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ABSTRACT

We provide an affirmative answer to a problem posed by Barvinok and

Veomett in [4], showing that in general an n-dimensional convex body

cannot be approximated by a projection of a section of a simplex of sub-

exponential dimension. Moreover, we prove that for all 1 ≤ n ≤ N there

exists an n-dimensional convex body B such that for every n-dimensional

convex body K obtained as a projection of a section of an N-dimensional

simplex one has

d(B,K) ≥ c

√
n

ln
2N ln(2N)

n

,

where d(·, ·) denotes the Banach–Mazur distance and c is an absolute

positive constant. The result is sharp up to a logarithmic factor.

1. Introduction

One of the standard ways to describe a convex body in computational geometry

is the membership oracle. The membership oracle of a body K ⊂ R
n is an

algorithm, which, given a point x ∈ R
n, outputs whether x ∈ K, or x /∈ K. If

such oracle is constructed, and if the body K has a relatively well-conditioned

position, meaning that rBn
2 ⊂ K ⊂ RBn

2 with R/r ≤ nC , then one can con-

struct efficient probabilistic algorithms for estimating the volume of K, its in-

ertia ellipsoid, and other geometric characteristics (see, e.g., [10] and [23]). Yet,

constructing an efficient membership oracle for a given convex body may be a

hard problem [4]. Because of this, it is important to know whether a convex

body can be approximated by another body, for which the membership oracle

can be efficiently constructed. One natural class of convex bodies for which the

construction of the membership oracle is efficient is the projections of a poly-

tope with a few faces. Such polytopes can be realized as projections of sections

of a simplex in a dimension comparable to n. This construction is discussed in

detail in [4]. In particular, the following problem was posed (Problem 4.7.2 in

[4]).

Problem: Let K ⊂ R
n be a symmetric convex body and let P ⊂ R

n be a

projection of a polytope with N facets, which approximates K within a factor

of 2. Is it true that in the worst case the numberN should be at least exponential

in d: N ≥ ecn for some absolute constant c > 1?
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Note that if K = Bn
p is the unit ball of �np , then this approximation requires

only proportional dimension. To see it recall that a (2n)-dimensional simplex

possesses a cubic section of dimension n. Since a random projection of such

a section is isomorphic to an ellipsoid, we obtain an approximation of the Eu-

clidean ball by a projection of a section of a simplex in a dimension proportional

to n. Another deterministic construction of such an approximation was found

by Ben-Tal and Nemirovski [5]. A similar construction can be used to approxi-

mate all balls Bn
p for 2 ≤ p < ∞. Since the polar of a simplex is a simplex, one

can also approximate the balls Bn
p for 1 ≤ p ≤ 2. (Also, modifications of these

constructions give explicit symmetric “conical subsets” of the proportionally di-

mensional cube, whose linear projections can arbitrarily close approximate the

balls Bn
p for 1 ≤ p < ∞; see [11] for the details.) Moreover, even the existence

of an n-dimensional convex body, which cannot be approximated by a projec-

tion of a section of a simplex ΔN with N proportional to n, has been an open

problem.

The main result of this paper provides an affirmative solution to the Barvi-

nok problem above. Furthermore, we prove a lower estimate for the minimal

Banach–Mazur distance between a certain convex symmetric body and a pro-

jection of a polytope with N facets. This estimate is optimal for all N > n up

to logarithmic terms.

Theorem 1.1: Let n ≤ N . There exists an n-dimensional convex symmet-

ric body B, such that for every n-dimensional convex body K obtained as a

projection of a section of an N -dimensional simplex one has

d(B,K) ≥ c

√
n

ln 2N ln(2N)
n

,

where c is an absolute positive constant.

Let us note here that any projection of a section of a simplex can be realized

as a section of a projection of a simplex and vice versa (see the next section).

Thus, Theorem 1.1 holds for bodies K obtained as a section of a projection of

a simplex as well.

To see that the estimate of Theorem 1.1 is close to optimal, recall that Barvi-

nok proved in [3] that for every N ≥ 8n and every symmetric convex body B
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in R
n there exists a section K of an N -dimensional simplex such that

d(B,K) ≤ Cmax

{
1,

√
n

lnN
· ln n

lnN

}
.

