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ABSTRACT

We give a complete description for the dynamics of quadratic rational

maps with coefficients in the completion of the field of formal Puiseux

series.

Introduction

The field of formal Laurent series C((τ)) with complex coefficients is naturally

endowed with a non-Archimedean valuation induced by the order of vanishing

at τ = 0 (see Section 1.1). In this paper we study iterations of quadratic rational

maps with coefficients on a smallest algebraically closed and complete extension

of C((τ)), which we denote by L.

The results of this paper are in the context of the recent developments in the

study of rational maps acting on the projective line over a non-Archimedean

field (e.g., see [BR10] and references therein). The main motivation arises from

the interplay established in [Kiw06] between dynamics over L and the study of

rational maps with complex coefficients acting on the Riemann sphere. Our mo-

tivation is reinforced with the recent results by De Marco and Faber [DeMFab]

where they establish measure theoretic manifestations of this interplay.
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The main purpose of this paper is to give a full description for the dynamics

of quadratic rational maps with coefficients in L. The interplay with dynamics

over C is also manifested here. More precisely, our description of the geometry

and topological dynamics of a large class of maps is based on the construction

of a “model” for the dynamics which finds its origin in the study of the complex

quadratic polynomial family z �→ z2 + c.

The natural space to study the dynamics of a rational map ϕ ∈ L(z) is the

Berkovich projective line P1,an
L

which contains the projective line P1
L
as a dense

subset (see Section 1). In contrast with P1
L
, the Berkovich line P1,an

L
is a compact

and arcwise connected topological space. Moreover, P1,an
L

is a non-metric tree.

As in complex dynamics, the Berkovich line is divided into two complementary

sets: the Fatou and Julia sets (see Section 2). The Julia set J(ϕ) is either a

singleton or uncountable. If J(ϕ) is a singleton, then we say that ϕ is simple.

Our description of the dynamical properties of quadratic rational maps

ϕ : P1,an
L

→ P1,an
L

is organized according to the character and number of peri-

odic orbits in J(ϕ) \P1
L
. We refer the reader to Section 2.2 for the basics about

periodic points. A periodic point x in J(ϕ)\P1
L
must be a topological branched

point of P1,an
L

. In a certain sense, the action of ϕp on the branches growing

from a period p point x is encoded by a complex rational map Txϕ
p : P1

C
→ P1

C
.

Theorem 1: Let ϕ : P1,an
L

→ P1,an
L

be a quadratic rational map which is not

simple. Then one and exactly one of the following holds:

(1) J(ϕ) \ P1
L
= ∅, that is, J(ϕ) ⊂ P1

L
.

(2) J(ϕ) \ P1
L
is the grand orbit of an indifferent periodic orbit.

(3) J(ϕ) \ P1
L
is the grand orbit of one repelling periodic orbit O of period

q ≥ 2. For all x ∈ O, the map Txϕ
q : P1

C
→ P1

C
is a quadratic rational

map with a multiple fixed point (i.e., a multiple root of Txϕ
q(z)− z).

(4) J(ϕ) \ P1
L
is the grand orbit of two distinct periodic orbits O,O′ of

periods q, q′ ≥ 2, respectively, where q′ > q. The map Txϕ
q : P1

C
→ P1

C

is a quadratic rational map with a multiple fixed point, for all x ∈ O.

The map Txϕ
q′ : P1

C
→ P1

C
is (modulo choice of coordinates) a quadratic

polynomial, for all x ∈ O′.

In [Kiw12] we use this result to establish a complete description of the so-

called “rescaling limits” of complex quadratic rational maps. In fact, the re-

pelling periodic orbit O, in (3) and (4) above, is related to a limiting behavior



Vol. 201, 2014 DYNAMICS OF QUADRATIC RATIONAL MAPS 633

of complex quadratic rational maps, close to infinity in moduli space, studied

by Stimson [Sti93], Epstein [Eps00] and De Marco [DeM07].

Next we describe the dynamics and geometry of Fatou set components. Given

a periodic orbit O, the set of points x ∈ P1,an
L

such that ϕn(x) converges to O is

called the basin of O. According to Rivera-Letelier’s classification [RL03a], ev-

ery fixed Fatou component U is either a component of the basin of an attracting

fixed point z ∈ P1
L
, or U is the intersection of finitely many open balls where ϕ

acts as a bijection. The above classification extends naturally to periodic Fatou

components. In the latter case, we say that U is a “Rivera domain”. For a

Rivera domain U , fixed under ϕ, which is not a ball, the convex hull AU of ∂U

in P1,an
L

may be regarded as an invariant finite simplicial tree. If AU contains

at most one branched point and exactly one fixed point, then we say that U is

a starlike Rivera domain. (See Section 2.3.)

It should be mentioned that, for dynamics over L, the basin of a periodic

orbit O ⊂ J(ϕ) \ P1,an
L

is always non-empty and contains uncountably many

Fatou components, even if O is a “repelling” periodic orbit.

Theorem 2: Let ϕ : P1,an
L

→ P1,an
L

be a quadratic rational map which is not

simple. If U is a Fatou component, then U is eventually periodic or U is a

ball or an annulus contained in the basin of a periodic orbit O ⊂ J(ϕ) \ P1
L
.

Moreover, one and exactly one of the following holds:

(1) J(ϕ) \ P1
L
= ∅ and the Fatou set consists of one totally invariant com-

ponent which is the basin of an attracting fixed point z ∈ P1
L
.

(2) J(ϕ)\P1
L
is the grand orbit of an indifferent fixed point. Every periodic

Fatou component is a fixed Rivera domain consisting of an open ball.

(3) J(ϕ) \ P1
L
is the grand orbit of an indifferent periodic orbit of period at

least 2. There exists a unique periodic Fatou component. This Fatou

component is a starlike Rivera domain.

(4) J(ϕ)\P1
L
is the grand orbit of one or two repelling periodic orbits. There

is exactly one fixed Fatou component. This fixed Fatou component is

a starlike Rivera domain whose boundary is the repelling orbit of least

period in J(ϕ) \ P1
L
. Moreover, periodic Fatou components of higher

periods are open balls.

Let us agree that a Fatou component U is called wandering if ϕn(U) �=

ϕm(U) for all non-negative integers n �= m and U is not contained in the basin

of a periodic orbit. According to Sullivan [Sul85], every Fatou component of a
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complex rational map is eventually periodic. However, Benedetto [Ben02] has

shown that wandering Fatou components do arise in polynomial dynamics over

the p-adic field Cp. Our previous theorem rules out the existence of wandering

Fatou components for quadratic rational maps over L. Hence, Theorem 2 can

be regarded as an analogue, just for quadratic rational maps over L, of Sulli-

van’s result described above. For polynomials with coefficients in fields such

as L, Trucco [Tru09] has already ruled out the existence of wandering Fatou

components. Thus, there is some supporting evidence for the following.

Conjecture: Let L be a field endowed with a non-Archimedean absolute value

which is complete with respect to the induced metric. Assume that the residue

field of L has characteristic zero. Suppose that L contains a field F with discrete

value group such that the elements of L which are algebraic over F are dense

in L. If ϕ ∈ L(ζ) is a rational map of degree at least 2, then every Fatou

component of ϕ is eventually periodic or is contained in the basin of a periodic

orbit.

Finally, we describe the dynamics over the Julia set. For quadratic rational

maps with a repelling periodic orbit in J(ϕ) \ P1
L
we will construct a model for

the dynamics over the convex hull Ĵ(ϕ) of J(ϕ). These models arise from “ab-

stract α-laminations” as discussed in Section 6. An abstract α-lamination is an

equivalence relation in R/Z closely related to the landing pattern of dynamical

external rays of complex quadratic polynomials, and they are a slight general-

ization of the α-laminations defined by McMullen in [McM94]. From an abstract

α-lamination λ we build an inverse system of finite simplicial trees whose limit

T ∞(λ) is naturally endowed with a dynamics m2 : T ∞(λ) → T ∞(λ) inherited

from multiplication by 2 acting on R/Z.

Theorem 3: Let ϕ : P1,an
L

→ P1,an
L

be a quadratic rational map which is not

simple. Then exactly one of the following holds:

(1) J(ϕ) \ P1
L
= ∅ and ϕ : J(ϕ) → J(ϕ) is topologically conjugate to the

full shift on two symbols.

(2) J(ϕ) \ P1
L
contains an indifferent periodic orbit and ϕ : J(ϕ) → J(ϕ)

is topologically conjugate to a subshift of finite type with topological

entropy log 2.

(3) J(ϕ) \ P1
L
contains a repelling periodic orbit and the convex hull Ĵ(ϕ)

of J(ϕ) is totally invariant under ϕ. Let U0 be the unique fixed Rivera

domain.
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(a) If no critical point eventually maps into U0, then ϕ : Ĵ(ϕ) → Ĵ(ϕ)

is topologically conjugate to the action of m2 on the tree of an

abstract α-lamination.

(b) If a critical point eventually maps into U0, then ϕ : Ĵ(ϕ) → Ĵ(ϕ)

is topologically semiconjugate to the action of m2 on the tree of an

α-lamination. The topological semiconjugacy restricts to a topo-

logical conjugacy on J(ϕ).

A more detailed description of the topological conjugacies mentioned in the

above theorem is contained in Section 4 for cases (1) and (2) as well as in

Section 7 for case (3).

In the complex setting, a complete description for the topological dynamics

of quadratic rational maps seems difficult, with the available techniques, even if

one restricts attention only to quadratic polynomials. After Yoccoz, satisfactory

descriptions exist for complex quadratic polynomials which are either hyperbolic

or non-renormalizable (e.g., see [Hub93]). Theorem 3 above (and its proof)

says that, from the viewpoint of the Julia set over L, the description of the

analogue of complex quadratic renormalizable polynomials is much simpler and

thus feasible with the available techniques. One should also regard Theorem 3

as a description of possible dynamical behavior of complex quadratic rational

maps close to infinity in moduli space. In this sense, our results in part (3)

are reminiscent of the so-called “Levy cycles” studied by Tan in [Tan92] and by

Rees in [R03].

The fact that C((τ)) ⊂ L has discrete valuation group plays no significant

role in the proof of our results. However, we rely heavily on the “tameness” of

rational maps over L. A rational map over a complete non-Archimedean field

L is called tame if it is locally one-to-one in the complement of a topologically

finite subtree of P1,an
L (i.e., a topological tree with finitely many vertices and

edges). For a tame quadratic rational map ϕ over a field with positive charac-

teristic residue field, say a p-adic field Cp, it would be interesting to understand

if a complete description of its dynamics is within reach. It is worth pointing

out that part of our analysis is based on an intermediate result which is not

valid over Cp, namely, that when a quadratic rational map over L has a non-

rigid repelling periodic orbit then a rigid critical point is attracted to a periodic

orbit of this type (see (4) in Lemma 5.1). Here is where the fact that L has a

characteristic zero residue field is essential.
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For higher degree rational maps over L we expect that the class of bicritical

rational maps (maps with two rigid critical points) can be studied with similar

techniques but leading to slightly different descriptions. However, for maps with

more than two critical points our techniques break down.

We briefly outline the organization of the paper.

In Section 1 we summarize some basic facts about the field L and the

Berkovich projective line P1,an
L

. Section 2 is devoted to the basics of iterations

of rational maps on P1,an
L

.

In Section 3 we establish two preliminary results about quadratic rational

maps: a first rough classification according to their Julia periodic orbits in

P1,an
L

\ P1
L
(Proposition 3.1), and the number and geometry of fixed Rivera

domains is described in Proposition 3.5.

Section 4 contains a detailed description of the Julia and Fatou dynamics for

maps ϕ without a repelling periodic orbit in J(ϕ)\P1
L
, namely, the case in which

J(ϕ) \ P1
L
= ∅ is covered by Proposition 4.1 and the case in which J(ϕ) \ P1

L
is

the grand orbit of an indifferent periodic orbit is covered by Proposition 4.2.

Section 5 is devoted to the more difficult case of maps possessing a repelling

periodic orbit in J(ϕ) \ P1
L
. Here we study the geometry of these maps by

introducing the “filled Julia set” and “dynamical pieces”. We establish Propo-

sition 5.3 which is the last ingredient needed for the proofs of Theorems 1 and 2.

These proofs are the content of Section 5.7.

In Section 6 we introduce and discuss the basic properties of abstract α-

laminations. Then in Section 7 we discuss how these laminations are employed

to describe the dynamics of quadratic rational maps possesing a repelling peri-

odic orbit in J(ϕ) \ P1
L
. That is, we prove Propositions 7.1 and 7.3 which are

the last ingredient needed for the proof of Theorem 3.
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1. Berkovich projective line over L

In this section, after introducing the field L, we summarize notations, definitions

and facts related to the Berkovich projective line over L. We must warn the

reader that this is not a self-contained exposition. We refer to [BR10, Ber90,

Duc07a, Duc07b, RL06a] and the references therein for a more detailed account

on Berkovich spaces.

1.1. The field of formal Puiseux series and extensions. The field of

formal Laurent series C((τ)) with coefficients in C is naturally endowed with

the valuation: ∣∣∣∣
∑

n≥n0

cnτ
n

∣∣∣∣o = exp(−min{n ∈ Z | cn �= 0}).

This valuation is non-Archimedean and restricts to the trivial valuation on

C. An algebraic closure of C((τ)) is the field of formal Puiseux series

C〈〈τ〉〉 (e.g., see [CA00]). The field C〈〈τ〉〉 is the injective limit of the fields

C((τ1/m)), where m ∈ N and the injective limit is taken with respect to the

obvious inclusions. The valuation |·|o in C((τ)) extends uniquely to C〈〈τ〉〉 (e.g.,

see [Cas86]). However, C〈〈τ〉〉 endowed with this valuation is not complete. We

let L be the field obtained as the completion of C〈〈τ〉〉. It follows that L is

algebraically closed (e.g., see [Cas86]). Moreover, each element ζ of L can be

represented by a series of the form

ζ =
∑

n≥0

cnτ
λn ,

where λn ∈ Q and λn → +∞ as n → +∞. The value group |L×|o of L is

exp(Q).

1.2. Balls and affinoids in L and in P1
L
. Basic geometric objects of L

and/or P1
L
, such as balls, annuli and affinoids, will be relevant to our discussion.

Given r > 0 and ζ ∈ L we let

B−
r (ζ) = {ξ ∈ L | |ξ − ζ|o < r}

and

Br(ζ) = {ξ ∈ L | |ξ − ζ|o ≤ r}.

If r ∈ |L×|o, we say that B−
r (ζ) is an open ball in L and Br(ζ) is a closed ball

in L. If r /∈ |L×|o, then B−
r (ζ) = Br(ζ) is an irrational ball in L. However,
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every ball is both open and closed in the topology of L. The closed unit ball

B1(0) is a local ring OL, called the ring of integers of L, whose maximal

ideal is ML = B−
1 (0). The residue field OL/ML of L, usually denoted L̃, is

canonically identified with C.

Given two nested balls B ⊂ B′ of radii 0 < r < r′, respectively, we say that

A = B′ \B is an annulus in L with modulus

modA = log r′ − log r.

The modulus of an annulus is preserved under affine transformations.

As usual, we regard L as a subset of P1
L
via the identification of ζ ∈ L with

[ζ : 1] ∈ P1
L
. Moreover, we let ∞ = [1 : 0]. Thus, we may identify P1

L
with

L ∪ {∞}.

By definition, a subset of P1
L
is called an open (resp. closed, irrational)

ball of P1
L
if it is an open (resp. closed, irrational) ball contained in L or its

complement is a closed (resp. open, irrational) ball contained in L.

A non-empty intersection A of closed balls of P1
L
is called an affinoid of P1

L
.

Projective transformations of P1
L
map an open (resp. closed, irrational) ball onto

a ball of the same type. Hence, the same holds for affinoids. A subset A′ of P1
L

which is the image under a projective transformation of an annulus A of L is

called an annulus of P1
L
and we let modA′ = modA.

1.3. Berkovich projective line. The aim of this section is to agree on some

terminology and notation regarding the Berkovich projective line P1,an
L

over L.

The Berkovich projective line is a non-metric real tree (e.g., see Favre–Jonsson

[FJ04]), and may be endowed with the strong or the weak topology. With

respect to the weak topology, our default topology for P1,an
L

, the Berkovich

projective line is compact, sequentially compact and Hausdorff but it is not

metrizable (e.g., see [BR10, RL06a]).

1.3.1. Points, balls, annuli, affinoids and basic open sets of P1,an
L

. The classical

projective line P1
L
is a dense subset of P1,an

L
. Points of P1

L
in the Berkovich

projective line P1,an
L

are called type I, or rigid points, or classical points.

Rigid points are endpoints in the tree structure of P1,an
L

.

A set B ⊂ P1,an
L

which is the closure in P1,an
L

of a closed (resp. irrational)

ball of P1
L
is called a closed (resp. closed irrational) ball of P1,an

L
. Given

a ball B ⊂ P1,an
L

the topological boundary of B in P1,an
L

, denoted by ∂B, is a

singleton {ξ}. We say that ξ is the point associated to B. Points associated
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to closed balls are called type II or rational points and are ramification points

in the tree structure. Several closed balls may have the same associated point.

However, given a type II point ξ there exists a unique closed ball B such that

ξ is the point associated to B and B ∩ P1
L
⊂ L. The point associated to OL is

called the Gauss point. Points associated to irrational balls are called type

III or irrational points and are regular points in the tree structure. Every

point in P1,an
L

which is not of type I, II or III is an endpoint in the tree structure

and it is called a type IV or singular point.

Other important geometric objects in P1,an
L

are described as follows. An open

ball of P1,an
L

is the complement of a closed ball. A connected component of the

complement of finitely many points is called a basic open sets of P1,an
L

. An

affinoid of P1,an
L

is a non-empty intersection of finitely many Berkovich closed

balls.

Berkovich balls as well as affinoids and basic open sets are convex and con-

nected. The collection of basic open sets forms a basis for the (weak) topology of

P1,an
L

. The intersections of balls and affinoids of P1,an
L

with the classical projec-

tive line P1
L
are balls (of the same type) and affinoids of P1

L
, respectively. Given

an affinoid or a basic open set U the convex hull of ∂U is a (finite) simplicial

tree embedded in P1,an
L

called the skeleton of U and denoted by AU . There

is a canonical retraction πU : P1,an
L

→ AU that maps a point x /∈ AU to the

boundary point of the connected component of P1,an
L

\ AU which contains x.

An annulus A of P1,an
L

is the intersection of two balls B,B′ with distinct

boundary points such that B ∪ B′ = P1,an
L

. For any annulus A ⊂ P1,an
L

we

have that A ∩ P1
L
is an annulus of P1

L
. The modulus of A is, by definition,

mod(A ∩ P1
L
).

1.3.2. Set of directions at points. Following Favre and Jonsson [FJ04], given

ζ ∈ P1,an
L

we say that the set TζP
1,an
L

formed by the connected components

of P1,an
L

\ {ζ} is the set of directions at ζ. This definition coincides with

the Favre–Jonsson tree theoretical definition and with the intuition that each

“branch coming out” of ζ corresponds to a direction at ζ (cf. [BR10, Appendix

B.6]).

At any given type I or IV point ζ there is only one direction, namely P1,an
L

\{ζ}.

The directions at any given type II or III point ζ are in one-to-one correspon-

dence with the open balls with boundary point ζ (equivalently, with associated

point ζ). At a type III point ζ, the set of directions TζP
1,an
L

consists of two
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directions which correspond to the two open irrational balls whose boundary

is {ζ}. At a type II point ζ, the set of directions is isomorphic to P1
C
. That

is, there exists a natural bijection from TζP
1,an
L

onto P1
C
which is unique up to

postcomposition by a (complex) Möbius transformation.

For any ζ ∈ P1,an
L

, we denote by Dζ : P1,an
L

\ {ζ} → TζP
1,an
L

the map which

assigns to a point ξ its direction. When ζ is the Gauss point, the restriction

of Dζ to P1
L
is the usual reduction. Thus, the direction at ζ containing a point

ξ ∈ P1,an
L

\{ζ} will be denoted by Dζ(ξ). We will systematically abuse notation

by simultaneously regarding a direction D at ζ as an element of TζP
1,an
L

and as

a subset of P1,an
L

.

1.3.3. Hyperbolic space. We say that HL := P1,an
L

\P1
L
is the hyperbolic space

over L. That is, the points in HL are of types II, III or IV. Hyperbolic space

is endowed with a metric distHL
which is defined as follows. Given two distinct

type II or III points ζ0, ζ1 ∈ HL,

A(ζ0, ζ1) = Dζ0(ζ1) ∩Dζ1(ζ0)

is an annulus. The hyperbolic distance between ζ0 and ζ1 is defined by

distHL
(ζ0, ζ1) = modA(ζ0, ζ1).

