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ABSTRACT

We provide an affirmative answer to a problem posed by Barvinok and
Veomett in [4], showing that in general an n-dimensional convex body
cannot be approximated by a projection of a section of a simplex of sub-
exponential dimension. Moreover, we prove that for all 1 < n < N there
exists an n-dimensional convex body B such that for every n-dimensional
convex body K obtained as a projection of a section of an N-dimensional
simplex one has

n
d(B, K) 2 C\/ln 2N In(2N)’
n

where d(-,-) denotes the Banach—-Mazur distance and c is an absolute
positive constant. The result is sharp up to a logarithmic factor.

1. Introduction

One of the standard ways to describe a convex body in computational geometry
is the membership oracle. The membership oracle of a body K C R” is an
algorithm, which, given a point « € R", outputs whether 2 € K, or z ¢ K. If
such oracle is constructed, and if the body K has a relatively well-conditioned
position, meaning that rBY C K C RBY with R/r < n®, then one can con-
struct efficient probabilistic algorithms for estimating the volume of K, its in-
ertia ellipsoid, and other geometric characteristics (see, e.g., [10] and [23]). Yet,
constructing an efficient membership oracle for a given convex body may be a
hard problem [4]. Because of this, it is important to know whether a convex
body can be approximated by another body, for which the membership oracle
can be efficiently constructed. One natural class of convex bodies for which the
construction of the membership oracle is efficient is the projections of a poly-
tope with a few faces. Such polytopes can be realized as projections of sections
of a simplex in a dimension comparable to n. This construction is discussed in
detail in [4]. In particular, the following problem was posed (Problem 4.7.2 in

[4])-

Problem: Let K C R"™ be a symmetric convex body and let P C R™ be a
projection of a polytope with IV facets, which approximates K within a factor
of 2. Is it true that in the worst case the number N should be at least exponential
ind: N > €™ for some absolute constant ¢ > 17
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Note that if K" = B} is the unit ball of £}, then this approximation requires
only proportional dimension. To see it recall that a (2n)-dimensional simplex
possesses a cubic section of dimension n. Since a random projection of such
a section is isomorphic to an ellipsoid, we obtain an approximation of the Eu-
clidean ball by a projection of a section of a simplex in a dimension proportional
to n. Another deterministic construction of such an approximation was found
by Ben-Tal and Nemirovski [5]. A similar construction can be used to approxi-
mate all balls B); for 2 < p < co. Since the polar of a simplex is a simplex, one
can also approximate the balls B;} for 1 < p < 2. (Also, modifications of these
constructions give explicit symmetric “conical subsets” of the proportionally di-
mensional cube, whose linear projections can arbitrarily close approximate the
balls By for 1 < p < oo; see [11] for the details.) Moreover, even the existence
of an n-dimensional convex body, which cannot be approximated by a projec-
tion of a section of a simplex Ay with IV proportional to n, has been an open
problem.

The main result of this paper provides an affirmative solution to the Barvi-
nok problem above. Furthermore, we prove a lower estimate for the minimal
Banach—Mazur distance between a certain convex symmetric body and a pro-
jection of a polytope with N facets. This estimate is optimal for all N > n up
to logarithmic terms.

THEOREM 1.1: Let n < N. There exists an n-dimensional convex symmet-
ric body B, such that for every n-dimensional convex body K obtained as a
projection of a section of an N-dimensional simplex one has

n
d(B, K) > C\/ln 2N In(2N)

n

where c is an absolute positive constant.

Let us note here that any projection of a section of a simplex can be realized
as a section of a projection of a simplex and vice versa (see the next section).
Thus, Theorem 1.1 holds for bodies K obtained as a section of a projection of
a simplex as well.