Comparison of these two bounds shows that working with projections of sections

of a simplex, as opposed to using sections alone, does not significantly improve

the approximation. This is in stark contrast with the situation described in

the Quotient of a Subspace Theorem. Recall that the Quotient of a Subspace

Theorem of Milman ([16], see also [17] and [18] for the non-symmetric case)

states that given θ ∈ (0, 1) and an n-dimensional convex body K there exists

a projection of a section of K whose dimension is greater than θn and whose

Banach–Mazur distance to the Euclidean ball of the corresponding dimension

does not exceed C(θ) (moreover, C(θ) can be chosen such that C(θ) → 1 as

θ → 0+). On the other hand, it is well-known by a volumetric argument (see

Fact 2.2 below) that any n-dimensional section of the N -dimensional cube (or

simplex) is at the distance at least c
√
n/ ln (2N/n) from the n-dimensional

Euclidean ball. Thus, in the case of the cube (or simplex) and proportional

subspaces/projections, taking just sections leads to c
√
n distance to the Eu-

clidean ball, while adding one more operation—taking a projection—yields the

distance bounded by an absolute constant.

Our result also shows that the Quotient of a Subspace Theorem cannot be

extended much beyond the Euclidean setting. Even if we start with the sim-

plest (in terms of complexity) convex body—a simplex—we cannot obtain an

arbitrary convex set by taking a projection of a section. Similar phenomena—

that many results of Asymptotic Geometric Analysis cannot be extended much

beyond the Euclidean setting—were discussed in [12].

It would be interesting to characterize the class of all n-dimensional convex

bodies that can be realized (up to a Banach–Mazur distance less than or equal

to 2, say) as a projection of a section of anN -dimensional simplex forN = O(n).

As we mentioned above, any Bn
p is in this class, clearly any polytope with O(n)

vertices or faces, is in this class as well. In a related direction we conjecture

that there is no convex body K such that an arbitrary body can be obtained

(up to a Banach–Mazur distance bounded by a constant) from K by taking a

projection of a section.

Finally, we would like to mention that many aspects of computational com-

plexity of convex bodies were discussed in [21].
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The paper is organized as follows. In the next section we introduce notation

and auxiliary results that will be used later. We also describe a class of random

polytopes crucial for our construction in which we will find our example. We

model these polytopes on random polytopes introduced by Gluskin in [8]. In

Section 3 we prove the main theorem, Theorem 1.1. The proof of this theorem

uses Theorem 2.3, which states that with high probability two Gluskin polytopes

are a large Banach–Mazur distance from each other. The last section is devoted

to the proof of Theorem 2.3.

Acknowledgment. The second author is grateful to Alexander Barvinok for

many helpful discussions.

2. Notation and preliminaries

By | · | and 〈·, ·〉 we denote the canonical Euclidean norm and the canonical

inner product on R
d; Bd

2 and Sd−1 stand for the Euclidean unit ball and the

unit sphere, respectively; the standard basis of Rd is denoted by e1, . . . , ed.

As usual, ‖·‖p, 1 ≤ p ≤ ∞, denotes the �p-norm, i.e., for every x= (xi)
d
i=1∈R

d

‖x‖p =

( d∑
i=1

|xi|p
)1/p

for p < ∞, ‖x‖∞ = sup
i≤d

|xi|,

and �dp = (Rd, ‖ · ‖p). The unit ball of �dp is denoted by Bd
p .

Recall that �x denotes the smallest integer which is not less than x.

By a convex body we mean a compact set with a non-empty interior. For a

convex body K ⊂ R
d with 0 in its interior, the Minkowski functional of K is

‖x‖K = inf{λ > 0 | x ∈ λK},
i.e., it is the homogeneous convex functional, whose unit ball is K. The polar

of K is

K◦ = {x | 〈x, y〉 ≤ 1 for all y ∈ K}.
Note that if K is symmetric, then K◦ is the unit ball of the space dual to

(Rd, ‖ · ‖K).

It is well known that for any convex body K ⊂ R
d there exists a point a ∈ K

such that

(1) −(K − a) ⊂ d(K − a).
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For example, the center of the maximal volume ellipsoid contained in K satisfies

this ([9], see also [1]).

Given a subset K ⊂ R
d the convex hull and the absolute convex hull of K

are denoted by conv(K) and absconv(K) = conv(K ∪ −K), respectively. The

volume of K is denoted by vol (K).

A position of a convex body K is a non-degenerate affine image of K.

For two convex bodies K1 and K2 in R
d the Banach–Mazur distance between

them is defined as

d(K1,K2) = inf{λ > 0 | K1 − a ⊂ T (K2 − b) ⊂ λ(K1 − a)},
where the infimum is taken over all non-degenerate linear operators T : Rd → R

d

and all a, b ∈ R
d. Note that if K1 = −K1 and K2 = −K2, then a, b can be taken

equal to 0. The distance d(·, ·) satisfies the multiplicative triangle inequality,

i.e., d(K1,K2) ≤ d(K1,K3)d(K3,K2).

We fix the following notation:

S :=S(N) =
{
x = {xi}N+1

i=1 ∈ R
N+1 | xi ≥ 0, i ≤ N + 1

}
,

H :=H(N) =

{
x = {xi}N+1

i=1 ∈ R
N+1 |

N+1∑
i=1

xi = 1

}
,

and

Δ = ΔN := S ∩H.