The unique continuous extension of distHL
to HL×HL endows hyperbolic space

with a metric which we also denote by distHL
. With this metric HL is a R-tree.

The classical projective line P1
L
is the boundary at infinity of HL. For future

reference we state and prove a simple fact.

Lemma 1.1: Let {X�}�∈N be a decreasing sequence of closed subsets of P1,an
L

such that ∂X� is a singleton contained in HL for all � ∈ N. If
∑

�∈N

distHL
(∂X�, ∂X�+1) = ∞,

then

X =
⋂

�∈N

X�

is a singleton contained in P1
L
.

Proof. The compactness of P1,an
L

implies that X is not empty. Without loss

of generality assume that ∂X� �= ∂X�+1 for all � ∈ N. Given � ∈ N, let B�+1

be the ball which is the complement of the direction at ∂X�+1 containing ∂X�.

It follows that ∂B�+1 = ∂X�+1 and B�+1 ⊃ X�+1. Moreover, Y =
⋂

�B�+1
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is contained in P1
L
. Otherwise, for any ζ ∈ Y ∩ HL we would have that

distHL
(ζ, ∂B1) > distHL

(∂Xℓ+1, ∂X1) → ∞ as ℓ → ∞. Therefore, Y (⊃ X)

is a singleton, since Y is connected and P1
L
is totally disconnected.

1.4. Action of rational maps on P1,an
L

. The action of a rational map

ϕ ∈ L(ζ) on P1
L
extends continuously to an action on P1,an

L
. The extended

action, which we also denote by ϕ : P1,an
L

→ P1,an
L

, preserves the Berkovich type

of the points. Moreover, it is an open map. Furthermore, at any given ξ ∈ P1,an
L

,

the map ϕ : P1,an
L

→ P1,an
L

has a well defined (local) degree degξ ϕ. The number

of preimages of any point ζ ∈ P1,an
L

, under ϕ (counting multiplicities), coincides

with the degree of ϕ : P1
L
→ P1

L
. (See [BR10, sections 2.3, 2.4, 9.1].)

Also, for any rational map ϕ : P1,an
L

→ P1,an
L

, the preimage of an affinoid

(resp. basic open set) A is the finite union of affinoids (resp. basic open sets)

A1, . . . , Ak and ϕ : Aj → A has a well defined degree dj for all j.

1.4.1. Möbius transformations. From the above, it follows that the group of

linear fractional transformations PSL(2,L) acts on P1,an
L

. The stabilizer of the

Gauss point is PSL(2,OL). The action of PSL(2,L) is transitive on type II

points (see [BR10, Section 2.3]).

1.4.2. The action on the space of directions. A rational map ϕ : P1,an
L

→ P1,an
L

also acts on the set of directions. More precisely, according to Rivera [RL03a]

(compare with [BR10, Section 9.3]), given a direction D at a type II or III point

ζ the following hold:

(1) There exists a closed ball B ⊂ D such that ϕ(D \B0) is an annulus for

all closed balls B0 for which D ⊃ B0 ⊃ B.

(2) There exists k ∈ N such that ϕ : D \B → ϕ(D \B) is k-to-one.

(3) ϕ(D\B) is contained in one directionD′ at ϕ(ζ). Moreover,D′\ϕ(D\B)

is a closed ball.

(4) ϕ(D) = D′ or ϕ(D) = P1,an
L

. In the former case we say that D is a

good direction, in the latter we say that D is a bad direction.

(5) For all ξ ∈ D \B0,

distHL
(ϕ(ζ), ϕ(ξ)) = k · distHL

(ζ, ξ).

It follows that Tζϕ : D 7→ D′ defines the tangent map

Tζϕ : TζP
1,an
L

→ Tϕ(ζ)P
1,an
L

.
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We say that k is the degree of Tζϕ at D, and denote this number by degD Tζϕ.

(6) There exists a number n ≥ 0 such that any point in P1,an
L

\ Tζϕ(D)

has n preimages (counting multiplicities) in D and any point in Tζϕ(D)

has n + degD Tζϕ preimages (counting multiplicities) in D. Following

Faber [Fab11], n is called the surplus multiplicity.

(7) At a type III point ζ, the tangent map Tζϕ is a bijection. The degree

of Tζϕ is the same in both directions and coincides with the degree of

ϕ at ζ

(8) At a type II point ζ, the tangent map Tζϕ : TζP
1,an
L

→ Tϕ(z)P
1,an
L

is

a rational map (in the corresponding P1
C
-structures) of degree at least

1. The degree of Tζϕ at D as a rational map over C and the degree of

Tζϕ in the direction D (as defined above) coincide. Moreover, the local

degree of ϕ at ζ coincides with the degree of Tζϕ as a rational map over

C.

1.4.3. Counting critical points. Since the residue field of L has characteristic

zero, the degree of a map on a ball is closely related to the number of critical

points in it. (Compare with [BR10, Appendix A.10] and [Fab11], [Fab12])

Lemma 1.2: Let B ⊂ P1,an
L

be a closed ball and ϕ a rational map in L(ζ).

If ϕ(B) is a ball, then the number of (rigid) critical points of ϕ in B ∩ P1
L
is

(counting multiplicities) deg∂B ϕ− 1.

Proof. Note that by the above discussion deg∂B coincides with the degree of

ϕ : B → ϕ(B). We may restrict to the case in which B ∩ P1
L
and ϕ(B)∩ P1

L
are

balls which contain the origin in L. It follows that the Newton polygon (e.g.,

see [Cas86]) of dϕ/dζ is obtained from that of ϕ by translation towards the left.

Thus, subtracting one from the number of zeros of ϕ in B ∩ P1
L
we obtain the

number of zeros of dϕ/dζ in ϕ in B ∩ P1
L
.

2. Rational dynamics over the Berkovich projective line

2.1. The Julia and Fatou sets. Let ϕ : P1,an
L

→ P1,an
L

be a rational map

of degree degϕ ≥ 2. A point ζ ∈ P1,an
L

belongs to the Julia set J(ϕ) if for

all neighborhoods U of ζ we have that ∪ϕn(U) omits at most two points. The

complement of the Julia set is the Fatou set F (ϕ) (see [BR10, Section 10.5]).
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These definitions agree with the original ones by Hsia. More precisely, ζ ∈ P1
L

lies in the Julia set defined by Hsia [Hsi00] if and only if ζ ∈ J(ϕ) ∩ P1
L
.

2.2. Periodic points. Given a rational map ϕ ∈ L(ζ) we say that ζ0 ∈ P1,an
L

is periodic if ϕn(ζ0) = ζ0 for some n ≥ 1. The minimal n such that ϕn(ζ0) = ζ0

is called the period of ζ0.

When ζ0 ∈ P1
L
is a period p rigid point, the multiplier of ζ0 is, by definition,

λ =
dϕp

dζ
(ζ0) ∈ L.

As usual, the periodic point ζ0 is called attracting (resp. neutral or in-

different, repelling) according to whether the multiplier λ belongs to ML

(resp. OL \ML, L\OL). Type I repelling periodic points belong to the Julia set

and type I non-repelling periodic points belong to the Fatou set. According to

Benedetto [Ben98], every rational map ϕ ∈ L(ζ) has at least one non-repelling

fixed point in P1
L
.

Following Rivera-Letelier, a non-rigid periodic point ζ ∈ P1,an
L

of period p

is called repelling if the local degree of ϕp at ζ is at least 2. Otherwise, it is

called neutral or indifferent. Non-rigid repelling periodic points must be type

II points. Also, non-rigid periodic points which belong to the Julia set must be

type II points (see [RL03b]). The following result is the content of a personal

communication with Juan Rivera-Letelier [RL06b].

Theorem 2.1 (Rivera-Letelier): Let ζ be a non-rigid period p periodic point

of a rational map ϕ : P1,an
L

→ P1,an
L

of degree at least 2. The point ζ belongs

to J(ϕ) if and only if one of the following hold:

(1) degζ ϕ
p ≥ 2.

(2) degζ ϕ
p = 1 and there exists a bad direction at ζ with infinite forward

orbit under Tζϕ
p.

Proof. Since every non-rigid repelling periodic point belongs to J(ϕ) (see [BR10,

Section 10.7]), we may assume that p = 1 and degζ ϕ = 1. Note that Tζϕ is a bi-

jection. Thus a bad direction D has infinite forward orbit under Tζϕ if and only

if D has infinite backward orbit ({D′ ∈ P1
C
| Tζϕ

n(D′) = D for some n ≥ 0}).

In the case that there exists a bad directionD at ζ which has infinite backward

orbit, every neighborhood U of ζ contains a direction D′ in the backward orbit

of a bad direction. Hence, there exists n ≥ 0 such that P1,an
L

= ϕn(D′) ⊂ ϕn(U).

Therefore ζ ∈ J(ϕ).
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Now we consider the case in which every bad direction has finite backward

orbit. That is, every bad direction is periodic. Thus, after removing appropriate

closed balls in the orbit of the bad directions, we obtain a neighborhood U of ζ

which is invariant under ϕ (i.e., ϕ(U) = U). Hence, ζ ∈ F (ϕ).

It follows that non-rigid indifferent periodic points may belong to the Julia

set or the Fatou set. However, indifferent periodic points in the Julia set must

be of type II.

The basin of a periodic orbit O is the interior of the set of points ξ such

that the omega limit of ξ is O. Non-rigid periodic orbits contained in the Julia

set always have non-empty basin. In fact, given a point ζ of type II there are

uncountably many directions D at ζ such that its image under Tζϕ
n is a good

direction, for all n ≥ 0, since there are only finitely many bad directions. If

ζ belongs to a periodic orbit O, say of period p, which lies in J(ϕ), then for

uncountably many directions D we have that {ϕnp(D)} are pairwise distinct

directions at ζ. Thus, each of these directions is a component of the Fatou set

contained in the basin of O.

2.3. Periodic Fatou components. A connected component U of the Fatou

set F (ϕ) ⊂ P1,an
L

is called a Fatou component. Since ϕ is an open map, the

image of a Fatou component is again a Fatou component.

If a Fatou component U contains an attracting periodic point ξ, then U is a

component of the basin of attraction of the orbit of ξ. In this case, U is called

the immediate basin of ξ.

We say that a period p Fatou component U is aRivera domain if ϕp : U → U

is a bijection.

Theorem 2.2 (Rivera [RL03a]): Let ϕ ∈ L(ζ) be a rational map of degree at

least 2. Then a periodic Fatou component is either the immediate basin of an

attracting periodic point or a Rivera domain.

Theorem 2.3 (Rivera [RL03a]): Let ϕ ∈ L(ζ) be a rational map of degree at

least 2. If U is a Rivera domain, then U is a basic open set and every point in

∂U is a periodic point in J(ϕ) ∩HL.

If U is a component of an immediate basin of an attracting periodic orbit,

then U is an open ball or ∂U is a Cantor set.
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It follows that, if U is a Rivera domain, then the retraction πU : U → AU con-

mutes with ϕ (see Section 1.3.1 for the definition of πU and AU ). In particular,

ϕ : AU → AU has finite order.

Let ϕ ∈ L(ζ) be a degree d ≥ 2 rational map. Assume that U is a fixed Rivera

domain for ϕ. Let ξ ∈ ∂U and denote by D the direction at ξ that contains U .

We let η(ξ) ≥ 0 be the multiplicity of D as a fixed point of Tξϕ.

Theorem 2.4 (Rivera [RL03a]): Let ϕ ∈ L(ζ) be a degree d ≥ 2 rational map.

Assume that U is a fixed Rivera domain for ϕ. Let N ≥ 0 be the number of

fixed points in U ∩ P1
L
. Then

N = 2 +
∑

ξ∈∂U,ϕ(ξ)=ξ

(η(ξ)− 2).

Although the above results were originally proved in the context of p-adic

dynamics, the techniques apply, with some modifications, to the context of

dynamics over L.

3. Julia periodic orbits in HL and fixed Rivera domains

The aim of this section is to give a rough classification of quadratic rational

maps in L(ζ) according to their Julia non-rigid periodic orbits and to describe

the geometry of fixed Rivera domains.

3.1. Julia periodic orbits in HL. As a first step towards proving Theorem 1

we study periodic orbits in HL.

Proposition 3.1: Let ϕ : P1,an
L

→ P1,an
L

be a quadratic rational map which is

not simple. Then one and only one of the following holds:

(1) There are no periodic points in J(ϕ) ∩HL.

(2) There exists exactly one indifferent periodic orbit O in J(ϕ) ∩HL and

O is the unique periodic orbit in J(ϕ) ∩HL.

(3) There is at least one repelling periodic orbit in J(ϕ) ∩HL.

We state and establish two necessary lemmas before proving this proposition.

Recall that a critical point of a rational map ϕ : P1,an
L

→ P1,an
L

is a rigid

point ζ ∈ P1
L
where the derivative of ϕ : P1

L
→ P1

L
vanishes. A critical value is

the image of a critical point under ϕ.
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Lemma 3.2: Let ϕ ∈ L(ζ) be a quadratic rational map. Suppose that ξ0 ∈ HL

and ϕ(ξ0) = ξ1. Then the following are equivalent:

(1) deg Tξ0ϕ = 1.

(2) The critical points of ϕ belong to the same direction D0 in Tξ0P
1,an
L

.

(3) The critical values of ϕ belong to the same direction D1 in Tξ1P
1,an
L

.

If the above holds, then Tξ0ϕ(D0) = D1 and D0 is a bad direction.

Proof. The lemma holds trivially when ξ0 is a type IV point. Thus, suppose

that ξ0 is a type II or III point.

(1) =⇒ (2). Assume that deg Tξ0ϕ = 1. Counting preimages of a typical

point with the aid of Section 1.4.2 it follows that there exists one and only one

bad direction at ξ0, say D0. Since good directions are mapped injectively onto

their image, the critical points of ϕ must belong to D0.

(2) =⇒ (3). Now assume that the two critical points belong to the direction

D0 at ξ0. In view of Section 1.4.2, if ζ /∈ D1 = Tξ0ϕ(D0), then ζ has at most

one preimage (counting multiplicities) in D0. In particular, ζ is not a critical

value.

(3) =⇒ (1). Assume that both critical values lie in the same direction D1 at

ξ1 and proceed by contradiction. If degTξ0ϕ = 2, then every direction at ξ0 is a

good direction. Moreover, there are exactly two directions D,D′ of degree two

under Tξ0ϕ. By Lemma 1.2, each must contain a critical point. Then both D

and D′ are mapped under ϕ onto D1 with degree 2. This is clearly impossible

since points in D1 do not have 4 preimages.

Remark 3.3: Suppose that there exists an open ball D contained in the Fatou

set that contains both critical values. Then degTξϕ = 1, for all ξ ∈ J(ϕ).

Lemma 3.4: Let ϕ ∈ L(ζ) be a quadratic rational map. If ϕ has an indifferent

periodic orbit O ⊂ J(ϕ) ∩ HL, then both critical values of ϕ belong to the

same Fatou component D which is an open ball contained in the basin of O.

Moreover, ∂D ⊂ O.

Proof. Let ξ0 be a point of the periodic orbit O. Say that the period of O is

p. Consider a bad direction D0 at ξ0 for ϕp with infinite forward orbit under

Tξ0ϕ
p (see Theorem 2.1). By Lemma 3.2, there is exactly one bad direction at

ϕn(ξ0), for all n ≥ 0. This guarantees the existence of a smallest integer k ≥ 1

such that Tξ0ϕ
n+k(D0) is a good direction for all n ≥ 0. Again by Lemma 3.2,
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D = Tξ0ϕ
k(D0) contains both critical values. Therefore, {ϕnp(D)}n≥0 is a

collection of pairwise distinct directions at ϕk(ξ0). Hence, for all ζ ∈ D, the

forward orbit of ζ under ϕp converges to ϕk(ξ0). It follows that D is a Fatou

component contained in the basin of O. Moreover, ∂D ⊂ O.

Proof of Proposition 3.1. Suppose that (1) does not hold. The presence of an

indifferent periodic orbit in J(ϕ) ∩ HL implies that all the periodic orbits in

J(ϕ)∩HL are indifferent, by Remark 3.3 and Lemma 3.4. That is, (3) does not

hold. Moreover, also by Lemma 3.4, there is at most one indifferent periodic

orbit in J(ϕ) ∩HL.

3.2. Starlike Rivera domain. Here we establish that a fixed Rivera domain

U of a quadratic rational map ϕ is an open ball or a starlike domain. Recall that,

for us, a starlike Rivera domain U is the intersection of finitely many open balls

such that its skeleton AU contains at most one topological branched point and

a unique fixed point. In this case, the action of ϕ : AU → AU is a “rotation”

around this fixed point. Note that an annulus U such that ϕ exchanges the

endpoints of AU is a starlike domain.

Proposition 3.5: Let ϕ ∈ L(ζ) be a quadratic rational map which is not

simple. Then ϕ has at most two fixed Rivera domains.

If ϕ has exactly one fixed Rivera domain U , then U is an open ball or a

starlike domain. Moreover, the points in ∂U form one periodic orbit.

If ϕ has two fixed Rivera domains, then both are open balls which have the

same boundary point.

Proof. Assume that a fixed Rivera domain U is an open ball. Then {ξ} = ∂U

is a fixed point. The degree of ϕ at ξ must be 1, for otherwise ϕ would be

simple. Since a Möbius transformation Tξϕ : P1
C
→ P1

C
has at most two fixed

points, ξ is in the boundary of at most two fixed Rivera domains. In view of

Proposition 3.1 the boundary of any fixed Rivera domain must be {ξ}, since

{ξ} is the unique periodic orbit of the Julia set in HL. Thus, if there is another

fixed Rivera domain, then it is also an open ball.

If a fixed Rivera domain U is not an open ball, then ∂U consists of at least

two points. By Proposition 3.1, if there is more than one orbit in ∂U , then all

such orbits must be repelling. Note that there is exactly one component B of

P1,an
L

\U that contains both critical points. If a periodic orbit in ∂U is repelling,



648 J. KIWI Isr. J. Math.

then this orbit must contain a point of B. But ∂U ∩ B is a singleton. Hence,

there is only one such orbit.

We now show that a fixed Rivera domain U which is not an open ball has a

starlike structure. That is, we let AU be the convex hull of ∂U and proceed to

show that it contains at most one branched point and at most one fixed point

ϑ. Observe that ϕ : AU → AU is a tree isomorphism and an isometry in the

hyperbolic metric of HL.

Let q ≥ 2 be the period of the periodic orbit O = ∂U . The domain U

contains no rigid periodic point of period k such that 1 < k < q. In fact,

applying Theorem 2.4 for 1 ≤ k < q − 1, the number of fixed points of ϕk in U

is N = 2+ 0. Hence, there are 2 fixed points of ϕ in U and every fixed point of

ϕk in U is a fixed point of ϕ, for 2, . . . , q − 1.

For us the vertices of AU consist of the topological branched points together

with the endpoints of AU . We claim that every vertex of AU has period 1 or

q. In fact, we proceed by contradiction and let v be a vertex of period k with

1 < k < q. Endow the vertices of AU with the partial order inherited from

the tree structure where v is a minimal element (i.e., the root). Let w be a

maximal element among the vertices of AU with period k. It follows that ϕk

fixes at most one branch of AU at w. Since w is not an endpoint of AU , we have

that Twϕ
k must have finite order strictly greater than 1 in order to permute the

directions of the at least two branches at w which are not fixed by ϕk. That is,

Twϕ
k is conjugate to z 7→ ηz where η 6= 1 is a root of unity. Hence, there exists

a direction D at w, which is disjoint from AU , that is fixed under ϕk. Without

loss of generality, assume that D ∩P1
L
is the open unit ball. In D∩P1

L
, we have

that ϕk(ζ) = a0 + a1ζ + h.o.t where |a1 − η|o < 1 and |a0|o < 1. Therefore,

ϕk(ζ) − ζ has exactly one solution in D ∩ P1
L
which is a contradiction with the

last sentence of the previous paragraph.

Finally, consider a point ξ ∈ ∂U and let v be a fixed point of ϕ in AU such

that (v, ξ] contains no other fixed point. Let k ≥ 1 be the smallest integer such

that ϕk((v, ξ]) ∩ (v, ξ] 6= ∅. Then k ≥ 2 since (v, ξ] is fixed point free. In fact

k = q, for otherwise, there is a vertex in AU of period 1 < k < q. It follows

that AU is either an interval (and ξ has period 2) or a tree with v as the unique

vertex which is not an endpoint.
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4. Maps without a repelling periodic orbit in HL

The description of the dynamics in the first two cases of Proposition 3.1 is rather

simple. In Section 4.1 we deal with maps not having Julia periodic orbits in HL

and, in Section 4.2, we consider maps with a Julia indifferent periodic orbit.