To see that the estimate of Theorem 1.1 is close to optimal, recall that Barvi-
nok proved in [3] that for every N > 8n and every symmetric convex body B
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in R™ there exists a section K of an N-dimensional simplex such that

n n
< . .
d(B,K)_C’max{l,\/lnN lnlnN}

Comparison of these two bounds shows that working with projections of sections
of a simplex, as opposed to using sections alone, does not significantly improve
the approximation. This is in stark contrast with the situation described in
the Quotient of a Subspace Theorem. Recall that the Quotient of a Subspace
Theorem of Milman ([16], see also [17] and [18] for the non-symmetric case)
states that given 6 € (0,1) and an n-dimensional convex body K there exists
a projection of a section of K whose dimension is greater than 6n and whose
Banach—Mazur distance to the Euclidean ball of the corresponding dimension
does not exceed C(6) (moreover, C(0) can be chosen such that C(0) — 1 as
6 — 07). On the other hand, it is well-known by a volumetric argument (see
Fact 2.2 below) that any n-dimensional section of the N-dimensional cube (or
simplex) is at the distance at least cy/n/In(2N/n) from the n-dimensional
Euclidean ball. Thus, in the case of the cube (or simplex) and proportional
subspaces/projections, taking just sections leads to c¢y/n distance to the Eu-
clidean ball, while adding one more operation—taking a projection—yields the
distance bounded by an absolute constant.

Our result also shows that the Quotient of a Subspace Theorem cannot be
extended much beyond the Euclidean setting. Even if we start with the sim-
plest (in terms of complexity) convex body—a simplex—we cannot obtain an
arbitrary convex set by taking a projection of a section. Similar phenomena—
that many results of Asymptotic Geometric Analysis cannot be extended much
beyond the Euclidean setting—were discussed in [12].

It would be interesting to characterize the class of all n-dimensional convex
bodies that can be realized (up to a Banach—-Mazur distance less than or equal
to 2, say) as a projection of a section of an N-dimensional simplex for N = O(n).
As we mentioned above, any B is in this class, clearly any polytope with O(n)
vertices or faces, is in this class as well. In a related direction we conjecture
that there is no convex body K such that an arbitrary body can be obtained
(up to a Banach-Mazur distance bounded by a constant) from K by taking a
projection of a section.

Finally, we would like to mention that many aspects of computational com-
plexity of convex bodies were discussed in [21].
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The paper is organized as follows. In the next section we introduce notation
and auxiliary results that will be used later. We also describe a class of random
polytopes crucial for our construction in which we will find our example. We
model these polytopes on random polytopes introduced by Gluskin in [8]. In
Section 3 we prove the main theorem, Theorem 1.1. The proof of this theorem
uses Theorem 2.3, which states that with high probability two Gluskin polytopes
are a large Banach—Mazur distance from each other. The last section is devoted
to the proof of Theorem 2.3.

ACKNOWLEDGMENT. The second author is grateful to Alexander Barvinok for
many helpful discussions.

2. Notation and preliminaries

By | - | and (-,-) we denote the canonical Euclidean norm and the canonical
inner product on R% B¢ and S9! stand for the Euclidean unit ball and the
unit sphere, respectively; the standard basis of R? is denoted by e, ..., eq.

As usual, |||, 1 < p < 0o, denotes the £,-norm, i.e., for every z= (z;)¢_, e R?

d l/p
lelly = <Z m—w) for p < 00, [l = suplai,
i=1 i<d

and Eg = (R, | - ||p)- The unit ball of Eg is denoted by Bg.

Recall that [x] denotes the smallest integer which is not less than x.

By a convex body we mean a compact set with a non-empty interior. For a
convex body K C R? with 0 in its interior, the Minkowski functional of K is

|z]| x = inf{\ >0 | z € AK},
i.e., it is the homogeneous convex functional, whose unit ball is K. The polar
of K is
K°={x| (x,y) <1lforally e K}.

Note that if K is symmetric, then K° is the unit ball of the space dual to
RN )

It is well known that for any convex body K C R¢ there exists a point a € K
such that

(1) —(K —a) C d(K — a).
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For example, the center of the maximal volume ellipsoid contained in K satisfies
this (][9], see also [1]).