Note that Δ = conv{ei}N+1
i=1 is an N -dimensional regular simplex.

As we mentioned in the introduction, any projection of a section of a simplex

can be realized as a section of a projection of a simplex and vice versa. Indeed,

let E and F be linear subspaces; denote L = E ∩ F . If K = (PEΔN+1) ∩ F ,

then K = (PEΔN+1) ∩ L and it is easy to check that K = PL(ΔN+1 ∩ L̃),

where L̃ = L ⊕ E⊥. If K = PE(ΔN+1 ∩ F ), then K = (PL̄ΔN+1) ∩ L, where

L̄ = L⊕ F⊥. The case of affine subspaces E and F is similar.

Recall that a set F ⊂ R
N+1 is an affine subspace if there exists b ∈ R

N+1

such that F − b is a linear subspace of RN+1. Given a set K ⊂ R
N+1 and an

affine subspace F ⊂ R
N+1, the section of K by F is denoted by

KF = K ∩ F.

In particular,

ΔF = ΔF
N = ΔN ∩ F and BF

2 = BN+1
2 ∩ F.
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For a metric space (X, ρ) and ε > 0, an ε-net N is a subset of X such that

for every x in X there exists x0 ∈ N satisfying ρ(x, x0) ≤ ε.

Let k ≤ d. By O(d) we denote the group of orthogonal operators on R
d and

by Gd,k we denote the Grassmannian of k-dimensional linear subspaces of Rd

endowed with the distance

ρ(E,F ) = inf{‖U − I‖ | U ∈ O(d), UE = F},
where ‖ · ‖ denotes the operator norm �d2 → �d2.

We will use the following result of Szarek ([19, 20]) on the size of ε-nets on

Gd,k.

Theorem 2.1: Let k ≤ d and ε ∈ (0, 1). There exists an ε-net on Gd,k with

respect to ρ(·) of cardinality not exceeding (C/ε)Cdk, where C is an absolute

positive constant.

Volume estimates play an important role in the theory. Let us recall the

following fundamental result ([2, 6, 7]).

Fact 2.2: Let M ≥ 2d be integers. For arbitrary vectors x1, . . . , xM ∈ Sd−1 the

volume of the absolute convex hull satisfies

vol(absconv{x1, . . . , xM}) ≤
(
C

√
ln(M/d)

d

)d

,

where C is a positive absolute constant.

The proof of the existence of convex bodies that are poorly approximated

by projections of sections of a simplex uses a modification of bodies introduced

by Gluskin in [8]. This probabilistic construction and its further versions be-

came the main source of counterexamples in asymptotic geometric analysis [15].

However, most polytopes described in the literature have the number of ran-

dom vertices M proportional to d, while we want M to be arbitrary satisfying

2d ≤ M ≤ ed. To keep this paper self-contained we show an existence with a

direct argument.

Let d ≥ 1 and 2d ≤ M ≤ ed be integers. Set

� = �log5(M/d) ,
and let {1, . . . , d} =

⋃�d/��
k=1 Ik be the decomposition of {1, . . . , d} into the dis-

joint union of consecutive intervals, with each interval, except possibly the last

one, consisting of � numbers. For each 1 ≤ k ≤ �d/� choose a (1/2)-net
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Nk ⊂ Sd−1 ∩ R
Ik of cardinality at most 5�. (It is well known that such a net

exists, cf. Lemma 4.3 below; moreover, one can show that such a net can be

taken symmetric about the origin.)

Recall that P is the rotation invariant probability measure on the Euclidean

unit sphere Sd−1. (We may also denote this probability space by (Ω,P).) Let

X be a random vector uniformly distributed on Sd−1, and let X1, . . . , XM be

independent copies of X . Then we define a Gluskin polytope V ⊂ R
d by

(2) V = absconv

{ d⋃
i=1

{ei} ∪
�d/��⋃
k=1

Nk ∪
M⋃
j=1

{Xj}
}
.

To emphasize the number of random vertices we will denote V by VM . Since

Nk is symmetric, 2d ≤ M , and by the choice of �, we observe that VM has a

number of vertices less than or equal to 4M . Therefore, by Fact 2.2,

(3) vol(VM ) ≤
(
C

√
ln(M/d)

d

)d

.

This definition of Gluskin polytopes differs from the original one in [8] by the

inclusion of the nets Nk. This guarantees that the polytope VM contains a

ball of an appropriate radius, which is necessary for the construction below.