4.1. Not simple with attracting fixed point. Let us first state what

occurs in the absence of Julia periodic orbits in HL.

Proposition 4.1: Let ϕ be a quadratic rational map which is not simple. Then

the following are equivalent:

(1) J(ϕ) ⊂ P1
L
.

(2) ϕ has an attracting fixed point ζ ∈ P1
L
.

(3) There are no periodic orbits of ϕ in J(ϕ) ∩HL.

Moreover, if (1)–(3) hold, then the dynamics over J(ϕ) is topologically con-

jugate to the one-sided shift on two symbols and F (ϕ) is the immediate basin

of attraction of ζ.

Proof. First we show, by contradiction, that (3) implies (2). If there is no

attracting fixed point in P1
L
, then there exists an indifferent fixed point ζ′ in P1

L

(see [Ben98]). Therefore, ζ′ belongs to a Rivera domain Uζ′ whose boundary,

according to Theorem 2.3, contains a periodic orbit in HL ∩ J(ϕ).

Now assume that (2) holds: ϕ has an attracting fixed point ζ ∈ P1
L
. We

simultaneously show that (1) holds (J(ϕ) ⊂ P1
L
) and that the dynamics is

topologically equivalent to the one-sided shift on two symbols.

Let B be the union of all open balls B′ containing ζ such that ϕ(B′) ⊂ B′. It

follows that B is a ball such that ϕ(B) ⊂ B. Now let ξ be the point associated to

B. SinceDξ(ζ) is contained in the basin of ζ, we have that ϕ(Dξ(ζ)) = Dϕ(ξ)(ζ).

By Schwartz Lemma, ξ is not a fixed point, for otherwise, ϕ : Dξ(ζ) → Dξ(ζ)

would have degree 2 and we would also have that degTξϕ = 2, but ϕ is not

simple. Hence ξ is contained in a direction D at ϕ(ξ).

We claim that ϕ−1(D) is the disjoint union of two open balls D0, D1, each

one compactly contained in D, each of which is mapped onto D in a one-to-one

fashion. In fact, given a direction D′ at ξ such that Tξϕ(D
′) = D we have

that degD′ Tξϕ = 1 and ϕ(D′) = D; for otherwise, ϕ(P1,an
L

\D′) ⊂ P1,an
L

\D′

which, by Section 1.4.2, contradicts the definition of B. Therefore ϕ−1(D) is
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the disjoint union of two open balls D0, D1, compactly contained in D, and each

of them is mapped onto D in a one-to-one fashion.

Now we establish the conjugacy between J(ϕ) and the full shift on two sym-

bols. Observe that J(ϕ) ⊂ D0 ∪ D1. Given ς ∈ J(ϕ), let in(ς) = 0 or 1 if

ϕn(ς) ∈ D0 or D1, respectively. It follows that the itinerary map

J(ϕ) ∋ ς 7→ (in(ς))n≥0 ∈ {0, 1}N∪{0}

is continuous. To check that the itinerary map is one-to-one and onto, given an

infinite symbol sequence i = (i0, i1, . . . ), for each n ≥ 0, let

Dn(i) = {ς | ϕk(ς) for all 0 ≤ k ≤ n}.

Now ϕn+1 maps the annulus Dn(i) \ Dn+1(i) isomorphically onto D \ Din+1 ,

therefore

distH(∂Dn(i), ∂Dn+1(i)) = dist(∂D, ∂Din+1).

From Lemma 1.1 we conclude that the intersection of the nested sequence

D0(i) ⊃ D1(i) ⊃ · · · is a singleton contained in P1
L
. It follows that the itinerary

map is a conjugacy and that J(ϕ) ⊂ P1
L
. Moreover, F (ϕ) = P1,an

L
\ J(ϕ) is

connected and invariant. Therefore, F (ϕ) is the immediate basin of ζ.

Since (1) implies (3) is obvious, we have proven the proposition.

4.2. Indifferent periodic orbit in HL. Now we describe the situation in

the presence of an indifferent orbit in the Julia set.

Before stating our result let us denote the grand orbit of a periodic orbit O

by GO(O). Also recall that the renewal shift is the (non-compact) subshift of

the full shift on two symbols obtained after removing the grand orbit of a fixed

point from the full shift.

Proposition 4.2: Suppose that ϕ has an indifferent periodic orbit O of period

q ≥ 1 in J(ϕ) ∩HL. Then the following statements hold:

(1) J(ϕ) ∩ P1
L
is topologically conjugate to the renewal shift.

(2) J(ϕ) ∩HL = GO(O).

(3) The dynamics over J(ϕ) is topologically conjugate to the subshift Σq of

finite type in 2q symbols {X0, . . . Xq−1, Y0 . . . Yq−1} (subscripts mod q)
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with the following allowed transitions:

Xj → Xj+1, for j = 0, . . . , q − 1.

Xq−1 → Yj , for j = 0, . . . , q − 1.

Yj → Xj , for j = 0, . . . , q − 1.

Y0 → Yj , for j = 0, . . . , q − 1.

Under the topological conjugacy, O corresponds to the orbit of

(X0X1 . . . Xq−1)
∞.

(4) There exists at least one fixed Rivera domain. The boundary of every

Rivera domain is O. If U is a periodic Fatou component, then U is a

fixed Rivera domain.

(5) If U is a Fatou component which is not eventually periodic, then U is

an annulus or an open ball. Moreover, there exists n0 ≥ 0 such that

ϕn(U) is an open ball with ∂ϕn(U) ⊂ O for all n ≥ n0. Furthermore,

U is contained in the basin of O.

Remark 4.3: The above subshift factors onto the full shift on the symbols

{X,Y }, where the factor map h is the one obtained by replacing the symbols

Xj with X and Yj with Y , for all j. The factor map h is one-to-one except over

the backward orbit of X∞ where it is q-to-one. In fact, note that the forward

(periodic) orbit of (X0X1 . . . Xq−1)
∞ is h−1(X∞).

Proof. Let V be the Fatou component that contains the critical values (see

Lemma 3.4). Enumerate O by ξ0, ξ1, . . . , ξq−1 respecting dynamics and so that

∂V = ξ1. Subindices will be modulo q throughout this proof. Note that V is

contained in the basin of O.

Let U be the union of all fixed Rivera domains. Recall that U is an open

ball, or a union of two open balls with the same boundary point, or a starlike

domain (Proposition 3.5). In the first two cases, q = 1 and, in the last, q > 1.

In particular, L = P1,an
L

\ U is a “sphere” B0 or the disjoint union of q closed

balls B0, . . . , Bq−1 labeled such that {ξj} = ∂Bj . (For us a “sphere” is a subset

of P1,an
L

which, modulo a Möbius transformation, is the closure of the rigid

unit “sphere” {|z|o = 1}.) Now let W be the direction at ξ0 containing the

critical points and observe that ϕ(W ) = P1,an
L

. In particular, ϕ(B0) = P1,an
L

and ϕ : B0 \W → B1 \V is a bijection. Moreover, if q > 1, then ϕ : Bj → Bj+1

is a bijection for all j �= 0.
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It follows that ξ1 has two preimages: ξ0 ∈ O and ξ′0 ∈ W . The degree of ϕ at

each one of these preimages is 1. The bad direction at ξ0 is W , and denote the

bad direction at ξ′0 by W ′. Both directions contain the critical points, and their

image direction is V . Thus, A = W ∩W ′ is an open annulus which maps onto

V . Therefore, A is a Fatou component contained in the basin of O. It follows

that each one of the closed balls B = P1,an
L

\ W and B′ = P1,an
L

\ W ′ maps

isomorphically onto P1,an
L

\ V . Denote by ξ′j the preimage of ξj+1 contained in

B′.

Now consider the following level zero set

L0 = L \
⋃

n≥0

ϕn(V ).

The set L0 also has exactly q connected components Z0, X1 . . . , Xq−1 where

Z0 ⊂ B0, X1 ⊂ B1 . . . , Xq−1 ⊂ Bq−1. Moreover, ϕ maps Xj isomorphically

onto its image Xj+1 for all 1 ≤ j ≤ q− 2. Also, Xq−1 maps isomorphically onto

Z0. However, Z0 is the disjoint union of X0 = Z0 \W , A and B′. The set X0

maps isomorphically onto X1, A maps in a two-to-one fashion onto V and B′

maps isomorphically onto P1,an
L

\ V .

Let L1 = ϕ−1(L0) ⊂ L0. The set L1 has 2q connected components. The

components X0, . . . , Xq−1 described above and the components Y0, Y1, . . . , Yq−1

are contained in B′ ⊂ Z0 such that ϕ(Y0) = Z0 and ϕ(Yj) = Xj for j =

1, . . . , q − 1. Note that ∂Yj = {ξ′j−1}.

A key remark is that

distHL
(∂Xq−1, ∂(Xq−1 ∩ ϕ−1(Yj))) ≥ modA

for all 0 ≤ j ≤ q − 1, and

distHL
(∂Y0, ∂(Y0 ∩ ϕ−1(Y0))) = modA.

Since the complement of L0 is contained in the Fatou set, we have that

J(ϕ) ⊂ L1, and we may introduce the itinerary function

J(ϕ) � ζ �→ (ik(ζ))k≥0 ∈ Σq

if ϕk(ζ) ∈ ik(ζ). It follows that the itinerary map is well defined and continuous.

To check that the itinerary function is a bijection, consider a sequence

i = (i0, i1, . . . ) ∈ Σq. For all � ≥ 0, let

C�(i) = {ζ ∈ P1,an
L

| ϕk(ζ) ∈ ik for all 0 ≤ k ≤ �}.
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Note that Cℓ(i) is a non-empty and closed set. Moreover, for all ℓ,

Cℓ(i) ⊃ Cℓ+1(i) and Cℓ(i) has a unique boundary point which we denote by

ϑℓ(i) ∈ GO(O).

The arc [ϑℓ(i), ϑℓ+1(i)] is mapped isometrically, in the hyperbolic distance,

onto [∂iℓ, ∂(iℓ ∩ ϕ−1(iℓ+1))] by ϕℓ. Therefore, if i contains infinitely many

symbols in {Y0, . . . , Yq−1}, then there are infinitely many ℓ ≥ 0 such that iℓ =

Xq−1 and iℓ+1 = Yj for some j or iℓ = iℓ+1 = Y0. From Lemma 1.1,
⋂
Cℓ(i)

is a singleton {ξ} contained in P1
L
and ξ is the unique point with itinerary i.

Moreover, ξ ∈ J(ϕ) since it is the limit of ϑℓ(i) ∈ GO(O) ⊂ J(ϕ). If i contains

only finitely many symbols in {Y0, . . . , Yq−1}, then there exists k such that

(iℓ)ℓ≥k = (X0X1 · · ·Xq−1)
∞

(the period q symbol sequence). Hence ϕk maps ∩Cℓ(i) homeomorphically onto

X , where X consists of B0 with all the directions in the positive and negative

orbit of W removed. Therefore, the unique point of X in the Julia set is ξ0

and every direction at ξ0 contained in X is a Fatou component contained in the

basin of O. It follows that
⋂
Cℓ(i) contains exactly one point of the Julia set.

Moreover, every Fatou component contained in
⋂
Cℓ(i) is a ball contained in

the basin of O. Any Fatou component is either contained in some
⋂
Cℓ(i), or

eventually maps isomorphically onto a fixed Rivera domain, or eventually maps

isomorphically onto A and statements (4) and (5) of the proposition follow.

5. Maps with a repelling periodic orbit in HL

The aim of this section is to describe the dynamics of quadratic rational maps

ϕ having a non-classical repelling periodic orbit.

Section 5.1 contains Lemma 5.1 which establishes the basic facts about these

maps. Throughout this section as well as in Section 7 we will freely employ the

content and notation of this Lemma. In Section 5.2 we introduce the filled Julia

set K(ϕ). We state Proposition 5.3 which describes its connected components

and whose proof is completed, after some work, in Section 5.7. In Section 5.3

we introduce the basic structure to study K(ϕ), namely “dynamical pieces” of

integer levels. Section 5.4 deals with the easier case of maps for which only one

critical point lies in K(ϕ). In Section 5.6 we deal with the case in which both

critical points lie in K(ϕ), but before we need to introduce dynamical pieces
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of “intermediate levels” in Section 5.5. Finally, we establish Proposition 5.3 in

Section 5.7, which also contains the proof of Theorems 1 and 2.

5.1. The basics. We start by stating the aforementioned lemma.

Lemma 5.1: Let ϕ ∈ L(ζ) be a quadratic rational map which is not simple.

Suppose that ϕ has a repelling periodic orbit in HL. Then the following state-

ments hold:

(1) ϕ has exactly one fixed Fatou component U0 which is a starlike Rivera

domain. The boundary of U0 is a repelling periodic orbit O = {ξ0, ξ1 =

ϕ(ξ0), . . . , ξq−1 = ϕq−1(ξ0)} of period q > 1. The skeleton AU0 contains

a unique fixed point ϑ0 which we will call the center of U0. The Möbius

transformation Tϑ0P
1,an
L

is a rotation of order q.

(2) L0 = P1,an
L

\ U0 is the disjoint union of q closed balls B0, . . . , Bq−1

labeled such that ∂Bj = {ξj}. One of these balls, say B0, contains both

critical points of ϕ. Moreover, the following holds:

(a)

degξj ϕ =




1 if j �= 0,

2 if j = 0.

(b) For j = 1, . . . , q − 1, the bad direction at ξj is the direction that

contains U0; and

ϕ : Bj → Bj+1

is a bijection (indices mod q).

(c) There exists a direction D0 ⊂ B0 at ξ0 such that ϕ(D0) is the

direction of U0 at ξ1. Furthermore,

ϕ : B0 \D0 → B1

is two-to-one (counting multiplicities) and

ϕ : D0 → P1,an
L

\B1

is a bijection.

(3) For all ξ ∈ ∂U0, the rational map

Tξϕ
q : TξP

1,an
L

∼= P1
C → TξP

1,an
L

∼= P1
C

has a multiple fixed point in the direction of U0. All these maps are

Möbius conjugate and will be denoted by TOϕ.
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(4) There exists a Fatou component containing a critical point which is an

open ball D, contained in the basin of O, with ∂D ⊂ O.

(5) Assume that ϕ has another non-rigid repelling periodic orbit O′ of pe-

riod q′. Then q′ > q and, for all ξ ∈ O′,

Tξϕ
q′ : TξP

1,an
L

∼= P1
C → TξP

1,an
L

∼= P1
C

is (in the appropriate coordinate) a degree two polynomial. Moreover,

there exists a critical point of ϕ that belongs to a Fatou component

which is an open ball D′ with ∂D′ ⊂ O′.

Proof. From Section 2.2 and Proposition 4.1 we conclude that ϕ has at least one

classical indifferent periodic point. Hence, there exists a fixed Rivera domain

U0. It follows from Proposition 3.1 that ∂U0 is a repelling periodic orbit, say

of period q. Since ϕ is not simple, q > 1. Now by Proposition 3.5, U0 is the

unique fixed Fatou component and it is a starlike domain. This proves part (1).

Observe that by Lemma 3.2 both critical points are contained in the same

complementary ball of U0. Thus, in (2) we may assume that both critical points

are in B0.

We now prove part (2a). Again, by Lemma 3.2, we have that degξj ϕ = 1 for

all j �= 0. But O is repelling, thus degξ0 ϕ = 2 and (2a) follows.

In order to prove (2b), let j �= 0. By Lemma 3.2, there is only one bad

direction at ξj and this direction must be the one of U0, since it contains the

critical points. Moreover, using the fact that degξj ϕ = 1, it follows that every

direction contained in Bj is a good direction and cannot map to the direction

P1,an
L

\Bj+1. It follows that ϕ : Bj → Bj+1 is a bijection.

For (2c), from Section 1.4.2 we conclude that the degree of Tξ0ϕ in the direc-

tion P1,an
L

\ B0 at ξ0 is 1. Hence, there must exist another direction D0 at ξ0

which maps under Tξ0ϕ onto P1,an
L

\B1. Since all the directions at ξ0 are good

directions, (2c) follows.

Observe that (3) follows from Theorem 2.4, which says that the direction of

U0 under Tξ0ϕ
q is a multiple fixed point. That is,

Tξ0ϕ
q : Tξ0P

1,an
L

∼= P1
C → Tξ0P

1,an
L

∼= P1
C

has a multiple fixed point in the direction of U0.

For (4), we invoke a result from complex dynamics which guarantees that a

map, such as Tξ0ϕ
q, with a multiple fixed point has a critical point, say D′,

with infinite forward orbit (e.g., see [Mil99]). In particular, Tξ0ϕ
n(D′) is a good
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direction at ϕn(ξ) for all n ≥ 0. Hence, ϕn(D′) = Tξ0ϕ
n(D′) for all n ≥ 0. We

conclude that D′ is a Fatou component, it contains a critical point of ϕ and the

omega limit of every point in D′ is ∂U0, since ϕ
n(D′) 6= ϕm(D′) for all n 6= m.

Now for (5), note that another repelling periodic orbit

O′ = {ξ′0, . . . , ξ
′
q′−1}

(indices respecting dynamics and mod q′) is contained in P1,an
L

\U0. For each

k = 0, . . . , q′ − 1, let B′k be the closed ball with boundary {ξ′k} contained in

P1,an
L

\ U0.

We claim that ϕ(B′k) = B′k+1. In fact, if B′k ⊂ Bj for some j 6= 0, then this

follows trivially from (2b). If B′k ⊂ B0 \D0, then this also follows trivially but

now from (2c). Finally, if B′k ⊂ D0, then ϕ(B′k) is disjoint from the direction

at ξ′k+1 containing B1. Hence, ϕ(B′k) ⊂ Bj for some j 6= 1. Since ϕ(B′k) is a

closed ball, it follows that ϕ(B′k) = B′k+1.

From the previous paragraph, every direction at ξ′k contained in B′k is a Fatou

component. Therefore, the balls B′0, . . . , B
′
q′−1 are pairwise disjoint. In view of

part (4), at most one of these balls, say B′0, contains a critical point. It follows

that degξ′0 ϕ
q′ = 2. Finally, ϕq

′

(B′0) = B′0 implies that

(Tξ′0ϕ
q′ )−1(P1,an

L
\B′0) = P1,an

L
\B′0.

That is, Tξ0ϕ
q′ has a completely invariant direction; after putting this direction

at ∞, we have that Tξ0ϕ
q′ is a quadratic polynomial, which establishes part

(5).

From the previous lemma it follows that for every non-classical repelling pe-

riodic orbit there exists a critical point contained in a Fatou component whose

boundary is a point in the periodic orbit. Therefore:

Corollary 5.2: If ϕ : P1,an
L

→ P1,an
L

is a quadratic rational map, then ϕ has

at most two non-classical repelling periodic orbits.

5.2. The filled Julia set. The standing assumption for the rest of this sec-

tion is that the quadratic rational map ϕ has a fixed Rivera domain U0 whose

boundary is a period q > 1 repelling orbit O.

We subdivide dynamical space according to whether a point eventually lands

in the fixed Rivera domain or not. More precisely, we say that

K(ϕ) := {ζ ∈ P1,an
L

| ϕn(ζ) /∈ U0 for alln ≥ 0}
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is the filled Julia set of ϕ.

Proposition 5.3: Let C be a connected component of K(ϕ). Then one of the

following holds:

(1) C = {χ} where χ is a rigid point.

(2) C eventually maps onto a periodic closed ball B. Moreover, ∂B ⊂ O′

where O′ 6= O is a repelling periodic orbit.

(3) C consists of a closed ball with infinitely many directions removed.

Moreover, C eventually maps onto a componentC′ whose unique bound-

ary point lies in O.

In all cases, ∂C is a singleton. Note that any non-trivial compact subsets X

of P1,an
L

having a single boundary point consists of the complement of a set U

formed by the union of open balls which share their boundary point.

To prove this proposition we consider two different cases. The easier one is

when there exists a critical point which is not in K(ϕ). The proof in this easier

case is contained in Section 5.4. The other case, when both critical points lie

in K(ϕ), requires more control on the geometry of K(ϕ) and the corresponding

proof is at the end of Section 5.6.

Before introducing the basic combinatorial structure which will allow us to

study K(ϕ), let us state and prove a basic fact.

Lemma 5.4: J(ϕ) = ∂K(ϕ).

Proof. The interiorW ofK(ϕ) is contained in the Fatou set, since ϕn(W )∩U0 =

∅ for all n ≥ 0. If ζ ∈ ∂K(ϕ) and U is a neighborhood of ζ, then ϕn(U)∩O 6= ∅

for some n ≥ 0. Since J(ϕ) is closed and totally invariant, we conclude that

J(ϕ) = ∂K(ϕ).

