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ABSTRACT

We give an effective proof of a theorem of Dani and Margulis regarding

values of indefinite ternary quadratic forms at primitive integer vectors.

The proof uses an effective density-type result for orbits of the groups

SO(2, 1) on SL(3,R)/ SL(3,Z).

1. Introduction

1.1. In 1929, A. Oppenheim conjectured that if Q is an indefinite quadratic

form in d ≥ 5 variables then

(1.1a) inf{|Q(v)| : v ∈ Zd primitive} = 0.
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For rational indefinite forms (1.1a) is equivalent to the classical Meyer theorem

that a rational indefinite quadratic form in d ≥ 5 variables represents 0 over

Z nontrivially. Let us remember that for d = 3, 4 there are examples of ratio-

nal indefinite quadratic forms in d variables which do not represent 0 over Z

nontrivially.

Later it was realized that if Q is an irrational form (i.e., is not proportional

to a quadratic form with rational coefficients) then (1.1a) should remain true

even if d = 3, 4. On the other hand, it is well-known that (1.1a) is false for

many indefinite irrational binary quadratic forms. Note that the conjecture

becomes easier as d gets larger: by restricting a quadratic form in d variables

to an appropriate d′ < d dimensional rational subspace it is easy to deduce the

conjecture for d variables from the case of d′ variable.

1.2. Partial results for this conjecture were proved using analytical methods,

notably the Hardy–Littlewood Circle Method and its variants; in particular

Davenport and Heilbronn [DH] established the conjecture for indefinite diagonal

forms Q(x1, . . . , x5) =
∑

i λix
2
i , where λ1, . . . , λ5 are nonzero real numbers not

all of the same sign. For the more difficult case of the general forms progress

was slower; combining results by Birch, Davenport and Ridout the Oppenheim

Conjecture was established for forms in d ≥ 21 variables by the late 1950’s, and

despite some improvement this was still the state-of-the-art in the mid 1980’s.

1.3. In the mid-seventies, M. S. Raghunathan made the insightful observation

that the Oppenheim Conjecture would follow from a conjecture about closures

of orbits of unipotent subgroups. The Raghunathan conjecture states that if G

is a connected Lie group, Γ a lattice in G (that is, Γ is a discrete subgroup such

that G/Γ carries a G-invariant probability measure), and U a connected Ad-

unipotent subgroup of G (that is, Adu is a unipotent linear transformation for

any u ∈ U), then for any x ∈ G/Γ there exists a closed connected subgroup L =

L(x) such that the closure of the orbit U.x coincides with L.x (unipotent orbit

rigidity). In a more general form of Raghunathan‘s conjecture, the connected

subgroup U is not necessarily unipotent but generated by unipotent elements.

1.4. Inspired by the above-mentioned observation of M. S. Raghunathan, the

second-named author proved the Oppenheim Conjecture in full generality (i.e.,

for d ≥ 3) in the mid-eighties [M3, M2]. The corresponding dynamical state-

ment, which is equivalent to the Oppenheim Conjecture and proved in [M3, M2],
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says that any bounded orbit of H= SO(2, 1) in SL(3,R)/SL(3,Z) is closed; it

is interesting to note that in implicit form this equivalence already appeared in

a paper by Cassels and Swinnerton-Dyer[CSD]. This dynamical statement can

be considered as a special case of Raghunathan’s conjecture in its more general

form given above.

In [DM1] Dani and Margulis proved that the orbits of H in G/Γ for G =

SL(3,R) and Γ = SL(3,Z) are either closed or dense. In [DM2] the same authors

proved the Raghunathan conjecture also in the more involved case where U is

a one-parameter unipotent subgroup of H acting on G/Γ.

1.5. In full generality, the Raghunathan conjecture was proved in 1990 by Rat-

ner [R5] using a different approach. The proof in [R5] is based on an equidis-

tribution theorem for unipotent flows, also proved in [R5], and uses the count-

ability of a certain set of subgroups of G depending on Γ. The equidistribution

theorem can be considered as the quantitative strengthening of the unipotent

orbit rigidity for the one-parameter unipotent subgroup, and it says that if

{ut : t ∈ R} is a one-parameter Ad-unipotent subgroup of G and x ∈ G/Γ

then there exists a homogeneous probability measure μx on G/Γ with x in its

support such that

1

T

∫ T

0

f(ut.x)dt →
∫

f(y)dμx(y) as T → ∞

for every bounded continuous function f on G/Γ (a measure μ on G/Γ is called

homogeneous if there exists a closed subgroup F of G such that μ is F-invariant

and suppμ = F.y for some y ∈ G/Γ). This equidistribution theorem was

conjectured by Dani in [D2] for the case G/Γ = SL(n,R)/ SL(n,Z) and for the

general case in [M4].

The hardest part of the proof of the equidistribution theorem is the proof

of unipotent measure rigidity which Ratner proved in a series of three papers

[R3, R2, R4]. The unipotent measure rigidity was conjectured by Dani in [D1],

and it says that any finite U -ergodic U -invariant measure μ on G/Γ is homoge-

neous where U is a one-parameter Ad-unipotent subgroup of U . Ratner’s early

works on horocycle flow, particularly her classification of joinings in [R1], can

be viewed in this context as special cases of this much more general measure

classification.
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A shorter and arguably more conceptual proof of unipotent measure rigidity

was given by Margulis and Tomanov (see [MT1] for the case whereG is algebraic

and [MT2] for a simple reduction to that case).

1.6. A refined version of the equidistribution theorem was proved in [DM4]. As

in [R5], the proof in [DM4] also relies on the classification of invariant mea-

sures, i.e., unipotent measure rigidity. Other crucial ingredients in the proof

of the equidistribution theorem, in both [R5] and [DM4], are nondivergence of

orbits of unipotent flows regarding the amount of time orbits can spend out-

side of large compact subsets in G/Γ (see §4 for details) and an “avoidability”

argument explaining why an orbit cannot spend too much time near certain

proper subvarieties of G/Γ. The avoidability argument are proved differently

in [R5] and [DM4]; the method of [DM4] based on the use of finite-dimensional

representations of G is known as the linearization technique.

These equidistribution results, which rely on the classification of invariant

measures, are of great intrinsic interest. However, if one is only interested in

Raghunathan’s conjecture it seems feasible to give such a proof which is much

closer in spirit to the original approach of [M3, M2, DM1, DM2]. In particular,

for G/Γ a product of SL(2,Ki)/Γi a direct proof of orbit rigidity along these

lines was given by N. Shah in [S].

1.7. A weaker version of the main number theoretic result in [DM1] is the

following:

1.8. Theorem (Dani–Margulis): Let Q be an indefinite, irrational, ternary

quadratic form. Then the set

{Q(v) : v ∈ Z3 primitive}

is dense in the real line.

1.9. The main result of this paper is the following quantification of Theorem 1.8.

We implicitly assume all integral quadratic forms we consider are primitive in

the sense that they are not a nontrivial integer multiple of another integral

quadratic form.

1.10.Theorem: LetQ1 be an indefinite, ternary quadratic form with detQ1=1

and ε > 0. Then for any T ≥ T0(ε) ‖Q1‖K1 at least one of the following holds:
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(i) There is an integral quadratic form Q2 with | det(Q2)| < T ε and

‖Q1 − λQ2‖ � ‖Q1‖T−1 where λ = | det(Q2)|−1/3.

(ii) For any ξ ∈ [−(logT )κ2, (log T )κ2 ] there is a primitive integer vector

v ∈ Z3 with 0 < ‖v‖ < TK3 satisfying

|Q1(v)− ξ| � (logT )−κ2

(with K1, κ2, K3, and the implicit constants absolute).

1.11. We note that proving the inhomogeneous approximation above, i.e., that

in a ball of radius TK3 one can find primitive integral vectors v for which

|Q1(v)−ξ| is small for any ξ in an interval, entails a substantial complication in

comparison to the corresponding homogeneous question of showing that there

is such a vector v with |Q1(v)| small.

Another feature worth noting is the quality of the approximation: if one is

content with an estimate of the form ‖Q1(v) − ξ‖ � (log logT )−1, the combi-

natorial apparatus of §9, perhaps the most technical section in this paper, is

not needed.

Since by Liouville’s Theorem algebraic numbers cannot be too well approxi-

mated by rationals, we can conclude the following from Theorem 1.10:

1.12. Corollary: Let Q1 be a reduced, indefinite, ternary quadratic form

which is not proportional to an integral form but has algebraic coefficients.

Then for any T ≥ T0(Q1) (with T0 depending effectively on the degrees and

heights of the coefficients of Q1), for any

ξ ∈ [−(logT )κ2 , (logT )κ2 ]

there is a primitive integer vector v ∈ Z3 with 0 < ‖v‖ < TK3 satisfying

|Q1(v)− ξ| � (logT )−κ2

with κ2, K3 as in Theorem 1.10.

1.13. Theorem 1.8 is only part of what is proved in [DM1]. While it is possible

to give an effective and quantitative version of the full force of the main result

of [DM1] with our methods, the resulting bounds would be substantially worse

than what we give above.
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1.14. An important difference between the analytic methods used to tackle the

Oppenheim Conjecture and the dynamical proof of e.g., [M2, M3, DM1] is that

the analytic proofs are effective in the sense that they provide an upper bound

on the size of the shortest integer vector v for which |Q(v)| < ε, while at least

on the face of it dynamical proofs provided no such bound. For instance, while

this is not explicated in their paper, the proof of Davenport and Heilbronn for

the Oppenheim Conjecture for irrational indefinite forms of the type Q(q) =

λ1x
2
1+ · · ·+λ5x

2
5 gives an upper bound on the size of such an individual integer

vector v in terms of Diophantine properties of the coefficients λi; assuming e.g.

λ1/λ2 is Diophantine generic (i.e., there are c, C so that |λ1/λ2 − p/q| ≥ cq−C

for all rational numbers p/q) this upper bound is polynomial in ε−1.

Bentkus and Götze gave in [BG1] an analytic proof, with effective estimates,

of the Oppenheim Conjecture for general indefinite quadratic forms in d ≥ 9

variables, and more recently, Götze and Margulis [GM] have been able to give

an analytic proof, with effective error estimates, of the Oppenheim Conjecture

for general indefinite quadratic forms in d ≥ 5 variables; we note that 5 seems

to be a natural barrier to the applicability of such techniques.

1.15. The proof of the Oppenheim Conjecture in [M3, M2] and a simplified

proof in [DM3] uses the existence of minimal invariant sets for actions of groups

on compact spaces; formally these proofs depend on the axiom of choice. Dani

in [D4] gave a proof of the Oppenheim Conjecture based on the existence of a

recurrent point as a substitute to working with minimal sets; in particular, his

proof is independent of the axiom of choice.

The proof of the Raghunathan conjecture in [R5] uses the unipotent measure

rigidity (see above) and the proof of the unipotent measure rigidity uses the

ergodic decomposition and the pointwise ergodic theorem for essentially arbi-

trary invariant measures, which seems to us to be harder to effectivize than the

existence of minimal sets.

1.16. Though there are significant differences, the strategy which we use in our

paper has many similarities with the strategy which was used by Margulis in

[M3, M2] and subsequent papers by Dani and Margulis [DM1, DM2, DM3].

The main ingredient in these strategies is to prove that an orbit closure con-

tains orbits of additional subgroups. In the papers quoted, this is achieved using

minimal sets for appropriately chosen subactions, while in our paper the begin-

ning point of the orbit of the new subgroup is moving. To make this approach
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work, we need to control how this base point changes so it remains sufficiently

generic in an appropriate quantitative sense.
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2. Statement of dynamical results

2.1. Let G = SL(3,R), Γ = SL(3,Z), and e the be identity element of G. If

L < G we shall denote by [g]L the image of g ∈ G under the natural map

G → G/L. We identify the space X = G/Γ with the space of unit volume

lattices in R3 by identifying [g]Γ ∈ X with the lattice gZ3 in R3.

2.2. Let H = SO(2, 1) < G, which we view as the subgroup of G preserving the

quadratic form Q0(x, y, z) = y2 − 2xz. The following subgroups of G will play

a special role in the proof:

D = {a(t) : t ∈ R} < H, a(t) =

⎛
⎜⎝
et

1

e−t

⎞
⎟⎠ ,

U = {u(s) : s ∈ R} < H, u(s) =

⎛
⎜⎝

1 s s2

2

1 s

1

⎞
⎟⎠ ,

U− = {u−(s) : s ∈ R} < H, u−(s) =

⎛
⎜⎝

1

s 1
s2

2 s 1

⎞
⎟⎠ ,

V = {v(s) : s ∈ R} �< H, v(s) =

⎛
⎜⎝

1 s

1

1

⎞
⎟⎠ .
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We shall use the notations ut and u(t) etc. interchangeably. Note that

D, U, U− < H

while V ∩H = {e}.

2.3. Theorem 1.8 as well as the other number theoretic results of [DM1] were

obtained from the following theorem regarding the action of H on X :

2.4. Theorem (Dani and Margulis): For any x ∈ X , the orbit H.x is either

periodic or dense.

Note that by H.x periodic we mean that it is closed and supports a finite

H-invariant measure. As mentioned above, Theorem 2.4 is a special case of a

general conjecture of Raghunathan that was later proved by Ratner in [R5]. In

[DM3] a substantially more elementary proof of Theorem 1.8 (and hence the

Oppenheim Conjecture) was given based in particular on the observation that

the following weaker result suffices for proving Theorem 1.8:

2.5. Theorem (Dani and Margulis): For any x ∈ X , if H.x is not periodic then

there is a point y ∈ H.x so that V.y ⊂ H.x.

2.6. In order to state an effective version of Theorem 2.5, we need to be able

to measure the complexity of the periodic orbits H.x, to play a similar role

in the statement of an effective version of this theorem to that played by the

determinant of an integral quadratic form in Theorem 1.10.

There are several reasonable choices how to measure the complexity of the

periodic H-orbit H.x: for instance, one can consider the volume of H.x or

equivalently the covolume of the stabilizer of x in H .