Let x = (x1, . . . , xd) ∈ R
d. Since Nk is a (1/2)-net in Sd−1 ∩ R

Ik , we have

(1/2)BIk
2 ⊂ conv(Nk) ⊂ VM . Therefore,

‖x‖VM =

∥∥∥∥ �d/��∑
k=1

∑
j∈Ik

xjej

∥∥∥∥
VM

≤
�d/��∑
k=1

∥∥∥∥ ∑
j∈Ik

xjej

∥∥∥∥
VM

≤2

�d/��∑
k=1

∣∣∣∣ ∑
j∈Ik

xjej

∣∣∣∣ ≤ 2
√
�d/�

( �d/��∑
k=1

∣∣∣∣ ∑
j∈Ik

xjej

∣∣∣∣2)1/2

≤ 4

√
d

ln(M/d)
|x|,

which means that

(4) Bd
2 ⊂ 4

√
d

ln(M/d)
VM .

Having two independent Gluskin polytopes V ′
M and V ′′

M in R
d we will repre-

sent them on the product space Sd−1×Sd−1 with the product probability P⊗P.

The next theorem shows that with high probability two Gluskin polytopes are

far apart in the Banach–Mazur distance. The proof of this Theorem will be

presented in Section 4.
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Theorem 2.3: There exists a (small) constant a > 0 such that for all integers

2d ≤ M ≤ ed the subset of pairs (V ′
M , V ′′

M ) of two independent Gluskin polytopes

in R
d satisfies

(5) P⊗ P

({
(V ′

M , V ′′
M ) | d(V ′

M , V ′′
M ) ≤ a d

ln(M/d)

})
≤ 2e−dM .

Corollary 2.4: Let 2d ≤ M ≤ ed. Let K ⊂ R
d be a convex body. Then

Gluskin polytopes VM in R
d with M random vertices satisfy

P

({
VM | d(VM ,K) ≤ C

√
d

ln(Md )

})
≤

√
2e−dM/2,

where C > 0 is an absolute constant.

Proof. Let VM , V ′
M , and V ′′

M be independent Gluskin polytopes in R
d with M

random vertices. By Theorem 2.3 and submultiplicativity of the Banach–Mazur

distance, for every convex body K we have

2e−dM ≥ P⊗ P

({
(V ′

M , V ′′
M ) | d(V ′

M , V ′′
M ) ≤ a d

ln(Md )

})
≥ P⊗ P

({
(V ′

M , V ′′
M ) | d(V ′

M ,K)d(K,V ′′
M ) ≤ a d

ln(Md )

})

≥ P⊗ P

({
(V ′

M , V ′′
M ) | max{d(V ′

M ,K), d(K,V ′′
M )} ≤

√
a d

ln(Md )

})

=

(
P

({
VM | d(VM ,K) ≤

√
ad

ln(Md )

}))2

,

which implies the result.

3. Proof of the main result

We start with the following lemma, which shows that it is enough to consider

only special sections of the cone S.

Lemma 3.1: Let m ≤ N and let F ⊂ R
N+1 be an affine subspace such that

ΔF
N is an m-dimensional body. Then there exists a linear subspace L ⊂ R

N+1

such that ΔF
N has a position K inside L of the form

K = {x ∈ R
N+1 | x ∈ L and − 1 ≤ xi ≤ m for all i ≤ N + 1}.
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In particular,

BL
2 ⊂ K ⊂ m

√
N + 1BL

2 .

Proof. By (1) there exists a = {ai}N+1
i=1 ∈ ΔF

N ⊂ S such that

(6) −(ΔF
N − a) ⊂ m(ΔF

N − a).

Clearly ai ≥ 0 for all i ≤ N +1. Without loss of generality we can assume that

ai > 0 for all i. Indeed, note that a is in the relative interior of ΔF
N . Thus, if

for some j > 0, aj = 0, then

ΔF
N ⊂ Hj := {x ∈ R

N+1 | xj = 0}.
Therefore ΔF

N is in fact a corresponding m-dimensional section of the (N − 1)-

dimensional simplex

ΔN−1 = S ∩H ∩Hj

and we can apply the proof below for this section (or just take the operator D

below with zero j-th row).

Consider the diagonal operator D with 1/ai’s on the main diagonal. Denote

b = Da =
N+1∑
i=1

ei and K := D(ΔF
N − a) = DΔF

N − b.

Then

DΔF
N = D(S ∩H ∩ F ) = S ∩D(H ∩ F ).

Therefore, denoting L := D(H ∩ F )− b, we obtain

K = {x ∈ R
N+1 | −1 ≤ xi and x ∈ L}.

By (6) we observe that −K ⊂ mK, hence

K = {x ∈ R
N+1 | x ∈ L and − 1 ≤ xi ≤ m for all i ≤ N + 1}.

This implies

BN+1
2 ∩ L ⊂ K ⊂ m

√
N + 1BN+1

2 ∩ L.