5.3. The puzzle. By definition we say that the dynamical level 0 set L0

is the complement of U0 and each of its connected components is a level 0

dynamical piece.

Recursively, for all ℓ ≥ 0 we let

Lℓ+1 = ϕ−1(Lℓ)

be the dynamical level ℓ + 1 set. Note that Lℓ+1 ⊂ Lℓ. Each connected

component of Lℓ is called a level ℓ dynamical piece.
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Given a point ζ ∈ Lℓ and an integer ℓ ≥ 0, we denote by Pℓ(ζ) the level ℓ

piece which contains ζ.

Lemma 5.5: The following statements hold:

(1) For all ℓ ≥ 1, each level ℓ piece is contained in a unique level ℓ−1 piece.

(2) For all ℓ ≥ 1, the image under ϕ of each level ℓ piece P is a level ℓ− 1

piece P ′. Moreover, ϕ(∂P ) = ∂P ′.

(3) Every piece of level ℓ is an affinoid, for all ℓ ≥ 0.

(4) If ℓ ≥ 0 and Pℓ is a level ℓ piece, then ∂Pℓ ⊂ GO(O).

(5) K(ϕ) =
⋂
ℓ≥0 Lℓ.

Proof. Note that (1) and (5) are an immediate consequence of the definitions.

Moreover, (2) follows from the fact that ϕ is an open map. Statement (3) is a

consequence of the fact that each connected component of the preimage of an

affinoid is an affinoid. Finally, (4) follows from induction, since ϕ must map the

boundary of a piece onto the boundary of a piece of lower level.

A decreasing sequence of pieces is called a dynamical end. More precisely,

a dynamical end E is a collection

E = {Pℓ}ℓ≥0

such that, for all ℓ, we have that Pℓ is a level ℓ piece and Pℓ+1 ⊂ Pℓ. The

intersection E∩ of the end E is by definition

E∩ =
⋂
Pℓ.

Note that every connected component of K(ϕ) is the intersection of an end and

vice versa.

Let us now discuss the geometry of the puzzle pieces. Recall from Lemma 5.1

that the level 0 set L0 = P1,an
L

\U0 is the disjoint union of q closed balls labeled

by B0, . . . , Bq−1 where:

• B0 contains both critical points.

• For j = 0, . . . , q−1, we have that ϕ(∂Bj) = ∂Bj+1, subindices mod q.

Hence, there are exactly q level 0 pieces and each of them is a closed ball.

Preserving the notation of Lemma 5.1 and applying parts (2b) and (2c) we

conclude that there are exactly 2q − 1 pieces of level 1. In fact, let

B′1, . . . , B
′
q−1
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be the preimage of B2, . . . , Bq (respectively) under the bijection

ϕ : D0 → P1,an
L

\B1.

Hence

B0 \D0, B1, . . . , Bq−1, B
′
1, . . . , B

′
q−1

is a complete list of the level 1 pieces. With the exception of the first one, all of

them are closed balls. Nevertheless, observe that the boundary of each of them

is a singleton.

Now we proceed to study the geometry of pieces of arbitrary level.

Lemma 5.6: Let P be a level ℓ ≥ 0 piece. Then P is an affinoid and ∂P is a

singleton contained in GO(O).

Proof. We proceed by induction on the level of the piece P . The claim is

clearly true for level 0 pieces. Now suppose that the claim is true for level

ℓ − 1 pieces. Let P be a level ℓ piece which maps onto P ′. Denote by χ′ the

unique boundary point of P ′. By the induction hypothesis, every direction at

χ′ is either contained in or disjoint from P ′. We may assume that χ′ has two

preimages, for otherwise the claim is trivial. Hence, there exists a direction D′v
at χ′ containing both critical values. Observe that since the critical values of

ϕ belong to distinct directions at ξ1 ∈ O, D′v must contain U0 and therefore

is disjoint from P ′. Consider χ ∈ ∂P . If a direction at χ contains the critical

points, then it is disjoint from P , by Section 1.4.2 combined with Lemma 3.2.

If a direction D at χ is critical point free, then D is a good direction and either

ϕ(D) ⊂ P ′ or ϕ(D) ∩ P ′ = ∅. Hence, directions at χ are either contained in P

or disjoint from P . It follows that ∂P = {χ}.

For any ζ ∈ Lℓ we will denote by Dℓ(ζ) the direction at ∂Pℓ(ζ) that contains

ζ. From the previous lemma it follows that for all ζ ∈ Lℓ, Dℓ(ζ) ⊂ Pℓ(ζ).

Moreover, ϕ(Dℓ(ζ)) = Dℓ−1(ϕ(ζ)) provided that ℓ ≥ 1.

Lemma 5.7: Consider an integer ℓ ≥ 0 and two nested pieces Pℓ+1 ⊂ Pℓ of

levels ℓ+ 1 and ℓ. If ∂Pℓ+1 6= ∂Pℓ, then

(1) Pℓ+1 is a closed ball and

(2) ∂ϕ(Pℓ+1) 6= ∂ϕ(Pℓ).
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Proof. Since every direction at ∂Pℓ contained in Pℓ is a good direction, (2)

follows. For (1) we proceed by induction. In view of our discussion of the geom-

etry of level 0 and 1 pieces, (1) holds when ℓ = 0. By (2) we may assume that

ϕ(Pℓ+1) is the ball whose complement is the direction at ∂ϕ(Pℓ+1) containing

U0. Then the inductive step is a consequence of the observation that if P is

a piece such that ∂P 6= ∂B0, then the image of every direction at ∂P disjoint

from U0 is a direction disjoint from U0.

Corollary 5.8: Let E be a dynamical end. Then E∩ is either a nested inter-

section of closed balls or a closed ball with infinitely (countable) many directions

removed. In the latter case, ∂E∩ is a point in GO(O).

Proof. Let E = {Pℓ}. By the previous lemma, if E∩ is not the nested intersec-

tion of closed balls, then there exists ℓ0 such that ∂Pℓ = ∂Pℓ0 for all ℓ ≥ ℓ0.

Since ∂Pℓ0 is a point in GO(O), we have that E∩ eventually maps onto the

intersection of E(ξ0) (recall that ξ0 ∈ O). The grand orbit of the direction of

U0 under Tξ0ϕ
q is infinite, since this direction is a multiple fixed point of Tξ0ϕ

q

(see Lemma 5.1). Therefore, E∩(ξ0) is a ball with a countably infinite set of

directions removed and the same occurs for E∩.

5.4. When K(ϕ) contains only one critical point. In this case, we show

that the intersections of ends which have infinitely many closed balls are single-

tons in the classical line.

Lemma 5.9: Assume that there exists one critical point ω of ϕ such that ω /∈

K(ϕ). Let E = {Pℓ} be a dynamical end such that Pℓ is a closed ball for

infinitely many ℓ. Then E∩ = {ζ} ⊂ P1
L
.

Proof. Let ℓ0 ≥ 1 be such that ω is not a level ℓ0 point. Let

a = min{distHL
(∂Pℓ0(ζ), ∂Pℓ0+1(ζ)) | ∂Pℓ0(ζ) 6= ∂Pℓ0+1(ζ) and ζ ∈ Lℓ0+1}.

Consider ℓ ≥ ℓ0 + 1 and suppose that P ′ℓ and P ′ℓ+1 are pieces of levels ℓ and

ℓ+ 1 such that ∂P ′ℓ 6= ∂P ′ℓ+1. We claim that

distHL
(∂P ′ℓ , ∂P

′
ℓ+1) = distHL

(∂ϕ(P ′ℓ), ∂ϕ(P
′
ℓ+1)).

In fact, the direction at ∂P ′ℓ that contains P ′ℓ+1 maps isomorphically onto its

image. Therefore, ϕ maps ]∂P ′ℓ , ∂P
′
ℓ+1[ isometrically onto ]∂ϕ(P ′ℓ), ∂ϕ(P

′
ℓ+1)[.

It follows that

distHL
(∂P ′ℓ , ∂P

′
ℓ+1) ≥ a.
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For the dynamical end E = {Pℓ}, there are infinitely many ℓ ≥ 0 such

that ∂Pℓ 6= ∂Pℓ+1; we conclude that there are infinitely many levels such that

distHL
(∂Pℓ, ∂Pℓ+1) ≥ a. From Lemma 1.1, we conclude that E∩ is a singleton

contained in P1
L
.

5.5. Pieces of intermediate level and marked grids. It will be conve-

nient to simultaneously consider another collection of pieces.

Recall that ϑ0 is the center of the starlike fixed Rivera domain U0, that is,

the unique fixed point in the skeleton AU0 (see Lemma 5.1). Let ϑ1/2 be the

unique preimage of ϑ0 in D0. Consider the closed ball B1/2 ⊂ D0 defined by

B1/2 = P1,an
L

\Dϑ1/2
(ϑ0), that is, the ball obtained after removing the direction

of U0 at ϑ1/2 from the Berkovich line. We define the level 1/2 set as

L1/2 = B1/2 ∪B1 ∪ · · · ∪Bq−1.

Recursively, for Z ∋ ℓ ≥ 0 we let

Lℓ+3/2 = ϕ−1(Lℓ+1/2).

Each connected component of Lℓ+1/2 is called a level ℓ+1/2 dynamical piece.

To avoid confusion let us be precise about the notation related to natural

numbers:

N ={n ∈ Z | n ≥ 1},

N0 ={n ∈ Z | n ≥ 0},

N/2 ={n/2 ∈ Q | n ∈ N},

N0/2 ={n/2 ∈ Q | n ∈ N0}.

Note that for all ℓ ∈ N0/2,

Lℓ+1 ⊂ Lℓ+1/2 ⊂ Lℓ.

Hence every piece of level ℓ + 1/2 is contained in a unique piece of level ℓ.

Consider a piece Pℓ+1/2 of level ℓ+1/2. It follows that ∂Pℓ+1/2 ⊂ GO(O∪{ϑ0}).

Moreover, if ℓ ≥ 1, then ϕ(Pℓ+1/2) is a level ℓ− 1/2 piece.

Lemma 5.10: Let ℓ ≥ 0 be an integer. Consider an intermediate piece Pℓ+1/2

of level ℓ+ 1/2. Let Pℓ be the level ℓ piece containing Pℓ+1/2.

(1) If ∂Pℓ = ∂Pℓ+1/2, then Pℓ = Pℓ+1/2.

(2) If ∂Pℓ 6= ∂Pℓ+1/2, then Pℓ+1/2 is a closed ball.
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Proof. By the definition of level 1/2 pieces, both assertions are clearly true if

ℓ = 0. We proceed by induction.

For (1), given ℓ ≥ 1, if ∂Pℓ = ∂Pℓ+1/2, then ∂ϕ(Pℓ) = ∂ϕ(Pℓ+1/2). By the

inductive hypothesis, ϕ(Pℓ) = ϕ(Pℓ+1/2). It follows that Pℓ = Pℓ+1/2.

For (2), consider ℓ ≥ 1, assume that ∂Pℓ 6= ∂Pℓ+1/2. Then Pℓ+1/2 is contained

in a direction D at ∂Pℓ which must be a good direction. Hence ∂ϕ(Pℓ) 6=

∂ϕ(Pℓ+1/2). By the inductive hypothesis, ϕ(Pℓ+1/2) is a closed ball. Given

ζ ∈ ∂Pℓ+1/2, every direction at ζ, contained in D, must map into ϕ(D), and

therefore into the ball ϕ(Pℓ+1/2). Hence Pℓ+1/2 contains all the directions at ζ,

with the exception of the one that is not contained in D.

Lemma 5.11: Assume that both critical points are level ℓ ∈ N/2 points. Let

Pℓ−1/2 be a level ℓ − 1/2 piece and D be a direction at ∂Pℓ−1/2 contained in

Pℓ−1/2 but not contained in Lℓ. Then the following holds:

(1) D contains a unique level ℓ piece Pℓ,

(2) ϕ : D \Pℓ → ϕ(D \Pℓ) is a degree one or two map between annuli. The

degree is two if and only if Pℓ contains a critical point. Equivalently,

the degree of ϕ at the boundary point of Pℓ is two.

Proof. We assume that both critical points are level k ≥ ℓ points and proceed

by induction on ℓ. For ℓ = 1/2 and ℓ = 1, the statement follows from the

description of the pieces up to level 1. Assume that (1) and (2) are true for

ℓ−1. Thus ϕ(D) is a direction at ∂Pℓ−3/2 contained in Pℓ−3/2 but not contained

in Lℓ−1. Let P be the unique piece of level Lℓ−1 contained in ϕ(D). By the

previous lemma P is a closed ball.

If ϕ : D → ϕ(D) has degree one, then the preimage of P is a unique closed

ball P ′. Moreover, D is critical point free and so is P ′.

If ϕ : D → ϕ(D) has degree two, then ∂P has a unique preimage ζ in D,

since D \ P is critical value free and therefore P contains one critical value. It

follows that the preimage of P is the unique closed ball P ′ ⊂ D with boundary

point ζ. Moreover, P ′ contains a critical point and D \ P ′ maps under ϕ onto

its image as a degree two map.

Recall from Lemma 5.1 (4) that there exists an open ball U containing a

critical point which is a component of the basin of O with boundary point in O.

Such boundary ∂U must be ∂B0 in view of part (2) of the same lemma. Hence

we may introduce a labelling of the critical points as follows.
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Definition 5.12: Denote by ω′ a critical point that belongs to a Fatou component

U(ω′) which is an open ball in the basin of O such that ∂U(ω′) = ∂B0. Denote

by ω the other critical point. If there are two choices for ω′ just make an

arbitrary one. We say that ω is the active critical point.

Note that ∂U(ω′) = ∂B0 and, therefore, ∂Pℓ(ω
′) = ∂B0 for all ℓ ≥ 0. We

emphasize that there might be a choice involved.

Definition 5.13: Let ℓ ∈ N/2. Assume that the active critical point ω is a level

ℓ point. Let ζ be a point of level ℓ. For m ∈ N0/2, n ∈ N0 such that m+n ≤ ℓ,

we let

Mn,m(ζ) =




2 if Pm(ϕn(ζ)) = Pm(ω),

1 otherwise.

The marked grid of ζ of level ℓ is the array of 1’s and 2’s given by

Mℓ(ζ) = (Mn,m(ζ)) .

If Mn,m(ζ) = 2 we say that (n,m) is a marked position, otherwise we say

that it is an unmarked position. We say that Mℓ(ω) is the critical marked

grid.

If ω, ζ ∈ K(ϕ), then we may define Mn,m(ζ) as above for all n ∈ N0 and

m ∈ N0/2. We say that the infinite array M(ζ) = (Mn,m(ζ)) is the marked

grid of ζ.

From the definition it follows that:

(Ma) If Mn,ℓ is marked, then Mn,j is marked for all j ≤ ℓ.

(Mb) If Mn,ℓ is marked, then Mn+j,ℓ−j =Mj,ℓ−j(ω) for 0 ≤ j ≤ ℓ.

Marked grids are introduced to help us keep track of the hyperbolic distance

between the boundary of the pieces.

Lemma 5.14: Assume that both critical points are level ℓ points. Let ζ be a

level ℓ point and ζn = ϕn(ζ). If m+ n ≤ ℓ and m− 3/2 ≥ 0, then

Mn,m(ζ)·distHL
(∂Pm−1/2(ζn), ∂Pm(ζn))=distHL

(∂Pm−3/2(ζn+1), ∂Pm−1(ζn+1)).

Proof. First observe that ∂Pm−1/2(ζn) = ∂Pm(ζn) if and only if

∂Pm−3/2(ζn+1) = ∂Pm−1(ζn+1).

Now if ∂Pm−1/2(ζn) 6= ∂Pm(ζn), the required identity follows from (2) of the

previous lemma.
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We must warn the reader that the degree d of ϕ : P�(ζn) → P�−1(ζn+1), in

general, does not agree with Mn,�(ζ). However, always Mn,�(ζ) ≤ d but strict

inequality might hold. That is, it might occur that ω /∈ P�(ζn) while d = 2.

Nevertheless, for future reference we record, without proof, a situation in which

the degree and the value of the marked grid coincide.

Lemma 5.15: Assume that both critical points are level �′ points. Let ζ be a

level �′ point. If there exist � ≤ �′ such that P�(ζ) is a critical point free closed

ball, then M0,�′(ζ) = 1 and the degree of ϕ : P�′(ζ) → P�′−1(ϕ(ζ)) is also 1.

5.6. Both critical points in K(ϕ). Let us assume that both critical points

belong to K(ϕ). It will be convenient to say that �0 ∈ N0/2 is the depth of the

n0-th column of a marked grid (Mn,�) if Mn0,�0 is marked but Mn0,�0+1/2 is not

marked.

We distinguish marked grids M as follows:

(1) If there exists p such that Mpn,� is marked for all � ≥ 0 and all n ∈ N0,

then we say that M is periodic. The smallest such p ≥ 1 is called the

period of M.

(2) Assume that M is not periodic. If there exists k ≥ 1 and p ≥ 1 such

that for all n ≥ 0 we have that Mnp+k,� is marked for all � ≥ 0, then

we say that M is strictly preperiodic.

(3) If a marked grid is periodic or strictly preperiodic, then we say that it

is eventually periodic.

(4) If the critical marked grid M(ω) has columns of arbitrarily large depth,

then we say that M(ω) is critically recurrent.

The marked grids involved in our study of quadratic rational maps over L have

levels in N0/2 in contrast with the marked grids that appear in the literature

related to complex quadratic and cubic polynomial dynamics where levels are

indexed by N0 (see [BH88, Mil00a]). The introduction of mid-level positions

allow us to avoid the so called “semi-critical” positions which arise in complex

quadratic polynomial dynamics. However, “degenerate annuli” do appear in

our context, just as in the study of quadratic polynomials.

Given ζ ∈ K(ϕ) we are interested on deciding whether

S(ζ) :=
∑

�∈N/2

distHL
(∂P�−1/2(ζ), ∂P�(ζ))

converges or diverges.



Vol. 201, 2014 DYNAMICS OF QUADRATIC RATIONAL MAPS 665

If ∂Pℓ−1/2(ζ) = ∂Pℓ(ζ) for all ℓ ≥ ℓ0, then the above sum clearly converges.

Otherwise, ∂Pℓ−1/2(ζ) 6= ∂Pℓ(ζ) for infinitely many values of ℓ ∈ N/2 and the

following result establishes exactly when the corresponding series is convergent.

Theorem 5.16: Assume that both critical points belong to K(ϕ). Consider

ζ ∈ K(ϕ). If ∂Pℓ−1/2(ζ) 6= ∂Pℓ(ζ) for infinitely many values of ℓ ∈ N0/2, then

S(ζ) converges if and only if M(ζ) is eventually periodic.

The proof of the theorem is outlined after the two lemmas below. We will

adapt the original techniques of Branner–Hubbard and Yoccoz (e.g., see [BH88,

Mil00a]). The only difference with the usual techniques is that, in our context,

only a weaker version of the so-called “third tableau rule” holds:

Lemma 5.17 (Weak third rule): Let ζ ∈ K(ϕ). Consider ℓ ∈ N/2 and assume

that ∂Pℓ−1/2(ω) 6= ∂Pℓ(ω). For all k ∈ N and ℓ0 ∈ N/2 such that ℓ0 ≥ ℓ + k,

the following holds:

If Mj,ℓ0−j(ω) is not marked for all j = 1, . . . , k − 1, Mk,ℓ0−k+1/2(ω) and

Mn,ℓ0(ζ) are marked but Mn,ℓ0+1/2(ζ) is not marked, then Mn+k,ℓ0−k+1/2(ζ) is

not marked.

Proof. We proceed by contradiction and assume that Mn+k,ℓ0−k+1/2(ζ) is

marked. That is,

Pℓ0−k+1/2(ζn+k) = Pℓ0−k+1/2(ω).

By Lemma 5.15, ϕk : Pℓ0(ω) → Pℓ0−k(ω) has degree 2, since Pℓ+k−j(ϕ
j(ω))

is a critical point free ball for 1 ≤ j < k. Now Pℓ0+1/2(ω) maps with degree

2 in k iterates onto Pℓ0−k+1/2(ω). Therefore, the unique level ℓ0 + 1/2 piece

contained in Pℓ0(ω) = Pℓ0(ζn) which maps in k iterates onto Pℓ0−k+1/2(ω) is

Pℓ0+1/2(ω). We conclude that Pℓ0+1/2(ω) = Pℓ0+1/2(ζn) which contradicts the

fact that Mn,ℓ0+1/2(ζ) is unmarked.

The key to prove the theorem is the following result.