Another logical choice is measuring the arithmetic complexity of H.x using

the discriminant as defined in [ELMV] and [EMV, §17.3]). As shown in [EMV,

Prop. 17.4], one can bound both from above and below each of these invariants

of periodic H-orbits by the other.

Yet a third way of measuring the complexity of the periodic H-orbits is

through the connection between such orbits and integral quadratic forms. In-

deed, if H.[g]Γ is periodic, then g−1Hg ∩ Γ is a lattice in g−1Hg, and hence in

particular is Zariski dense there. Therefore, up to a multiplicative scalar, there

is a unique quadratic form invariant under g−1Hg ∩ Γ, namely Q0 ◦ g. Since

the elements of g−1Hg ∩ Γ are integral there is a s0 ∈ R so that Q2 = s0Q0 ◦ g
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is integral and primitive. We set the quadratic discriminant of a periodic orbit

H.[g]Γ, denoted by discQ(H.[g]Γ), to be |detQ2| = |s0|3.
Since in this paper our main motivation is the study of quadratic forms it

seems reasonable to use this height as a measure of complexity. In any case,

it is quite easy to bound the discriminant of a periodic orbit H.x as defined in

[ELMV, EMV] polynomially above and below by discQ(H.x), so for the purposes

of this paper the discriminant and the quadratic discriminant are essentially the

same.

2.7. In addition to having a way of measuring the complexity of periodic H-

orbits, we need to choose how to measure the size of an element h ∈ H (or ∈ G).

We shall use both the Euclidean norm ‖·‖ and the �∞-norm ‖·‖∞ on R3, and

use the (Euclidean) operator norm on M3(R) (in particular on the Lie algebra

g of G). Let

(2.7a) BH
T = {h ∈ H : ‖h− e‖ < T }.

Note the use of the operator norm, and not a Riemannian metric, in the defini-

tion of these sets; we will also use at times a right invariant Riemannian metric

dG on G, and the corresponding metric (simply denoted by d) on G/Γ.

2.8. Theorem: Let ε, η ∈ (0, 1) and x1 ∈ Xη. Then for any T > T0(ε)η
−K4

(with K4 an absolute constant), at least one of the following holds:

(i) there is a point x2 ∈ G/Γ with H.x2 periodic and with

discQ(H.x2) < T 3ε

so that d(x1, x2) ≤ T−1;

(ii) there is a h ∈ BH
TK5

so that h.x1 ∈ Xκ6 and so that for every

s ∈ [−(logT )κ7 , (logT )κ7 ] the point v(s)h.x1 is within (logT )−κ7 of

a point in the set BH
TK5

.x1 with K5, κ6, κ7 absolute constants.

2.9. The two cases given by this theorem are not mutually exclusive. Indeed,

Einsiedler, Margulis and Venkatesh [EMV] have proved a general quantitative

equidistribution result (with polynomial rates) for periodic orbits of semisim-

ple groups. An explicit version for orbits of semisimple subgroups H which

are maximal in G, which is the case we are interested in, was given by Mo-

hammadi [M5]. The main results [EMV, Thm. 1.3] or [M5, Thm. 1.1] of these

papers show that the periodic H-orbits occurring in (i) satisfy (ii) as long as
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discQ(H.x2)  (log T )c, and hence by employing these results Theorem 2.8 can

be somewhat strengthened. The proof of these theorems from [EMV, M5] is

much less elementary than the techniques of this paper, relying in particular on

uniform spectral gap estimates for congruence subgroups which can be attained

by combining Selberg’s estimates on the Fourier coefficients of modular forms

and the Jacquet–Langlands correspondence. We prefer to state the theorem as

above in order to keep this paper self-contained and elementary.

A remark about notations. We use ci, Ci, κi,Ki to denote most of the

constants appearing in this paper; ci and κi will denote small constants, i.e.,

constants that need to be taken to be smaller than something depending on all

previously chosen constants, and Ci andKi large constants in the corresponding

sense. The paragraphs are numbered, and the constants ci, Ci are numbered

per paragraph. The constants κi, Ki, on the other hand, are global, and retain

their meaning throughout the paper. While we have not evaluated the various

constants involved our argument is quite explicit (indeed, we have made an effort

to keep it so!) and in principle the reader should have no difficulty evaluating

them if she or he would so desire.

3. Overview of the proof of Theorem 2.8

3.1. Our proof of Theorem 2.8 gives a new proof of Theorem 2.5. We begin by

presenting the steps in this new proof, then explain how the statements need

to be modified for a quantitative proof.

We split the proof of Theorem 2.5 into two parts, first finding two points in

an orbit closure of a nonperiodic H-orbit that differ by an element of V , and

then using the dynamics along U to get additional points on a V orbit. Both of

these ingredients appear in the original proof (though in the context of studying

minimal orbit closures), but by switching the order we can avoid some of the

more intricate arguments in e.g., [DM3] needed to control the relative position

of two points on which we apply the U -action.

3.2. Proposition: Let x1 ∈ X be such that H.x1 is not periodic. Then for

any t > 0 there is a

x2 ∈ v(t)H.x1 ∩ v(−t).H.x1
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with x2 �∈ [Pi]Γ for Pi one of the two parabolic groups

P1 =

⎛
⎜⎝
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎞
⎟⎠ or P2 =

⎛
⎜⎝
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

⎞
⎟⎠ .

Note that the conditions that x2 �∈ [P1]Γ is equivalent to requiring that

the lattice in R3 corresponding to x2 does not contain a U -fixed vector, and

x2 �∈ [P1]Γ is equivalent to the lattice in R3 corresponding to x2 not having a

2-dimensional rational subspace fixed by U . Theorem 2.5 now follows from the

following:

3.3. Proposition: Let t > 0 and x2 ∈ X \ ([P1]Γ ∪ [P2]Γ). Then there is a

x3 ∈ U.x2 ∩ Y so that

v([−t, t]).x3 ⊂ D {v(−t), v(t)}U.x2

with Y ⊂ X a fixed compact set.

3.4. Given these two propositions, it is easy to conclude the proof of Theo-

rem 2.5. Indeed, choose ti → ∞, and for each i find using Proposition 3.2 a

point

(3.4a) x
(i)
2 ∈ v(ti)H.x1 ∩ v(−ti)H.x1

with x
(i)
2 �∈ [P1]Γ ∪ [P2]Γ. Now apply Proposition 3.3 to find x

(i)
3 ∈ U.x

(i)
2 ∩ Y

so that

v([−ti, ti]).x
(i)
3 ⊂ D{v(−ti), v(ti)}U.x(i)

2 ⊂ H.x1,

with the second inclusion a consequence of (3.4a); indeed, since U and V com-

mute

Dv(ti)U.x
(i)
2 = DU.(v(ti).x

(i)
2 ) ⊂ DUH.x1 = H.x1

and similarly with −ti replacing ti.

Since all x
(i)
3 lie in the same compact set Y , there is a convergent subsequence,

and it is clear that if x
(∞)
3 is a limit point of the x

(i)
3 then

V x
(∞)
3 ⊂ H.x1.
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3.5. In order to give a quantitative and effective proof, one needs a quantitative

substitute to the qualitative condition x �∈ [P1]Γ ∪ [P2]Γ.

For x = [g]Γ ∈ X , let

α1(x)
−1 = min{‖v‖∞ : v ∈ gZ3 nonzero},

α2(x)
−1 = min{‖v ∧ w‖∞ : v, w ∈ gZ3 linearly independent},

where we define the �∞-norm on R3 ∧R3 in terms of the basis ei∧ ej of R3∧R3

with ei denoting the standard basis of R3. Let α(x) = max(α1(x), α2(x)), and

for any κ > 0 let

Xκ = {x ∈ X : α(x) ≤ κ−1}.
These form an increasing sequence of compact sets whose union is X .

Note that x ∈ [P1]Γ if and only if the corresponding lattice contains a vector of

the form (c, 0, 0)ᵀ; such a vector is contracted exponentially by a(−t)—indeed,

a(−t)

⎛
⎜⎝
c

0

0

⎞
⎟⎠ =

⎛
⎜⎝
ce−t

0

0

⎞
⎟⎠

and hence if x ∈ [P1]Γ one has that α1(a(−t)x)  et; it is not hard to see that

the converse also holds. Similarly, x ∈ [P2]Γ iff α2(a(−t)x)  et as t → ∞. As

a substitute to X \ ([P1]Γ ∪ [P2]Γ) we shall make use of the following:

3.6. Definition: For any δ, κ ∈ (0, 1) and k ∈ R≥0 ∪ {∞}, set

Ξ(k, κ, δ) = {x ∈ X : ∀j ∈ Z ∩ [0, k], a(−j).x ∈ Xκe−δj}.

We extend this definition to all t ∈ R by defining Ξ(k, κ, δ) = X for k < 0.

We can now state the two results used to prove Theorem 2.8:

3.7. Proposition: Let δ, η, ε ∈ (0, 1) and x1 ∈ Xη. Then for any

T > T0(δ, ε)η
−K8

(with K8 absolute
1 and T0 effectively computable in terms of these parameters),

at least one of the following holds:

1 Explicitly, K8 can be taken to be 11.
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(i) There is a point x2 ∈ G/Γ so that H.x2 is periodic and

discQ(H.x2) < T 3ε,

dG/Γ(x1, x2) < T−1.

(ii) For any τ ∈ [1, T κ9ε] there are h, h′ ∈ BH
TK10

, x′ ∈ Ξ(κ11ε logT , κ12, δ)

and τ ′ ∈ [τ/2, τ ] so that

dG/Γ(v(−τ ′).x′, h.x1) < c1T
−κ13ε,

dG/Γ(v(τ
′).x′, h′.x1) < c1T

−κ13ε,

with K10 an absolute constant and c1, κ9, κ11, κ12, κ13 depending only

on δ.

Note that the constant K4 of Theorem 2.8 can be taken to be equal to K8

above.

3.8. Theorem: Fix δ, κ ∈ (0, 1). Then for any T > T0(δ), if

x1 ∈ Ξ(log(T/κ), κ, δ), t ∈ (0, (logT )κ14),

there is a s ∈ [−T, T ] so that x3 = u(s).x2 ∈ Ξ(12 logT, κ̃, δ) and so that for

every ξ ∈ v([−t, t]).x3 there is a

ξ′ ∈ BD
(log T )K15 {v(−t), v(t)}u([−T, T ]).x3

with d(ξ, ξ′) < (log T )−κ14 ; here κ̃, κ14,K15 depend only on δ.

Proposition 3.7 and Theorem 3.8 for a single value of δ ∈ (0, 1) clearly imply

Theorem 2.8. We state (and prove) them for all δ ∈ (0, 1) since this gives a more

pleasing effective analogue of Proposition 3.2 and Proposition 3.3 respectively.

3.9. In [R2], as a step in the proof of measure rigidity for unipotent flows, Ratner

proves in particular that in the context we consider here if μ is a U -invariant

and ergodic probability measure on G/Γ then either the measures a−tμ escape

to the cusp as t → ∞, or μ is invariant under a conjugate of H by V . While

the context of her result is different, it has a somewhat similar flavour to our

use of Ξ(k, κ, δ).
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4. Inheritable boundedness conditions

4.1. An important ingredient of the proof is the use of an appropriate Diophan-

tine condition that can be efficiently used in the main inductive lemma. Recall

that for any δ, κ ∈ (0, 1) we let

Ξ(k, κ, δ) = {x ∈ X : ∀j ∈ Z ∩ [0, k], a(−j).x ∈ Xκe−δj}.

4.2. Using the results on quantitative nondivergence, we show in this section

that the boundedness condition above is inherited for most points on any ut-

orbit.

We shall use a quantitative nondivergence estimate from [KM]; this estimate

due to Kleinbock and Margulis is based on [M1] and its modification by Dani

in [D3]. The following follows directly from [KM, Theorem 5.2] for the special

case of ut-orbits (and u−
t -orbits) on X ; as in [KM] it will be convenient for us

to work with �∞-norm on R3 as well as on R3 ∧ R3 (with respect to the basis

ei ∧ ej with ei the standard basis of R3).

4.3. Proposition: Let x ∈ X , T > 0 be such that

(1) for any v �= 0 in the lattice corresponding to x in R3,

max
t∈[0,T ]

‖utv‖∞ ≥ 1,

(2) for any linearly independent vectors v, w in the lattice corresponding to

x,

max
t∈[0,T ]

‖ut(v ∧ w)‖∞ ≥ 1.

Then for any ε ∈ (0, 1)

m({t ∈ [0, T ] : ut.x �∈ Xε}) ≤ K16ε
1/2T,

where m denotes Lebesgue measure and K16 an absolute constant. Exactly the

same statement also holds for u−
t .

The exponent here is 1
2 since for any vectors v, w ∈ R3 the functions

‖utv‖∞ , ‖ut(v ∧ w)‖∞
are the maximum of polynomials of degree ≤ 2 and hence in the notations of

[KM] are (C, 1
2 )-good for some C (cf. [KM, Lemm. 3.1 & Prop. 3.2]).
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4.4. Proposition: Let δ, κ, κ̃ ∈ (0, 1), k ≥ 0, and T ≥ ek. Then for any point

x ∈ Ξ(k, κ, δ)

(4.4a) m({t ∈ [0, T ] : ut.x �∈ Ξ((1 − δ)k + log(κ)− 10, κ̃, δ)}) ≤ K16T κ̃
1/2

1− e−δ/2

with K16 an absolute constant.

Proof. Set

εj = κe−δj, ε̃j = κ̃e−δj .

By Proposition 4.3, for all j ∈ {0, . . . , �(1− δ)k + log(κ)� − 10}

(4.4b) m({t ∈ [0, e−jT ] : uta−j.x �∈ Xε̃j}) ≤ K16ε̃
1/2
j e−jT

unless there is some j in this range and a one- or two-dimensional sub-lattice

of a−j .x corresponding to a vector p ∈ R3 or ∧2R3 with

‖utp‖∞ < 1

throughout the interval t ∈ [0, e−jT ]. It follows that unless there are such j, p,

equation (4.4a) holds.