Given a subset K C R? the convex hull and the absolute convex hull of K
are denoted by conv(K) and absconv(K) = conv(K U —K), respectively. The
volume of K is denoted by vol (K).

A position of a convex body K is a non-degenerate affine image of K.

For two convex bodies K; and K5 in R the Banach—-Mazur distance between
them is defined as

d(Kl,KQ) = 1nf{/\ >0 | Ki—acC T(K2 — b) C )\(Kl — (1)},

where the infimum is taken over all non-degenerate linear operators 7' : R — R¢
and all a,b € R?. Note that if K1 = —K; and Ky = —K>, then a, b can be taken
equal to 0. The distance d(-,-) satisfies the multiplicative triangle inequality,
ie., d(K1, Ko) < d(Ky, K3)d(Ks, Ko).

We fix the following notation:

S:=S(N)={z={z;};) e RN | 2, >0,i < N +1},

N+1
Hi=H(N) = (o= () R S m=1),
1=1
and

A=Any:=SNH.

Note that A = conv{e;}X+! is an N-dimensional regular simplex.

As we mentioned in the introduction, any projection of a section of a simplex
can be realized as a section of a projection of a simplex and vice versa. Indeed,
let E and F be linear subspaces; denote L = ENF. If K = (PpAn41) N F,
then K = (PgApn41) N L and it is easy to check that K = Pr(Anx41 N i),
where L = L @ E+. If K = Pg(Any1 N F), then K = (PzAxy1) N L, where
L =L@ F*. The case of affine subspaces E and F is similar.

Recall that a set ' ¢ RV is an affine subspace if there exists b € RV*!
such that F' — b is a linear subspace of R¥*!. Given a set K ¢ RY¥*! and an
affine subspace F C RV, the section of K by F is denoted by

Kf=KnF
In particular,

A =AL =AyNF and B =BYT'nF
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For a metric space (X, p) and € > 0, an e-net A/ is a subset of X such that
for every = in X there exists o € N satisfying p(z, zo) < e.

Let k < d. By O(d) we denote the group of orthogonal operators on R% and
by G4 we denote the Grassmannian of k-dimensional linear subspaces of R4
endowed with the distance

p(E.F) =inf{|U ~I|| | U € O(d),UE = F},

where || - || denotes the operator norm ¢4 — ¢4.
We will use the following result of Szarek ([19, 20]) on the size of e-nets on
Ga,k-

THEOREM 2.1: Let k < d and ¢ € (0,1). There exists an e-net on Gqj, with
respect to p(-) of cardinality not exceeding (C/e)“4, where C' is an absolute
positive constant.

Volume estimates play an important role in the theory. Let us recall the
following fundamental result ([2, 6, 7]).

Fact 2.2: Let M > 2d be integers. For arbitrary vectors x,...,zy € S% 1 the
volume of the absolute convex hull satisfies

d
vol(absconv{zy,...,zp}) < (C’ \/IH(CJZW/CD) ,

where C' is a positive absolute constant.

The proof of the existence of convex bodies that are poorly approximated
by projections of sections of a simplex uses a modification of bodies introduced
by Gluskin in [8]. This probabilistic construction and its further versions be-
came the main source of counterexamples in asymptotic geometric analysis [15].
However, most polytopes described in the literature have the number of ran-
dom vertices M proportional to d, while we want M to be arbitrary satisfying
2d < M < e?. To keep this paper self-contained we show an existence with a
direct argument.

Let d > 1 and 2d < M < e® be integers. Set

¢ = [logs(M/d)],

and let {1,...,d} = U,rcdz/ﬁ Ii; be the decomposition of {1,...,d} into the dis-
joint union of consecutive intervals, with each interval, except possibly the last
one, consisting of ¢ numbers. For each 1 < k < [d/l] choose a (1/2)-net
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N € SN R of cardinality at most 5¢, (It is well known that such a net
exists, cf. Lemma 4.3 below; moreover, one can show that such a net can be
taken symmetric about the origin.)