Lemma 3.2: Let ε ∈ (0, 1) and m ≤ N . For j = 1, 2 let Lj be an m-dimensional

linear subspace of RN+1 and put

Kj := {x ∈ R
N+1 | x ∈ Lj and − 1 ≤ xi ≤ m for all i ≤ N + 1}.

Assume ρ(L1, L2) ≤ ε. Then

d(K1,K2) ≤ (1 + εm
√
N + 1)2.
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Proof. By the definition there exists an orthogonal operator U such that

UL1 = L2 and ‖U − I‖ ≤ ε. Therefore, for every x = {xi}i ∈ K1 we have

|Ux−x| ≤ ε|x| ≤ εm
√
N + 1, hence |(Ux−x)i| ≤ εm

√
N + 1 for every i ≤ N+1.

Thus, for every i we have

(Ux)i = xi + (Ux− x)i ≥ −(1 + εm
√
N + 1)

and

(Ux)i = xi + (Ux− x)i ≤ m+ εm
√
N + 1.

Therefore, UK1 ⊂ (1+εm
√
N + 1)K2. Similarly, U−1K2 ⊂ (1+εm

√
N + 1)K1,

which implies the result.

Lemma 3.3: Let ε ∈ (0, 1), n ≤ m ≤ N , L be an m-dimensional linear subspace

of RN+1 and

K = {x ∈ R
N+1 | x ∈ L and − 1 ≤ xi ≤ m for all i ≤ N + 1}.

Let F1 and F2 be n-dimensional linear subspaces of RN+1 and P1 and P2 be

the orthogonal projections on F1 and F2, respectively. Assume ρ(F1, F2) ≤ ε.

Then

d(P1K,P2K) ≤ (1 + εm
√
N + 1)2.

Proof. By the definition there exists an orthogonal operator U such that

UF1 = F2 and ‖U − I‖ ≤ ε. Then UP1 = P2U , and therefore for every

x ∈ K we have

UP1x = P2Ux = P2x+ P2(U − I)x ∈ P2K + P2(U − I)m
√
N + 1BN+1

2 ∩ L.

Since BN+1
2 ∩ L ⊂ K, we obtain

UP1x ∈ (1 + εm
√
N + 1)P2K.

Similarly,

U−1P2x ⊂ (1 + εm
√
N + 1)P1K,

which implies the result.

We are now ready to prove our main theorem.

Proof of Theorem 1.1. In this proof C1, C2, C3 are absolute constants greater

than one. Without loss of generality we assume that 2 ≤ n ≤ N ≤ ecn, where

c is an absolute positive constant, which will be specified later (if n = 1 or

N ≥ ecn the conclusion of the theorem is immediate).
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For any k ≤ N and ε ∈ (0, 1), by Ak we denote an ε-net on the Grassmanian

GN+1,k of cardinality

|Ak| ≤ (C1/ε)
C1Nk

.

(The existence of such a net follows from Lemma 2.1. Note that we suppress

the dependence of the net on ε.)

In the first part of the argument fix an integer m such that n ≤ m ≤ N and

fix ε ∈ (0, 1). Put

Km = {x ∈ R
N+1 | −1 ≤ xi ≤ m for all i ≤ N + 1}.

Let 2n ≤ M ≤ en. We apply Corollary 2.4 with d = n and the body K =

PE0(Km ∩ L0), for arbitrary L0 ∈ Am and E0 ∈ An. By the union bound we

obtain that for n-dimensional Gluskin polytopes VM one has

P

({
∀L0 ∈ Am ∀E0 ∈ An d(VM ,PE0(Km ∩ L0)) ≤ C2

√
n

ln(Md )

})
≤√

2(C1/ε)
C1Nm+C1Nn exp(−Mn/2)

≤
√
2 exp(−Mn/2 + 2C1Nm ln(C1/ε)).

Therefore, whenever M satisfies

(7) M ≥ 8C1Nm ln(C1/ε)/n,

then

(8)
P

({
∀L0 ∈ Am ∀E0 ∈ An d(VM ,PE0(Km ∩ L0)) ≤ C2

√
n

ln(Mn )

})
≤√

2 exp(−Mn/4) ≤ exp(−Mn/6).

Therefore, taking M satisfying 2n ≤ M ≤ en and (7) (if such an M exists),

this implies the result for Gluskin polytopes VM and for every n-dimensional

projection of an m-dimensional section of an N -dimensional simplex, with high

probability. (Note that m is fixed in this argument.) Indeed, let F be any

affine subspace of RN+1 such that ΔF
N is m-dimensional. Let L = L(F ) be an

m-dimensional linear subspace and K = K(F ) = Km∩L be the position of ΔF
N

provided by Lemma 3.1. Let P be any orthogonal projection such that PK is

n-dimensional and let E be the range of P . Let L0 ∈ Am and E0 ∈ An be such
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that ρ(L,L0) ≤ ε and ρ(E,E0) ≤ ε. Then by Lemmas 3.2 and 3.3 we get

d(PK,PE0(Km ∩ L0)) ≤d(PK,PE0K)d(PE0K,PE0(Km ∩ L0))

≤(1 + εm
√
N + 1)4,

where in the last estimate we used the obvious inequality d(PE0K1, PE0K2) ≤
d(K1,K2) valid for all convex bodies K1,K2 ⊂ R

N of dimension m ≤ N .