In order to complete the proof of the proposition, it suffices to show that

the existence of such j, p is in contradiction to x ∈ Ξ(k, κ, δ). Suppose first

p =
∑3

i=1 piei ∈ R3. Then p satisfies ‖utp‖∞ < 1 throughout the interval

t ∈ [0, T e−j], hence |p3| < 1 and for all t in this range

∣∣p1 + tp2 + t2p3/2
∣∣ < 1,

|p2 + tp3| < 1.

It follows that |p1| < 1, |p2| < C1e
jT−1 and |p3| < C2

1e
2jT−2, with e.g., C1 = e5.

Then since T ≥ ek and j ≤ k − δk + log κ − 10 we have T ≥ C1ε
−1
k ej+1 and

hence ∥∥a−�δk−log κ�p
∥∥
∞ < κe−δk = εk.

It follows that

a−j−�δk−log κ�.x /∈ Xεk

and as j + �δk − log κ� < k this is in contradiction to x ∈ Ξ(k, κ, δ).

A similar argument holds if p ∈ R3 ∧ R3. Write

p = p12e1 ∧ e2 + p13e1 ∧ e3 + p23e2 ∧ e3
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Then e1 ∧ e2 spans the ut-invariant subspace of R3 ∧R3, and

utp = (p12 + tp13 +
t2

2
p23)e1 ∧ e2 + (p13 + tp23)e2 ∧ e3 + p23e2 ∧ e3

and the situation is entirely analogous to the previous case .

In order to produce points in Ξ(k, κ, δ) starting from an arbitrary initial point

x we need to use the flow in the U− direction:

4.5. Proposition: Let x ∈ Xη for 0 < η < 1, and T ≥ K17. Then

(4.5a) m({t ∈ [0, T ] : a(log η)u−
t .x �∈ Ξ(∞, κ, )}) ≤ K16κ

1/2T

1− e−δ/2
.

Proof. The proof is very similar to that of Proposition 4.4. Set εj = κe−δj.

Applying again Proposition 4.3, we see that for all j ≥ 0

(4.5b) m({t ∈ [0, ejη−1T ] : u−
t a(−j + log η).x �∈ Xεj}) ≤ K16ε

1/2
j

unless there is some j≥0 and a one- or two-dimensional sub-lattice of a−j+log η.x

corresponding to a vector p ∈ R3 or ∧2R3 with

∥∥u−
t p

∥∥
∞ < 1

throughout the interval t ∈ [0, ejη−1T ]. It follows that unless there are such

j, p, equation (4.5a) holds.

In order to complete the proof of the proposition, it suffices to show that the

existence of such j, p is in contradiction to x ∈ Xη. Suppose first

p =
∑3

i=1 piei ∈ R3. Then p satisfies
∥∥u−

t p
∥∥
∞ < 1 throughout the interval

t ∈ [0, ejT ]. A similar calculation to that given in the proof of Proposition 4.4

shows that |p1| < C2
1T

−2e−2jη2, |p2| < C1T
−1e−jη and |p3| < 1 for C1 = e5,

hence if T > e10η−1

α1(x)
−1 ≤‖a(j − log η)p‖∞

=max(η−1ej |p1| , |p2| , ηe−j |p3|) < e−jη

in contradiction to x ∈ Xη.

The case of p ∈ ∧2R3 is similar.
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To state the following lemmas, we need to name a few more subgroups of G:

P =

⎧⎪⎨
⎪⎩

⎛
⎜⎝
∗ ∗ ∗

∗ ∗
∗

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , U = [P, P ],

P− =

⎧⎪⎨
⎪⎩

⎛
⎜⎝
∗
∗ ∗
∗ ∗ ∗

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , U− = [P−, P−],

A =

⎧⎪⎨
⎪⎩

⎛
⎜⎝
t

s

(st)−1

⎞
⎟⎠ : s, t ∈ R∗

⎫⎪⎬
⎪⎭ = P ∩ P−.

4.6. Lemma: Let g ∈ G satisfy that h0ag = gγ0 for h0 ∈ BG
κ18

, a ∈ BA
κ18

and

γ0 ∈ Γ \ {e} for sufficiently small absolute constant κ18 < 1 (cf. (2.7a) for

the definition of BA
κ ). Then γ0 is unipotent and moreover at least one of the

following two possibilities hold:

(1) γ0 is not a generic unipotent element (i.e., (γ0 − e)2 = 0),

(2) the lattice [g]Γ contains a nontrivial vector v with

‖v‖ ≤ K19 ‖h0 − e‖ .
Proof. We begin by choosing κ18 so that if ‖gi − e‖ < κ18 for i = 1, 2 then

|tr(g1g2)− 3| , ∣∣tr((g1g2)2)− 3
∣∣ < 1

2 .

Since for every γ ∈ Γ it holds that tr(γ) ∈ Z, it follows that if

‖a− e‖ , ‖h0 − e‖ < κ18

then γ0, hence h0a which is conjugate to γ0, is unipotent. It follows that

(4.6a) (h0a− e)3 = 0.

Write h0 = u+a0u− with a0 ∈ A and u± ∈ U±; since multiplication gives a

local diffeomorphism U+×A× U− → G near e

‖h0 − e‖ � max(‖u+ − e‖ , ‖a0 − e‖ , ‖u− − e‖).
By equation (4.6a) (e.g., by applying (h0a− e)3 to the standard basis of R3) it

follows that

‖a0a− e‖ ≤ C1 max(‖u+ − e‖ , ‖u− − e‖)
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from which we conclude that

‖h0a− e‖ ≤ C2 ‖h0 − e‖ .
Suppose now that (γ0 − e)2 �= 0 (or equivalently, (h0a − e)2 �= 0). Then

conjugating γ0 by an element of Γ if necessary, we can assume that γ0 has the

form

(4.6b) γ0 =

⎛
⎜⎝
1 n1 n2

1 n3

1

⎞
⎟⎠ with n1, n3 �= 0.

Let e1, e2, e3 be the standard basis to R3. Then as h0a = gγ0g
−1, equation

(4.6b) implies that

(4.6c)
‖ge1‖ = |n1|−1 ‖gγ0e2 − ge2‖

≤ ∥∥gγ0g−1 − e
∥∥ ‖ge2‖ ≤ C2 ‖h0 − e‖ ‖ge2‖ .

As ‖h0 − e‖ ≤ κ18, if κ18 is sufficiently small, by replacing γ0 by p−1γ0p and g

by gp for suitable p ∈ Γ ∩ P , we may assume that the inner product (ge1, ge2)

satisfies

(ge1, ge2) < ‖ge1‖ ‖ge2‖ /100.
A similar argument shows that

(4.6d) ‖ge2‖ ≤ C3 ‖h0 − e‖ ‖ge3‖
and that without loss of generality (gei, ge3) < ‖gei‖ ‖ge3‖ /100 for i = 1, 2.

Since det g = 1, the above bounds on (gei, gej) imply

‖ge1‖ ‖ge2‖ ‖ge3‖ < 2.

Using the estimates (4.6c) and (4.6d) we conclude that

‖ge1‖3 < C4 ‖h0 − e‖3 ,
and hence v = ge1 is a nontrivial vector in [g]Γ with ‖v‖ � ‖h0 − e‖.
4.7. Lemma: Let x ∈ Ξ(k, κ, δ), with δ < 1 and κ > 0. Then for any s with

K20 < |s| < κ21e
(1−δ)k, if h0 = u+a0u− ∈ BG

κ18
satisfies u(s).x = h0.x, with

u+ ∈ U+, u− ∈ U−, a0 ∈ A, then

‖u− − e‖ ≥ κ22 |s|−
2+δ
1−δ ,

with κ18 an absolute constant, and K20, κ21, κ22 depending only on κ.
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Proof. Write x = [g]Γ with g ∈ G; then by definition

u(s)g = h0gγ

and clearly if s is large, the matrix γ �= e. In fact, we can say a bit more: if

s is large (say s > K20), the matrix γ will not satisfy (γ − e)2 = 0, since it

is conjugate to the matrice h−1
0 u(s), and h−1

0 u(s) cannot have two orthogonal

fixed vectors (h0 is in some fixed neighborhood of e, and for any given C > 0,

if s is large enough, the collection of vectors v for which ‖u(s)v‖ < C ‖v‖ lies

in a narrow cone in R3).

Let 0 ≤ t ≤ k be an integer to be determined later, and write g1 = a(−t)g.

Then

u(e−ts)g1 = a(−t)u(s)g = a(−t)h0a(t)g1γ.

It follows that h1a0g1 = g1γ
−1 for

h1 = (a(−t)u(s)u+ a(t)) · (a0a(−t)u− a(t)a−1
0 );

note that

(4.7a)
‖h1 − e‖ ≤ C1(e

−t |s|+ e−t ‖u+ − e‖+ e2t ‖u− − e‖)
≤ C2(e

−t |s|+ e2t ‖u− − e‖).
Since [g]Γ ∈ Ξ(k, κ, δ), we know that [g1]Γ ∈ Xκe−δt , and so any nontrivial vector

in the lattice corresponding to [g1]Γ has norm ≥ κe−δt. Using Lemma 4.6 we

conclude that

(4.7b) ‖h1 − e‖ > K−1
19 κe−δt.

Combining (4.7a) and (4.7b) we obtain that

(e−t |s|+ e2t ‖u− − e‖) > c3κe
−δt.

We now choose t so that

(4.7c)
c3
6
κe(1−δ)t < |s| < c3

2
κe(1−δ)t;

as long as K20 was chosen to be sufficiently big (depending only on κ) the

condition on |s| in the statement of lemma implies that 0 ≤ t ≤ k. Then

‖u− − e‖ >
c3
2
κe−(2+δ)t

and hence by (4.7c) it follows that ‖u− − e‖  |s|− 2+δ
1−δ .
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5. A closing lemma

5.1. We first introduce a few more notations. Since H is a simple Lie group,

g = LieG splits into a direct sum of AdH-invariant summands, in this case given

by g = h ⊕ m with h the Lie algebra of H and m an irreducible 5-dimensional

representation of H . We can further split m into eigenspaces for AdD, namely

m =
⊕2

i=−2 mi with

Ad a(t)[v] = ejtv for v ∈ mj ;

note that m2 coincides with the Lie algebra v of V .

5.2. Lemma (Closing Lemma): Let M > 0 be arbitrary, δ, κ ∈ (0, 1),

T ≥ T0(M, δ, κ) and x ∈ Ξ(log T, κ, δ). Then there are constants κ23, κ24 de-

pending on δ, and a constant K25 depending on M (explicitly, K25 = 5M +22)

so that at least one of the following two possibilities holds:

(A) There is a periodic H-trajectory H.x1 with discQ(H.x1) ≤ T 60 and

d(x, x1) ≤ T−M .

(B) There exist s, s′ ∈ [0, T ] so that

u(s).x, u(s′).x ∈ Ξ((1 − δ) logT − log(1/κ)− 10, κ23, δ)

and in addition the point u(s).x can be expressed as

u(s).x = h exp(m)u(s′).x

with h ∈ H , m ∈ m satisfying

‖h− e‖ < T−κ24 , T−K25 < ‖m‖ < T−κ24 .

The following elementary facts will be useful in proving the Closing Lemma:

5.3. Lemma: Let h1, h2 be two non-commuting elements of H of infinite order.

Then up to a scalar, Q0(x, y, z) = y2 − 2xz is the unique 〈h1, h2〉-invariant
quadratic form.

The easy proof of Lemma 5.3 is left to the reader.

5.4. Lemma: Let A be a n × m-integer matrix and B a n × m real matrix.

Assume

‖A−B‖ ‖A‖m−1
< κ26.

Suppose v ∈ Rm is a nonzero vector with Bv = 0. Then there exists a nonzero

integer vector v′ ∈ Zm with



Vol. 203, 2014 INDEFINITE TERNARY FORMS 465

(1) Av′ = 0

(2) ‖v′ ∧ v‖ ≤ K27 ‖A−B‖ 1
m−1 ‖v‖.

If in addition

dim{w : Aw = 0} ≤ 1,

then

(3) ‖v′‖ < K28 ‖A‖m−1
.

Here κ26,K27,K28 are constants depending only on m.

Proof. Let ε = ‖A−B‖, πv denote the orthogonal projection from Rm to the

subspace Rv, and π′
v(w) = w−πv(w) the complementary orthogonal projection.

Consider all integral vectors in the ball BT (0) of radius T = (3ε)−1 in Rm.

There are ≥ β(m)Tm −C1T
m−1 such vectors (with β(m) the volume of the m-

dimensional ball), and for any such vector w, π′
v(w) lies in a (m−1)-dimensional

ball of radius T .

It follows that there will be distinct w,w′ ∈ Zm with

‖π′
v(w − w′)‖ < 2r, r = 2(β(m)T )−1/(m−1),

since otherwise we would have ≥ β(m)Tm − C1T
m−1 disjoint balls of radius r

inside a ball of radius T + r in (m− 1)-dimensional space; the total volume of

these balls would be at least

(β(m)Tm − C1T
m−1)× β(m− 1)rm−1 > β(m− 1)(2T )m−1 − C2T

m−2,

which is greater than the total volume β(m− 1)(T + r)m−1 of the ball of radius

T + r if ε is small enough — in contradiction.

Let v′ be a primitive integral vector with w − w′ ∈ Zv′, with w,w′ ∈ Zm as

in the preceding paragraph. Then

‖v′‖ <
2

3ε
, ‖π′

v(v
′)‖ < C3ε

1/(m−1),

with C3 = 4(3β(m))m−1. Since Bv = 0, it follows that

‖Av′‖ ≤ ‖A‖ ‖π′
v(v

′)‖+ ‖A−B‖ ‖πv(v
′)‖

≤ C3 ‖A‖ ε1/(m−1) + ε ‖v′‖
≤ 2

3 + C3 ‖A‖ ε1/(m−1).