Recall that P is the rotation invariant probability measure on the Euclidean
unit sphere S%~1. (We may also denote this probability space by (Q,P).) Let
X be a random vector uniformly distributed on S¢~!, and let X;,..., X be
independent copies of X. Then we define a Gluskin polytope V C R¢ by

d [d/€] M
(2) V:absconv{ U{ei}U U N U U{XJ}}
i=1 k=1 j=1

To emphasize the number of random vertices we will denote V' by Vjs. Since
Ni is symmetric, 2d < M, and by the choice of £, we observe that V3, has a
number of vertices less than or equal to 4M. Therefore, by Fact 2.2,

d
3) vol(Viy) < (c Vh‘(;w/ d)) .

This definition of Gluskin polytopes differs from the original one in [8] by the
inclusion of the nets A. This guarantees that the polytope Vis contains a
ball of an appropriate radius, which is necessary for the construction below.
Let 2 = (z1,...,24) € R% Since N} is a (1/2)-net in S9~1 N R*, we have
(1/2)B3* C conv(N) C Var. Therefore,

[d/0] [d/0]
Il = D0 D miesl| < DD wje
k=1 jely Vi k=1 ' jer, Vi
[d/£] [d/f] 2\ 1/2 d
2 | S we| <2viga( X | o] ) §4\/IH(M/ 2ol
k=1 'jel} k=1 'jel}

which means that

(4) Bgc4\/ln(ﬂcj{/d) Var.

Having two independent Gluskin polytopes Vj, and V}} in R? we will repre-
sent them on the product space S¢~1 x §4~1 with the product probability PQP.
The next theorem shows that with high probability two Gluskin polytopes are
far apart in the Banach—-Mazur distance. The proof of this Theorem will be
presented in Section 4.
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THEOREM 2.3: There exists a (small) constant a > 0 such that for all integers
2d < M < e? the subset of pairs (V};, V{}) of two independent Gluskin polytopes
in R? satisfies

o ror({Wivi Wi < G0 b < e

COROLLARY 2.4: Let 2d < M < e?. Let K C R? be a convex body. Then
Gluskin polytopes Vi in R with M random vertices satisfy

P({VM | d(Vas, K) < O\/ln(dM) }) < V/2emdM/2

d

where C' > 0 is an absolute constant.

Proof. Let Vi, Vi, and V}; be independent Gluskin polytopes in RY with M
random vertices. By Theorem 2.3 and submultiplicativity of the Banach—-Mazur
distance, for every convex body K we have

B ad
e 2o p( {04 vin vt < 0 1)
d

> P@P({(VAI,VA’}) | d(Vip, K)d(K, Viz) < hfff;)})
> Pw({m Vi) | max{d(Viy, K), d(K, Vij)} < ¢ 1<d> })

(s it )

which implies the result.

3. Proof of the main result

We start with the following lemma, which shows that it is enough to consider
only special sections of the cone S.

LEMMA 3.1: Let m < N and let F C RN*! be an affine subspace such that
AL is an m-dimensional body. Then there exists a linear subspace L C RN*1
such that AJI{} has a position K inside L of the form

K={zeR"" |zcLand —1<z; <m foralli <N +1}.
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In particular,
BY ¢ K¢ mVN +1B;%.

Proof. By (1) there exists a = {a;} X' € AY C S such that
(6) —(AN —a) c m(Ay — a).

Clearly a; > 0 for all ¢ < N 4+ 1. Without loss of generality we can assume that
a; > 0 for all 7. Indeed, note that a is in the relative interior of Af{}. Thus, if
for some j > 0, a; = 0, then

Aﬁ C Hj = {.”L' € RN+ | T; = 0}
Therefore AL, is in fact a corresponding m-dimensional section of the (N — 1)-
dimensional simplex
A1 =SNHNH;

and we can apply the proof below for this section (or just take the operator D
below with zero j-th row).
Consider the diagonal operator D with 1/a;’s on the main diagonal. Denote
N+1
b= Da = Zei and K := D(AY —a) = DAL —b.
i=1
Then
DAL =D(SNHNF)=SNDHNF).
Therefore, denoting L := D(H N F') — b, we obtain
K={zecR""!' | -1<z;and z € L}.
By (6) we observe that —K C mK, hence
K={zecR¥" |zeLand —1<x, <mforalli<N +1}.
This implies
BYT'NnLcKcmyN+1BYTnL.