Therefore, taking ε = m−1(N + 1)−1/2 we obtain that

d(VM , PE0(Km ∩ L0)) ≤ 24d(VM , PK).

Combining this with (8), we obtain the probability estimate for

P

({
for every F,L,K, P as above: d(VM , PK) ≤ 2−4C2

√
n

ln(Mn )

})
.

More precisely, we showed that for any n ≤ m ≤ N whenever M satisfies

2n ≤ M ≤ en and (7) with ε = m−1(N + 1)−1/2, then the latter probability is

less than or equal to exp(−Mn/6). In particular, let

M = �8C1N
2 ln(C1N

3/2)/n,
so that (7) is satisfied with ε = m−1(N + 1)−1/2. Additionally, we can find a

universal constant 0 < c < 1 such that the condition N ≤ ec n implies M ≤ en.

Then for some absolute constant C3,

P

({
for every K,P, d(VM , PK) ≤ C3

√
n

ln 2N ln(2N)
n

})
≤ exp(−N2 ln(2N)).

(Here K and P are as above; in particular, the dimension of a section K is

equal to m.)

To obtain the full result for any n ≤ N , for any n-dimensional projection

of an arbitrary dimensional section of an N -dimensional simplex we apply the

above discussion for an arbitrary m representing the dimension of a section (so

n ≤ m ≤ N). Note that the choice of M does not depend on m, so we are

working in the same probability space for all m, leading to the same class of

Gluskin polytopes VM . Taking the union bound over all integers n ≤ m ≤ N

concludes the proof.

Remarks: 1. In fact, taking M = �8C1Nm ln(C1m
√
N + 1)/n in our proof,

we observe that for n ≤ m ≤ N there exists an n-dimensional convex body B



154 A. E. LITVAK ET AL. Isr. J. Math.

such that for every convex body K obtained as an n-dimensional projection of

an m-dimensional section of an N -dimensional simplex one has

d(B,K) ≥ c

√
n

ln 2Nm ln(2N)
n2

.

Moreover, our construction is random—we use Gluskin polytopes—and we ob-

tain the result with high probability—the above estimate holds with probability

larger than 1− exp(−Nm ln(2N)).

2. If we restrict ourselves to just one operation—a projection—then we have

almost the same lower bound using the Euclidean ball. Namely, for every n-

dimensional projection P one has

d(Bn
2 , PΔN ) ≥ c

√
n

ln 2N
n

,

which follows from volume estimates (see Fact 2.2) as mentioned in the intro-

duction.

3. Also note that, although an N -dimensional simplex clearly has an �N/2-
dimensional symmetric projection, a “random” projection is very far from be-

ing symmetric. It was shown in Theorem 5.1 of [14] that for a “random” n-

dimensional projection P and every centrally symmetric convex body B one

has

d(B,PΔN ) ≥ c

√
n

lnN
.

4. Proof of Theorem 2.3

The proof of the theorem is standard and follows the road-map of [8]. The main

difference from [8] is the modification of the definition of a Gluskin polytope (2).

Adding the nets Nk to the vertex set of VM allowed to guarantee the inclusion

(4) without significantly increasing the number of vertices. (Of course, if the

number of vertices is proportional then (4) is automatically satisfied.)

Recall that the underlying probability space is the product space Ω′ × Ω′′ =
Sd−1 × Sd−1 with the product probability P ⊗ P. Our first aim in the proof

is to prove two estimates similar to (5): one is for probability on Ω′, with

ω′′ ∈ Ω′′ fixed, and in the other one the roles of Ω′ and Ω′′ are interchanged.

This is proved in Lemma 4.5 below. Then the full Theorem 2.3 follows by

considerations based on Fubini’s theorem.
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Throughout most of this section, until the final proof of the theorem, we fix

an arbitrary ω′′ ∈ Ω′′ and the corresponding Gluskin polytope WM = V ′′
M (ω′′).

For any τ > 0 and any operator T : Rd → R
d with detT = 1 consider the

event

(9) A(τ,WM , T ) = {VM : ‖T : VM → WM‖ ≤ τ} = {VM : TVM ⊂ τWM}.

First we estimate the probability of this event.