If we now impose the condition that ε <
(
C3

3 ‖A‖)−m+1
the integrality of A and

v′ imposes that Av′ = 0.
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The last statement (3) of the lemma follows from Siegel’s Lemma (or the

pigeonhole principle). Explicitly, there are ≥ β(m)(T − 1)m integral vectors

w of size ≤ T ; if the image of A is (m − 1)-dimensional, then there are ≤
β(m − 1) ‖A‖m−1

(T + 1)m−1 possibilities for Aw; hence if β(m)(T − 1)m >

β(m− 1) ‖A‖m−1 (T +1)m−1, i.e., T ≥ C4 ‖A‖m−1, there would be a nontrivial

integer solution to Av′′ = 0 with ‖v′′‖ < 2T ; by our assumption that the kernel

of A is one-dimensional and v′ is primitive it follows that v′′ is a multiple of v′,
hence ‖v′‖ < 2C5 ‖A‖m−1

.

5.5. We now proceed to prove Lemma 5.2. Unless otherwise specified the con-

stants ci, Ci are allowed to depend on δ (and only on δ). Assume that (B) does

not hold (for κ24,K25 to be chosen later, but a good choice for K25 would be

5M+22); we will show that this implies that (A) must hold. By Proposition 4.4,

taking

κ23 =

(
1− e−δ/2

2K16

)2

we have that the set F ⊂ [0, T ] defined by

F = {s ∈ [0, T ] : u(s).x ∈ Ξ((1 − δ) logT − log(1/κ)− 10, κ23, δ)}
satisfies that m(F ) ≥ T/2. It follows that there is a K-separated subset

S ⊂ F , i.e., a subset such that |s− s′| ≥ K for every distinct s, s′ ∈ S, with

|S| ≥ T/2K, for K ≥ 1 to be determined later in a way that depends on δ

only. Since Ξ(k − log(1/κ)− 10, κ23, δ) ⊂ Xκ23 , and the latter is a compact

set (depending only on δ) in a nice 8-dimensional space, it follows that there

is a T−η-neighborhood O1 in X containing at least c1T
1−8η points from the

set {u(s).x : s ∈ S}. Here η (which can be essentially identified with the con-

stant κ24 in the statement of the lemma) is a constant to be determined later

according to δ. Let

S1 = {s ∈ S : u(s).x ∈ O1},
and enumerate the points of S1 in increasing order s1 < · · · < sN ; in particular

N ≥ c1T
1−8η. Let 1 ≤ j < N be such that sj+1 − sj is minimal; clearly

sj+1 − sj ≤ 1

N
(sN − s1) ≤ T 8η

c1
.

Fix g ∈ G in some fixed compact lift of Xκ23 satisfying

(5.5a) [g]Γ = u(sj).x.
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For each 1 ≤ i < N let γi ∈ Γ be chosen so that gγi is the closest point in gΓ

to u(si − sj)g; write

(5.5b) u(si − sj)g = wigγi with ‖wi − e‖ < T−η.

Note that since all u(si).x are in the small neighborhood O1 and S is at least

1-separated, γi �= e for all i �= j and also γi �= γi′ for i �= i′. Finally, note that

by (5.5b)

(5.5c) ‖γi‖ =
∥∥g−1w−1

i u(si − sj)g
∥∥ < C2 |si − sj |2 .

There are two cases to consider:

5.6. Case 1: There are i, i′ so that γi, γi′ are noncommuting elements of infinite

order.

If this happens, we will show that (A) holds; in §5.7 we show that the com-

plementary case leads to a contradiction.

Set

wi = h exp(m), wi′ = h′ exp(m′)

with h, h′ ∈ H , m,m′ ∈ m. Assuming (B) fails, ‖m‖ , ‖m′‖ < T−K25 where K25

is as yet undetermined.

Writing

ζ = g−1h−1u(si − sj)g

and similarly ζ′ with i′, h′ replacing i, h we have that

ζ = exp(g−1mg)γi, ζ′ = exp(g−1m′g)γi′ .

Note that since h−1u(si − sj) preserves the form Q0 = 2xz − y2, we have that

Q2 = Q0 ◦g is preserved by ζ as well as ζ ′. We apply Lemma 5.4 on the integral

system of equations in 6 variables (the coefficients of the quadratic form Q)

(5.6a)

⎧⎨
⎩
Q ◦ γi = Q,

Q ◦ γi′ = Q,

which corresponds to the matrix A of the lemma and the system of equations

(5.6b)

⎧⎨
⎩
Q ◦ ζ = Q,

Q ◦ ζ′ = Q,
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corresponding to B. By (5.5c) we know that ‖γi‖ , ‖γi′‖ < C2T
2 hence

‖A−B‖ < C3T
2T−K25,(5.6c)

‖A‖ < C3T
4.

It is also clear that Q2 solves the system of equations (5.6b).

It follows from Lemma 5.4 that if

(5.6d) ‖A−B‖ ‖A‖5 ≤ C6
3T

22−K25 < κ26

there is a rational quadratic form Q3 which is invariant under γi, γi′ . (2) of

Lemma 5.4 implies that Q3 is nondegenerate, hence since γi and γi′ do not com-

mute Lemma 5.3 implies that the space of solutions of (5.6a) is one-dimensional.

It follows from (3) of Lemma 5.4 that all coefficients of Q3 are bounded by

≤ K28C3T
20, hence 1 ≤ | detQ3| � T 60. We also note that since g is in a

compact region of X depending only on δ, the norm ‖Q0 ◦ g‖ can be bounded

in terms of δ. Thus by (2) of Lemma 5.4 and (5.6c)∥∥∥∥Q0 ◦ g − 1

detQ3
1/3

Q3

∥∥∥∥ � T (2−K25)/5.

Writing 1
detQ3

1/3Q3 = Q0 ◦ g1 and x1 = [g1]Γ it follows that

discQ(H.x1) � T 60, d(x, x1) � T (2−K25)/5,

establishing (A) if e.g., K25 was chosen to be 5M + 22.2

5.7. Case 2: All γi commute with each other.

In this case γ1,. . . ,γN generate an abelian subgroup of G, and either all

elements of this group are unipotent or it is contained in a Q-torus of SL(3).

For any Q-torus L of SL(3,R), we have that∣∣L ∩BG
T

∣∣ ≤ C4 logT
2

with C4 absolute, which clearly contradicts the fact that N , the number of the

γi, is  T 1−8η if T is large (and η was chosen to be < 1/8).

Therefore all the γi are unipotent, and they all have a common fixed vector.

In fact, as we have observed in the proof of Lemma 4.7, if the K chosen above

in §5.5 was large enough, all the γi are generic unipotents. Let n ∈ Z3 be a

primitive vector fixed by all of the γi. This vector is already determined by

2 Here it would be sufficient to take K25 = 5M + 2, but in (5.6d) we implicitly assumed

that K25 > 22.
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γj+1; hence ‖n‖ is bounded by a power of ‖γj+1‖. Indeed, e.g., using the fact

that the range of γj+1−e is two-dimensional, by a pigeonhole argument similar

to that given that the end of the proof of Lemma 5.4 it follows that

‖n‖ ≤ C5 ‖γj+1‖2 ≤ C6 |sj+1 − sj |4 ≤ C7T
32η.

For notational simplicity assume j < N/2 (the other case being essentially

identical). Applying both sides of (5.5b) to n we see that for all i, in particular

for i = j +N/4, j +N/2,

(5.7a) ‖u(si − sj)gn‖ = ‖wign‖ ≤ 2 ‖gn‖ ,
with g ∈ G as in (5.5a). Write gn = (v1, v2, v3)

ᵀ
, p(t) = v1 + v2t + v3t

2/2.

Considering the first component of the vector appearing on the LHS of (5.7a),

we conclude that

|p(t)| < 2 ‖g‖ ‖n‖ < C8T
32η for t = 0, t1, t2,

where t1 = sj+N/4 − sj , t2 = sj+N/2 − sj . As

p(t) = p(0)
(t− t1)(t− t2)

t1t2
+ p(t1)

t(t2 − t)

t1(t2 − t1)
+ p(t2)

t(t− t1)

t2(t2 − t1)

and using the fact that N/4 ≤ t1, t2, t2− t1 ≤ T (where the lower bound follows

from the si being 1-seperated) we conclude that

|v1| ≤ C8T
32η,

|v2| ≤ 1000C8T
1+32ηN−2 ≤ C9T

−1+48η,

|v2| ≤ 1000C8T
32ηN−2 ≤ C9T

−2+48η.

Applying a(−(1− δ) logT + 10 + log(1/κ)) to the vector gn, we find a vector

v′ ∈ a(−(1− δ) logT + 10 + log(1/κ))gZ3

with

‖v′‖∞ ≤ C9κ
−1min(T−1+δ+48η).

On the other hand, by construction,

u(sj).x ∈ Ξ((1 − δ) logT − log(1/κ)− 10, κ23, δ),

so

‖v′‖∞ ≥ c10κ23(κ
−1T 1−δ)δ,

which is a contradiction if we chose η so that

δ(1 − δ) < 1− δ − 48η
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and T is sufficiently large (depending on δ, κ,M and η).

6. Proof of Proposition 3.7

6.1. Using the Closing Lemma of §5 and the nondivergence estimates of §4 we

can now finish the proof of Proposition 3.7. For the convenience of the reader,

we reproduce the statement of this proposition:

6.2. Proposition (Proposition 3.7): Let δ, η, ε ∈ (0, 1) and x1 ∈ Xη. Then for

any

T > T0(δ, ε)η
−K8

at least one of the following holds:

(i) There is a point x2 ∈ G/Γ so that H.x2 is periodic and

discQ(H.x2) < T 3ε,

dG/Γ(x1, x2) < T−1.

(ii) For any τ ∈ [1, T εκ9] there are h, h′ ∈ BH
TK10

, x′ ∈ Ξ(εκ11 log T, κ12, δ)

and τ ′ ∈ [τ/2, τ ] so that

dG/Γ(v(−τ ′).x′, h.x1) < c1T
−εκ13 ,

dG/Γ(v(τ
′).x′, h′.x1) < c1T

−εκ13 .

We recall that K10 will be an absolute constant and c1, κ9, κ11, κ12, κ13 are

allowed to depend only on δ.

Proof of Proposition 3.7. Let δ, η, ε > 0 and x1 ∈ Xη be given. Assume alter-

native (i) in the statement of Proposition 3.7 does not hold, i.e., there is no

point y ∈ G/Γ so that H.y is periodic and

discQ(H.y) < T 3ε,

dG/Γ(x1, y) < T−1.

By Proposition 4.5, for an appropriately chosen κ = κ(δ) > 0, there is a

t1 ∈ [0,K17] with x2 = a(log η)u−(t1).x1 ∈ Ξ(∞, κ, δ).

Now apply Lemma 5.2 on x2 with T1 = T ε/20 and M = 25
ε . If (A) of

Lemma 5.2 holds, then there is a H-periodic y with

discQ(H.y) < T 60
1 = T 3ε,

dG/Γ(x2, y) < TM
1 = T−1.2.
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It follows that

dG/Γ(x1, u
−(−t1)a(− log η).y) � η−2T−1.2,

which contradicts our assumption that alternative (i) in the statement of Propo-

sition 3.7 does not hold if T > C2η
−10.

Thus setting K8 = 11 and T0 larger than an absolute constant we may con-

clude that there are s2, s
′
2 ∈ [0, T1], h ∈ H and m ∈ m so that x3 = u(s2).x2

and x′
3 = u(s2).x2 satisfy that x3 = h exp(m).x′

3 with

‖h− e‖ < T−κ24
1 , T−K25

1 < m < T−κ24
1 .

x3, x
′
3 ∈ Xκ23 ,

with K25 = 5M + 22 and κ23, κ24 absolute constants. Lemma 5.2 provides us

with a bit more information on x3, x
′
3, namely that they are in Ξ(log T1, κ23, δ),

but we shall not be using this, as we have to apply Proposition 4.5 again in any

case to avoid m being very close to the Lie algebra v of V .

Let x4 = exp(m/2).x′
3. Applying Proposition 4.5 we may conclude that for

most t2 ∈ [0,K17] the point a(r)u−(t2)x4 ∈ Ξ(∞, κ(δ), δ) with r = log(1/κ23).

Recalling the decomposition m =
⊕2

i=−2 mi with m2 = v from §5.1, the m−2

component of Ad(u−(t2))m is a polynomial of degree 4 in t2 with coefficients

that are essentially given by the components of m. Let φm : R → m−2 denote

this polynomial. Since for most t2 ∈ [0,K17] the norm of the polynomial φ(t2)

is comparable to the norm of its largest coefficient, we can conclude from the

above that we can find a t2 ∈ [0,K17] so that

a(r)u−(t2)x4 ∈ Ξ(∞, κ(δ), δ) and
∥∥φm(t2)

∥∥ ≥ c3 ‖m‖ .
Let x5 = a(r)u−(t2)x4 and m′ = Ad(a(r)u−(t2))m. In addition to being in

Ξ(∞, κ(δ), δ), this point has the property that

exp(±m′/2).x5 ∈ BH
C4T1

.

Write m′ as m′ = m−2 + · · ·+m2 with mi ∈ mi, and note that by choice of t2,∥∥m−2

∥∥  ‖m′‖ , T−K25
1 � ‖m′‖ � T−κ24

1 .

Suppose now that τ ≥ 1 is given. Let T2 > 0 be the smallest such that

‖Ad(u(T2))m
′‖ = τ

(recall that in our normalizations
∥∥∥ 0 0 τ

0 0 0
0 0 0

∥∥∥ = τ).
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In the degree 4 polynomial t �→ Ad(u(t))m′ the coefficient of the 4th order

term is essentially m−2. As
∥∥m−2

∥∥  T−K25
1 we have that T2 � T

K25/4
1 τ1/4

for some C4 > 0; indeed, in view of the explicit form of K25 given above T2 �
T 20ε−1+5.5
1 τ1/4 � TC5τ1/4 for some absolute constant C5. As ‖m′‖ � T−κ24

1 it

follows that T2  T c6
1 τ1/4 (with c6 depending on δ).

Since for an appropriate absolute constant c7 ∈ (0, 1) we have that

‖Ad(u(t))m‖ ≥ τ

2
for t ∈ [(1− c7)T2, T2],

by Proposition 4.4 it follows that there is a t3 ∈ [(1− c7)T2, T2] for which

u(t3).x5 ∈ Ξ((1 − δ) logT2 − log(1/κ(δ))− 10, κ̃, δ)

provided that
K16T κ̃

1/2

1− e−δ/2
< c7.