Lemma 5.18: If M(ω) is recurrent but not periodic, then S(ω) diverges.

Proof. Since M(ω) is not periodic, there exists ℓ′ ∈ N/2 such that ∂Pℓ′(ω) 6=

∂B0. Hence, there exists ℓ0 ∈ N/2 such that ∂Pℓ0−1/2(ω) 6= ∂Pℓ0(ω).

Given d ∈ N/2 such that ∂Pd−1/2(ω) 6= ∂Pd(ω), we claim that there exist

integers m > k > 0 such that Pd+k(ω) maps under ϕk onto Pd(ω) with degree

2 and Pd+m(ω) maps under ϕm onto Pd(ω) with degree 2. Thus, we will obtain
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that

distHL
(∂Pd−1/2(ω), ∂Pd(ω)) = distHL

(∂Pd+k−1/2(ω), ∂Pd+k(ω))

+ distHL
(∂Pd+m−1/2(ω), ∂Pd+m(ω)).

Let k ≥ 1 be such that the k-th column of M(ω) is the first one with depth

at least d. For 0 ≤ j < k, we have that ∂Pd−1/2+k−j(ωj) 6= ∂Pd+k−j(ωj) since,

under ϕk−j , these singletons map onto the singletons ∂Pd−1/2(ω) 6= ∂Pd(ω).

By Lemma 5.15, it follows that k has the desired properties.

To obtain m we follow the original proof, as presented in [Mil00a, Lemma 1.3

(b)], and we outline how the “weak third rule” maybe applied instead of the

“third rule”. Denote the depth of the k-th column by d′ − 1/2. Consider the

largest integer n such that d′ − kn > d. Taking into account that ∂Pd(ω) 6=

∂Pd−1/2(ω), we may apply (n − 1)-times Lemma 5.17, just as in [Mil00a], to

prove that Md′−j,k+j(ω) is unmarked for all j such that 1 < j ≤ kn. Now let

m be the smallest integer greater than (n+1)k such that the m-th column has

depth at least d. It follows that m has the desired properties.

The level d+ k and d+m critical pieces are usually called children of Pd(ω).

Repeating the argument one obtains 2t descendants of the t-th generation such

that the total contribution of each generation to the sum is

distHL
(∂Pd−1/2(ω), ∂Pd(ω)).

Thus, the sum S(ω) diverges.

Proof of Theorem 5.16. Let ζ ∈ K(ϕ) be as in the statement of the theorem.

First we consider the case in which there exists ℓ0 ∈ N/2 such that ∂Pℓ0(ω) =

∂Pℓ(ω) for all ℓ ≥ ℓ0. If ∂Pd−1/2(ζ) 6= ∂Pd(ζ), then ∂Pd−1/2−j(ζj) 6= ∂Pd−j(ζj)

for all j ≤ d − 1/2. Thus, taking k ∈ N such that d − k = ℓ0 + 1/2 or

d − k = ℓ0 + 1, we obtain that Pd−j(ζj) 6= Pd−j(ω) for all j such that j ≤ k.

Therefore, distHL
(∂Pd−1/2(ζ), ∂Pd(ζ)) takes one of the finitely many positive

values distHL
(∂P, ∂P ′) where P (resp. P ′) is a level d − k − 1/2 (resp. d − k)

piece such that P ⊃ P ′ and ∂P 6= ∂P ′. Hence the sum S(ζ) diverges.

Now we consider the case in which there exists ℓ0 such that all the positions

of depth ℓ ≥ ℓ0 in M(ζ) are unmarked. For all d > ℓ0, taking k ∈ N such that

d−k = ℓ0+1/2 or d−k = ℓ0+1, we obtain that Pd−j(ζj) 6= Pd−j(ω) for all j such

that j ≤ k. Again, if ∂Pd−1/2(ζ) 6= ∂Pd(ζ), then distHL
(∂Pd−1/2(ζ), ∂Pd(ζ))

takes finitely many positive values. Thus, the sum S(ζ) diverges.
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Next we consider the case in which S(ω) diverges. By the above we may

assume that M(ζ) has columns of arbitrarily large depth. For each ℓ, let n(ℓ)

be the first column in M(ζ) with depth at least ℓ. Since all the positions,

Mℓ+n(ℓ)−j,j(ζ) are unmarked, for j = 0, . . . , n(ℓ), we obtain that

distHL
(Pℓ−1/2(ω), Pℓ(ω)) = distHL

(Pℓ+n(ℓ)−1/2(ζ), Pℓ+n(ℓ)(ζ)).

It follows that the sum diverges.

Note that if S(ω) converges, then either M(ω) is periodic or there exists

ℓ0 ∈ N/2 such that ∂Pℓ0(ω) = ∂Pℓ(ω) for all ℓ ≥ ℓ0. Since we have already

taken care of the latter, to finish the proof we have to consider the case in

which M(ω) is periodic and ∂Pℓ−1/2(ω) 6= ∂Pℓ(ω) for infinitely many ℓ. It is

not difficult to prove that if M(ω) is periodic, then S(ω) converges. Thus, if

M(ζ) is eventually periodic, then S(ζ) converges. It only remains to show that

if M(ζ) is not eventually periodic, then S(ζ) diverges. This is the other instance

in which the “(weak) third rule” is applied. We follow the exposition of Milnor

([Mil00a, Theorem 2.4, Case 2]). ConsiderN such that all columns ofM(ω) with

depth at least N have infinite depth. That is, these columns are multiples of p,

where p is the period of M(ω). Without loss of generality we may assume that

∂PN−1/2(ω) 6= ∂PN (ω). There are infinitely many pairs (m, d) with d ∈ N/2,

d ≥ N , m ∈ N such that them-th column ofM(ζ) has depth exactly d−1/2 and

the m-th column is the first to have depth at least d− 1/2. Taking into account

that ∂PN−1/2(ω) 6= ∂PN (ω) we may apply the “weak third rule” to conclude

that the columns m+ jp have depth d− 1/2− jp as long as d− 1/2− jp ≥ N .

Let k be the largest integer such that d − 1/2 − kp ≥ N . Now consider the

smallest integer m′ > m+ kp such that Mm′,N (ζ) is marked. It follows that all

the positions Mm′+N−j,j(ζ) are unmarked for all j = 0, . . . ,m′ − 1. Thus

distHL
(∂Pm′+N−1/2(ζ), ∂Pm′+N (ζ)) = distHL

(∂PN−1/2(ω), ∂PN (ω)).

Note that m′+N > m+ d− 1/2− p. So we may recursively choose pairs (m, d)

to obtain infinitely many values of distHL
(∂Pℓ−1/2(ζ), ∂Pℓ(ζ)) which agree with

distHL
(∂PN−1/2(ω), ∂PN (ω)). Thus S(ζ) diverges.

Corollary 5.19: Assume that both critical points are in K(ϕ). Let ζ ∈ K(ϕ)

and suppose that ∂Pℓ(ζ) 6= ∂Pℓ+1/2(ζ) for infinitely many values of ℓ. Then

one of the following holds:

(1)
⋂
Pℓ(ζ) = {ζ} and ζ is a rigid point.
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(2) M(ζ) is eventually periodic and
⋂
Pℓ(ζ) is an eventually periodic closed

ball B. Moreover, M(ω) is periodic and
⋂
Pℓ(ω) is a periodic closed

ball B′. The point associated to B′ lies in a non-rigid repelling periodic

orbit O′ and B eventually maps onto B′.

Proof. If S(ζ) diverges, then ∩Pℓ(ζ) = {ζ} and ζ is a rigid point, by Lemma 1.1.

That is, (1) holds.

Assume that S(ζ) converges. Then M(ζ) is eventually periodic, by the pre-

vious theorem. From Corollary 5.8, we have that
⋂
Pℓ(ζ) is a closed ball B.

Denote the eventual period of M(ζ) by p. The definition of an eventually peri-

odic marked grid implies the existence of a smallest k ≥ 0 such that the active

critical point ω lies in Pℓ(ϕ
pn+k(ζ)) for all n ≥ 0 and all ℓ ≥ 0. Therefore,

B′ = ϕk(B) =
⋂
Pℓ(ω) is a period p closed ball. Moreover, ϕp : B′ → B′ has

degree 2 and therefore the point associated to B′ is a type II repelling period p

point.

5.7. Proofs of Proposition 5.3, Theorems 1 and 2.

Proof of Proposition 5.3. From Corollary 5.8 and Lemma 5.9 the proposition

follows when there exists a critical point ω /∈ K(ϕ). Now, Corollaries 5.8

and 5.19 establish the proposition when both critical points are contained in

K(ϕ).

Proof of Theorems 1 and 2. According to Proposition 3.1 we have three possi-

bilities:

(a) J(ϕ) ∩HL is periodic point free.

(b) There exists an indifferent periodic orbit O in J(ϕ) ∩HL.

(c) There exists a repelling periodic orbit O in J(ϕ) ∩HL.

From Proposition 4.1, (a) is equivalent to J(ϕ) ⊂ P1
L
. In this case, F (ϕ) =

P1,an
L

\ J(ϕ) is connected and coincides with the basin of an attracting fixed

point. Thus, (1) of Theorems 1 and 2 hold.

Assume that (b) holds. From Proposition 4.2 (2), we have that J(ϕ) ∩HL =

GO(O). That is, Theorem 1 (2) holds. Moreover, Proposition 4.2 (4) implies

that every periodic Fatou component is a fixed Rivera domain with boundary

O. From Proposition 3.5, Rivera domains are either balls or starlike. In the

former, the boundary must be a fixed point and Theorem 2 (2) holds. In the

latter, this starlike domain is unique and Theorem 2 (3) holds. Also observe
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that Proposition 4.2 (5) implies that Fatou components are eventually periodic

or balls/annuli contained in the basin of O.

Now assume that (c) holds. From Proposition 5.3 and Lemma 5.4 we conclude

that every point in J(ϕ) ∩ HL is contained in the grand orbit of a non-rigid

repelling orbit. According to Corollary 5.2 there are at most two such orbits

which, by Lemma 5.1 (3) and (5), are such that Theorem 1 (3) or (4) holds.

Hence, we have established Theorem 1. If U is a Fatou component, then either U

eventually maps onto the fixed Rivera domain or U is contained in a connected

component C of K(ϕ). According to Proposition 5.3, U must be a direction

at the unique Julia set point ζ in C. Moreover, ζ belongs to the grand orbit

of a non-rigid repelling periodic orbit. Thus, U is either an eventually periodic

open ball (of period at least 2) or it is contained in the basin of a periodic orbit.

That is, Theorem 2 (4) holds.

From the above, we conclude that Fatou components are eventually periodic

or balls/annuli contained in the basin of a periodic orbit. Thus, we have also

established the statement of Theorem 2.

6. Quadratic laminations and trees

Invariant laminations were introduced in complex polynomial dynamics by

Thurston [Thu09] and have been widely used to describe the dynamical space

as well as the parameter space of complex polynomials. In [McM94, Section

8.5], McMullen defines the α-lamination of a quadratic polynomial. Here we

introduce a variation of these α-laminations which will allow us to describe

quadratic rational maps over L. More precisely, we will introduce abstract α-

laminations and construct a tree associated to each such abstract α-lamination.

In a certain sense, this tree is related both to the Yoccoz puzzle used to study

the dynamics of complex quadratic polynomials (e.g., see [Hub93, Mil00a]), as

well as to the obstructions which arise in the “mating” of two complex quadratic

polynomials [Tan92].

In Section 6.1 we introduce abstract α-laminations as well as illustrate the

definition with those that arise from complex quadratic polynomial dynam-

ics. Their geometric representation as “laminations” in P1
C
is discussed in Sec-

tion 6.3. The trees of integer levels associated to an abstract α-lamination and

their basic properties are discussed in Section 6.4. Then, in Section 6.5, we
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introduce the associated infinite tree with its corresponding dynamics. In Sec-

tion 6.6 we construct all abstract α-laminations via symbolic dynamics. Finally,

in Section 6.7, we define degree 2 branched maps of trees and prove a lifting

lemma.

Throughout, we denote the multiplication by 2 map acting on R/Z by m2.

6.1. Abstract α-laminations. Let {t0, . . . , tq−1} ⊂ R/Z be a period q ≥ 2

periodic orbit under m2 labeled mod q and respecting cyclic order in R/Z.

Such a periodic orbit has rotation number p/q ∈ R/Z if m2(tj) = tj+p for

all j. For example, {1/3, 2/3} and {1/7, 2/7, 4/7} have rotation numbers 1/2

and 1/3, respectively. According to Bullet and Sentenac [BS94], for each pair

of co-prime positive integers p and q, there is exactly one periodic orbit of m2

with rotation number p/q.

Definition 6.1: An equivalence relation λ in R/Z is called an abstract α-

lamination if the following hold:

(1) Invariant. If A is a class, then m2(A) is a class.

(2) Finite. Every class contains finitely many elements.

(3) Unlinked. If A and B are two distinct classes, then A is contained in

a connected component of R/Z \B.

(4) Consecutive preserving. If A is a class and ]t, s[ is a connected

component of R/Z \ A, then ]m2(t),m2(s)[ is a connected component

of R/Z \m2(A).

(5) α-supported. There exists a class A0 with at least two elements such

that m2(A0) = A0 and, for all classes A with at least two elements,

there exists � ≥ 0 such that A0 = m�
2(A).

We say that A0 is the fixed class of λ. It follows that A0 as above has a

well defined rotation number, say p/q, and we say that λ is an abstract α-

lamination in the p/q-limb.

Throughout, we let 1 ≤ p < q be relatively prime integers.

Definition 6.2: Let A0 ⊂ R/Z be the unique set of q arguments such that

m2(A0) = A0 and A0 has rotation number p/q. According to Milnor [Mil00b],

among the connected components of R/Z\A0 there is one with smallest length,

say Ip/q =]θ0, θ1[. The interval Ip/q is called the p/q-characteristic interval.
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6.2. α-laminations that arise from complex dynamics. Examples of ab-

stract α-laminations arise in the context of iteration of quadratic complex poly-

nomials. We refer the reader to [Mil99] for a detailed exposition about the

basics of iteration of complex rational and polynomial maps.

Consider the quadratic family

Qc(z) = z2 + c

where c ∈ C. The Mandelbrot set M consists of all parameters c for which

the corresponding Julia set Jc is connected. Let A0 ⊂ R/Z be the periodic

orbit under m2 with rotation number p/q. The p/q-limb of M, denoted Lp/q,

consists of all parameters c ∈ M such that the external rays with arguments in

A0 land at a fixed point of Qc. This fixed point is called the α-fixed point of

Qc.

Recall that the Douady–Hubbard map Φ : C\D → C\M is the unique confor-

mal isomorphism tangent to the identity at infinity. The image of

]1,+∞[exp(2πit) under Φ is called the parameter ray RtM at argument

t. Parameter rays at arguments t ∈ Q/Z have a well defined limit (i.e., land) as

they approach the Mandelbrot set. If t is periodic under m2, then the landing

point c is such that Qc has a multiple periodic point. If t is strictly preperiodic

under m2, then the landing point c is such that the critical point is preperi-

odic under Qc (e.g., see [Mil00b]). Moreover, denote by Ip/q =]θ0, θ1[ the p/q-

characteristic interval. Then, the parameter rays RM(θ0) and RM(θ1) land at

the same point c0, which is the unique parameter in the boundary of the main

cardioid for which Qc0 has a fixed point with multiplier exp(2πip/q) [DH85].

The limb Lp/q can be described as follows. These parameter rays together with

c0 cut the complex plane into two sectors (connected components). Denote by

S the sector not containing the main cardioid; see Figure 1. It follows that

Lp/q = S ∩ M = (S ∩ M) ∪ {c0} (see [Ate92, Mil00b]). There is a unique

parameter cp/q in Lp/q with a period q critical orbit [DH85]. This parameter

cp/q is called the center of Lp/q.

A large class of examples of abstract α-laminations in the p/q-limb arise as

the equivalence relations that encode the landing pattern of external rays at the

grand orbit of the α-fixed point of Qc with c ∈ Lp/q.

Definition 6.3: For c ∈ Lp/q we let the α-lamination λα(Qc) of Qc be the

equivalence relation in R/Z that identifies two distinct arguments t, s if and
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1/3

2/3

1/72/7

L1/3

L1/2

1/72/7

4/7

Figure 1. Left: the parameter rays with arguments in ∂I1/2
and ∂I1/3, and the limbs L1/2 and L1/3 of the Mandelbrot set.

Right: the Julia set of the center c1/3 of L1/3 together with the

rays landing at the α-fixed point.

only if the external rays of Qc with arguments t, s land at a common point in

the grand orbit of the α-fixed point of Qc.

From [McM94], it follows that λα(Qc) is an abstract α-lamination in the

p/q-limb. We will show that not all abstract α-laminations arise in quadratic

polynomial dynamics (see Remark 6.13). If λ = λα(Qc) for some c, we simply

say that λ is an α-lamination.

The α-lamination of a quadratic polynomial Qc such that the critical point

z = 0 eventually maps onto its α-fixed point is called a critically prefixed

α-lamination. For reasons that will be apparent after Proposition 6.14 and

Remark 6.13, an abstract α-lamination which is not the α-lamination of a qua-

dratic polynomial is called an almost critically prefixed lamination.

For our purpose, it will be also convenient to construct α-laminations via

symbolic dynamics (see Section 6.6 below).

6.3. Geometric representation of an α-lamination. Following Thurston,

it is useful to have a geometric representation of laminations. We identify R/Z

with the boundary of the unit disk D ⊂ C via t 7→ exp(2πit). Given a finite set

A ⊂ R/Z, denote by Convex(A) ⊂ D the convex hull of A ⊂ ∂D with respect to
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the hyperbolic metric. From the unlinked property of α-laminations, it follows

that convex hulls of distinct classes of an abstract α-lamination are disjoint.

Throughout, we identify P1
C
with C ∪ {∞} via [z : 1] �→ z and [0 : 1] �→ ∞.

Definition 6.4: Consider an equivalence relation λ in R/Z such that equivalence

classes are finite and pairwise unlinked (see Definition 6.1). We say that the

geometric lamination L0(λ) ⊂ P1
C
of λ centered at the origin is the set

formed by the union of all Convex(A) such that A is a non-trivial λ-class.

Consider the reflection M(z) = 1/z around the unit circle. We say that

L∞(λ) = M(L0(λ)) ⊂ P1
C
is the geometric lamination of λ centered at

infinity.

For our construction of a tree associated to an abstract α-lamination λ we

will “saturate” the “support” of λ by finite sets A�. More precisely, let A0 be

the fixed class of λ and, for all � ≥ 1, let

A� = m−�
2 (A0).

For all � ≥ 1, note that A�−1 ⊂ A� and that each λ-class is either contained in

or disjoint from A�. We say that the restriction λ(�) of λ to A� is the level �

restriction of λ and that A� is the level � support of λ.

If A� is the level � support of a lamination in the p/q-limb, then −A� = M(A�)

is the level � support of a lamination in the −p/q-limb. We will work under

the agreement that the −p/q-limb denotes the (q − p)/q-limb since −p/q =

(q − p)/q ∈ R/Z.

The following definition is closely related to the “mating construction”

[Dou83], more precisely, to the “Levy cycle” of “obstructed matings” [Tan92].

Definition 6.5: Let λ be an abstract α-lamination in the p/q-limb and λ∗ be

the α-lamination of the center of the −p/q-limb. Denote by L0(λ
(�)) the level �

geometric lamination of λ centered at the origin and L∞(λ
(�)
∗ ) the level � geo-

metric lamination of λ∗ centered at infinity. We say that the level � geometric

lamination of λ is

L(λ(�)) = L0(λ
(�)) ∪ L∞(λ

(�)
∗ ).

See the lower left of Figure 2 for the illustration of a geometric lamination.
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Figure 2. Top left: the Julia sets of the center of the −1/2 =

1/2 limb (the basilica). Top right: the Julia set of Qc for

c = −1.754877666 . . . (the airplane: z = 0 has period 3). In

these two figures, we illustrate external rays that land at points

which map onto the α-fixed point in at most 3 iterates with

angles labelled so that one unit corresponds to 1/24 of a turn

around R/Z. Bottom left: the geometric lamination of level

� = 3 of λα(Qc) (as a reference the unit circle is illustrated by

a broken line). Bottom right: the associated tree of level 3.

Dots corresponding to Γ-vertices are filled while Y -vertices are

illustrated with unfilled dots.
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6.4. The tree of level � of an abstract α-lamination. The dual tree

to a level � geometric lamination is the tree of level � of the α-lamination.

(Compare with the discussion and definitions of [McM94, Section 8.5].)

