
ISRAEL JOURNAL OF MATHEMATICS 203 (2014), 59–80

DOI: 10.1007/s11856-013-0072-1

CONCENTRATION OF MEASURES
SUPPORTED ON THE CUBE

BY

Bo‘az Klartag

School of Mathematical Sciences, Tel Aviv University

Tel Aviv 69978, Israel

e-mail: klartagb@tau.ac.il

In memory of Joram Lindenstrauss

ABSTRACT

We prove a log-Sobolev inequality for a certain class of log-concave mea-

sures in high dimension. These are the probability measures supported on

the unit cube [0, 1]n ⊂ R
n whose density takes the form exp(−ψ), where

the function ψ is assumed to be convex (but not strictly convex) with

bounded pure second derivatives. Our argument relies on a transportation-

cost inequality á la Talagrand.

1. Introduction

Consider a cube Q ⊂ R
n of sidelength � parallel to the axes, that is, Q is

a translation of the set (0, �)n ⊂ R
n (or of its closure, equivalently). In this

paper we prove a concentration inequality for a class of probability measures

supported on Q.

Write | · | for the standard Euclidean norm in R
n and Bn = {x ∈ R

n; |x| ≤ 1}
is the Euclidean unit ball centered at the origin. For a subset A ⊂ R

n denote

A+ εBn = {x+ εy;x ∈ A, y ∈ Bn}, the ε-neighborhood of the set A.

Theorem 1.1: Let � > 0,M ≥ 0 and let Q ⊂ R
n be a cube of sidelength

� parallel to the axes. Let μ be a probability measure supported on Q with
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density exp(−ψ) for a convex function ψ : Q→ R such that

(1) ∂iiψ(x) ≤M for all x ∈ Q, i = 1, . . . , n.

Suppose that A ⊆ R
n is a measurable set with μ(A) ≥ 1/2. Then, for all t > 0,

(2) μ (A+ tBn) ≥ 1− exp(−t2/α2),

where α = α(�,M) = 3�eM�2/8.

Theorem 1.1 is equivalent to a logarithmic Sobolev inequality and to a con-

centration inequality for Lipschitz functions; see Section 4 below. In probabilis-

tic terminology, we consider uniformly bounded random variables X1, . . . , Xn,

possibly dependent, whose joint distribution satisfies the convexity/concavity

assumptions of Theorem 1.1. Our results correspond to bounds for the variance

and tail distribution of f(X1, . . . , Xn), where f is a Lipschitz function on R
n.

We emphasize that we are not assuming any product structure, any sym-

metries nor strict convexity for the function ψ from Theorem 1.1. There is

a vast body of literature pertaining to the case in which the measure μ is an

arbitrary product measure in the cube; see Talagrand [24], Marton [17], Dembo

and Zeitouni [8], Ledoux [15] and others. When the function ψ from Theorem

1.1 admits a uniform positive lower bound for the Hessian, the conclusion of

Theorem 1.1 is well-known and essentially goes back to Bakry and Émery [1].

How can we produce probability measures satisfying the assumptions of The-

orem 1.1 with, say,M = 1? One may begin with the standard Gaussian density

in R
n, the function

γn(x) = (2π)−(n/2) exp(−|x|2/2) (x ∈ R
n).

The restriction of γn to any cubeQ ⊂ R
n, normalized to be a probability density,

surely satisfies the assumptions of Theorem 1.1 withM = 1. Furthermore, begin

with any probability density ρ : Rn → [0,∞) which is log-concave (that is, the

function − log ρ is convex). Consider the convolution

f(x) = (ρ ∗ γn)(x) =
∫
Rn

ρ(y)γn(x − y)dy.