LEMMA 3.2: Lete € (0,1) andm < N. For j = 1,2 let L; be an m-dimensional
linear subspace of RVt and put

K; ::{:rJE]RNJrl | re€ Ljand —1<uz; <m foralli <N +1}.
Assume p(Ly, Ly) < e. Then
d(Kl,Kg) < (1 —i—sm\/N—i— 1)2.
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Proof. By the definition there exists an orthogonal operator U such that
UL, = Ly and ||U — I|| < e. Therefore, for every z = {z;}; € K; we have
|Uz—2z| < ¢|z| < emv/N + 1, hence |(Uz—z);| < emy/N + 1foreveryi < N+1.
Thus, for every ¢ we have

Uz); =i+ Uz —z); > —(1+ emvV N + 1)
and
Uzx); =2+ Uz —2); < m+emvV/N + 1.
Therefore, UK, C (1+emy/N + 1)Ky. Similarly, U='Ky C (1+emy/N + 1)K,

which implies the result.

LEMMA 3.3: Lete € (0,1),n < m < N, L be an m-dimensional linear subspace
of RN*1 and

K={zeR¥*! |zcLand —1<z; <m foralli <N +1}.

Let Fy and F» be n-dimensional linear subspaces of RN*! and P, and P> be
the orthogonal projections on Fy and F», respectively. Assume p(Fy, Fy) < €.
Then

d(PK,P,K) < (1+emvVN +1)%

Proof. By the definition there exists an orthogonal operator U such that
UF, = Fy and |U — I|| €< e. Then UP, = PU, and therefore for every
z € K we have

UPiz = PUz = Pyx + Py(U — Iz € P.K + P,(U—I)mVN + 1By "' N L.
Since BéVH N L C K, we obtain
UPiz € (1+emVN +1)PK.

Similarly,
U 'Pyx C (14+emvVN +1)P,K,

which implies the result.
We are now ready to prove our main theorem.

Proof of Theorem 1.1. In this proof C7,C5,C5 are absolute constants greater
than one. Without loss of generality we assume that 2 < n < N < e", where
¢ is an absolute positive constant, which will be specified later (if n = 1 or
N > " the conclusion of the theorem is immediate).
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For any kK < N and ¢ € (0, 1), by A, we denote an e-net on the Grassmanian
G N1,k of cardinality

|Ak| < (C1/e) M.

(The existence of such a net follows from Lemma 2.1. Note that we suppress
the dependence of the net on ¢.)

In the first part of the argument fix an integer m such that n < m < N and
fix e € (0,1). Put

Kn={zecR"* | 1<z <mforalli <N +1}.

Let 2n < M < e™. We apply Corollary 2.4 with d = n and the body K =
Pg,(K,, N Ly), for arbitrary Ly € A,;, and Ey € A,,. By the union bound we
obtain that for n-dimensional Gluskin polytopes Vs one has

IP’({VLO € AnVEy € A, d(Var,Pr, (K, N Lo)) < 02\/1n(nM) })
d
<V2(Cy o) N THEANT oxp(—Mn /2)

<V2exp(—Mn/2 + 2C, NmIn(C) J¢)).
Therefore, whenever M satisfies
(7) MZ 801Nm111(01/€)/n,

then

- ]P’<{VL0 € A, VEy € Ay, d(Var,Pg, (K N Lg)) < 02\/ n })

(%))
<V2 exp(—Mn/4) < exp(—Mn/6).