Lemma 4.1: One has

P(A(τ,WM , T )) ≤ (Cτ
√

ln(M/d)/d)dM ,

where C is a positive absolute constant.

To prove this lemma we need the following well-known simple fact, which can

be found in many places, for example in [22], (38.4). We outline the proof for

the reader’s convenience.

Fact 4.2: Let K ⊂ R
d be a convex body with 0 in its interior. Let X be a

random vector uniformly distributed on the sphere Sd−1. Then

P({X ∈ K}) ≤ vol (K)/vol (Bd
2 ).

Proof. Obviously we have P({X ∈ K}) = vol(L)/vol(Bd
2 ) where

L = {x ∈ Bd
2 | x/|x| ∈ K ∩ Sd−1}.

On the other hand, L ⊂ conv(K∩Sd−1) ⊂ K, which yields the required estimate

for volumes.

We use a convenient shortcut for norms of linear operators: for two convex

bodies K1,K2 ⊂ R
d and for λ > 0 the statement ‖T : K1 → K2‖ ≤ λ is

equivalent to T (K1) ⊂ λK2 and is equivalent to ‖T : K1 → λK2‖ ≤ 1.

Proof of Lemma 4.1. Since VM contains the vectors Xj, j ≤ M , the condition

T (VM ) ⊂ τWM implies that TXj ∈ τWM for all j ≤ M . Therefore

P(A(τ,WM , T )) ≤P({TXj ∈ τWM for 1 ≤ j ≤ M})
=(P({X ∈ τ T−1WM}))M
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(cf. Lemma 38.3 in [22] and Lemma 4 in [15]). By Fact 4.2 and using detT−1 = 1

and (3) for WM , we obtain

P(A(τ,WM , T )) ≤
(vol(τWM )

vol(Bd
2 )

)M

= τdM
(vol(WM )

vol(Bd
2 )

)M

≤
(
Cτ

√
ln(M/d)

d

)dM

,

which completes the proof.

In the next step we discretize certain sets of operators acting on R
d (see

Lemma 38 in [22] and Lemma 7 in [15]). We need more notation. Set

Bd
op = {T : Rd → R

d | ‖T : �d2 → �d2‖ ≤ 1},
and for a convex body K ⊂ R

d,

Bd
op,K = {T : Rd → R

d | ‖T : Bd
1 → K‖ ≤ 1}.

Note that the norm for which Bd
op,K is the unit ball is equal to the �∞-direct-sum

of d norms ‖ · ‖K determined by K.

For the reader’s convenience we recall that identifying the set of operators

with R
d2

we have

(10) vol(Bd
op,K) = (vol(K))d and vol(Bd

op) ≥ (c/
√
d)d

2

,

where c is a positive absolute constant.

We also will use the following fact on cardinality of ε-nets. Recall that the

smallest cardinality of a 1-net of a set K1 in the metric defined by a convex

body K2 is denoted by N(K1,K2), hence the smallest cardinality of an ε-net is

N(K1, εK2). The following lemma follows by the standard volumetric argument

(in such a formulation it is Lemma 6 from [15]).

Lemma 4.3: Let ε > 0. Let K1,K2 ⊂ R
n be two symmetric convex bodies

such that K1 ⊂ K2. Then every subset K ′ ⊂ K2 admits an ε-net N ⊂ K ′ in
the metric of K1 with |N | ≤ (1 + 2/ε)n (vol(K2)/vol(K1)).

We use this lemma to control the cardinality of an ε-net in Bd
op.ηW in the

operator norm.

Lemma 4.4: Let ξ > 0 and let W ⊂ R
d be a convex symmetric body such that

Bd
2 ⊂ ξW . Let η, ε > 0. Every subset K ′ of Bd

op.ηW admits an ε-net N in K ′
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in the operator norm on �d2 with cardinality

(11) |N | ≤
( ξ
η
+

2

ε

)d2

(C η
√
d · vol1/d(W ))d

2

,

where C is an absolute positive constant.

Proof. We will use Lemma 4.3 with λ = ξ/η, K1 = (1/λ)Bd
op and K2 = Bd

op,ηW .

The assumption Bd
2 ⊂ ξW yields (1/λ)Bd

op ⊂ Bd
op,ηW . Thus, by (10),

N(K ′, εBd
op) =N(K ′, λε((1/λ)Bd

op)) ≤ (1 +
2

ελ
)d

2 volK2

volK1

≤
(2
ε
+

ξ

η

)d2

(C η
√
d · vol1/d(W ))d

2

,

with an absolute positive constant C.

We need one more lemma, which estimates the probability of the following

event:

(12) Ã(η,WM ) = {VM : ∃S : Rd→R
d, detS = 1, s.t. ‖S : VM → WM‖ ≤ η},

where η is a positive parameter.