Then f is a smooth, log-concave probability density according to the Prékopa–

Leindler inequality. Furthermore, it is straightforward to verify that for any

x ∈ R
n,

(3) (∇2 log f)(x) ≥ − Id
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in the sense of symmetric matrices, where Id is the identity matrix and ∇2 log f

is the Hessian of log f . We conclude that the probability measure on the cube Q

whose density is proportional to the restriction of f to Q, satisfies the assump-

tions of Theorem 1.1 with M = 1. It is also possible to view the probability

densities that appear in Theorem 1.1 as convex perturbations of probability

densities proportional to x �→ exp(x · v) on the cube. Here x · v is the standard

scalar product of x, v ∈ R
n. One cannot replace α(�,M) in Theorem 1.1 by a

dimension-free expression that is subexponential in M�2; see Remark 4.4 be-

low. We say that a vector x ∈ R
n is proportional to one of the standard unit

vectors when it has at most one non-zero entry. A unit cube has sidelength one.

Theorem 1.1 will be deduced from the following result:

Theorem 1.2: Let R ≥ 1 and let Q ⊂ R
n be a unit cube parallel to the axes.

Let μ be a probability measure supported on Q with a log-concave density f

such that

(4) f(λx+ (1− λ)y) ≤ R[λf(x) + (1− λ)f(y)]

for any 0 < λ < 1 and any x, y ∈ Q for which x − y is proportional to one

of the standard unit vectors. Suppose that A ⊆ R
n is a measurable set with

μ(A) ≥ 1/2. Then for all t > 0,

μ(A+ tBn) ≥ 1− exp(−t2/α2),

where α = α(R) = 3R.

The inequality (4) holds true with R = 1 when f is a convex function. By

degenerating Theorem 1.2 to the petty case where R = 1, we arrive at the

following peculiar corollary:

Corollary 1.3: Let Q ⊂ R
n be a unit cube. Let μ be a probability measure on

Q whose density is both log-concave and convex in Q. Then for any measurable

A ⊆ R
n and t > 0,

μ(A) ≥ 1/2 =⇒ μ(A + tBn) ≥ 1− exp(−t2/9).

A moment of reflection reveals that there do exist positive, integrable func-

tions on the cube that are simultaneously log-concave and convex, such as

x �→ [b+ (x · v)]p for p ≥ 1. It is also evident that one cannot eliminate neither

the log-concavity assumption nor the convexity assumption from Corollary 1.3.
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The proof of Theorem 1.2 uses transportation of measure in order to analyze

the deficit in the Prékopa–Leindler inequality, an idea proposed also in Eldan

and Klartag [9]. Rather than working directly with the supremum-convolution,

we prefer to analyze another expression that somewhat resembles the relative-

entropy functional. Let us shed some light on this expression. Suppose that f

and g are non-negative functions defined on R
n. For a point x ∈ R

n in which f

is positive and differentiable, and for a point y ∈ R
n in which g is positive, we

set

(5) Sy{g, f}(x) = f(x) log
g(y)

f(x)
−∇f(x) · (y − x).

Denote Supp(f) = {x; f(x) = 0}. For functions f, g : Rn → [0,∞) and a map

T : Supp(f) → Supp(g) abbreviate

(6) ST {g, f}(x) = ST (x){g, f}(x) (x ∈ Supp(f)),

assuming that the right-hand side is well-defined. Next, suppose that f and g

have a finite, positive integral. A measurable map T : Supp(f) → Supp(g)

is called a transportation map from f to g if for any measurable set

A ⊆ Supp(g), (
1∫
g

)∫
A

g =

(
1∫
f

)∫
T−1(A)

f.

That is, T pushes forward the probability measure whose density is propor-

tional to f , to the probability measure whose density is proportional to g. Two

important examples of transportation maps in R
n are the Brenier map [4] and

the Knothe map [14].

Definition 1.4: Let f, g be two non-negative functions on R
n with a finite, pos-

itive integral. Assume that f is differentiable almost-everywhere in Supp(f).