Therefore, taking M satisfying 2n < M < €™ and (7) (if such an M exists),
this implies the result for Gluskin polytopes Vs and for every n-dimensional
projection of an m-dimensional section of an N-dimensional simplex, with high
probability. (Note that m is fixed in this argument.) Indeed, let F be any
affine subspace of RV*! such that AL is m-dimensional. Let L = L(F) be an
m-dimensional linear subspace and K = K (F) = K,,, N L be the position of AL
provided by Lemma 3.1. Let P be any orthogonal projection such that PK is
n-dimensional and let E be the range of P. Let Lo € A,,, and Fy € A, be such
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that p(L, Lo) < € and p(F, Ep) < &. Then by Lemmas 3.2 and 3.3 we get
d(PK, Pg,(Km N Lo)) <d(PK, Py, K)d(Pg, K, P, (Km0 Lo))
<(14+emvV/N +1)%,

where in the last estimate we used the obvious inequality d(Pg, K1, Pr,K2) <
d(K1, Kz) valid for all convex bodies Ki, Ky C RY of dimension m < N.
Therefore, taking e = m~'(N + 1)~'/2 we obtain that

d(Vag, Py (K, N L)) < 2%d(Vyr, PK).

Combining this with (8), we obtain the probability estimate for
]P’({for every F, L, K, P as above: d(Vy;, PK) < 2_402\/1 (nM) })
n

More precisely, we showed that for any n < m < N whenever M satisfies
2n < M < e" and (7) with e = m~'(N + 1)7'/2, then the latter probability is
less than or equal to exp(—Mn/6). In particular, let

M = [8C1N?In(C, N3/%) /n],

so that (7) is satisfied with ¢ = m™ (N + 1)~/2. Additionally, we can find a

cn

universal constant 0 < ¢ < 1 such that the condition N < e™ implies M < e™.

Then for some absolute constant Cf,

]P’<{for every K, P, d(Vyy,PK) < C’g\/1 2N7;Ln(2N) }> < exp(—N?In(2N)).
n

(Here K and P are as above; in particular, the dimension of a section K is
equal to m.)

To obtain the full result for any n < N, for any n-dimensional projection
of an arbitrary dimensional section of an N-dimensional simplex we apply the
above discussion for an arbitrary m representing the dimension of a section (so
n < m < N). Note that the choice of M does not depend on m, so we are
working in the same probability space for all m, leading to the same class of
Gluskin polytopes V. Taking the union bound over all integers n < m < N
concludes the proof.

Remarks: 1. In fact, taking M = [8C;NmIn(Cym+/N + 1)/n] in our proof,
we observe that for n < m < N there exists an n-dimensional convex body B
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such that for every convex body K obtained as an n-dimensional projection of
an m-dimensional section of an N-dimensional simplex one has

n
d(B’ K) z C\/ln 2NmIn(2N) *
n2

Moreover, our construction is random—we use Gluskin polytopes—and we ob-
tain the result with high probability—the above estimate holds with probability
larger than 1 — exp(—NmIn(2N)).

2. If we restrict ourselves to just one operation—a projection—then we have
almost the same lower bound using the Euclidean ball. Namely, for every n-
dimensional projection P one has

d(By, PAy) > c\/ e
In </
which follows from volume estimates (see Fact 2.2) as mentioned in the intro-
duction.

3. Also note that, although an N-dimensional simplex clearly has an [N/2]-
dimensional symmetric projection, a “random” projection is very far from be-
ing symmetric. It was shown in Theorem 5.1 of [14] that for a “random” n-
dimensional projection P and every centrally symmetric convex body B one

has
n

> .
d(B, PAy) > c\/lnN

4. Proof of Theorem 2.3

The proof of the theorem is standard and follows the road-map of [8]. The main
difference from [8] is the modification of the definition of a Gluskin polytope (2).
Adding the nets Ny to the vertex set of Vjs allowed to guarantee the inclusion
(4) without significantly increasing the number of vertices. (Of course, if the
number of vertices is proportional then (4) is automatically satisfied.)