Definition 6.6: Let λ be an abstract α-lamination. Each connected component

C of L(λ(�)) is called a Γ-vertex of level �. The collection of all Γ-vertices

of level � is denoted by Γ(λ(�)). Each connected component U of P1
C
\ L(λ(�))

is called a Y -vertex of level �. The collection of all Y -vertices of level � is

denoted by Y (λ(�)). The level � tree T (λ(�)) is the finite simplicial graph

with vertices Γ(λ(�))∪ Y (λ(�)) such that an edge of the graph joins the vertices

U ∈ Y (λ(�)) and C ∈ Γ(λ(�)) if and only if

C ∩ ∂U �= ∅.

No edges join vertices of the same type.

It will be convenient to agree on a concrete realization of the abstract finite

simplicial complex T (λ(�)). More precisely, let V = Γ(λ(�)) ∪ Y (λ(�)). Then

we regard V as a subset of Euclidean space RV = {τ : V → R} by identifying

v ∈ V with the characteristic function δv : V → R, where δv(w) = 0 if w �= v,

and δv(v) = 1. An edge joining v and w is identified with the 1-simplex given by

a line segment RV joining δv and δw. We regard this 1-simplex as parametrized

by barycentric coordinates: s �→ sδv + (1 − s)δw, where s ∈ [0, 1]. In order to

ease notation we simply write T (λ(�)) for the abstract simplicial complex or for

the concrete simplicial complex, as well as sometimes it will only denote the

underlying topological space.

Note that, by the Jordan curve theorem, T (λ(�)) is a finite simplicial tree.

That is, the underlying topological space is contractible.

It follows that T (λ(0)) has exactly one Γ-vertex, namely

Convex(A0) ∪M(Convex(−A0)),

q Y -vertices, and q edges joining the Y -vertices to the Γ-vertices. That is,

T (λ(0)) is a starlike tree.

For all � ≥ 0, we will consider two simplicial maps π�+1 andm2 from T (λ(�+1))

onto T (λ(�)). One is of topological nature while the other is of dynamical

origin. Recall that a simplicial map between trees is determined by its action

on vertices. A map f between vertices of trees is simplicial if, given any edge in

the domain, say joining v and w, then f(v) = f(w), or f(v) and f(w) are the
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endpoints of an edge in the range. Simplicial maps extend uniquely in a linear

fashion to a (simplicial) map between the corresponding concrete simplicial

complexes and their underlying spaces.

For short we say that a vertex of T (λ(ℓ)) is a vertex of level ℓ. To simplify

notation, vertices of level ℓ will be regarded as elements of a tree and as subsets

of P1
C
, according to convenience. Also, when λ is clear from context, we let

L(ℓ) = L(λ(ℓ)), T (ℓ) = T (λ(ℓ)), . . . .

Lemma 6.7: Let λ be an abstract α-lamination. Consider ℓ ≥ 0 and let v be a

vertex of level ℓ+ 1. Then the following hold:

(1) There exists a unique vertex πℓ+1(v) of level ℓ such that v ⊂ πℓ+1(v).

(2) There exists a unique vertex u of level ℓ such that m2(v ∩ R/Z) =

u ∩ R/Z. We say that u = m2(v).

Moreover, with the above notation:

(3) If v and w are endpoints of an edge of level ℓ+1, then πℓ+1(v) = πℓ+1(w)

or πℓ+1(v) and πℓ+1(w) are endpoints of an edge of level ℓ.

(4) If v and w are endpoints of an edge of level ℓ+1, then m2(v) and m2(w)

are endpoints of an edge of level ℓ.

Thus, πℓ+1 and m2 extend uniquely to simplicial maps from T (λ(ℓ+1)) onto

T (λ(ℓ)). Furthermore, πℓ+1 is monotone and

m2 ◦ πℓ+1 = πℓ ◦m2.

Proof. (1) Since vertices of level ℓ are pairwise disjoint, uniqueness of πℓ+1(v)

follows. For the existence, note that Γ-vertices of level ℓ are also Γ-vertices of

level ℓ + 1. Hence, a Γ-vertex v of level ℓ + 1 is already a vertex of level ℓ or

is disjoint from the Γ-vertices of level ℓ. Thus, πℓ+1(v) = v in the former case,

and v is contained in a connected component v′ = πℓ+1(v) of P1
C
\ L(ℓ) in the

latter. Similarly, every Y -vertex of level ℓ+1 is contained in a Y -vertex of level

ℓ.

Let us prove statement (2). From the invariance property of α-laminations, if

v ∈ Γ(ℓ+1), then m2(v∩R/Z) is the intersection of a vertex in Γ(ℓ) with the unit

circle. Now, if U ∈ Y (ℓ+1), then the connected components in U ∩ R/Z can be

joined by a sequence of hyperbolic geodesics contained in U (either through D

or through P1
C
\D) arbitrarily close to the boundary of U . Assume that two such

components of U ∩ R/Z, say ]a0, b0[ and ]a1, b1[, can be joined by a hyperbolic
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geodesic inside D or outside D, without crossing L(ℓ+1), and with endpoints

arbitrarily close to b0 and a1. By the consecutive preserving property of λ and

λ∗, the intervals ]2a0, 2b0[ and ]2a1, 2b1[ may be joined by a hyperbolic geodesic

inside D or outside D without crossing L(ℓ). It follows that m2(U ∩ R/Z) is

contained in a Y -vertex of level ℓ, say V . Moreover, the boundary of V is

formed by geodesics having as endpoints the image of endpoints of geodesics in

the boundary of U . Hence, m2(U ∩ R/Z) = V ∩ R/Z.

(3) and (4), as well as the functional relation between m2 and πℓ, are a

straightforward consequence of (1) and (2).

To show that there is a natural inclusion of trees of lower levels into the trees

of higher levels, we need to establish the following property of the α-lamination

of the center of a limb.

Lemma 6.8: Let λ∗ be the α-lamination of the center of a limb. For all ℓ ≥ 0, if

A is a level ℓ+1 class which is not a level ℓ class, then the connected component

of R/Z \A of length greater than 1/2 contains all level ℓ+ 1 non-trivial classes

B such that B 6= A.

Remark 6.9: From Lemma A.6 in [Kiw01], given a non-trivial class A of an

abstract α-lamination there exists a connected component of R/Z \A of length

greater than 1/2 or m2 : A → m2(A) is two-to-one. Thus the existence of a

connected component as in the lemma is automatically guaranteed.

Proof. Let Qc be a quadratic polynomial which is the center of a limb.

Note that the Fatou component V of Qc containing the critical point z = 0

contains the α fixed point in its boundary. Given a non-trivial class A of

λ∗ = λα(Qc), denote by IA the connected component of R/Z \ A of length

greater than 1/2. We claim that the fixed class A0 is contained in IA, provided

that A 6= A0. In fact, the extreme points of IA correspond to the arguments

of external rays which, together with their common landing point zA, cut the

complex plane into two regions. The one containing all the rays with arguments

in IA also contains the critical point (e.g., see [Mil00b]), therefore it contains

the Fatou component V as well as the α fixed point and the rays landing at it.

Thus, A0 ⊂ IA. Similarly, if A 6= A0 + 1/2, then A0 + 1/2 ⊂ IA.

To prove the lemma we proceed by induction. Since the non-trivial level 1

classes are the fixed class A0 and the prefixed class A0 + 1/2, the statement

clearly holds for ℓ = 0. We assume that the statement is true for ℓ ≥ 0 and, by
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contradiction, we prove that the statement is true for ℓ+1. That is, let A be a

non-trivial class of level ℓ+2 which is not of level ℓ+1. Assume that there exists

a level ℓ+2 class B 6= A such that B ⊂ R/Z\ IA. It follows that m2 is injective

on R/Z\IA, hence m2(B) is a class of level ℓ+1 contained in m2(R/Z\IA). But

since A0 and A0+1/2 are contained in IA, we must have that A0 is contained in

the interval R/Z\m2(R/Z\IA). Thus Im2(A) = m2(R/Z\IA), which contradicts

the inductive hypothesis since m2(B) is not contained in Im2(A).

Now we show that the map πℓ+1 is, in fact, a deformation retract. We will

also prove that edges are not “subdivided” as we increase the level.

Lemma 6.10: Let λ be an abstract α-lamination. Let ℓ ≥ 0 and v be a Y -vertex

of level ℓ. Then there exists a unique Y -vertex ιℓ(v) of level ℓ+ 1 such that:

πℓ+1(ιℓ(v)) =v,

∂v ⊂∂ιℓ(v).

Given a Γ-vertex v of level ℓ define ιℓ(v) = v ∈ Γ(ℓ+1). Then ιℓ determines an

injective simplicial map ιℓ : T (λ(ℓ)) → T (λ(ℓ+1)). Moreover, πℓ+1 ◦ ιℓ = id and

ιℓ ◦ πℓ+1 is homotopic to the identity relT (λ(ℓ)).

Proof. Consider a Y -vertex v of level ℓ. From the previous lemma, it follows that

two connected components of ∂v cannot be separated by a connected component

of L(ℓ+1). Hence, there exists a Y -vertex ιℓ(v) of level ℓ + 1 which is obtained

from v after removing finitely many topological disks completely contained in

v. This vertex ιℓ(v) has the desired properties.

Observe that given any two endpoints v ∈ Y (ℓ) and w ∈ Γ(ℓ) of an edge

in T (ℓ), by definition we have that ∂v ∩ w 6= ∅. From the previous paragraph,

∂ιℓ(v)∩ιℓ(w)=∂ιℓ(v)∩w 6=∅. Therefore, ιℓ(v) and ιℓ(w) are endpoints of an edge

in T (ℓ+1). That is, ιℓ determines a simplicial map between the corresponding

trees. It is not difficult to see that ιℓ has the desired properties.

Note that ιℓ is an inclusion of simplicial trees. Hence, it uniquely defines

an inclusion of the underlying spaces. So one may regard the trees T (ℓ) as an

increasing sequence of simplicial trees and/or topological spaces. It is important

to stress that edges of level ℓ are not subdivided when included in the tree of

level ℓ+ 1 via the map ιℓ.
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6.5. The full tree of an α-lamination. From Lemma 6.7, we conclude

that

(T (λ(ℓ+1)), πℓ+1)

is an inverse system of (contractible) topological spaces.

Definition 6.11: Let λ be an abstract α-lamination. The full tree of λ is the

topological space

T ∞(λ) = lim
←−

(T (ℓ+1)(λ), πℓ+1).

From Lemma 6.7, the action of m2 extends to a continuous map

m2 : T ∞(λ) → T ∞(λ).

We will show that in a great variety of cases the action of a quadratic rational

map ϕ : P1,an
L

→ P1,an
L

on the (Berkovich) convex hull of its Julia set is topo-

logically conjugate to m2 : T ∞(λ) → T ∞(λ) for an appropriate λ. The Julia

set of ϕ will correspond to the inverse limit of Y -vertices.

6.6. Construction of α-laminations via symbolic dynamics. Our aim

here is to show how via symbolic dynamics of m2 : R/Z → R/Z we may con-

struct abstract α-laminations in the p/q-limb. Recall that Ip/q denotes the

characteristic interval of the p/q-limb (see Definition 6.2). For each argument

θ ∈ Ip/q we will produce at least one and at most three abstract α-laminations.

For any θ ∈ Ip/q we consider two partitions {I
−
0 (θ), I−1 (θ)} and {I+0 (θ), I+1 (θ)}

of R/Z into semicircles where

I+0 (θ) = [θ/2 + 1/2, θ/2[, I−0 (θ) =]θ/2 + 1/2, θ/2],

and

I+1 (θ) = [θ/2, θ/2 + 1/2[, I−1 (θ) =]θ/2, θ/2 + 1/2].

It follows that A0 is contained in exactly one element of each partition, for all

θ ∈ Ip/q.

We will construct abstract α-laminations using the itinerary of m2-orbits

according to each one of the two partitions of R/Z. Let Σ = {0, 1}N∪{0} and,

for ǫ = + or −, define

it ǫθ(t) = (i0, i1, . . . ) ∈ Σ

if mk
2(t) ∈ Iǫik(θ). The equivalence relation λǫ(θ) is the relation that identifies

two distinct arguments s and t if and only if s, t belong to the m2-grand orbit

of A0 and itǫθ(t) = it ǫθ(s).
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One may produce a new equivalence relation from λ±(θ). Namely, we let λ(θ)

be the smallest equivalence relation that contains both λ+(θ) and λ−(θ).

Lemma 6.12: If θ ∈ Ip/q =]θ0, θ1[, then λ(θ), λ+(θ) and λ−(θ) are abstract

α-laminations in the p/q-limb. Moreover, denote by λ∗ the α-lamination of the

center of the p/q-limb. Then λ∗ = λ+(θ1) = λ−(θ0).

Proof. We start proving that λ±(θ) are abstract α-laminations, for all θ ∈ Ip/q.

For j = 0, 1, the map m2 : I±j (θ) → R/Z preserves cyclic order and is onto.

Hence, λ±(θ) satisfies the invariant and consecutive preserving property. Thus,

if mℓ
2(t) is periodic, for some ℓ ≥ 0, then the same holds for all arguments s

which are λ±(θ)-equivalent to t. It follows that λ±(θ)-classes are finite. A pair

of distinct classes B1 and B2 are either contained in the same half circle or

unlinked. In the former case, B1 and B2 are unlinked if and only if m2(B1) and

m2(B2) are unlinked. The unlinked property for λ±(θ) follows.

Now we show that λ(θ) is an abstract α-lamination, for all θ ∈ Ip/q . The only

relevant case is when θ /∈ A0 and mℓ0
2 (θ) ∈ A0 for some ℓ0 ≥ 1. The λ(θ)-class

of θ/2 is the union of its λ+(θ)-class with the λ+(θ)-class of θ/2+1/2. It follows

that a λ(θ)-class consists of points with the same itinerary or it eventually maps

onto the class of θ/2 through a cyclic order preserving map. Therefore, we may

apply a similar reasoning to conclude that λ(θ) is an abstract α-lamination.

(According to [BFH92, DH85] the lamination λ(θ) is the α-lamination of a

quadratic polynomial where the critical point eventually maps to the α fixed

point, that is, a critically prefixed lamination.)

Finally, the α-lamination λ∗ of the quadratic polynomial in the p/q-limb

with a period q critical orbit is λ∗ = λ+(θ1) = λ−(θ0), according to Poirier’s

description [Poi09].

Ifmn
2 (θ) /∈ A0 for all n ≥ 0, then it is fairly easy to check that λ(θ) = λ+(θ) =

λ−(θ).

If mn
2 (θ) ∈ A0 for some smallest n ≥ 1, then λ+(θ) 6= λ−(θ). In fact, the

λ+(θ)-class of 2θ and the λ−(θ)-class of 2θ agree. Denote this common class

by B. It follows that the λ+(θ)-class of θ is m−12 (B) ∩ [θ, θ + 1/2[ while the

λ−(θ)-class of θ is m−12 (B)∩]θ/2 + 1/2, θ].

Remark 6.13: According [DH85], given θ ∈ Ip/q, if c ∈ M is the accumula-

tion point of the parameter ray RθM, then λα(Qc) = λ(θ). Moreover, every
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α-lamination is the α-lamination of a quadratic polynomial which is the accu-

mulation point of some parameter ray. It follows that an abstract α-lamination

λ is not an α-lamination if λ = λ+(θ) or λ = λ−(θ) for some θ ∈ Ip/q which

eventually maps into the fixed class.

With little more work, given an abstract α-lamination λ, it is possible to find

θ such that one of the laminations λ(θ), λ±(θ) coincides with λ:

Proposition 6.14: Let λ be an abstract α-lamination in the p/q-limb. Denote

by Ip/q the corresponding characteristic interval. Then there exists θ ∈ Ip/q such

that λ = λ(θ), or λ = λ+(θ), or λ = λ−(θ).

First we show that given an abstract α-lamination λ and a level ℓ, we may

find θ ∈ R/Z such that the level ℓ restriction of λ(θ) and λ coincide:

Lemma 6.15: Let λ be an abstract α-lamination. Denote by λ(ℓ) its level ℓ

restriction. Consider

I(ℓ) = {θ ∈ R/Z | Convex({θ/2, θ/2 + 1/2}) ∩ L(ℓ) = ∅}.

Then exactly one of the following holds:

(1) I(ℓ) 6= ∅. In this case,

λ+(θ)(ℓ) = λ−(θ)(ℓ) = λ(ℓ)

for all θ ∈ I(ℓ).

(2) I(ℓ) = ∅ and there exists a λ(ℓ)-class B such that m2 : B → m2(B) is

two-to-one. In this case, for all θ ∈ m2(B),

λ(θ)(ℓ) = λ(ℓ).

Proof. From Lemma A.6 in [Kiw01], either I(ℓ) 6= ∅ or there exists a λ(ℓ)-class

B such that m2 : B → m2(B) is two-to-one.

In case (1), since Convex({θ/2, θ/2+1/2}) is disjoint from L(ℓ), we have that

each λ(ℓ)-class is contained in ]θ/2, θ/2 + 1/2[ or in ]θ/2 + 1/2, θ/2[. Therefore,

λ(ℓ) ⊂ λ±(θ)(ℓ). Taking into account that every class of λ(ℓ) as well as every

class of λ±(θ)(ℓ) has exactly q elements, we conclude that λ(ℓ) = λ±(θ)(ℓ).

In case (2), since {θ/2, θ/2 + 1/2} ⊂ B, each λ(ℓ)-class different from B is

contained in ]θ/2, θ/2 + 1/2[ or in ]θ/2 + 1/2, θ/2[. Hence, as in the previous

case, every λ(ℓ)-class that is not eventually mapped onto B is a λ(θ)(ℓ)-class.
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Note that it+θ (θ/2) = it−θ (θ/2+1/2). Since it+θ (θ/2) coincides with it+θ (t) for

all t ∈ B∩I+1 (θ) and it+θ (θ/2+1/2) coincides with it+θ (t) for all t ∈ B∩I+0 (θ), it

follows that B is contained in a λ(θ)(ℓ)-class. Taking into account that λ(θ)(ℓ)-

classes have at most 2q elements, it follows that B is a λ(θ)(ℓ)-class.

Now we assume that A 6= B is a λ(ℓ)-class such that m2(A) is a λ(θ)
(ℓ)-class.

We claim that A is a λ(θ)(ℓ)-class. By the unlinked property of λ, the class

A is contained in the interior of I+0 (θ) or of I+1 (θ). Again by the unlinked

property, if A ∋ t and t ∈ I+0 (θ) (resp. t ∈ I+1 (θ)) then the λ(θ)(ℓ)-class A′

of t is contained in I+0 (θ) (resp. I+1 (θ)). By the invariance property of both

laminations, m2(A
′) = m2(A). Hence, A

′ = A.

Since every λ(ℓ)-class eventually maps to B or it is a λ(θ)(ℓ)-class, it follows

that λ(ℓ) = λ(θ)(ℓ).

Proof of Proposition 6.14. Given an abstract α-lamination λ in p/q-limb, for

all ℓ ≥ 0, consider the decreasing collection {I(ℓ)} of subsets of R/Z as in the

previous lemma. If I(ℓ) 6= ∅ for all ℓ, choose θℓ ∈ I(ℓ) so that the sequence {θℓ}

is monotone. Without loss of generality we assume that this sequence converges

to θ and, to fix ideas, suppose that it is increasing (with respect to the order in

the interval ]θ − 1, θ[). It follows that, for all t ∈ R/Z,

lim
ℓ→∞

it+θℓ(t) = it+θ (t).

In particular, λ+(θ)(ℓ) = λ(ℓ) for all ℓ ≥ 0. Therefore, λ+(θ) = λ.

Now if I(ℓ0) = ∅ for some ℓ0, then B as in part (2) of the previous lemma

coincides for all ℓ ≥ ℓ0. Choosing θ ∈ B it follows that λ(θ) = λ.

We will also need to establish the following properties of the α-lamination of

the center of the p/q-limb.

Lemma 6.16: Let λ∗ be the lamination of the center of the p/q-limb. For

ℓ ≥ 0, denote by T
(ℓ)
∗ its tree of level ℓ and by v

(ℓ)
∗ (x) the vertex containing

x ∈ C ∪ {∞}. Then, for all ℓ ≥ 0,

v
(ℓ+1)
∗ (0) = v

(ℓ+1)
∗ (∞).

Moreover, for all θ ∈ m2(v
(ℓ+1)
∗ (0)), we have that

T
(ℓ+1)
∗ = T (ℓ+1)(θ).
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Proof. First we observe that A is a class of the α-lamination of the center of

the −p/q if and only if −A is a class of λ∗. It follows that L(λ
(ℓ+1)
∗ ) is invariant

under 1/z̄.