Set

(7) T ire(g||f) = sup
T

[∫
Supp(f)

ST {g, f}(x)dx−
(∫

f

)
log

∫
g∫
f

]
,

where the supremum runs over all transportation maps T from f to g for

which the integral of ST {g, f} is well-defined. Here, Tire is an acronym of

“Translation-Invariant Relative Entropy”.
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The notion is indeed translation-invariant: For functions f, g as in Definition

1.4 and for x0 ∈ R
n, denoting τx0(g)(x) = g(x− x0) we have

T ire(g||f)− T ire(τx0(g)||f) =
∫
Rn

(∇f(x) · x0) dx = 0,

where we assume that f is locally-Lipschitz and vanishes at infinity in order to

justify the integration by parts. In the log-concave case, the quantity T ire(g || f)
is indeed related to relative entropy as is demonstrated in Lemma 4.1 below.

The remainder of this paper is devoted to the proofs of the aforementioned

theorems and to related results. We write A for the closure of the set A, and

log stands for the natural logarithm. By “measurable” we always mean Borel-

measurable. Needless to say, it is certainly possible to consider T ire(g || f) for
non-negative functions defined only on a subset of Rn by treating such functions

as zero outside their original domain of definition.

Acknowledgements. I thank Dario Cordero-Erausquin and Ronen Eldan for

interesting, related discussions. I am grateful to Nathael Gozlan and to the

anonymous referee for their valuable suggestions and for correcting a mistake

in an earlier version of this manuscript. The research was supported in part by

the Israel Science Foundation and by a Marie Curie Reintegration Grant from

the Commission of the European Communities.

2. Convex functions on an interval

Let I, J ⊂ R be two intervals of finite, positive length and let f, g be positive,

integrable functions defined on I, J , respectively. The monotone transporta-

tion map from f to g is the map T : I → J defined via(
1∫
I f

)∫
I

f(t)1{t<x}dt =
(

1∫
J g

)∫
J

g(t)1{t<T (x)}dt (x ∈ I),

where 1{t<x} equals one when t < x and vanishes otherwise. The map T is

uniquely defined, as f, g are positive and integrable. Furthermore, T is an

absolutely-continuous, strictly-increasing function. Observe that the monotone

transportation in one dimension is indeed a transportation map and that for

almost every x ∈ I,

(8) T ′(x) =
(∫

J g∫
I
f

)
f(x)

g(T (x))
.
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We will frequently encounter the case where I = J . Clearly, in this case T (x) =

x for x ∈ ∂I, where ∂I are the two endpoints of the interval I. Our goal in this

section is to prove the following transportation-cost inequality in one dimension:

Proposition 2.1: Let R ≥ 1 and let I ⊂ R be an interval of length one. Let

f : I → (0,∞) be an absolutely-continuous function which satisfies

f(λx+ (1− λ)y) ≤ R[λf(x) + (1− λ)f(y)] for all x, y ∈ I, 0 < λ < 1.

Let g be a positive, integrable function on I, and let T be the monotone trans-

portation map from f to g. Then

(9)

∫
I

|T (x)− x|2f(x)dx ≤ CR2

[ ∫
I

ST {g, f} −
(∫

I

f

)
log

∫
I g∫
I f

]

≤ CR2 · T ire(g||f),
where C ≤ 40/9 is a universal constant.

The proof of Proposition 2.1 requires a few lemmata. Our first lemma is

essentially an infinitesimal version of the Prékopa–Leindler inequality, and its

proof follows the transportation proofs given by Barthe [2], Cordero-Erausquin

[6], Henstock–Macbeath [11] and Talagrand [23]. For t ∈ R denote

Λ(t) = min{|t|, t2}.
Lemma 2.2: Let I ⊂ R be an interval of finite, positive length. Let f, g be

positive, integrable functions on I with f being absolutely continuous. Then∫
I

Λ (T ′(x) − 1) f(x)dx ≤ 10

3

[∫
I

ST {g, f} −
(∫

I

f

)
log

∫
I
g∫

I f

]
,

where T is the monotone transportation map from f to g.