Recall that the underlying probability space is the product space ' x Q" =
S9=1 % S9! with the product probability P ® P. Our first aim in the proof
is to prove two estimates similar to (5): one is for probability on ', with
w” € Q" fixed, and in the other one the roles of ' and Q" are interchanged.
This is proved in Lemma 4.5 below. Then the full Theorem 2.3 follows by
considerations based on Fubini’s theorem.
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Throughout most of this section, until the final proof of the theorem, we fix
an arbitrary w” € Q" and the corresponding Gluskin polytope Wy =V} (w”).

For any 7 > 0 and any operator T : R? — R? with det T = 1 consider the
event

(9) A(T, W]v[,T) = {V]W : HT Vv — WMH < T} = {VM TV C TWIW}.

First we estimate the probability of this event.

LEMMA 4.1: One has
P(A(r, Wi, T)) < (Ct/In(M/d)/d)*™
where C' is a positive absolute constant.

To prove this lemma we need the following well-known simple fact, which can
be found in many places, for example in [22], (38.4). We outline the proof for
the reader’s convenience.

Fact 4.2: Let K C R? be a convex body with 0 in its interior. Let X be a
random vector uniformly distributed on the sphere S?~!. Then

P({X € K}) < vol (K)/vol (BY).
Proof. Obviously we have P({X € K}) = vol(L)/vol(Bg) where
L={zeBd|z/|z] e KNnS¥ '}

On the other hand, L C conv(KNS?~1) C K, which yields the required estimate
for volumes.

We use a convenient shortcut for norms of linear operators: for two convex
bodies Ki,Ky C R? and for A\ > 0 the statement ||T : K; — K| < A is
equivalent to T (K1) C AK» and is equivalent to || T : K1 — AKs|| < 1.

Proof of Lemma 4.1. Since Vjs contains the vectors X;, j < M, the condition
T(Var) C W implies that TX; € 7Wyy for all j < M. Therefore

P(A(r, War, T)) <P{TX; € TWas for 1 < j < M})
:(P({X S T 1 WM}))M
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(cf. Lemma 38.3 in [22] and Lemma 4 in [15]). By Fact 4.2 and using det 7! =1
and (3) for Wy, we obtain

P(A(r, Wi, T)) < (Vzgigﬂj N 2 g (Vil(g;))M
< (CT\/ m(]\j/d))m’

which completes the proof.

In the next step we discretize certain sets of operators acting on R? (see
Lemma 38 in [22] and Lemma 7 in [15]). We need more notation. Set

B, ={T:R*=R*||T: 03 — (5] <1},
and for a convex body K C R,

Bl g ={T:R*>R||T: B —» K| <1}.

Note that the norm for which ng, x is the unit ball is equal to the {-direct-sum
of d norms || - ||k determined by K.

For the reader’s convenience we recall that identifying the set of operators
with R?" we have

(10) vol(BL, 1) = (vol(K))? and vol(BL) > (¢/Vad)™,

where c is a positive absolute constant.

We also will use the following fact on cardinality of e-nets. Recall that the
smallest cardinality of a 1-net of a set K; in the metric defined by a convex
body K> is denoted by N (K7, Ks), hence the smallest cardinality of an e-net is
N(K7,eK>). The following lemma follows by the standard volumetric argument
(in such a formulation it is Lemma 6 from [15]).

LEMMA 4.3: Let ¢ > 0. Let K1,Ks C R™ be two symmetric convex bodies
such that K; C Ky. Then every subset K' C Ky admits an e-net N C K’ in
the metric of Ky with |N'| < (1+2/e)" (vol(K3)/vol(K1)).

We use this lemma to control the cardinality of an e-net in ng-nW in the
operator norm.

LEMMA 4.4: Let £ > 0 and let W C R? be a convex symmetric body such that

B C ¢€W. Let n,e > 0. Every subset K’ of ng-nW admits an e-net N in K’
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in the operator norm on ¢4 with cardinality

2\ d*
(11) W1 < (i + 5) (CpVd - vol (W)L,

where C' is an absolute positive constant.

