.26) that

(4.27) (4.24) ≤ h
∑

L(ρ,X1)=0

|γ|<B5

1

x1−β
+O

(Nn2

B5

)
.

At this point, we fix some η∗ = η∗(n) and subdivide the primitive characters

X1 in classes G and B depending on whether η ≥ η∗ or η < η∗.
Recall that q ≤ B.
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Summing (4.27) over q1, X1(mod q1) primitive and X1 ∈ G, we obtain from

the density bound (4.25).

(4.28)∑
X1∈G

1

x1−β
=− 2

∫ 1−η∗

1
2

1

x1−α
dN(α) ≤ 2x−

1
2N

(1
2

)
+ 2 logx

∫ 1
2

η∗

(B48

x

)τ

dτ

<
B21

N
1
2

+N− 1
2η∗ < O(N− 1

2η∗).

Hence, the contribution to (4.23) of the X1 ∈ G may be estimated by

(log logB)
B3

N

[ N
B3

N− 1
2 η∗ +

Nn2

B4

]
.(4.19)

<n3(N− 1
2η∗ + n2B−1)

(
1 +

∑
q<B

κ(q)

)
2−rN.(4.29)

Next, we consider the contribution of the X1 ∈ B. Again from (4.25)

(4.30) |B| � (TB)8η∗ ≤ B48η∗ .

Use the trivial bound N
B3 on (4.21) for X1 ∈ B. We get the following estimate

for the B-contribution to the first term of (4.23):

(4.31)
∑
X1∈B

∑
q2<B
q2 sf

(4.22).

Introduce another parameter α(q1, q0) satisfying the condition.

Assumption B: Given q0, q1 < B, (q0, q1) = 1 with q0 sf and odd, χ1(mod q1)

primitive, χ1 ∈ B,

(4.32)

∣∣∣∣
∑

k∈I,q0|k
f(k)χ1(k)

∣∣∣∣ < α(q1, q0)

[∑
k∈I

f(k) + |I|2−r

]

holds, whenever I ⊂ [1, N ] is an interval of size ∼ N
B3 .

Hence

(4.22) =
∑
I

∑
q′2|q2
q′2 odd

1

φ( q2q′2
)

∣∣∣∣
∑

k∈I,(k,q2)=q′2

f(k)χ1(k)

∣∣∣∣

≤ N2−r
∑
q′2|q2
q′2 odd

1

φ( q2q′2
)

∑
q′′2 | q2

q′2
,q′′2 odd

α(q1, q
′
2q

′′
2 )



178 J. BOURGAIN Isr. J. Math.

and summation over sf q2 < B gives

(4.33)

N2−r
∑
q3<B

q3 sf, odd

α(q1, q3)
∑

q′′2 |q3,q′′′2 <B

q′′′2 sf,(q′′′2 ,q3)=1

1

φ(q′′2 )φ(q′′′2 )

< Cn2N2−r

[ ∑
q3<B

q3 sf, odd

α(q1, q3)

]
.

By (4.30), this gives the following bound on (4.31):

(4.34) n2B48η∗N2−r max
X∈B

[ ∑
q0<B,q0 sf, odd

α(q1, q0)

]
.

In the next section, we will establish bounds on

(4.35)
∑
q<B

q sf, odd

κ(q)

and

(4.36)
∑
q0<B

q0 sf, odd

α(q1, q0).

In particular, (4.35) < O(1) so that a choice

(4.37) η∗ = O
( logn

n

)

suffices for (4.29) to be conclusive.

It is important to note that for this choice of η∗, no X1 ∈ B has a conductor

q1 which is a power of 2. Indeed, recalling the Gallagher–Iwaniec result (see

[H-K], Lemma 5), if X1 is primitive (mod 2m), we obtain the following improved

zero-free region:

(4.38) η(X1) > c[(log 2mT )(log log 2mT )]−
3
4 > c(logB log logB)−

3
4 > η∗

(recall also that Siegel zeros are not a concern).

5. Further estimates

It remains to obtain suitable bounds on κ(q) and α(q1, q0) introduced in As-

sumptions A and B.
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Write for q < B, q sf and odd

∑
q|k

f(k) =
N

q
E[f ] +

1

q

q−1∑
a=1

∑
k

f(k)e
(ak
q

)

and hence

(5.1) κ(q) ≤ 2r

q

q−1∑
a=1

∣∣∣f̂(a
q

)∣∣∣.

It follows that (4.35) may be bounded by

(5.2) 2r
∑

1<q<B
q sf, odd

1

q

q−1∑
a=1

∣∣∣f̂(a
q

)∣∣∣ ≤ logB
∑

1<q<B
q sf, odd
(a,q)=1

2r

q

∣∣∣f̂(a
q

)∣∣∣.