Finally, consider the polynomials R → m

Ad(t)mi

for −2 ≤ i ≤ 2. In each, the highest order term is its m2 component, and all

nonzero coefficients of t �→ Ad(t)mi are of the order ‖mi‖. It follows from the

definition of T2 that for t ∈ [0, T2], the components of Ad(t)m in mi for i �= 2 are

� τT−1
2 . Let x6 = u(t3).x5 and τ ′ ≥ 0 so that the m2 component of Ad(t3)m

′

has τ ′ in its right upper corner, i.e., is equal to vτ ′ − e. Then

x6 ∈ Ξ((1 − δ) logT2 − log(1/κ(δ))− 10, κ̃, δ)

and

d(v(±τ ′/2).x6, exp(±(Ad(t3)m
′)/2).x6) � τT−1

2 .

As

exp(±(Ad(t3)m
′)/2).x6 ∈ BH

C8(T1+T2)
.x1

the proposition is proved.

7. Divergence properties of nearby U-orbits

7.1. In order to study the divergence properties of ut-orbits, we make use of

the representation ρ : G → Aut(W ) with W = R3 ⊕ (sym2(R
3))∗, which arises

from the usual action of G on R3, and the action of G on (sym2(R
3))∗ given

after identifying (sym2(R
3))∗ with the space of ternary quadratic forms by

(g.Q)(v) = Q(g−1v).
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Let e1, e2, e3 be the usual basis of R
3, and Q0(x, y, z)=y2−2xz∈(sym2(R

3))∗.
The vector w0 = e1 ⊕ Q0 ∈ W is fixed by U , and an easy calculation shows

that in fact U = stabG(w0). We note that the pair (Q0, e1) gives a signature

(2, 1)-quadratic form, of determinant 1, and a nonzero isotopic vector for Q0,

i.e., a nonzero vector v satisfying Q0(v) = 0. Since the action of G preserves

these properties, it follows that ρ(G)w0 is contained in

G = {v ⊕Q : Q has signature (2, 1), detQ = 1, v �= 0, Q(v) = 0}.
Since G acts transitively on the collection of signature (2, 1)-quadratic forms,

and H acts transitively on the set of nonzero isotopic vectors of Q0 (cf. [C]), in

fact ρ(G)w0 = G.

7.2. We fix a rational cross section W to U in G, i.e., a subvariety of G so that

the map (w, u) �→ wu gives a birational map between W×U and G. A concrete

choice for W is

W = U−A

⎛
⎜⎝
1 ∗ ∗
0 1 0

0 0 1

⎞
⎟⎠ .

Then the map g �→ ρ(g).w0 restricted to W gives a birational map between W
and the smooth quasi-affine variety G. The rational map � : G → W inverting

this map can be given explicitly as follows: let v1 ⊕ Q be a point in G, i.e., Q
is a signature (2, 1)-quadratic form with determinant 1 and v1 ∈ R3 \ {0} with

Q(v1) = 0. The quadratic form Q(v) defines a bilinear form in the usual way

Q(v, w) = 1
2 (Q(v+w)−Q(v) +Q(w)). We complete v1 to basis v1, v2, v3 of R3

as follows: first find v3 ∈ 〈v1, e3〉 satisfying
Q(v1, v3) = −2, Q(v3) = 0

(this is possible as long as Q(v1, e3) �= 0). Then fix v2 by the three linear

conditions

Q(v1, v2) = 0, Q(v3, v2) = 0, det(v1, v2, v3) = 1.

It follows that

−Q(v2) = det (Q(vi, vj))i,j=1...3 = detQ · det(v1, v2, v3)2 = −1,

hence if we compose Q with the matrix (v1v2v3) formed by the column vectors

v1, v2, v3 we get Q0. Thus � : v1 ⊕ Q �→ (v1v2v3) gives a rational map G → W
inverting the map g �→ g.w0; it is also clear that � is regular at w0.
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7.3. Lemma: Let WU denote the space of ρ(U)-invariant vectors in W . Then

WU is given by

WU = 〈e1 ⊕ 0, 0⊕Q0, 0⊕Q†〉,

where Q0 is the quadratic form above and Q†(x, y, z) = 2z2.The intersection

G ∩WU is a Zariski open subset of the two-dimensional affine plane

(7.3a) W0 = {te1 ⊕ (Q0 + t′Q†) : t, t′ ∈ R}.
Proof. This is essentially a combination of the trivial observation that e1 spans

the U -invariant vectors in R3 and the fact (easily verified by direct calculation)

that any U -invariant ternary quadratic form is a linear combination of Q0 and

Q† above.

Recall that G consists of all points v⊕Q with v ∈ R3 nonzero and isotropic for

the signature (2,1)-quadratic form Q of determinant 1. If v⊕Q ∈ G ∩WU then

Q = sQ0 + s′Q†, and as det(sQ0 + s′Q†) = s3 it follows that s = 1. Moreover,

from the description of G it follows that every v⊕Q∈W0 with v �=0 is in G.

7.4. One can say a bit more about G ∩ W0. Our choice of cross section W
satisfies that AV ⊂ W . Since

ρ

⎛
⎜⎝
⎛
⎜⎝
t

1

t−1

⎞
⎟⎠ v(s)

⎞
⎟⎠w0 = te1 ⊕ (Q0 + st2Q†)

it follows that for c �= 0

�(ce1 ⊕ (Q0 + bQ†)) =

⎛
⎜⎝
c

1

c−1

⎞
⎟⎠ v

(
b

c2

)
.

We also make note of the identity

⎛
⎜⎝
c−1

1

c

⎞
⎟⎠ v(s)�(ce1 ⊕ (Q0 + bQ†)) = v

(
s+ b

c2

)

that will be useful later.
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7.5. The space W splits into three irreducible components under the action of

ρ(H): R3, a one-dimensional representation spanned by the ρ(H)-fixed vector

0⊕Q0 and a 5-dimensional representation (that there are only three irreducible

representations follows from the fact that the space of ρ(U)-invariant vectors is

three-dimensional).

Fix a Euclidean norm ‖·‖ on W according to which the irreducible subspaces

are orthogonal and, moreover, in each irreducible representation of ρ(H) the

eigenspaces of ρ(D) are orthogonal. We further scale ‖·‖ so that every p = v⊕Q

with ‖p− w0‖ ≤ 1 satisfies that Q is nondegenerate of signature (1, 2), v �= 0

and � is regular on G ∩BW
2 (w0). For every p ∈ W we let πWU and πW0 denote

the closest point on WU or W0 to p respectively, and π⊥
WU

(p) = p−πWU (p) (and

similarly for W0).

7.6. Lemma: For every v ∈ W \ WU consider the least T ≥ 0 for which

‖ρ(uT )v − v‖ ≥ 1. Then

(7.6a)
∥∥π⊥

WU
v
∥∥−1/4 � T � ∥∥π⊥

WU
v
∥∥−1

with implied constants absolute.

A similar estimate holds also for T > 0, the least number satisfying

‖ρ(−T )v − v‖ ≥ 1,

or if v ∈ (W \WU ) ∩BW
1/2(w0) for T , the least number satisfying

‖ρ(−T )v − w0‖ ≥ 1.

Proof. p(t) = ρ(ut)v − v is a vector-valued polynomial of degree ≤ 4 whose

maximal nonconstant coefficient is bounded above and below by absolute con-

stants times
∥∥π⊥

WU
v
∥∥. In particular, p(t) is not a constant as v �∈ WU , hence

‖p(t)‖ → ∞ as t → ∞. The estimate (7.6a) for T = min{t ≥ 0 : ‖p(t)‖ ≥ 1} or

T = min{t ≥ 0 : ‖p(−t)‖ ≥ 1} now follows from general properties of degree ≤ 4

polynomials. The case of T = min{t ≥ 0 : ‖ρ(ut)v − w0‖ ≥ 1} follows similarly

by taking p1(t) = ρ(ut)v − w0, and noting that by construction ‖p1(0)‖ ≤ 1/2

while ‖p1(T )‖ = 1.

7.7. Lemma: Let v ∈ (W \WU ) ∩BW
1/2(w0) and

T = min{t ≥ 0 : ‖ρ(ut)v − w0‖ ≥ 1}.
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Then for 0 ≤ t ≤ T it holds that

(7.7a)
∥∥π⊥

WU
(ρ(ut)v)

∥∥ � T−1.

Proof. Suppose t ≤ T/2. Write v′ = 1
2ρ(ut)v, and apply Lemma 7.6 to v′. Since

‖ρ(us)v − w0‖ < 1 for all s ∈ [0, T ], it follows that for s ∈ [0, T/2]

‖ρ(ut+s)v − ρ(ut)v‖ ≤ 2 for 0 ≤ s ≤ T/2.

Consequently, v′ satisfies the conditions of Lemma 7.6 for T ′ ≥ T/2. Thus by

the second inequality in (7.6a)

T ≤ 2T ′ � ∥∥π⊥
WU

(v′)
∥∥−1

,

which is equivalent to (7.7a).

7.8. Lemma: Let g ∈ G satisfy that ρ(g)w0 ∈ BW
1 (w0). Then

(7.8a)
∥∥π⊥

W0
(ρ(g)w0)

∥∥ � ∥∥π⊥
WU

(ρ(g)w0)
∥∥ .

Proof. Since W0 is an affine subspace of WU , the left-hand side of (7.8a) is ≥
the right-hand side. To see the opposite inequality, let

πWU (ρ(g)w0) = ae1 ⊕ (a1Q0 + a2Q†)

with Q0, Q† as in Lemma 7.3 and a, a1, a2 ∈ R. Since ρ(g)w0 ∈ G, it has

the form v ⊕ Q with Q an indefinite quadratic form of determinant 1. As

det(a1Q0 + a2Q†) = a31, and since by the conditions on g, the scalar a1 is in

some fixed compact subset of (0,∞),

|a1 − 1| � ‖ρ(g)w0 − πWU (ρ(g)w0)‖ =
∥∥π⊥

WU
(ρ(g)w0)

∥∥ .
But this in turn implies that

∥∥∥∥ρ(g)w0 − a

a1
e1 ⊕

(
Q0 +

a2
a1

Q†

)∥∥∥∥ � ∥∥π⊥
WU

(ρ(g)w0)
∥∥ .

On the other hand, as a
a1
e1⊕

(
Q0 +

a2

a1
Q†

)
∈ W0 the left-hand side of the above

equation is ≥ ∥∥π⊥
W0

(ρ(g)w0)
∥∥ which concludes the proof.
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7.9. Let

u =

⎛
⎜⎝
0 1

0 1

0

⎞
⎟⎠

so that U = exp(Ru). The following is a consequence of the elementary theory

of finite-dimensional representations of sl(2,R) ∼= LieH :

7.10. Lemma: Let dρ denote the representation of g corresponding to ρ. Then

for every n it holds that

∥∥π⊥
WU

(dρ(n)w0)
∥∥  ∥∥u−

∥∥ ,
where n = u−+ a+ u+ with u± ∈ Lie(U±) and a ∈ LieA

Proof. Decompose [u, n] also as [u, n] = u′
−+ a′ + u′

+. Note that as

u,d =

⎛
⎜⎝
1

0

−1

⎞
⎟⎠ ,

⎛
⎜⎝
0

1 0

1 0

⎞
⎟⎠

form a sl(2,R)-triplet,
∥∥u′

−+ a′
∥∥  ∥∥u−

∥∥.
Since dρ is a Lie algebra representation and dρ(u)w0 = 0,

dρ([u, n])w0 = (dρ(u)dρ(n)− dρ(n)dρ(u))w0 = dρ(u)dρ(n)w0.

As WU is by definition the kernel of dρ(u), it follows that

(7.10a)
∥∥π⊥

WU
dρ(n)w0

∥∥  ‖dρ([u, n])w0‖ .

Decompose the space W into dρ(d) eigenspaces. The vector w0 is in such an

eigenspace, with eigenvalue one. Hence dρ(u′−+ a′)w0 has components in the

eigenspaces with eigenvalue ≤ 1, and dρ(u′
+)w0 in eigenspaces with eigenvalue

> 1. By our choice of norm on W it follows that

‖dρ([u, n])w0‖ ≥ ∥∥dρ(u′
−+ a′)w0

∥∥  ∥∥u′
−+ a′

∥∥  ∥∥u−
∥∥ ,

hence by (7.10a),
∥∥π⊥

WU
dρ(n)w0

∥∥  ∥∥u−
∥∥.

7.11. Proposition: Let h0 = u−au+ ∈ BG
κ29

\NG(U) with u− ∈ U−, u+ ∈ U+,

a ∈ A and κ29 a sufficiently small absolute constant. Then there are

(i) T > 0 with ‖h0 − e‖−1/4 � T � ‖u− − e‖−1
,
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(ii) polynomials c(t), b(t) with Ft(x) = c(t)−2(x+ b(t)) satisfying

max
x∈

[
− 1

2 ,
1
2

] |Ft(x) − x| ≤ κ30 for t ∈ [−T, T ],

= κ30 for t = −T or T,

(iii) a rational function φ : [−T, T ] → R satisfying

K−1
31 |t1 − t2| ≤ |φ(t1)− φ(t2)| ≤ K31 |t1 − t2| for all t1, t2 ∈ [−T, T ],

so that for every t ∈ [−T, T ] and p ∈ G/Γ,

d

⎛
⎜⎝u(t)h0.p,

⎛
⎜⎝
c(t)

1

c(t)−1

⎞
⎟⎠ v

(
b(t)

c(t)2

)
u(φ(t)).p

⎞
⎟⎠ � T−1.

Note that it follows from the above equation (or from the definition of φ

below) that φ(0) is small; e.g., a suitable choice of κ29 would guarantee that

|φ(0)| < 1.

Proof of Proposition 7.11. Let T1 = min{t ≥ 0 : ‖ρ(uth0)w0 − w0‖ ≥ 1}. By

Lemma 7.3, we can write the polynomial map t �→ πW0(ρ(uth0)w0) as

πW0 (ρ(uth0)w0) = c(t)e1 ⊕ (Q0 + b(t)Q†)

with c(t), b(t) real-valued polynomials of degree ≤ 4.