Proof. We use (8) and compute∫
I

ST {g, f} =

∫
I

[
f(x) log

g(T (x))

f(x)
− f ′(x)(T (x)− x)

]
dx

=

(∫
f

)
log

∫
g∫
f
+

∫
I

[
f(x) log

1

T ′(x)
− f ′(x)(T (x)− x)

]
dx

=

(∫
f

)
log

∫
g∫
f
+

∫
I

[−f(x) logT ′(x) + f(x)(T ′(x)− 1)] dx,

where the integration by parts is legitimate as f(x)(T (x)− x) is an absolutely-

continuous function in I that vanishes on ∂I. In order to complete the proof of
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the lemma it remains to show that for all x > 0,

(10) − logx+ (x− 1) ≥ 3

10
·min{|x− 1|, (x− 1)2}.

Indeed, for 0 < x ≤ 2 we use the Cauchy-Schwartz inequality and obtain

(x− 1)− log x =

∫ x

1

t− 1

t
dt =

∫ |x−1|

0

t

1 + sgn(x − 1)t
dt ≥

∫ |x−1|

0

t

1 + t
dt

≥
(∫ |x−1|

0

tdt

)2/(∫ |x−1|

0

(1 + t)tdt

)

=
(x− 1)2

2(1 + 2|x− 1|/3) ≥ 3(x− 1)2

10
,

where sgn(x) = 1 for x > 0 and sgn(x) = −1 for x < 0. The inequality (10)

is valid in particular for x = 2. For x > 2 the derivative of the left-hand

side in (10) exceeds that of the right-hand side. Hence (10) holds true for all

x > 0.

Remark 2.3: The proof of Lemma 2.2 admits a generalization to n dimensions,

in which one utilizes the Brenier map in place of the transportation map T . See

Barthe [3] and McCann [18] for related arguments. In this way one obtains the

inequality

(11) T ire(g||f) ≥ 0,

which is valid for any Lipschitz, non-negative, compactly-supported functions

f and g on R
n with a finite, positive integral.

Lemma 2.4: Let R ≥ 1 and let I ⊂ R be an interval of length one. Assume

that ρ is a positive, integrable function on I that satisfies

(12) ρ(λx + (1− λ)y) ≤ R[λρ(x) + (1− λ)ρ(y)] for all x, y ∈ I, 0 < λ < 1.

Then for any a, b ∈ I with a < b,∫ b

a

ρ(x)dx ≤ R

2
[ρ(a) + ρ(b)].

Proof. We simply integrate (12) over λ ∈ [0, 1]. Since b− a ≤ 1, then∫ b

a

ρ ≤
∫ 1

0

ρ(λa+ (1− λ)b)dλ ≤ R

∫ 1

0

[λρ(a) + (1− λ)ρ(b)]dλ = R
ρ(a) + ρ(b)

2
,

and the lemma is proven.
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The following lemma is a one-dimensional Poincaré-type inequality. The proof

closely follows the argument by Cheeger [5]. Recall that Λ(t) = min{|t|, t2}.
Lemma 2.5: Let I ⊂ R be an interval of length one and let R ≥ 1. Let ρ be a

positive, integrable function on I with

ρ(λx+ (1− λ)y) ≤ R[λρ(x) + (1 − λ)ρ(y)] for all x, y ∈ I, 0 < λ < 1.

Then for any absolutely-continuous function f : I → R with f |∂I = 0,

(13)

∫
I

Λ(f)ρ ≤ 4

3
R2

∫
I

Λ(f ′)ρ.

Here, ∂I consists of the two endpoints of the interval I.

Proof. Multiplying ρ by a constant, we may assume that
∫
I
ρ = 1. Let g be an

absolutely-continuous, non-negative function with g|∂I = 0. In the first step of

the proof we show that

(14)

∫
I

gρ ≤ R

2

∫
I

|g′|ρ.