Consider dyadic ranges q ∼ Q < B. Lemma 3 provides an estimate QCρ(log 1
ρ )−1

< Q− 1
2 (for ρ small enough) for the corresponding contribution to the sum in

the r.h.s. of (5.2), while, for Q < n
1

10ρ , Lemma 4 gives an estimate Q2−
√
n. It

follows that

(5.3) (5.2) < n.n− 1
20ρ + n

1
10ρ+1e−

√
n < 2.n− 1

20ρ+1.

Next, consider Assumption B. Observe first that we can assume (by subdivision)

I to be of the form [0, 2m − 1] + u2m with m = [n2 ] say.

Fix u ∈ {0, 1, . . . , 2n−m − 1} such that uj = αj+m for j +m ∈ A and define

(5.4) f1(x) = f(x+ u2m) for x ∈ {0, . . . , 2m − 1}.

Thus

f1 = 1[x<2m;xj=αj for j∈A∩[1,m−1]].

It clearly suffices to establish inequalities (4.32) with f |I replaced by f1, pro-

vided X1(k) is replaced by X1(k + u2m). This basically leads to evaluate

(5.5)
∑

k<N,k+b≡0(mod q0)

f(k)X1(k + b)

without taking the restriction k ∈ I into consideration.
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Let us first assume q1 > 1 is odd. Write (5.5) as

(5.6)

1

q0

q0−1∑
a0=0

∑
k

f(k)e
(a0
q0

(k + b)
)
X1(k + b)

=
N

q0

q0−1∑
a0=0

∑
(a1,q1)=1

X̂1(a1)e
(
b
(a0
q0

+
a1
q1

))
f̂
(a0
q0

+
a1
q1

)

with

X̂1(a1) =
1

q1

q1−1∑
x=0

X1(x)e
(
− xa1

q

)
.

Hence

|(5.6)| ≤ N

q0
√
q1

q0−1∑
a0=0

∑
(a1,q1)=1

∣∣∣f̂(a0
q0

+
a1
q1

)∣∣∣,
and summing over 1 ≤ q0 < B, q0 sf, odd, (q0, q1) = 1, we obtain a bound

(5.7)

N√
q1

logB
∑

1≤q0<B,q0 sf, odd,(q0,q1)=1
(a0,q0)=1,(a1,q1)=1

1

q0

∣∣∣f̂(a0
q0

+
a1
q1

)∣∣∣

≤N.n
∑

1<q<B2,q sf, odd
(a,q)=1

1√
q

∣∣∣f̂(a
q

)∣∣∣.

By a similar estimate as used for (5.2), we get for ρ small enough

(5.3) < n− 1
30ρ+1N.2−r

and a bound

(5.8) (4.36) < n− 1
30ρ+1.

If q1 is even, write q1 = 2νq′1, (q
′
1, 2) = 1 and q′1 > 1 since q1 is not a power of 2.

Let X1 = X0X ′
1 with X0(mod 2ν) and X ′

1 primitive (mod q′1). Write k = z+2νx

with z ∈ {0, 1, . . . , 2ν − 1}, x < 2n−ν and

(5.9) (5.5) =

2ν−1∑
z=0

X0(b+ z)
∑

x<2n−ν

b+z+2νx≡0(mod q0)

X ′
1(b + z + 2νx)fz(x)

denoting

(5.10) fz(x) = f(z + 2νx).
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Thus

(5.11) |(5.9)| ≤
2ν−1∑
z=0

max
b′

∣∣∣∣
∑

x<2n−ν

x+b′≡0(mod q0)

X1(b
′ + x)fz(x)

∣∣∣∣.

Estimate the inner sum in (5.11) similarly to (5.5), with f replaced by fz, q1 by

q′1, N by 2−νN . This gives a bound

(5.12) 2n−ν
E[fz].(n− ν)−

1
30ρ+1.

Summation of (5.12) over z < 2ν implies that

(5.11) < Cn− 1
30ρ+1N2−r

so that (5.8) holds in general.

Summarizing, we have proved that

(5.13)
∑
q<B

q sf, odd

κ(q) < Cn− 1
20ρ+1

and also

(5.14)
∑

q0<B,q0 sf, odd
(q0,q1)=1

α(q1, q0) < Cn− 1
30ρ+1.

6. Conclusion

Recalling (4.20), (4.23), (4.29), (4.34) and inserting the estimates (5.13), (5.14),

we find that

(6.1)∑
x<N

Λ(x)f(x)=2E[f ]N+NE[f ]O(n− 1
20ρ+3+n2e−

√
n+2rB−1

+ n3N− 1
2 η∗ + n5B−1 + n− 1

30ρ+3B48η∗).

Recall also conditions (3.9), (4.11) on B, i.e. B = Nu for some sufficiently

small u > 0.

It remains to choose η∗ ∼ logn
n appropriately and let ρ be small enough to

conclude the Theorem.
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