Consider θ ∈ m2(v
(ℓ+1)
∗ (0)). Since θ/2 and θ/2 + 1/2 lie in v

(ℓ+1)
∗ (0), there

is a curve γ ⊂ v
(ℓ+1)
∗ (0) connecting θ/2 and θ/2+ 1/2 formed by concatenating

geodesics in D or outside D. By the invariance of L(λ
(ℓ+1)
∗ ) under 1/z̄, we may

replace the geodesics outside D in γ by geodesics contained in D. Thus, we

can connect θ/2 and θ/2+ 1/2 through a sequence of geodesic paths contained

in v
(ℓ+1)
∗ (0) ∩ D. By convexity, it follows that the diameter joining θ/2 and

θ/2 + 1/2 is disjoint from L(λ
(ℓ+1)
∗ ). By 1/z̄-invariance, v

(ℓ+1)
∗ (0) = v

(ℓ+1)
∗ (∞).

From Lemma 6.15 we obtain that λ
(ℓ+1)
∗ = λ(ℓ+1)(θ).

6.7. Branched maps of trees. Multiplication by 2 on R/Z acts on level ℓ

trees as a two-to-one map ramified over an interval.

Definition 6.17: Consider finite simplicial trees T , T ′ and let g : T → T ′ be

a simplicial map. Let I ⊂ T ′ be a simplicial subcomplex homeomorphic to a

closed interval or a singleton. We say that g is a degree two map branched

over I if the following holds: there exists a tree automorphism γ : T → T of

order 2 (i.e., a simplicial involution) such that I = g(Fix(γ)), and g(x) = g(y) if

and only if x = y or y = γ(x). We say that J = g−1(I) is the critical interval

of g and I is the critical value interval of g.

As mentioned above our definition is tailored to include the action of multi-

plication by 2 on trees associated to α-laminations.

Lemma 6.18: Let λ be an abstract α-lamination and, for ℓ ≥ 0, let T (ℓ) be the

associated level ℓ tree. Denote by vℓ(0) and vℓ(∞) the vertices of T (ℓ) containing

0 and ∞, respectively. Then m2 : T (ℓ+1) → T (ℓ) is a degree 2 branched map

over the interval I = [m2(vℓ+1(0)),m2(vℓ+1(∞))].

Proof. Recall that the vertices of T (ℓ) are subsets of P1
C
= C ∪ {∞}. For all

ℓ ≥ 0, we have that v is a vertex of T (ℓ+1) if and only if −v is a vertex of T (ℓ+1).

Moreover, m2(v) = m2(−v).

Now let γ : T (ℓ+1) → T (ℓ+1) be the involution induced by v 7→ −v. We claim

that given a level ℓ+ 1 vertex v, we have that v = −v if and only if one of the

following occurs:

(1) ∂v separates 0 and ∞.
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(2) 0 ∈ v.

(3) ∞ ∈ v.

The claim is rather immediate when {0,∞} ∩ v 6= ∅ so we assume that

{0,∞} ∩ v = ∅. We let W denote the connected component of P1
C
\ v that

contains ∞. Now v = −v if and only if ∂W = ∂(−W ), which implies that

0 and ∞ are separated by ∂W . Conversely, if ∂W separates 0 and ∞, then

∂W ∩ ∂(−W ) 6= ∅. Since ∂W and ∂(−W ) are equal or disjoint the claim fol-

lows.

The vertices that separate 0 from ∞ together with the ones that contain 0

or ∞ form a (possibly degenerate) interval, and the lemma follows.

We will need the following “lifting” property in the process of establishing

a topological conjugacy between maps acting on trees associated to abstract

α-laminations and the dynamics of some degree two rational maps acting on

the convex hull of their Julia sets in P1,an
L

.

Lemma 6.19: Consider simplicial trees A′ and T ′ with subtrees A ⊂ A′ and

T ⊂ T ′. Suppose that ϕ : A′ → A and m : T ′ → T are degree two branched

maps over IA and IT , respectively, such that ϕ(A) ⊂ A and m(T ) ⊂ T . Also,

suppose that ϕ : A → ϕ(A) and m : T → m(T ) are degree two branched maps.

Assume that h : A → T is a tree isomorphism such that the following hold:

(1) The following diagram conmutes:

A
ϕ

−−−−→ A

h

y h

y

T
m

−−−−→ T .

(2) h(IA) = IT .

Then there exists a tree isomorphism h′ : A′ → T ′ such that the following hold:

(1) The following diagram conmutes:

A′
ϕ

−−−−→ A

h′

y h

y

T ′
m

−−−−→ T .

(2) h′
∣∣
A
= h.
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Proof. Without loss of generality we may assume that A and T contain ϕ−1(IA)

and m−1(IT ), since both ϕ and m are bijections over these sets. Now consider

two connected components A0,A1 of A′ \ A such that ϕ(A0) = ϕ(A1). Let

{xj} = Aj ∩ A for j = 0, 1. Note that m has two inverse branches m0 and

m1 defined on h(ϕ(A0)) and h(ϕ(A0)) which are continuous bijections into T ′

such that h(xj) = mj(h(ϕ(xj))). Define h′ on Aj as h′ = mj ◦ h ◦ ϕ. It is not

difficult to check that h′ has the desired properties.

7. Topological model

For any subset X ⊂ P1,an
L

we denote by X̂ its convex hull in P1,an
L

. Namely X̂

is the union of all arcs [x0, x1] where x0, x1 ∈ X .

Here we give a complete description of Ĵ(ϕ) for quadratic rational maps

possessing a non-rigid repelling periodic orbit. We will show that Ĵ(ϕ) is com-

pletely invariant under ϕ (see Lemma 7.5 below). Moreover, we will describe

the structure and dynamics over Ĵ(ϕ) with the aid of the tree associated to an

appropriate abstract α-lamination (see Section 6).

The (simultaneous) proof of the following two propositions is given in Sec-

tion 7.4.

Proposition 7.1: Let ϕ be a quadratic rational map over L which is not

simple. Assume that ϕ has a non-rigid repelling periodic orbit and that both

critical points belong to the filled Julia set. Then there exists an abstract α-

lamination λ which is not critically prefixed such that ϕ : Ĵ(ϕ) → Ĵ(ϕ) is

topologically conjugate to m2 : T (∞)(λ) → T (∞)(λ).

Definition 7.2: Let ϕ be a quadratic rational map over L which is not simple.

Assume that ϕ has a non-rigid repelling periodic orbit and that one critical

point ω is not in K(ϕ). Denote by πU0 : U0 → A0 the projection of the fixed

Rivera domain U0 into its skeleton (see Section 1.3.1). Then

O0 = πU0(O(ω) ∩ U0)

is a periodic orbit (see Section 2.3). We define ∼ to be the equivalence relation

in Ĵ(ϕ) that identifies two distinct elements ζ1, ζ2 if and only if ζ1, ζ2 lie in the

same connected component of ϕ−n(Ô0) for some n ≥ 0.
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Proposition 7.3: Let ϕ be a quadratic rational map over L which is not

simple. Assume that ϕ has a non-rigid repelling periodic orbit and that one

critical point ω is not in K(ϕ). Then the following map is well defined:

ψ : Ĵ(ϕ)/ ∼→Ĵ(ϕ)/ ∼

[ζ] �→[ϕ(ζ)]

where [ζ] denotes the ∼-class of ζ.

Moreover, there exists a critically prefixed α-lamination λ and a homeomor-

phism h : Ĵ(ϕ)/ ∼→ T (∞)(λ) which conjugates the action of ψ with that of m2

(i.e., m2 ◦ h = h ◦ ψ).

Remark 7.4: Note that ∼ classes are either trivial or contained in a Fatou

component which eventually maps onto U0. Thus h is a conjugacy over the

Julia set. Sometimes Ô0 will be simply the singleton {ϑ0} (see Lemma 5.1). In

that case, ∼ is the trivial relation and the above proposition gives a topological

model for the dynamics over Ĵ(ϕ).

In Section 7.1 we show that Ĵ(ϕ) is completely invariant and simultaneously

introduce an increasing sequence of trees A(�) ⊂ Ĵ(ϕ) whose union is dense and

such that ϕ : A(�+1) → A(�) is a degree two branched map. The construction of

the (semi)conjugacies will rely on choosing a decreasing sequence of subsets v
(�)
M

of R/Z so that for all θ ∈ v
(�)
M we are able to construct (semi)conjugacies with

domain A(�) and range T (λ(θ)(�)). In Section 7.2 we prepare to treat at once

the cases in which Crit(ϕ) ⊂ K(ϕ) and Crit(ϕ) �⊂ K(ϕ). To spread conjugacies

defined on A(�) to A(�+1) we employ Lemma 6.19, but before we need some

control over the branched intervals. This control is achieved in Section 7.3 by

introducing appropriate subsets of the trees involved which contain the “post-

branched” points. Finally, Section 7.4 contains the proof of Propositions 7.1

and 7.3 as well as the proof of Theorem 3.

7.1. Trees of level � and Ĵ(ϕ). The proofs of Propositions 7.1 and 7.3 rely

on the following basic facts about Ĵ(ϕ).

We will continue to work under the standing assumption that the quadratic

rational map ϕ has a fixed Rivera domain U0 whose boundary is a period

q > 1 repelling orbit O. We will use the notation of Lemma 5.1. Also, we let

ω and ω′ be the critical points of ϕ where ω is the active critical point (see

Definition 5.12). Furthermore, let Crit(ϕ) = {ω, ω′}.
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Lemma 7.5: Let A(0) be the skeleton of U0. For ℓ ≥ 0 recursively define

A(ℓ+1) = ϕ−1(A(ℓ)).

The following statements hold for all ℓ ≥ 0:

(1) A(ℓ) ⊂ A(ℓ+1).

(2) A(ℓ) is the convex hull of ϕ−ℓ(O), in particular, A(ℓ) is connected.

(3) If x ∈ ϕ−(ℓ+1)(O) \ ϕ−ℓ(O), then x is an endpoint of A(ℓ+1).

(4) For all ζ ∈ A(ℓ) \ GO(O), if D is a direction at ζ disjoint from A(ℓ),

then ϕℓ(D) ⊂ U0.

(5)

Ĵ(ϕ) =
⋃

ℓ≥0

A(ℓ) ⊃ GO(O) = J(ϕ).

(6) Ĵ(ϕ) is completely invariant.

Proof. Statement (1) is a consequence of the forward invariance of the initial

skeleton (i.e., ϕ(A(0)) = A(0)).

For (2) we claim that A(ℓ) is connected for all ℓ and prove this claim by

induction. Since ϕ is an open map, every connected component of A(ℓ+1) =

ϕ−1(A(ℓ)) maps onto A(ℓ), but the preimage of the singleton ∂B1 ⊂ A(0) is

the singleton ∂B0. Hence, A(ℓ+1) is connected and the claim follows. Now the

endpoints of A(0) are contained in O, hence the endpoints of A(ℓ) are contained

in ϕ−ℓ(O). Since every closed and connected subset of P1,an
L

is convex, we have

established (2).

For (3) we proceed by contradiction. Suppose that x ∈ ϕ−(ℓ+1)(O)\ϕ−ℓ(O) is

not an endpoint of A(ℓ+1). Let C be a connected component of A(ℓ+1) \{x} not

containing A(ℓ). Then C contains a component AU of ϕ−(ℓ+1)(A(0)) such that

x ∈ AU . All the endpoints ofAU lie inA(ℓ+1)\A(ℓ). Hence ϕℓ(AU ) ⊂ A(1)\A(0),

but then A(0) = ϕℓ+1(AU ) would be a subset of ϕ(A(1) \ A(0)) = A(0) \ {ξ1},

which is a contradiction.

We prove (4) by induction. In fact, for ℓ = 0 the statement holds trivially.

For ℓ ≥ 1, given a direction D, as in (4), we have that D does not contain

ξ0 and therefore is a good direction at ζ. It follows that ϕ(D) is a direction

disjoint from A(ℓ−1) at ϕ(ζ) ∈ A(ℓ−1) \ GO(O). By the inductive hypothesis,

ϕℓ−1(ϕ(D)) is contained in U0.



688 J. KIWI Isr. J. Math.

For (5), note that by (2) we have

Ĵ(ϕ) ⊃
⋃

ℓ≥0

A(ℓ) ⊃ GO(O) = J(ϕ),

since the closure of a convex set is convex. Taking the convex hulls of these

three sets, the first ⊃ above may be replaced by equality.

In view of (1),
⋃
A(ℓ) is completely invariant. Hence part (6) follows from

(5).

Definition 7.6: For all ℓ ≥ 0, let w(ℓ) ∈ A(ℓ) be such that

[ξ0, w
(ℓ)] = [ω′, ω] ∩ A(ℓ).

By Lemma 3.2, given x ∈ A(ℓ) we have that degx ϕ = 2 if and only if

x ∈ [ξ0, w
(ℓ)]. Throughout, we let v(ℓ) = ϕ(w(ℓ+1)).

Below we prescribe a set of vertices V(ℓ) coherent with the topological struc-

ture of the topological tree A(ℓ). This set of vertices V(ℓ), as a subset of P1,an
L

,

gives rise to an abstract simplicial complex in which two vertices are endpoints

of an edge if and only if they can be joined in P1,an
L

without crossing other

vertices. Of course we regard A(ℓ) as the realization of this abstract simpli-

cial complex where the edges are parametrized by the hyperbolic metric in HL.

That is, we will regard A(ℓ) as a simplicial complex with vertices V(ℓ) and edges

parametrized by the distance in HL.

Lemma 7.7: If ϕ has a critical point ω /∈ K(ϕ), let O0 = πU0(O(ω) ∩ U0),

otherwise let O0 be the empty set.

(1) A(ℓ) is a topological tree such that its topological ramification points as

well as endpoints are contained in

V(ℓ) = (GO(O) ∪GO(ϑ0) ∪GO(O0)) ∩ A(ℓ).

(2) For all ℓ ≥ 0, regarding A(ℓ) as simplicial trees with vertices V(ℓ), the

map

ϕ : A(ℓ+1) → A(ℓ)

is a degree two branched map over

I
(ℓ)
A = [ξ1, v

(ℓ)] = [ϕ(ω′), ϕ(ω)] ∩ A(ℓ),

where v(ℓ) = ϕ(w(ℓ+1)) ∈ V(ℓ).
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(3) I
(�)
A ⊂ I

(�+1)
A . Moreover, if I

(�)
A � I

(�+1)
A , then

v(�+1) ∈ GO(O0) ∪GO(ϑ0) or v(�+1),

is an endpoint of A(�+1).

(4) If Crit(ϕ) ⊂ K(ϕ), then v(�) ∈ GO(O) for all �. In this case, there

exists a minimal �0 ≥ 0 such that v(�) = v(�0) for all � ≥ �0 if and only

if the active critical value belongs to a Fatou component U such that

∂U = {v(�0)}.

(5) If Crit(ϕ) �⊂ K(ϕ), then there exists � such that v(�) ∈ GO(O0). In this

case, if �0 is the minimal � such that v(�) ∈ GO(O0), then v(�) = v(�0)

for all � ≥ �0.

Proof. Observe that ω lies in a direction D at w(�) which is disjoint from A(�).

First we prove that w(�) ∈ V(�). Indeed, if w(�) /∈ GO(O), then ϕ�(D) ⊂ U0, by

Lemma 7.5 (4). Therefore, ϕ�(w(�)) ∈ O0 and w(�) ∈ V(�).

Assertion (1) is true for � = 0 and we proceed by induction to establish the

assertion for arbitrary �. Suppose that x is a topological ramification point of

A(�+1) and ϕ(x) is not a topological ramification point of A(�). Then the degree

of ϕ at x must be two. Thus, the critical points belong to different directions

at x. At least one of these directions is disjoint from A(�+1), otherwise there

would be at least three directions at ϕ(x) containing points of A(�). It follows

that x is an endpoint of [ω, ω′]∩A(�+1). Therefore, x = ξ0 or x = w(�+1) which

belong to V(�+1).

For (2), let γ : A(�+1) → A(�+1) be the involution defined by γ(x) = x′ if

{x, x′} = ϕ−1(ϕ(x)). It is not difficult to check that γ respects the simplicial

structure of A(�+1). Moreover, γ(x) = x if and only if the degree of ϕ at x is 2,

which is equivalent to x ∈ [ω′, ω] ∩ A(�+1) = [ξ0, w
(�+1)]. Since ϕ restricted to

[ω′, ω] is a bijection and w(�) ∈ V(�), assertion (2) follows.

From (2) we have that I
(�)
A ⊂ I

(�+1)
A . To prove (3), assume that v(�+1) �= v(�)

and that v(�+1) ∈ GO(O). Hence v(�+1) /∈ A(�). Thus

v(�+1) ∈ ϕ−(�+1)(O) \ ϕ−�(O).

Therefore, v(�+1) is an endpoint of A(�+1), by Lemma 7.5 (3).

For (4), if Crit(ϕ) ⊂ K(ϕ), then w(�+1) /∈ GO(O0) ∪ GO(ϑ0), by Lemma

7.5(4). Thus, w(�+1) ∈ GO(O) and v(�) = ϕ(w(�+1)) ∈ GO(O). In this case,

assume that v(�) = v(�0) for all � ≥ �0. Let D be the direction at v(�0) containing

the active critical value. It follows that there are no points of GO(O) in D, for
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otherwise, v(ℓ) 6= v(ℓ0) for some ℓ. Since the closure of GO(O) is the Julia set,

it follows that D is a Fatou component. The converse is also straightforward.

For (5), assume that there exists a critical point ω /∈ K(ϕ). Let ℓ0 be the

minimal ℓ such that ϕℓ+1(ω) ∈ U0. Denote byD the direction at v(ℓ0) containing

v = ϕ(ω). Since πA(ℓ) ◦ ϕ = ϕ ◦ πA(ℓ+1) , for all ℓ, we have that the direction D

is contained in a Fatou component which eventually maps onto U0. Therefore

D is free of GO(O) elements and v(ℓ) = v(ℓ0) for all ℓ ≥ ℓ0.

7.2. The collapsed trees. To deal with the case Crit(ϕ) ⊂ K(ϕ) and

Crit(ϕ) 6⊂ K(ϕ) simultaneously it is convenient to make the following agree-

ment.

Definition 7.8: If Crit(ϕ) 6⊂ K(ϕ), then let ∼ be the relation in Ĵ(ϕ) given by

Proposition 7.3. Otherwise, let ∼ be the trivial equivalence relation (no distinct

points are identified). We denote the ∼-class of x by [x].

Lemma 7.9: For all ℓ ≥ 0, if x ∈ A(ℓ), then [x] = {x} or [x] is a subtree of A(ℓ).

Moreover, ϕ([x]) = [ϕ(x)].

Proof. Since ϕ : A(0) → A(0) is a bijection leaving Ô0 invariant and ϕ is an

open map, it follows that ϕ([x]) = [ϕ(x)] for all x ∈ Ĵ(ϕ).

Now let ]v, v′[ be an edge ofA(ℓ). Since ϕℓ :A(ℓ)→A(0) is a simplicial map and

ϕ : A(0) → A(0) is a bijection leaving Ô0 invariant, we have that ϕ
ℓ(]v, v′[) ⊂ Ô0

or ϕn(]v, v′[) is disjoint from Ô0 for all n ≥ 0. By Lemma 7.5, the endpoints

of A(ℓ) lie in GO(O). Thus, endpoints have trivial ∼-classes. Moreover, by

definition, classes are connected and, using the fact that ϕ is an open map,

classes are also closed. Therefore, for all x ∈ A(ℓ), the class [x] is a closed,

connected and simplicial subset of A(ℓ). That is, [x] is a subtree of A(ℓ).

It follows that

B(ℓ) = A(ℓ)/ ∼

is naturally endowed with a simplicial tree structure with vertices W(ℓ) =

V(ℓ)/ ∼. Since edges of A(ℓ) are either collapsed onto a point or mapped bijec-

tively under the quotient map A(ℓ) → B(ℓ), edges of B(ℓ) inherit a parametriza-

tion from A(ℓ). Moreover, the induced map

ψ : B(ℓ+1) →B(ℓ)

[ζ] 7→ [ψ(ζ)]
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is a well defined degree two branched map of simplicial trees ramified over the

interval I
(�)
B = I

(�)
A / ∼.

7.3. The “postcritical” trees. In what follows we abuse notation and drop

the brackets to write the ∼-equivalence classes. Thus, we simply write ϑ0 for

[ϑ0], ξj for [ξj ], w
(�) for [w(�)], etc. With this notation,

W(�) = GO(O) ∪GO(ϑ0).

Lemma 7.10: For � ≥ 0, let

B(�)
c = {x ∈ B(�) | w(�) /∈ [ϑ0, ψ

k(x)[ for all k ≥ 0}.