Denote J = g(I) = {g(x);x ∈ I}, an interval whose left boundary point is zero.

We apply the change of variables y = g(x) and conclude that

(15)

∫
I

|g′(x)|ρ(x)dx =

∫
J

( ∑
x∈g−1(y)

ρ(x)

)
dy.

See, e.g., Leoni [16, Theorem 3.65] for a proof of this change of variables formula.

For any 0 = y ∈ J consider the open set Iy = {x ∈ I; g(x) > y}. When y is a

regular non-zero value of g, the open set Iy is a finite union of intervals with

disjoint closures. According to Lemma 2.4, for any such y,∫
Iy

ρ ≤ R

2

[ ∑
x∈g−1(y)

ρ(x)

]
.

The one-dimensional Sard’s lemma for absolutely-continuous functions (see,

e.g., Leoni [16, Remark 8.9]) implies that almost any y ∈ J is a regular value of

g. Therefore, from (15) we obtain∫
I

|g′(x)|ρ(x)dx ≥ 2

R

∫
J

(∫
{x;g(x)>y}

ρ(x)dx

)
dy =

2

R

∫
I

gρ,
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where the last equality follows from application of Fubini’s theorem. Thus (14)

is proven. In order to prove (13), observe that for any x ≥ 0 and 0 ≤ y ≤ 1,

(16) xy ≤ RΛ(x) +
y2

4R
.

Indeed, (16) holds for x ≥ 1 since the coefficient in front of Λ(x) is at least one,

and (16) may be directly proven for 0 ≤ x ≤ 1 by completing a square. Let

f : I → R be an absolutely-continuous function with f |∂I = 0. Applying (14)

with g = Λ(|f |) and using (16) we see that∫
I

Λ(|f |)ρ ≤ R

2

∫
I

Λ′(|f |)|f ′|ρ ≤ R

∫
I

|f ′|min{|f |, 1}ρ

≤ R ·
[
R

∫
I

Λ(|f ′|)ρ+ 1

4R

∫
I

min{|f |2, 1}ρ
]

≤ R2

∫
I

Λ(|f ′|)ρ+ 1

4

∫
I

Λ(|f |)ρ.

By subtracting the right-most summand from the left-hand side, we deduce

(13).

Proof of Proposition 2.1. Since T (x) = x for x ∈ ∂I, we may invoke Lemma

2.5 and conclude that∫
I

Λ(T (x)− x)f(x)dx ≤ 4

3
R2

∫
I

Λ(T ′(x)− 1)f(x)dx

≤ 40

9
R2

[ ∫
I

ST {g, f} −
(∫

I

f

)
log

∫
I
g∫

I f

]
,

where we used Lemma 2.2 in the last passage. Since I is an interval of length

one and T : I → I, then for any x ∈ I we have |T (x) − x| ≤ 1. Consequently,

for any x ∈ I,

Λ(T (x)− x) = min{|T (x)− x|2, |T (x)− x|} = |T (x)− x|2.

This completes the proof of (9). The proposition now follows from the definition

of T ire(g||f).

3. Induction on the dimension

In this section we obtain higher-dimensional analogs of Proposition 2.1.



68 B. KLARTAG Isr. J. Math.

Theorem 3.1: Let R ≥ 1 and let Q ⊂ R
n be a unit cube parallel to the axes.

Assume that f : Q→ (0,∞) is a Lipschitz function with

(17) f(λx+ (1− λ)y) ≤ R[λf(x) + (1− λ)f(y)]

for any 0 < λ < 1 and any x, y ∈ Q for which x − y is proportional to one of

the standard unit vectors in R
n. Let g be a positive, integrable function on Q.

Then there exists a transportation map T from f to g such that

(18)

∫
Q

|T (x)− x|2f(x)dx ≤ CR2

[∫
Q

ST {g, f} −
(∫

Q

f

)
log

∫
Q
g∫

Q
f

]

≤ CR2 · T ire(g||f),
where C ≤ 40/9 is a universal constant.