Define φ(t) by

(7.11a) � (ρ(uth0)w0) = uth0u−φ(t),

i.e.,

uφ(t) = (�(ρ(uth0)w0))
−1uth0.

Note that such φ(t) must exist as �(ρ(g)w0) ∈ gU for every g ∈ G. Since �

is a rational function on G and is well behaved on G ∩ BW
2 (w0), the function

φ defined above is rational, and well behaved as a function of t as long as

ρ(uth0)w0 remains in BW
1 (w0).

By Lemma 7.7 and 7.8 it follows that for |t| ≤ T1

∥∥π⊥
W0

(ρ(uth0)w0)
∥∥ � T−1

1 ,
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hence by the regularity of � on G ∩BW
1 (w0)

dG(�(ρ(uth0)w0), �(πW0 (ρ(uth0)w0))) = dG(uth0u−φ(t), h1(t)) � T−1
1 ,

(7.11b)

with

h1(t) =

⎛
⎜⎝
c(t)

1

c(t)−1

⎞
⎟⎠ v

(
b(t)

c(t)2

)
.

Applying both of these elements to the point uφ(t)p we see that

d(uth0.p, h1(t)uφ(t).p) � T−1
1 .

If one chooses κ30 appropriately, it is clear that there will be a T1 with T �
T1 < T for which condition (ii) is satisfied.

Finally, regarding (iii), observe that by (7.11a) for t1, t2 ∈ [−T, T ],

uφ(t1)−φ(t2) = (�(ρ(ut1h0)w0))
−1ut1−t2�(ρ(ut2h0)w0).

As �(ρ(uth0)w0) is in a fixed compact neighborhood of e ∈ G, say Ω, for all

t ∈ [−T, T ], we see that for any t1, t2 ∈ [−T, T ]

uφ(t1)−φ(t2) ∈ Ω−1ut1−t2Ω

and (iii) follows by comparing norms.

8. Some properties of rational functions

8.1. Lemma: Let a(t), b(t), c(t) be polynomials of degree ≤ d, with c(t) > 0 on

t ∈ [0, 1]. Set

Ft(x) =
a(t)

c(t)A
x+

b(t)

c(t)B

with A,B nonnegative integers. Assume that |Ft(x) − x| ≤ ρ for all t ∈ [0, 1].

Let C = max(A,B), M = maxt∈[0,1] c(t), m = mint∈[0,1] c(t). Then

max
t∈[0,1]

∣∣∣∣ ∂∂tFt(x)

∣∣∣∣ ≤ K32ρ

(
M

m2
+

(
M

m

)C)
,

with K32 depending only on d,A,B.

Proof. Since |Ft(x) − x| ≤ ρ on t ∈ [0, 1] it follows that the coefficients of the

polynomial

p(t) = c(t)C
(

a(t)

c(t)A
x+

b(t)

c(t)B
− x

)
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are all � MCρ, hence maxt∈[0,1] |p′(t)| < C1M
Cρ. It follows that

∣∣∣∣∂Ft(x)

∂t

∣∣∣∣ ≤
∣∣∣∣ p

′(t)
c(t)C

∣∣∣∣+ C

∣∣∣∣c
′(t)(Ft(x)− x)

c(t)2

∣∣∣∣
≤ C1ρ

(
M

m

)C

+ Cρ
M

m2
.

8.2.Corollary: Let c(t), b(t) be polynomials of degree≤ d, with c(t) ∈ [δ, δ−1]

on t ∈ [0, 1]. Set Ft(x) = c(t)Bx + b(t)c(t)A, with A,B ∈ Z, and assume that

|Ft(x)− x| ≤ ρ for all t ∈ [0, 1]. Then

max
t∈[0,1]

∣∣∣∣ ∂∂tFt(x)

∣∣∣∣ ≤ K33ρ,

max
t∈[0,1]

∣∣∣∣ ∂∂tF−1
t (x)

∣∣∣∣ ≤ K33ρ,

with K33 depending on d, δ, A,B.

Proof. This follows directly from Lemma 8.1 as F−1
t (x) = xc(t)

−A−b(t)c(t)B−A,

hence that lemma applies to both Ft and F−1
t .

9. The combinatorial lemma

9.1. Definition: Let S ⊂ R and I be an interval. The total density of S on I

is defined to be

δ(S; I) = |I|−1

∫
I

dR(x, S)dx.

9.2. Lemma: Let S be a closed subset of R, and I be an interval containing at

least one point of S. Then for all α < 1

m({x ∈ I : d(x, S) < αδ(S; I)}) ≥ α |I| /8.
Proof. We first show that there is a subset D ⊂ I of measure ≥ α |I| /4 so that

(9.2a)
1

m(D)

∫
D

d(x, S) dx ≤ αδ(S; I)/2.

Indeed, let J be one of the connected components of I \ S. Then at least one

of the endpoints of J is in S,

|J | /4 ≤ |J |−1
∫
J

d(x, S) dx ≤ |J | /2,



Vol. 203, 2014 INDEFINITE TERNARY FORMS 481

and therefore there is a subinterval J ′ ⊂ J with |J ′| > α|J |/4 so that

1

|J |′
∫
J′
d(x, S) dx ≤ α

2 |J |
∫
J

d(x, S) dx.

Taking D to be the union of these subintervals J ′ gives (9.2a).
Now by Chebyshev, the measure of those x ∈ D with d(x, S) > αδ(S; I)

is ≤ m(D)/2, hence there is a subset of I of measure ≥ m(D)/2 on which

d(x, S) ≤ αδ(S; I) and the lemma follows.

9.3. Theorem (“Combinatorial Lemma”): Let c(t), b(t) be polynomials of de-

gree d with c(0) = 1 and b(0) = 0 and A,B ∈ Z. Set Ft(x) = c(t)Ax+b(t)/c(t)B .

Assume that for Δ ∈ (0, 1/3]

(i) |Ft(x)− x| ≤ Δ for all t ∈ [0, 1] and x ∈ [0, 1],

(ii) |F1(x)− x| = Δ for some x ∈ [0, 1].

Then there are κ34, κ35 > 0 depending only on d,A,B,Δ so that for every

S ⊂ [0, 1] containing the endpoints of this interval the set

G =

{
t ∈ [0, 1] : min

ε=±1
δ(S ∪ [Ft]

ε(S); [0, 1]) <
δ(S; [0, 1])

1 + κ34

}

satisfies that m(G) ≥ κ35.

Proof. For any x ∈ [0, 1], let

rx = max{|Ft(x) − x| : 0 ≤ t ≤ 1}.
It follows from (i) of the statement of the theorem that

(9.3a) c(t)A ∈ [1− 2Δ, 1 + 2Δ],
b(t)

c(t)B
∈ [−Δ,Δ] for all t ∈ [0, 1];

also note that for any t ∈ [0, 1]

(9.3b) (Ft)
−1(x)− x = −(Ft(x)− x)/c(t).

Suppose first that there is some connected component (α, β) of [0, 1] \S with

β − α > Δ/40. It follows from (ii) that3

max(|F1(α) − α| , |F1(β)− β|) ≥ Δ2

40
.

3 The exact value of the constant on the right hand side is irrelevant, hence we omit the

details.
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Without loss of generality, assume |F1(α)− α| ≥ Δ2/40. Let ε = 1 if F1(α) > α

and ε = −1 otherwise; by (9.3a) and (9.3b) it follows that

F ε
1 (α) ≥ α+

Δ2

120
.

From Corollary 8.2 it follows that there is a set E ⊂ [0, 1] of measure ≥ c1

(depending only on d,A) so that for t ∈ E,

F ε
t (α) ∈ (α+Δ2/240, α+Δ2/120),

and since β − α ≥ Δ2/40 it follows that for t ∈ E,

δ(S ∪ F ε
t (S); [0, 1]) ≤ (1− c2)δ(S; [0, 1])

for c2 > 0 some function of Δ, and the theorem follows.

Thus we may assume for the rest of the proof that every connected component

of [0, 1] \ S has size ≤ Δ/40. Clearly it suffices to show that

(9.3c)

∫ 1

0

∫ 1

0

d(x, S ∪ Ft(S)) dt dx+

∫ 1

0

∫ 1

0

d(x, S ∪ F−1
t (S)) dt dx

< (2− c3)δ(S; [0, 1]),

with c3 depending only on d,A,B,Δ.

Equations (9.3a) and (9.3b) imply that for any x ∈ [0, 1]

[x− rx/3, x+ rx/3] ⊂ {F ε
t [x] : t ∈ [0, 1], ε = ±1} ⊂ [x− 3rx, x+ 3rx].

Using the above bounds on c(t) it also follows that for any y, t ∈ [0, 1]

(9.3d) |Ft(y)− Ft(x)| ≤ 5

3
|y − x| , ∣∣F−1

t (y)− F−1
t (x)

∣∣ ≤ 3 |y − x| ,
hence for every y ∈ [x− rx/20, x+ rx/20] it holds that

(9.3e)
[x− rx/20, x+ rx/20] ⊂{F ε

t [y] : t ∈ [0, 1], ε = ±1}
⊂[x− 4rx, x+ 4rx].

From the intervals [x − rx/20, x + rx/20] ∩ [0, 1] we can extract two disjoint

subcollections Ji so that ⋃
i=1,2

⋃
J∈Ji

J = [0, 1].

For any connected component I = (α, β) of [0, 1] \ S we mark one endpoint as

follows: Let

Φ(x) =

⎧⎨
⎩
F1(x) if c(1) ≤ 1,

F−1
1 (x) otherwise.
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Mark α if Φ moves it to the right more than it moves β to the left, i.e., if

Φ(α)− α ≥ β − Φ(β);

otherwise we mark the point β. Note that since Φ is a contraction, at least one

of Φ(α)− α, β − Φ(β) must be positive.

We then remove from both J1 and J2 all those intervals fully contained in I

but which do not intersect the third of I nearest the marked endpoint of I; after

performing this operation for every connected component of [0, 1] \S we obtain

two new disjoint collections J̃1, J̃2 so that for every connected component I of

[0, 1] \ S at least one third of I is contained in the union
⋃

i=1,2

⋃
J∈J̃i

J . It

follows that ∑
J∈J̃1∪J̃2

∫
J

d(x, S) dx ≥ 2δ(S; [0, 1])

9
.

Hence for an appropriate choice of i, J = J̃i is a disjoint collection of intervals

with ∑
J∈J

∫
J

d(x, S) dx ≥ δ(S; [0, 1])

9
.

In order to prove (9.3c), it is clearly enough to show that for every J ∈ J

(9.3f)

∫
J

dx

∫ 1

0

d(x, S ∪ Ft(S)) d+

∫
J

dx

∫ 1

0

d(x, S ∪ F−1
t (S)) dt

< (2− κ36)

∫
J

d(x, S) dx.

There are two cases to consider:

The interval J intersects S: In this case, we apply Lemma 9.2 on J to

find a subset E ⊂ J with m(E) ≥ c4 |J | so that

d(y, S) < 0.01δ(S; J) for every y ∈ E,

where c4 is an absolute constant. Write J = [x − rx/20, x+ rx/20] ∩ [0, 1] for

some x ∈ [0, 1]. We recall (9.3e), which states that for every y ∈ J

[x− rx/20, x+ rx/20] ⊂ {F ε
t (y) : t ∈ [0, 1], ε = ±1} ⊂ [x− 4rx, x+ 4rx];

moreover, at least one of the intervals [x − rx/20, y] or [y, x + rx/20] is in

{Ft(y) : t ∈ [0, 1]}, with the other interval being in {F−1
t (y) : t ∈ [0, 1]}. For

notational convenience we assume [x − rx/20, y] is in that set (the other case
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being identical). Using Corollary 8.2 we deduce that
∣∣ ∂
∂tFt(y)

∣∣ , ∣∣ ∂
∂tF

−1
t (y)

∣∣ <
C5 |J | for all t ∈ [0, 1]. It follows that

m({t ∈ [0, 1] : Ft(y) ∈ E}) ≥ m(E ∩ [x− rx/20, y])

maxt∈[0,1]

∣∣ ∂
∂tFt(y)

∣∣
≥ m(E ∩ [x− rx/20, y])

C5 |J | ,

m({t ∈ [0, 1] : F−1
t (y) ∈ E}) ≥ m(E ∩ [y, x+ rx/20])

maxt∈[0,1]

∣∣ ∂
∂tF

−1
t (y)

∣∣
≥ m(E ∩ [y, x+ rx/20])

2C5 |J | .

We obtain that there is a choice of ε = ±1 for which

m({t ∈ [0, 1] : F ε
t (y) ∈ E}) ≥ m(E)

2C5 |J | = c6;

note that c6 depends only on d,A,B and is clearly < 1. Whenever F ε
t (y) ∈ E

it holds that

d(y, F−ε
t S) ≤ 3d(F ε

t (y), S) ≤ 0.03δ(S; J).

This implies that

(9.3g)

∫ 1

0

d(y, S ∪ FtS) dt+

∫ 1

0

d(y, S ∪ F−1
t S) dt

≤ (2− c6)d(y, S) + 0.03c6δ(S; J).

Trivially, the left-hand side of (9.3g) is also ≤ 2d(y, S). Let

E′ = {y ∈ J : d(y, S) ≤ 0.03δ(S; J)}.
Then

∫
J\E′

dx

∫ 1

0

d(x, S ∪ Ft[S]) dt+

∫
J\E′

dx

∫ 1

0

d(x, S ∪ F−1
t [S]) dt

< (2− c6)

∫
J\E′

d(x, S) dx + 0.03c6m(J \ E′)δ(S; J),

and clearly

2

∫
E′

d(x, S) dx ≤ 0.06m(E′)δ(S; J)

≤ (2 − c6)

∫
E′

d(x, S) dx + 0.03c6m(E′)δ(S; J).
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Hence

∫
J

dx

∫ 1

0

d(x, S ∪ Ft[S]) dt+

∫
J

dx

∫ 1

0

d(x, S ∪ F−1
t [S]) dt

< (2− c6)

∫
J

d(x, S) dx+ 0.03δ(S; J)

and (9.3f) follows, in the case J ∩ S �= ∅.
The interval J is disjoint from S: Again, write

J = [x− rx/20, x+ rx/20] ∩ [0, 1]

for some x ∈ [0, 1], and let I = (α, β) be the connected component of [0, 1] \ S
containing J . Set � = (β − α). Since S intersects every interval of size Δ

40 , it

follows that rx < Δ/2 and hence, in particular, |(c(1)− 1)x+ b(1)| < Δ/2. Con-

dition (ii) of the statement of the theorem implies that there is some x′ ∈ [0, 1]

for which |(c(1)− 1)x′ + b(1)| = Δ, hence |c(1)− 1| ≥ Δ
2 . Without loss of gen-

erality, we may assume that in the terminology introduced shortly after (9.3e)

the point α is the marked endpoint of the interval (α, β).