Then, for all � ≥ 0, the following statements hold:

(1) For all x ∈ B(�), we have that ψ([ϑ0, x]) ⊂ [ϑ0, ξ1] ∪ [ϑ0, ψ(x)].

(2) w(�) ∈ B
(�)
c ⊂ B

(�+1)
c .

(3) ψ(B
(�)
c ) ⊂ B

(�)
c .

(4) B
(�)
c is a (connected) subtree of B(�).

(5) If w(�) �= w(0), then I
(�)
B ⊂ B

(�)
c . Moreover, if v(�) ∈ GO(O) and v is a

vertex of B(�) such that [v(�), v] is an edge, then v ∈ B
(�)
c .

(6) If w(�+1) = w(�), then ψ(B
(�+1)
c ) ⊂ B

(�)
c .

(7) If w(�+1) �= w(�) and w(�+1) ∈ GO(O), then B
(�+1)
c = B(�+1).

Proof. Statement (1) is trivial for � = 0 so consider � ≥ 1 and let ϑ′
0 be the

unique point, different from ϑ0, such that ψ(ϑ′
0) = ϑ0. Note that there are

two intervals in B(�) mapping onto [ϑ0, ψ(x)], namely, [ϑ0, z] and [ϑ′
0, z

′] where

ψ(z) = ψ(z′) = ψ(x). Thus, x = z or x = z′. In the former case,

ψ([ϑ0, z = x]) = [ϑ0, ψ(x)].

In the latter,

ψ([ϑ0, z = x′]) ⊂ ψ([ϑ0, ϑ
′
0]) ∪ ψ([ϑ0, z]) = [ϑ0, ξ1] ∪ [ϑ0, ψ(x)].

To establish (2), recall that ψ is a simplicial map. Thus, for all k ≥ 0, the

number of edges contained in [ϑ0, ψ
k(w(�))[ is bounded above by the number of

edges in [ϑ0, w
(�)[. It follows that w(�) /∈ [ϑ0, ψ

k(w(�))[. Therefore, w(�) ∈ B
(�)
c .

The rest of statement (2) as well as statement (3) follows directly from the

definition.

For (4), observe that B(0) ⊂ B
(�)
c for all �. Hence, if x ∈ B

(�)
c and y ∈ [ϑ0, x[,

then
[ϑ0, ψ

k(y)[⊂ ψk([ϑ0, x[) ⊂ B(0) ∪ [ϑ0, ψ
k(x)[
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for all k ≥ 0, by statement (1). Therefore, w(ℓ) /∈ [ϑ0, ψ
k(y)[, for otherwise

x /∈ B
(ℓ)
c or w(ℓ) ∈ [ϑ0, ψ

k(y)[⊂ B(0) \ O, which is impossible. It follows that

B
(ℓ)
c is a connected subtree.

For (5), assume that w(ℓ) 6= w(0). It is sufficient to show that v(ℓ) ∈ B
(ℓ)
c .

Thus, we may assume that w(ℓ+1) 6= w(ℓ). We proceed by contradiction. If

w(ℓ) ∈ [ϑ0, ϕ
k(w(ℓ+1))[ for some k ≥ 1, then w(ℓ) ∈ [ϕk(w(ℓ)), ϕk(w(ℓ+1))[, since

the number of edges in [ϑ0, w
(ℓ)] is an upper bound for the number of edges

in [ϑ0, ϕ
k(w(ℓ))] ⊂ ϕk([ϑ0, w

(ℓ)]). However, ]w(ℓ), w(ℓ+1)[ contains only vertices

in GO(ϑ0). By Lemma 7.7 (5), we have that w(ℓ) /∈ GO(ϑ0), thus the same

holds for its orbit, hence w(ℓ) = ϕk(w(ℓ)) is periodic. The periodic points of B(ℓ)

belong to B(0) and w(ℓ) /∈ U0. Therefore w(ℓ) = ξ0 = w(0), which contradicts

our assumption that w(ℓ) 6= w(0) so v(ℓ) ∈ B
(ℓ)
c .

Now assume that v(ℓ) ∈ GO(O) and v is a vertex of B(ℓ) such that [v(ℓ), v] is

an edge. If v(ℓ) 6= v(ℓ−1), then there is a unique such vertex v by Lemma 7.7 (3)

and v must lie in [ϑ0, v
(ℓ)] ⊂ B

(ℓ)
c . If v(ℓ) = v(ℓ−1) we proceed by contradiction.

Suppose that w(ℓ) ∈ [ϑ0, ϕ
k−1(v)[ for some k ≥ 1. As before, we conclude that

w(ℓ) lies in the interval [ϕk−1(v(ℓ−1)), ϕk−1(v)[ whose interior is an edge since

v(ℓ) = v(ℓ−1). Therefore, w(ℓ) = ϕk(w(ℓ)) is periodic and, as above, we obtain a

contradiction.

Statement (6) follows from the definition and statement (7) is a consequence

of Lemma 7.7 (3).

Now we consider θ ∈ Ip/q. Given x ∈ P1
C
∼= C ∪ {∞}, denote by v

(ℓ)
θ (x) the

vertex of T (ℓ)(θ) = T (λ(θ)(ℓ)) which contains x. For t ∈ R/Z we also denote by

v
(ℓ)
θ (t) the vertex containing exp(2πit) when no confusion arises. For 0 ≤ m ≤ ℓ,

we denote by ι : T (m)(θ) → T (ℓ)(θ) the inclusion given by Lemma 6.10.

Recall from Lemma 6.18 that m2 : T (ℓ+1)(θ) → T (ℓ)(θ) is a degree two

branched map over the interval I
(ℓ)
θ = [m2(v

(ℓ+1)
θ (∞)),m2(v

(ℓ+1)
θ (0))]. Again

to simplify notation, let

w
(ℓ+1)
θ =v

(ℓ+1)
θ (0),

v
(ℓ)
θ =m2(w

(ℓ+1)
θ ),

βj =ι ◦m
j
2(v

(ℓ)
θ (∞)) ∈ T (ℓ)(θ)

for j ≥ 0 (subscripts mod q). Finally, let α0 ∈ T (ℓ)(θ) be the (inclusion of

the) unique Γ-vertex of level 0.
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Lemma 7.11: Given θ ∈ Ip/q let

T (�)
c (θ) = {x ∈ T (�)(θ) | w

(�)
θ /∈ [α0, ι ◦m

k
2(x)[ for all k ≥ 0}.

For all � ≥ 0, the following statements hold:

(1) For all x ∈ T (�)(θ),

ι ◦m2([α0, x]) = [α0, β1] ∪ [α0, ι ◦m2(x)].

(2) w
(�)
θ ∈ T

(�)
c (θ) and ι(T

(�)
c (θ)) ⊂ T

(�+1)
c (θ).

(3) ι ◦m2(T
(�)
c ) ⊂ T

(�)
c .

(4) T
(�)
c (θ) is a (connected) subtree of T (�)(θ).

We omit the proof of the previous lemma since it is, after changing notation,

identical to that of Lemma 7.11 (1)–(4).

Denote by Γ
(�)
c (θ) the set of Γ-vertices of level � which belong to T

(�)
c (θ).

Lemma 7.12: For all � ≥ 1 and for all θ′ ∈ v
(�−1)
θ ,

Γ(�)
c (θ) = Γ(�)

c (θ′).

Moreover, if v is a vertex of T
(�)
c (θ) such that v ⊂ v

(�−1)
θ , then ∂v is contained

in the union of the vertices of Γ
(�)
c (θ). In particular, v is a vertex of T (�)(θ′) for

all θ′ ∈ v
(�−1)
θ .

Proof. Let θ′ ∈ v
(�−1)
θ . We first consider the case in which v

(�−1)
θ is a Γ-vertex

and then deal with the case in which it is a Y -vertex.

Assume that v
(�−1)
θ is a Γ-vertex. Then λ(θ) = λ(θ′), by Lemma 6.15. In

particular, Γ
(�)
c (θ) = Γ

(�)
c (θ′). Moreover, if v ⊂ v

(�−1)
θ , then v = v

(�−1)
θ and the

lemma follows in this case.

Assume that v
(�−1)
θ is a Y -vertex. Let V be the connected component of

P1
C
\ w

(�)
θ that contains α0. By Lemma 6.8, W = P1

C
\ V is such that W ∩ D

is a topological disk convex with respect to the hyperbolic metric. Hence, the

diameter connecting θ′/2 and θ′/2 + 1/2 is completely contained in W . The

vertices of T
(�)
c (θ) are exactly those that belong to V and whose iterates also

belong to V . Therefore, if A is a λ(θ)-class whose convex hull is contained in an

element of Γc(θ), then A is unlinked with {θ′/2, θ′/2+1/2}. Since m2(Γc(θ)) ⊂

Γc(θ), the same holds for the mk
2(A). Hence A is a λ(θ′)-class. It follows that

Γc(θ) = Γc(θ
′).

Now assume that v is a Y (�)-vertex which belongs to T
(�)
c (θ) and that is

contained in v
(�−1)
θ . Let w be a Γ(�)(θ)-vertex such that ∂v ∩ w �= ∅. Since
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all the iterates mk
2(v) are contained in the closed set V , the same occurs with

mk
2(w). Therefore, w ∈ T

(ℓ)
c (θ) and the lemma follows.

7.4. Topological Conjugacy. The simultaneous proof of Proposition 7.1

and Proposition 7.3 will rely on an inductive construction of conjugacies defined

on the level ℓ trees B(ℓ).

The initial step consists of fixing a conjugacy h0 : B(0) → T (0)(θ) between the

dynamics of ψ : B(0) → B(0) and that of m2 : T (0)(θ) → T (0)(θ) for all θ in the

characteristic interval Ip/q. In fact, the vertices of B(0) are {ξ0, . . . , ξq−1, ϑ0} and

B(0) is the starlike tree obtained as the union of the intervals [ϑ0, ξj ]. Note that

w(0) = ξ0. As described before Lemma 7.11, for all θ ∈ Ip/q there is a unique

Γ-vertex α0 and the Y -vertices are β0, . . . , βq−1 where β0 = w
(0)
θ . It follows

that the unique tree isomorphism h0 : B(0) → T (0)(θ) such that h0(ϑ0) = α0

and h0(ξj) = βj is a conjugacy.

Before proving the propositions we establish two necessary lemmas.

Lemma 7.13: Let λ∗ be the α lamination of the center of the p/q-limb. Assume

that w(0) = · · · = w(ℓ−1), for some ℓ ≥ 1. Then, for all m = 1, . . . , ℓ, there exists

a tree isomorphism hm : B(m) → T (λ
(m)
∗ ) such that

hm ◦ ψ = ι ◦m2 ◦ hm

and the restriction of hm to B(0) is h0.

Proof. Assume that hm has been already constructed and that 0 ≤ m < ℓ.

Since ψ : B(m+1) → B(m+1) (resp. ι ◦m2 : T (λ
(m+1)
∗ ) → T (λ

(m+1)
∗ )) are degree

two branched maps over the point ξ1 (resp. β1) and hm(ξ1) = h0(ξ1) = β1,

from Lemma 6.19, we may lift hm to a conjugacy hm+1 with the desired prop-

erties.

Lemma 7.14: There exists a nested sequence

v
(0)
M ⊃ v

(1)
M ⊃ · · ·

of non-empty subsets of Ip/q such that, for all ℓ ≥ 1, there exists a collection of

simplicial tree isomorphisms

{hℓ,θ : B
(ℓ) → T (ℓ)(θ)}

θ∈v
(ℓ−1)
M

with the property that

v
(ℓ)
M = hℓ,θ(v

(ℓ))
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for all θ ∈ v
(�−1)
M .

Moreover, the following statements hold:

(1) The restriction of h�,θ to B(0) is h0, for all θ ∈ v
(�−1)
M .

(2) For all θ ∈ v
(�−1)
M , the following diagram conmutes:

B(�) −−−−→
ψ

B(�)

�h�,θ

�h�,θ

T (�)(θ)
ι◦m2−−−−→ T (�)(θ).

(3) For all θ, θ′ ∈ v
(�−1)
M ,

h�,θ(v) = h�,θ′(v)

if v ∈ B
(�)
c ∩GO(ϑ0).

Proof. If w(�) = w(0) for all �, then the assertion follows from Lemmas 6.16

and 7.13 after declaring v
(�−1)
M = v

(�−1)
∗ (with the notation of Lemma 6.16) and

h�,θ = h� (with the notation of Lemma 7.13) for all θ ∈ v
(�−1)
M .

If, for some �0 ≥ 1, we have that w(�0) �= w(0) = w(1) = · · · = w(�0−1), then for

allm = 1, . . . , �0, we let v
(m−1)
M = v

(m−1)
∗ (with the notation of Lemma 6.16) and

hm,θ = hm as in Lemma 7.13. It is not difficult to check that v
(�)
M = h�,θ(v

(�)
θ )

and that properties (1)–(3) hold for all � < �0.

For � ≥ �0, we proceed by induction. That is, for all m ≤ �, we suppose

that v
(m−1)
M and hm,θ have already been defined and that properties (1)–(3) are

satisfied.

Note that by (1) and (2), the elements of GO(ϑ0) map onto Γ-pieces and the

elements of GO(O) map onto Y -pieces under h�,θ. Also, the conjugacy implies

that h�,θ(w
(�)) = w

(�)
θ for all θ ∈ v

(�−1)
M .

First we claim that h�,θ(v
(�)) is independent of θ ∈ v

(�−1)
M . In fact, under our

assumption, w(�) �= w(0) for all � ≥ �0. By Lemma 7.10 (5), I
(�)
B ⊂ B

(�)
c . In

particular, v(�) ∈ B
(�)
c . If v(�) ∈ GO(ϑ0), then the claim follows from property

(3). If v(�) ∈ GO(O), then for every v ∈ B
(�)
c such that [v(�), v] is an edge,

we have that v ∈ B
(�)
c , by Lemma 7.10 (5). From property (3), every Γ-vertex

which intersects non-trivially ∂h�,θ(v
(�)) is independent of θ ∈ v

(�−1)
M . Hence

h�,θ(v
(�)) is independent of θ ∈ v

(�−1)
M .

Pick any θ∈v
(�−1)
M and define v

(�)
M=h�,θ(v

(�)). We must show that v
(�)
M ⊂v

(�−1)
M .

In fact, by the inductive hypothesis (2), branched values correspond under h�,θ
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so we have that v
(�−1)
θ = π�◦h�,θ(v

(�−1)), where π� : T (�)(θ) → T (�−1)(θ) denotes

the retraction of Lemma 6.7. Moreover, π� ◦ h�,θ(v
(�−1)) = π� ◦ h�,θ(v

(�)) since

the interval ]v(�−1), v(�)] is not contained in B(�−1). From the definition of π� we

conclude that v
(�)
M = h�,θ(v

(�)) is contained in v
(�−1)
θ = h�−1,θ(v

(�−1)) = v
(�−1)
M .

Now we continue with the construction of the isomorphisms h�+1,θ for all

θ ∈ v
(�)
M .

To define h�+1,θ for θ ∈ v
(�)
M first we consider the case in which v(�) ∈ GO(ϑ0).

It follows that v
(�)
M = h�,θ(v

(�)) is a Γ-piece of level �. By Lemma 6.15, for all

θ, θ′ ∈ v
(�)
M , we have λ(θ) = λ(θ′). Thus, pick an element θ� of v

(�)
M , and let

h�+1,θ� : B(�+1) → T (�+1)(θ�) be the lift obtained from h�,θ� after applying

Lemma 6.19. Declare h�+1,θ = h�+1,θ� for all θ ∈ v
(�)
M . It is not difficult to check

that properties (1)–(3) hold.

Now we assume that w(�+1) ∈ GO(O) and define h�+1,θ for θ ∈ v
(�)
M by

studying two cases according to whether w(�+1) �= w(�) or w(�+1) = w(�).

Case 1. Suppose that w(�+1) �= w(�). By Lemma 7.10 (7) we have that

B
(�+1)
c = B(�+1). Pick θ� ∈ v

(�)
M and apply Lemma 6.19 to ψ : B(�+1) → B(�) and

m2 : T (�+1)(θ�) → T (�)(θ�) to lift h�,θ� to a tree isomorphism

h�+1,θ� : B
(�+1) → T (�+1)(θ�),

since by the choice of v
(�)
M we have that critical value intervals correspond

under h�,θ� . It follows that h�+1,θ�(B
(�+1)
c ) = T

(�+1)
c (θ�). Thus, we have

that T (�+1)(θ�) = T
(�+1)
c (θ�). By Lemma 7.12, we conclude that T (�+1)(θ) =

T (�+1)(θ′) for all θ, θ′ ∈ v
(�)
M . Thus, for all θ ∈ v

(�)
M , we may simply define

h�+1,θ = h�+1,θ� and (1)–(3) clearly hold in this case.

Case 2. Suppose that w(�+1) = w(�). From Lemma 7.10 we have that

ψ(B(�+1)
c ) ⊂ B(�)

c .

Let

B(�+1)
s = ψ−1(ψ(B(�+1)

c ))

and

T (�+1)
s (θ) = m−1

2 (m2(T
(�+1)
c (θ))).

Pick θ� ∈ v
(�)
M . We may lift h�,θ� : B

(�)
c → T

(�)
c (θ�) to a tree isomorphism

h�+1,θ� : B
(�+1)
s → T

(�+1)
s (θ�). Since the Γ-vertices of T

(�+1)
c (θ) are indepen-

dent of θ ∈ v
(�)
M (Lemma 7.12), we have that they coincide with the Γ-vertices
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T
(ℓ+1)
c (θℓ). We identify T

(ℓ+1)
c (θ) with T

(ℓ+1)
c (θℓ) via the unique tree isomor-

phism which preserves Γ-vertices. This tree isomorphism clearly extends to one

from T
(ℓ+1)
s (θ) onto T

(ℓ+1)
s (θℓ). Thus, we may define hℓ+1,θ : B

(ℓ+1)
s →T

(ℓ+1)
s (θ)

as equal to hℓ+1,θℓ : B
(ℓ+1)
s → T

(ℓ+1)
s (θℓ), for all θ ∈ v

(ℓ)
M . Now we may apply

Lemma 6.19 to extend hℓ+1,θ to B(ℓ+1) by successive lifts to
(
ψ|B(ℓ+1)

)−k
(B

(ℓ+1)
s ).

Since every element of B(ℓ+1) eventually maps into B
(ℓ+1)
s , we obtain the desired

isomorphism hℓ+1,θ : B(ℓ+1) → T (ℓ+1)(θ).

Proof of Proposition 7.1 and Proposition 7.3. Let v
(ℓ)
M and hℓ,θ be as in the pre-

vious lemma. Take a monotone convergent sequence {θn} ⊂ R/Z such that

θn ∈ v
(n)
M for all n. Let θ∞ denote the limit of θn. If the sequence is eventually

constant, then let λ = λ(θ∞). Otherwise, let λ = λ(θ∞)+ when the sequence

is increasing, and let λ = λ(θ∞)− when the sequence is decreasing. It follows

that for all ℓ ≥ 0, there exists n(ℓ) such that λ(ℓ) = λ(θn)
(ℓ) for all n ≥ n(ℓ).

Since the number of isomorphisms between B(ℓ) and T (λ(ℓ)) is finite, we may

recursively extract subsequences {nk(ℓ)} such that:

(1) nk(0) = k.

(2) {nk(ℓ + 1)} is a subsequence of {nk(ℓ)}.

(3) n0(ℓ) ≥ n(ℓ).

(4) The restriction of hnk(ℓ),θnk(ℓ)
to B(ℓ) is constant, say equal to hℓ.

Passing to the inverse limit of {hℓ} we obtain a conjugacy

h : Ĵ(ϕ)/ ∼→ T (∞)(λ).

Since h maps GO(ϑ0) onto the inverse limit of the Γ(ℓ)(λ), it follows that

w(ℓ0) ∈ GO(ϑ0) if and only if hℓ0(v
(ℓ0)) is a Γ-vertex containing θn for suf-

ficiently large n. In this case, the sequence θ∞ eventually maps onto the fixed

class of λ. That is, λ is critically prefixed.

Proof of Theorem 3. According to Proposition 3.1 we have three possibilities:

(a) J(ϕ) ∩HL is periodic point free.

(b) There exists an indifferent periodic orbit O in J(ϕ) ∩HL.

(c) There exists a repelling periodic orbit O in J(ϕ) ∩HL.

From Proposition 4.1, we have that (a) implies that Theorem 3 (1) holds. From

Proposition 4.2, we conclude that (b) implies Theorem 3 (2). From Proposi-

tion 7.1 and Proposition 7.3 we conclude that (c) implies Theorem 3 (3) (a) or

(b).
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