The requirement that f be a Lipschitz function should not be taken too

seriously, as it may easily be replaced by other types of regularity assumptions.

Theorem 3.1 will be proven by induction on the dimension, where the induction

step is going to be Proposition 2.1 in disguise. Throughout this section we use

x = (y, r) ∈ R
n−1 × R

as coordinates in R
n. For a function f defined on a subset of R

n and for

y ∈ R
n−1, we write

fy(r) = f(y, r)

whenever (y, r) is in the domain of definition of f . Abbreviate π(y, r) = y. For

a subset A ⊆ R
n denote π(A) = {π(x);x ∈ A}. For a non-negative, integrable

function f defined on a subset A ⊆ R
n, we set

π(f)(y) =

∫ ∞

−∞
fy(r)1{(y,r)∈A}dr (y ∈ π(A)).

LetK ⊆ R
n be a convex set. Let f, g be positive, integrable functions onK. We

say that a map T : K → K transports the last coordinate monotonically

if there exists a map P : π(K) → π(K) such that for almost any y ∈ π(K), the

function gP (y) is integrable and, furthermore,

(19) T (y, r) = (P (y), Ty(r))

for any r with (y, r) ∈ K, where Ty is the monotone transportation map from

fy to gP (y). The following lemma is a corollary to Proposition 2.1.
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Lemma 3.2: Let R ≥ 1. Let Q = A × I ⊂ R
n, where I ⊂ R is an interval of

length one and A ⊂ R
n−1 is a convex set. Assume that f is a positive, Lipschitz

function on Q, and that

(20) f(λx1 + (1− λ)x2) ≤ R[λf(x1) + (1− λ)f(x2)]

for any 0 < λ < 1 and any x1, x2 ∈ Q for which x1 − x2 is proportional to

one of the standard unit vectors. Let g be a positive, integrable function on

Q. Assume that T : Q → Q is a measurable map that transports the last

coordinate monotonically. Then∫
Q

|Ty(r) − r|2f(y, r)dydr ≤ CR2

[ ∫
Q

ST {g, f}−
∫
π(Q)

SP {π(g), π(f)}
]
,(21)

where P and Ty are as in (19), and C ≤ 40/9 is a universal constant.

Proof. According to the definitions (5) and (6), for almost any (y, r) ∈ Q,

(22) ST {g, f}(y, r) = STy{gP (y), fy}(r) −∇yf(y, r) · (P (y)− y),

where ∇y is the gradient in the y-variables. Thanks to our assumptions on f

we may safely differentiate under the integral sign, thus

(23) ∇π(f)(y) · (P (y)− y) =

∫
I

∇yf(y, r) · (P (y)− y)dr

for almost any choice of y. From (22) and (23),

(24)

∫
I

STy{gP (y), fy}(r)dr =
∫
I

ST {g, f}(y, r)dr +∇π(f)(y) · (P (y)− y)

for almost any choice of y. The equality (24) may be reformulated as

(25)

∫
I

STy{gP (y), fy} −
(∫

I

fy

)
log

∫
I gP (y)∫
I fy

=

∫
I

ST {g, f}(y, r)dr − SP {π(g), π(f)}(y).

We may apply Proposition 2.1 thanks to our assumption (20) and obtain that

(26)

∫
I

|Ty(r)− r|2fy(r)dr ≤ CR2

[ ∫
I

STy{gP (y), fy}−
(∫

I

fy

)
log

∫
I
gP (y)∫
I fy

]
.

By combining (25) and (26) we see that for almost any y ∈ π(Q),∫
I

|Ty(r) − r|2fy(r)dr ≤ CR2

[ ∫
I

ST {g, f}(y, r)dr − SP {π(g), π(f)}(y)
]
.(27)

We now integrate (27) over y ∈ π(Q) and deduce (21).
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Remark: The identity (23) is the only place in the proof of Theorem 3.1 where

we use the assumption that Q is a cube or a box, rather than, say, a paral-

lelepiped.