Let Φt = (Ft)
ε where ε = 1 if c(1) ≤ 1 and ε = −1 otherwise. Then

∂

∂y
Φt(y) ≤ 2

2 + Δ

and hence

(Φ1(α)− α) + (β − Φ1(β)) ≥ Δ�

2 + Δ
.

Since α is marked, we have that Φ1(α)− α ≥ (β − Φ1(β), hence

(9.3h) Φ1(α) > α+
Δ�

5
.

Also, by definition of rx and (9.3a), for all t ∈ [0, 1]

|Φt(x)− x| < 3rx

and it follows from (9.3d) that for all t ∈ [0, 1]

(9.3i) |Φt(α)− α| < 3rx + 3(x− α) < 6(x− α).

In particular, setting t = 1 and comparing with (9.3h) we see that x > α+ Δ	
30 .

Since ∫
J

d(x, S) dx =

∫
J∩[α,α+ �

2 ]

|x− α| dx+

∫
J∩[α+ �

2 ,β]

|β − x| dx
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and since by assumption J ∩ [α, α+ �/3] �= ∅ it follows that

(9.3j)

∫
J∩[α+ �

200 ,α+
�
2 ]

|x− α| dx ≥ c7

∫
J

d(x, S) dx.

Now by Corollary 8.2, (9.3h), and (9.3i) there is some c8 depending only on the

d,A,B,Δ so that if

EJ =

{
t ∈ [0, 1] :

x− α

200
< Φt[α]− α <

x− α

100

}

then m(EJ ) > c8. If t ∈ EJ∫
J∩[α+ �

200 ,α+
�
2 ]

|(Φt(α))
ε
[α]− x| dx ≤ 0.99

∫
J∩[α+ �

200 ,α+
�
2 ]

|x− α| dx,

and so by (9.3j)∫
J

d(x, S ∩ ΦtS) dx ≤ (1− 0.01c7)

∫
J

d(x, S) dx

and ∫ 1

0

∫
J

d(x, S ∩ ΦtS) dx dt ≤ (1− 0.01c7c8)

∫
J

d(x, S) dx.

10. The main lemma

We now state our main “bootstrapping” lemma, which we derive from combin-

ing the combinatorial lemma of the previous section (Theorem 9.3) with the

properties of the U -action developed in §4 and §7.
10.1. Main Lemma: Let δ, κ ∈ (0, 1), and k ≥ k0(δ). Then for any

(A1) x1 ∈ Ξ(k + log(1/κ), κ, δ) (cf. §4.1),
(A2) I ⊂ R a closed interval centered at 0 with |I| ≤ eκ37k,

(A3) S ⊂ I a subset with ∂I ⊂ S,

there is some s ∈ [−ek, ek] and a set S′ with ∂I ⊂ S′ ⊂ I so that:

(B1) u(s).x1 ∈ Ξ(κ38k, κ̃, δ),

(B2) δ(S′; I) ≤ δ(S;I)
1+κ39

,

(B3) every point of v(S′)u(s).x1 is within e−κ40k of a point in the set

ΩDu([−ek, ek])v(S).x1, with ΩD ⊂ D an appropriately chosen fixed

compact subset.

Here κ̃, κ37, κ38, κ40 are constants depending only on δ, while κ39 is an absolute

constant.
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Proof. Set σ = log |I|, and Ī = e−σI = [− 1
2 ,

1
2 ]. By Proposition 4.4 applied

with T = 1
2e

k the set

F = {|s| ≤ 1
2e

k : ut.x1 ∈ Ξ((1 − δ)k − 10, κ̃, δ)}
satisfies that

e−km(F ) ≥ 1− K16κ̃
1/2

1− e−δ/2

with K16 as in Proposition 4.4; moreover, if κ̃ is sufficiently small, depending

on δ the right hand side of the above equation can be made to be arbitrarily

close to one. The precise choice of κ̃ will be specified later; in addition to δ

it depends on the constants of Proposition 7.11 and Theorem 9.3, but will not

depend on any other choices we make in this proof. In particular, we assume κ̃

is sufficiently small so that e−km(F ) ≥ 1/2. Unless otherwise specified, all the

constants ci, Ci appearing in this proof may depend on δ as well as our as yet

unspecified choice of κ̃.4

Let

α1 =
(1− δ)2

4 + 2δ
.

It follows from the lower bound above on the measure of F that there is a

subinterval J ⊂ [− 1
2e

k, 1
2e

k] of length eα1k so that m(J ∩F ) ≥ |J | /2. The lower
bound on m(J∩F ) implies that we may extract from J∩F a R-separated5 finite

subset E ⊂ F of cardinality ≥ |J | /2R, with R depending only on κ̃ (specifically,

R = K20 of Lemma 4.7, applied to points in Ξ(·, κ̃, δ)). Since
{uξ.x1 : ξ ∈ E} ⊂ Ξ((1 − δ)k − 10, κ̃, δ) ⊂ Xκ

we conclude that there must be two distinct points ξ, ξ′ ∈ E with

(10.1a) d(uξ.x1, uξ′ .x1) ≤ C1e
−α1k/8

(the number 8 appears because it is the dimension of X). Write x2 = uξ.x1,

x′
2 = uξ′ .x1; assuming C1e

−α1k/8 is smaller than some absolute constant (equiv-

alently, that k is larger than some k0 depending on δ) we have that x′
2 = h0.x2

for h0 sufficiently close to the identity for Lemma 4.7. Moreover, (10.1a) implies

that

(10.1b) ‖h0 − e‖ ≤ C2e
−α1k/8.

4 Note that in the effective proof of the Oppenheim Conjecture (including the strong,

nonhomogeneous, form) δ can be chosen to be an absolute constant.
5 I.e., |ξ − ξ′| ≥ M for every distinct ξ, ξ′ ∈ E.
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On the other hand, if R is sufficiently large the bound

R < |ξ − ξ′| < |J | = c??e
α1k

implies by Lemma 4.7 that we may write h0 = u+a0u− with u+ ∈ U+, u− ∈ U−,
a0 ∈ A and

‖u− − e‖ ≥ c3e
− 2+δ

1−δ α1k = c3e
−(1−δ)k/2.

In particular, u− �= e so h0 �∈ NG(U).

We now wish to apply Proposition 7.11 to x3 = a(−σ/2).x2 and x′
3 =

a(−σ/2).x′
2. We set the parameter κ37 from the statement of the Main Lemma

to be κ37 = α1

1000 so that

(10.1c) σ ≤ α1k/1000.

Then x′
3 = h1.x3 with h1 = u′

+a1u
′
− and

∥∥u′
− − e

∥∥ ≥ ‖u− − e‖ ≥ c3e
−(1−δ)k/2,

‖h1 − e‖ ≤ C4e
σ ‖h0 − e‖ ≤ C5e

−α1k/10.

By Proposition 7.11 there are

(a) c6e
α1k/40 ≤ T2 ≤ C7e

k/2,

(b) a rational function φ satisfying K−1
31 ≤ φ′(t) ≤ K31 on [−T2, T2],

(c) polynomials c(t), b(t) so that the family of affine functions Ft(x) =

(x+ b(t))/c(t)2 satisfy

(10.1d)
max
x∈Ī

|Ft(x) − x| ≤ κ30 for t ∈ [−T2, T2],

= κ30 for t = −T2 or T2,

so that for every |t| ≤ T2

d

(
u(t).x′

3, a(log c(t))v

(
b(t)

c(t)2

)
u(φ(t)).x3

)
< C8e

−α1k/40.

Since for g1, g2 ∈ G,

dG(a(σ/2)g1, a(σ/2)g2) ≤ eσdG(g1, g2),

it follows that for |t| ≤ T1 = eσ/2T2 the points x2 = a(σ/2).x3, x
′
2 = a(σ/2).x′

3

satisfy

(10.1e) d

(
u(t).x′

2, a(log c̃(t))v

(
eσ b̃(t)

c̃(t)2

)
u(φ̃(t)).x2

)
< C8e

σe−α1k/40
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with b̃(t) = b(e−σ/2t), c̃(t) = c(e−σ/2t), φ̃(t) = φ(e−σ/2t); set also

F̃t(x) = x/c̃(t)2 + eσ b̃(t)/c̃(t)3.

Equation (10.1e) implies that for s ∈ I

(10.1f)

d(v(s)u(t).x′
2, a(log c̃(t))v(F̃t(s))u(φ̃(t)).x2)

=d

(
v(s)u(t).x′

2, a(log c̃(t)) v

(
s+ eσ b̃(t)

c̃(t)2

)
u(φ̃(t)).x2

)

=d

(
v(s)u(t).x′

2, v(s)a(log c̃(t))v

(
eσ b̃(t)

c̃(t)2

)
u(φ̃(t)).x2

)
.

By (10.1e) and the inequality

dG(v(s)g1, v(s)g2) ≤ C9s
2dG(g1, g2) for g1, g2 ∈ G,

we can further estimate (10.1f) by

(10.1f) < C10e
3σe−α1k/40 ≤ C10e

−α1k/50.

Let α2 = α1/50, T1 = eσ/2T2, and note that assuming k0 was chosen large

enough we have that

(10.1g) T1 < e(1−δ)k−10.

Recalling that on the interval |t| ≤ T1 we have that log c̃(t) is in some fixed

finite interval, we conclude that for every |t| ≤ T1, every point of

v(F̃t(S))u(φ̃(t)).x2

is within distance ≤ C11e
−α2k of some point in ΩDu(t)v(S).x′

2, for an appropri-

ate choice of symmetric neighborhood ΩD of e in D. Since |φ(0)| = |φ̃(0)| < 1

(cf. note after the statement of Proposition 7.11), by (b) above for |t| < T1 and

if k0 is large enough,

|φ̃(t)| < K31(|t|+ 1) < 2K31e
(1−δ)k−10 < 1

2e
k,

hence both u(t).x′
2 and u(φ̃(t)).x2 are in u([−ek, ek]).x1. It follows that for

every |t| ≤ T1 and x ∈ v(F̃t(S))u(φ̃(t)).x2

(10.1h) d(x,ΩDu([−ek, ek])v(S).x1) ≤ C11e
−α2k.

Since v(S)u(φ̃(t)).x2 ⊂ u([−ek, ek])v(S).x1, the estimate (10.1h) holds in fact

for every x ∈ v(S ∪ F̃t(S))u(φ̃(t)).x2.
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Similarly, every point of v(F̃−1
t (S))u(t).x′

2 is within distance at mostC11e
−α2k

of some point in Ω−1
D u(φ(t))v(S).x2, hence for every point x′ in the set

v(S ∪ F̃−1
t (S))u(t).x′

2

(10.1i) d(x′,ΩDu([−ek, ek])v(S).x1) ≤ C11e
−α2k.

We are now in a position to apply Theorem 9.3. Using the parameters

d,A,B,Δ for that theorem that are applicable to the case at hand (in particu-

lar, A = −2, B = 2,Δ = κ30), the constants κ34 and κ35 from the statement of

that theorem become absolute constants and we shall treat them as such. Ap-

plying Theorem 9.3 to F±t/T2
(with the sign determined according to whether

equality is attained at −T2 or T2 in (10.1d)) and S̄ = e−σS ⊂ Ī, we see that

there is an ε ∈ {±1} and subset Λ̄ of t ∈ [−T2, T2] of size ≥ κ35T2/2 so that for

every t ∈ Λ̄,

δ(S̄ ∪ [Ft]
ε(S̄); Ī) ≤ δ(S̄; Ī)/(1 + κ34).

It follows that for t ∈ Λ := eσΛ̄ there is some set S′, depending on t,

with δ(S′; I) ≤ δ(S; I)/(1 + κ34) so that for at least one of x = u(φ(t)).x2 or

x = u(t).x′
2

(10.1j) max
s∈S′

d(v(s).x,ΩDu([−ek, ek])v(S).x1) ≤ C11e
−α2k.

It remains to apply Proposition 4.4 again twice. By (10.1g),

(1− δ)k − 10 ≥ logT1,

hence since x2, x
′
2 ∈ Ξ(k − 10, κ̃, δ) we may apply Proposition 4.4 to conclude

that the set Ψ′ defined by

Ψ′ = {t ∈ [−T1, T1] : ut.x
′
2 �∈ Ξ((1 − δ) logT1 + log κ̃− 10, κ̃, δ)}

satisfies that

m(Ψ′) ≤ 2K16κ̃
1/2

1− e−δ/2
T1.

In view of the bound K−1
31 ≤ φ′(t) ≤ K31, Proposition 4.4 and (10.1g) also

imply that the set

Ψ′′ = {t ∈ φ([−T1, T1]) : u(t).x2 �∈ Ξ((1 − δ) logT1 − C12, κ̃, δ)}
for C12 = log κ̃− 10− logK31 satisfies the estimate

m(Ψ′′) ≤ K16κ̃
1/2

(1− e−δ/2)
|φ([−T1, T1])| ≤ 2K31K16κ̃

1/2

(1 − e−δ/2)
T1,
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hence Ψ = φ−1(Ψ′′) satisfies

m(Ψ) ≤ 2K2
31K16κ

1/2

1− e−δ/2
T1.

It follows that if κ̃ was chosen appropriately (i.e., < c13δ
2 for a sufficiently

small absolute constant c13)

Λ \ (Ψ ∪Ψ′) �= ∅.
If t ∈ Λ \ (Ψ ∪ Ψ′), then at least one of x = u(φ(t)).x2 or x = u(t).x′

2 satisfies

(10.1j) for some set S′ with

δ(S′; I) ≤ δ(S; I)/(1 + κ34)

as well as

x ∈ Ξ((1 − δ) logT1 − C12, κ, δ).