Lemma 4.5: Let d ≤ M ≤ ed. There exists a positive constant a1 > 0 such

that for η = a1
√
d/ ln(M/d) one has

P(Ã(η,WM )) ≤ e−dM .

Proof. Denote for brevity ξ = 4
√

d
ln(M/d) . Fix an arbitrary 0 < ε ≤ 1. By

K ′ denote the set of all operators T ∈ Bd
op,ηWM

with detT = 1. Let N be an

ε-net for K ′ with respect to the metric given by Bd
op and satisfying (11) with

W = WM .

We first show that

(13) Ã(η,WM ) ⊂
⋃

T∈N
A(τ,WM , T ),

where τ = η + εξ.

Pick ω ∈ Ã(η,WM ), and let S be an operator with detS = 1 such that

‖S : VM (ω) → WM‖ ≤ η. Since VM ⊃ Bd
1 , we have ‖S : Bd

1 → ηWM‖ ≤ 1,

which means S ∈ Bd
op,ηW .
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Since detS = 1, then S belongs to K ′. By the definition of N , we can find

T ∈ N satisfying ‖T − S : �d2 → �d2‖ ≤ ε. Since VM ⊂ Bd
2 and by (4), we get

(T − S)(VM ) ⊂ εBd
2 ⊂ εξWM .

Equivalently, ‖T − S : VM → WM‖ ≤ εξ. By the triangle inequality,

‖T : VM → WM‖ ≤ ‖T − S : VM → WM‖+ ‖S : VM → WM‖ ≤ εξ + η = τ.

This means that ω ∈ A(τ,WM , T ) for every T ∈ N and ends the proof of (13).

By the union bound and Lemma 4.1

P(Ã(η,WM )) ≤ |N |
(
Cτ

√
ln(M/d)

d

)dM

.

Combining this with (11), (3) for WM , and the definitions of ξ and η, we observe

that

P(Ã(η,WM )) ≤
(2
ε
+

ξ

η

)d2

(C1 η
√
d · vol1/d(WM ))d

2·
(
C(η + εξ)

√
ln(M/d)

d

)dM

≤
(2
ε
+

4

a1

)d2

(C2a1)
d2 · (C3(a1 + 4ε))dM ,

where C,C1, C2, C3 are absolute positive constants. To complete the proof it is

enough to set ε = a1 and choose a1 appropriately small.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let a1 and η be as in Lemma 4.4. We consider various

subsets of the measure spaces Ω′, Ω′′, and Ω′ × Ω′′; we will use an expanded

notation to avoid confusion.

Denote the set that appears in (5) by D, that is

D = {(ω′, ω′′) | d(V ′
M (ω′), V ′′

M (ω′′)) ≤ η2}.
For any ω′′

0 ∈ Ω′′ define the subset D′
ω′′

0
⊂ Ω′ × Ω′′ which depends only on

the first variable ω′ with the second variable fixed ω′′ = ω′′
0 and is given by

D′
ω′′

0
= {(ω′, ω′′

0 ) | ∃S s.t. detS = 1 and ‖S : V ′
M (ω′) → V ′′

M (ω′′
0 )‖ ≤ η}.

Similarly, for any ω′
0 ∈ Ω′ define the subset D′′

ω′
0
by

D′′
ω′

0
= {(ω′

0, ω
′′) | ∃R s.t. detR = 1 and ‖R : V ′′

M (ω′′) → V ′
M (ω′

0)‖ ≤ η}.
Note that both definitions closely follow the model of (12) in that the norm of

operators is considered from a random polytope to a fixed polytope.
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The following inclusion can be easily checked:

D ⊂
⋃

ω′
0∈Ω′

D′′
ω′

0
∪

⋃
ω′′

0 ∈Ω′′
D′

ω′′
0
.

Indeed, if d(V ′
M (ω′

0), V
′′
M (ω′′

0 )) ≤ η2 then there exists an invertible operator S

such that

‖S : V ′
M (ω′

0) → V ′′
M (ω′′

0 )‖ ‖S−1 : V ′′
M (ω′′

0 ) → V ′
M (ω′

0)‖ ≤ η2.

Without loss of generality we may assume that detS = detS−1 = 1. Thus one

of the norms in the above product is less than or equal to η, which means that

either (ω′
0, ω

′′
0 ) ∈ D′

ω′′
0
or (ω′

0, ω
′′
0 ) ∈ D′′

ω′
0
.

Finally, using Lemma 4.5 and the Fubini theorem, we obtain

P⊗ P(D) ≤ Eω′
0
P(D′′

ω′
0
| ω′

0) + Eω′′
0
P(D′

ω′′
0
| ω′′

0 ) ≤ 2e−dM .

This completes the proof of Theorem 2.3.
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