Proof. We will use Lemma 4.3 with A = ¢/n, K1 = (1/A\)B%, and K, = B¢
The assumption BY C £W yields (1/)\)Bd C Bop aw- Thus, by (10),

opnW*

2 ) a2 vol K 2
e volK 1

2 a 2
<(6 + i) (CnVd-vol' 4w,

N(K',eBg,) =N(K',xe((1/0)Bg,)) < (1 +

with an absolute positive constant C'.

We need one more lemma, which estimates the probability of the following
event:

(12) A(p,War) = {Vas : 38 : RYSR?E det S =1, s.t. |5 : Vay — Wl < b,
where 7 is a positive parameter.

LEMMA 4.5: Let d < M < e®. There exists a positive constant a; > 0 such
that for n = a1\/d/In(M/d) one has

P(A(n, Wa)) < e,

Proof. Denote for brevity £ = 4\/1n(M/d Fix an arbitrary 0 < ¢ < 1. By

K’ denote the set of all operators T' € Bop Wt with detT = 1. Let N be an
e-net for K’ with respect to the metric given by ng and satisfying (11) with
W =Wy,

We first show that

(13) A, War) € | Alr, War, T),
TeN
where 7 = n + €.
Pick w € A(n,Wyr), and let S be an operator with det.S = 1 such that
IS : Var(w) — Wl < n. Since Viy D B¢, we have ||S : B¢ — nWy| < 1,

which means S € Bop W
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Since det S = 1, then S belongs to K’. By the definition of N, we can find
T € N satisfying ||T — S : ¢4 — 3| < e. Since Viy C BY and by (4), we get

(T — S)(Var) C eBY C €Wy
Equivalently, || T — S : Vay — W]l < €. By the triangle inequality,
T : Vi = Wyl <||[T—=5: V= Wyl +|S: Ve = Wyl <e€+n=r.
This means that w € A(r, Wy, T') for every T € N and ends the proof of (13).
By the union bound and Lemma 4.1

P(A(n, War)) < IN] <c¢ 'n(24 d>>dM.

Combining this with (11), (3) for Way, and the definitions of £ and 7, we observe
that

’ aM
P(A(n, War)) S(i + g)d (CynVd - Voll/d(WM))d2'<C(’l7 n Eg)\/ln(]\c/l[/d))

IN

(2 + ! )d (Coa1)® - (C3(ar + 4¢))™,

g a1
where C, C1, Cs, Cs are absolute positive constants. To complete the proof it is
enough to set € = a; and choose a; appropriately small.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let a; and n be as in Lemma 4.4. We consider various
subsets of the measure spaces 2/, Q" and Q' x Q”; we will use an expanded
notation to avoid confusion.

Denote the set that appears in (5) by D, that is

D = {(w,w") | d(Vi(w'), Viz (") < n*}.

For any wj € Q" define the subset Di}(,), C ' x Q" which depends only on
the first variable w’ with the second variable fixed w” = w{ and is given by

Dy ={(w',wy) [ 35 s.t. det S =1and [|S: Vi (w) = Vir(wg)l < n}
Similarly, for any wj € Q' define the subset DZ[,) by
D(ZS = {(w},w") | IR s.t. det R=1 and ||R: V7 (w") = Vi (W)l < n}.

Note that both definitions closely follow the model of (12) in that the norm of
operators is considered from a random polytope to a fixed polytope.
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The following inclusion can be easily checked:

pc |y oy u |J Dy

wH e wi eQ’

Indeed, if d(V};(wp), ViF(wg)) < n? then there exists an invertible operator S
such that

18 Vig(wo) = Vag ()l 1S~ = Vir(wg) = Vi (wo) | < .

Without loss of generality we may assume that det.S = det S~! = 1. Thus one
of the norms in the above product is less than or equal to n, which means that
cither (wp,w) € D, or (wh,wy) € DF, -

Finally, using Lemma 4.5 and the Fubini theorem, we obtain
P@P(D) <EyP(DY, | wp) +EuyP(Dly | wp) < 2e7M.

This completes the proof of Theorem 2.3.
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