Since (1− δ) log T1 −C12 is clearly  k (with implicit constant depending only

on δ), the Main Lemma follows.

11. Proof of Theorem 3.8

Recall that

δ(S; I) = |I|−1
∫
I

dR(x, S) dx.

We note the following elementary property of δ(S; I):

11.1. Lemma: Let I be an interval, and S ⊂ I with ∂I ⊂ S. Then for every

t ∈ I there is a s ∈ S with

|t− s| ≤
√

δ(S; I) |I| .
Proof. Suppose not. Then there would be an interval, say J , of length >

2
√

δ(S; I) |I| in I with no point of S. But then

δ(S; I) ≥ |I|−1
∫
J

dR(x, S) dx

> 2

∫ √
δ(S;I)

0

xdx ≥ δ(S; I)

in contradiction.

11.2. Proposition: Let δ, κ ∈ (0, 1), and k ≥ k0(δ) (for an appropriate choice

of k0(δ)). Then for any
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(A1) x1 ∈ Ξ(k + log(1/κ), κ, δ),

(A2) I ⊂ R a closed interval centered at 0 with |I| ≤ eκ37

√
k,

there is some s ∈ [−2ek, 2ek] and a set S′ with ∂I ⊂ S′ ⊂ I so that:

(B1) u(s).x1 ∈ Ξ(
√
k, κ̃, δ),

(B2) δ(S′; I) ≤ k−κ41 ,

(B3) every point of v(S′)u(s).x1 is within 2e−κ40

√
k of a point in the set6

BD
kK42u([−2ek, 2ek])v(∂I).x1.

Here κ̃, κ37, κ40, κ41,K42 depend only on δ.

Proof. We apply Lemma 10.1 iteratively, starting with x1, S1 = ∂I and the

given k. Let T1 = ek. After applying the lemma once, we get a point

x2 = u(s).x1 ∈ Ξ(κ38k, κ̃, δ) with |s| < ek and a set S2 with ∂I ⊂ S2 ⊂ I

so that

(11.2a) d(v(τ).x2 ,ΩDu([−T1, T1])v(∂I).x1) < e−κ40k ∀τ ∈ S2.

We will now apply Lemma 10.1 again, on x2, S2 and k2 = αk for an appro-

priately chosen 0 < α < 1/2. In order to satisfy (A1), i.e., that x2 ∈ Ξ(k2, κ̃, δ),

we need to require that α ≤ κ38. If we do that, we get a point x3 and set S3 so

that

(11.2b) d(v(τ)x3 ,ΩDu([−eαk, eαk])v(S2).x2) < e−κ40αk ∀τ ∈ S3.

As d(u(s).x, u(s).y) � s4d(x, y) we can deduce from (11.2a) and (11.2b) that

for any τ ∈ S3,

d(v(τ)x3 ,Ω
2
Du([−T2, T2])v(∂I).x1) < e−κ40αk + C1e

4αk−κ40k

with T2 = ek + eαk. Choosing α ≤ κ40

(4+2κ40)
and k0 large enough, we get that

the right-hand side of the above equation is

≤ 2e−κ40αk.

We continue iteratively in this way, obtaining points xj ∈ Ξ(αj−1k, κ̃, δ) and

sets Sj ⊂ I with δ(Sj ; I) ≤ (1 + κ39)
−j as long as αjk ≥ √

k. Stopping at

j0 = �log k/2 log(1/α)� we get the proposition, with

qδ(Sj0 ; I) ≤ (1 + κ39)
−j0 ≤ α−1k−κ41

6 Recall that BD
R = {h ∈ D : ‖h− e‖ < R}.
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for κ41 = log(1 + κ39)/2 logα, and so that for any τ ∈ Sj0 ,

d(v(τ)xj0 ,Ω
j0
Du([−Tj0 , Tj0 ])v(∂I).x1) < 2e−κ40α

j0k,

where Tj0 =
∑j0

j=0 e
αjk < 2ek. Note that Ωj0

D ⊂ BD
Cj0

for an appropriately

chosen C depending on ΩD, hence since j0 ∝ log k

Ωj0
D ⊂ BD

kK42 .

Proof of Theorem 3.8. Apply Proposition 11.2 on x1 for an interval I of size

|I| ≤ kκ41/4. Let S′ be as in that proposition, in particular δ(S′; I) ≤ k−κ41 .

By Lemma 11.1 it follows that any τ ∈ I will be within k−κ41/4 of a point in

S′, hence

d(v(τ).x1 , B
D
kK42u([−2ek, 2ek])v(∂I).x1) ≤ C2(2e

−κ40

√
k + k−κ41/4).

12. Applications to quadratic forms

In this section we relate Theorem 2.8 regarding effective density properties of

orbits of H on G/Γ to the value of quadratic forms, establishing Theorem 1.10

and Corollary 1.12.

We note the following well-known fact, for which we include a proof (or at

least a sketch of one) for completeness:

12.1. Lemma: Let Q be a signature (2, 1) ternary quadratic form with

detQ = −1. Then there is a g ∈ G so that Q = Q0 ◦ g with

[g]Γ ∈ Xρ, ρ = c1 ‖Q‖K43 .

Here, as we have done throughout this paper, Q0 denotes the quadratic form

y2 − 2xz.

Proof. Following a similar procedure as in §7.2, it is easy to find a basis v1, v2, v3

of R3 so that

(12.1a)
Q(v1) = Q(v3) = Q(v1, v2) = Q(v2, v3) = 0,

Q(v2) = 1, Q(v1, v3) = −2,

with ‖vi‖ all controlled polynomially by ‖Q‖. Indeed, we choose v1 to be any

unit vector isotropic for Q (i.e., such that Q(v1) = 0), take

v3 = −2 ‖Qv1‖−2
Qv1 + λv1
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with λ chosen so that Q(v3, v3) = 0 (here we identified Q with the matrix

representing it, so Qv1 is a vector in R3) and v2 a vector satisfying the three

linear equations

Q(v1, v2) = Q(v3, v2) = 0, det(v1, v2, v3) = 0.

The norm of ‖v3‖ can be easily controlled in terms of ‖Q‖ and
∥∥Q−1

∥∥ � ‖Q‖2.
In order to be able to control ‖v2‖ we need to show that the one-dimensional

subspace of R3 defined by Q(v1, x) = Q(v3, x) = 0 is bounded away from the

subspace generated by v1 and v2. If x is in this one-dimensional subspace

Q(vi, x− a1v1 − a2v2) = −2a4−i for i = 1, 3,

hence

‖x− a1v1 − a2v2‖
≥max(2 ‖Q‖−1 |a1|, 2 ‖Q‖−1 |a3|, ‖x‖ − |a1| ‖v1‖ − |a3| ‖v3‖),

hence

‖x− a1v1 − a2v2‖  ‖x‖min(‖v1‖−1
, ‖v3‖−1

).

Setting h to be the matrix formed by the column vectors v1, v2, v3, equation

(12.1a) implies that Q0 = Q ◦ h, i.e., Q = Q0 ◦ (h−1). If w ∈ h−1Z3, for at least

one i we have that (w, vi) ∈ Z \ 0, hence ‖w‖ ≥ ‖vi‖−1.

12.2. Proof of Theorem 1.10. Let Q1 be an indefinite, ternary quadratic form

as in the statement of the theorem. By Lemma 12.1, there is a g1 ∈ G so that

Q1 = Q0 ◦ g1 and [g1]Γ ∈ Xρ with ρ  ‖Q1‖K43 . It also follows from the proof

of that lemma that
∥∥g−1

1

∥∥ � ‖Q1‖K43 .

Applying Theorem 2.8 on x1 = [g1]Γ for the given T we may conclude that

either there is a point x2 ∈ G/Γ with H.x2 periodic and with discQ(H.x2) < T 3ε

and d(x1, x2) ≤ T−1 or (ii) of Theorem 2.8 holds.

In the former case, writing x2 = [g2]Γ with dG(g1, g2) ≤ T−1, we may conclude

that the integral form

Q2 = λ(Q0 ◦ g2), λ = discQ(H.x2)
1/3

satisfies that ∥∥Q1 − λ−1Q2

∥∥ � ‖Q1‖ d(g1, g2),
establishing (i) of Theorem 1.10.
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If (ii) of Theorem 2.8 holds we have a x2 = [g2]Γ = h1.x1 ∈ Xκ6 with

h1 ∈ BH
TK5

so that for every s ∈ [− logT κ7, logT κ7 ] the point v(s).x2 is within

logT−κ7 of a point in the set BH
TK5

.x1.

As x2 ∈ Xκ6 , for appropriate c1, C2 > 0, there will be a vector

w = (w1, w2, w3)
ᵀ ∈ g2Z

3

with
c1 ≤ w3 ≤ ‖w‖ ≤ C2.

Write w = g2n with n ∈ Z \ {0} and let q0 = Q0(w). Then for any s ∈ R

Q0(v(s).w) = q0 − 2sw2
3.

If s ∈ [− logT κ7 , logT κ7] there will be some h(s) ∈ H with
∥∥h(s)

∥∥ < TK5 so

that d(v(s).x2, h(s).x1) < logT κ7 . It follows that in the lattice corresponding

to h(s).x1 there should be a vector w(s) = h(s)g1m(s) satisfying∥∥w(s) − v(s).w
∥∥ � (logT )−κ7 ‖v(s).w‖
� (logT )−κ7(1 + |s|).

From this it follows that∣∣Q0(w(s))− q0 + 2sw2
3

∣∣ � (logT )−κ7(1 + |s|2).
Note also that

(12.2a)

∥∥m(s)

∥∥ ≤ ∥∥g−1
1

∥∥ ∥∥∥h−1
(s)

∥∥∥ ∥∥w(s)

∥∥
≤ C3 ‖Q1‖K43 TK5 .

As T ≥ T0(ε) ‖Q1‖K1 , then assuming K1 is large enough, (12.2a) ≤ T 1.1K5.

It follows that for any s ∈ [− logT κ7/3, logT κ7/3] there is a m(s) ∈ Z3 with∥∥m(s)

∥∥ ≤ T 1.1K5 and

Q1(m(s)) = Q0 ◦ g1(m(s)) = Q0 ◦ (h(s)g1)(m(s)) = Q0(w(s))

so that

min{∣∣Q1(m)− q0 − 2sw2
3

∣∣ : m ∈ Z3, ‖m‖ < T 1.1K5} ≤ C4 logT
−κ7/3.

As |q0| ≤ 2C2
2 and |w3| ≥ c1, assuming that T0 is large enough so that

c21 logT
κ7/3 > 2C2, it follows that for c5 = 1

2c
2
1

max
|ξ|≤c5 log T

κ7
3

min{|Q1(m)− ξ| : m ∈ Z3, ‖m‖ < T 1.1K5} ≤ C4 logT
−κ7/3,

proving the theorem.
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12.3. Before we prove Corollary 1.12, we recall some basic properties of the

logarithmic height of algebraic numbers.

Let K be a number field, i.e., a finite extension of Q with d = [K : Q]. If

α ∈ K, its logarithmic height, height(α), is defined to be

height(α) =
1

d

∑
v

log(max(1, |α|dv

v )),

where the summation is over all valuations of K, with the normalization that

if Kv is the completion of K with respect to v then |·|v restricted to Q reduces

to the ordinary p-adic or Euclidean absolute value; in these cases we say v

corresponds to the place w = p or ∞ of Q respectively, and set dv = [Kv : Qw].

In particular, if Kv
∼= R then dv = 1 while if Kv

∼= C then dv = 2. For

more details, see [BG2, §1.3] (though the reader is warned that a different

normalization is used there). The following basic properties of height will be

useful:

(12.3a)

height(pq ) = log(max(|p|, q)) for p
q ∈ Q,

height(α) = height(α−1),

height(αβ) ≤ height(α) + height(β),

|α|v ≤ ed height(α) for any valuation v.

We also recall that in this normalization the height is independent of the field

in which it is evaluated.

We shall make use of the following bound of Liouville type:

12.4. Lemma (cf. [BG2, Thm. 1.5.21]): Let K be a number field of degree d

and α1, α2 distinct elements of K. Let v be any valuation of K corresponding

to w = p or ∞ on Q. Then

|α1 − α2|v ≥
(
2eheight(α1)+height(α2)

)−d/dv

with dv = [Kv : Qw].

12.5. Proof of Corollary 1.12. To deduce Corollary 1.12 from Theorem 1.10 we

need to show two things: that ‖Q1‖ can be bounded in terms of the heights

and degrees of its coefficients (which is immediate from (12.3a)), and that for

an appropriate choice of ε > 0 case (i) of Theorem 1.10 leads to contradiction.

Suppose the coefficients of Q1 are algebraic, but that Q1 is not proportional

to an integral form. Then there are two nonzero coefficients, say α1, α2, of Q1
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with α1/α2 �∈ Q. Let h1, h2 be the logarithmic heights of α1, α2 respectively,

and d = [Q(α1, α2) : Q]. Assume that there is an integral form Q2 as in (i) of

Theorem 1.10.

It follows that there is a λ ≥ T−ε/3 and integers n1, n2 so that |αi − λni| <
‖Q1‖T−1. Moreover, if T > 10 ‖Q1‖min |αi|−1 both n1, n2 are nonzero, hence

(12.5a)

∣∣∣∣α1

n1
− α2

n2

∣∣∣∣ ≤ 2 ‖Q1‖T−1.

Clearly also

|ni| < 2λ−1 ‖Q1‖ .
However, by Lemma 12.4,∣∣∣∣α1

n1
− α2

n2

∣∣∣∣ ≥ (2eheight(α1/n1)+height(α2/n2))−d

= (2eheight(α1)+height(α2))−d(n1n2)
−d

≥ (8eheight(α1)+height(α2))−d ‖Q1‖−2d
λ−2d.

As λ ≥ T−ε/3, this leads to contradiction if ε < 3
2d and T is large enough.
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