Lemma 3.3: Let R ≥ 1 and let Q ⊂ R
n be a cube parallel to the axes. Assume

that f : Q→ R is a Lipschitz function on Q such that

(28) f(λx1 + (1− λ)x2) ≤ R[λf(x1) + (1− λ)f(x2)]

for any 0 < λ < 1 and any x1, x2 ∈ Q for which x1 − x2 is proportional to one

of the standard unit vectors in R
n. Then also

π(f)(λy1 + (1 − λ)y2) ≤ R[λπ(f)(y1) + (1− λ)π(f)(y2)]

for any 0 < λ < 1 and any y1, y2 ∈ π(Q) for which y1 − y2 is proportional to

one of the standard unit vectors in R
n−1.

Proof. Fix i = 1, . . . , n − 1 and let ei be the ith standard unit vector. Con-

dition (28) implies that for any y ∈ R
n−1, t1, t2, r ∈ R, 0 < λ < 1 such that

(y + t1ei, r) ∈ Q and (y + t2ei, r) ∈ Q,

f(y + (λt1 + (1− λ)t2)ei, r) ≤ R[λf(y + t1ei, r) + (1− λ)f(y + t2ei, r)].

Let I be the interval for which Q = π(Q)× I. Integrating with respect to r we

have

π(f)(y + (λt1 + (1 − λ)t2)ei) =

∫
I

f(y + (λt1 + (1 − λ)t2)ei, r)dr

≤R
∫
I

[λf(y + t1ei, r) + (1− λ)f(y + t2ei, r)]dr

=R[λπ(f)(y + t1ei) + (1 − λ)π(f)(y + t2ei)],

and the lemma is proven.

Proof of Theorem 3.1. We will prove by induction on the dimension n that there

exists a transportation map T from f to g such that

(29)

∫
Q

|T (x)− x|2f(x)dx ≤ 40

9
R2

[ ∫
Q

ST {g, f} −
(∫

Q

f

)
log

∫
Q
g∫

Q
f

]
.

The case n = 1 is Proposition 2.1. Assume that the induction hypothesis

was proven for dimension n − 1, and let us prove it for dimension n. Thus,

suppose that we are given a cube Q ⊂ R
n and functions f, g which satisfy the
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assumptions of the theorem. In view of Lemma 3.3, we may apply the induction

hypothesis for

π(Q), π(f), π(g).

Thus, there exists a transportation map P : π(Q) → π(Q) from π(f) to π(g)

such that

(30)

∫
π(Q)

|P (y)− y|2π(f)(y)dy

≤ 40

9
R2

[∫
π(Q)

SP {π(g), π(f)} −
(∫

π(Q)

π(f)

)
log

∫
π(Q) π(g)∫
π(Q) π(f)

]
.

For y ∈ π(Q) let Ty be the monotone transportation map from fy to gP (y), a

strictly-increasing function which is well-defined for almost any y ∈ π(Q). We

set

T (y, r) = (P (y), Ty(r)) for (y, r) ∈ Q.

Then T transports the last coordinate monotonically. Hence, according to

Lemma 3.2,

(31)

∫
Q

|Ty(r)−r|2f(y, r)dydr ≤ 40

9
R2

[ ∫
Q

ST {g, f}−
∫
π(Q)

SP {π(g), π(f)}
]
.

It is straightforward to verify that the map T is a transportation map from f

to g. In fact, the map T is precisely the Knothe transportation map from [14].

By summing (30) and (31), we conclude that

(32)∫
Q

[|P (y)− y|2 + |Ty(r) − r|2]f(y, r)dydr

≤40

9
R2

[ ∫
Q

ST {g, f} −
(∫

π(Q)

π(f)

)
log

∫
π(Q) π(g)∫
π(Q) π(f)

]

=
40

9
R2

[ ∫
Q

ST {g, f} −
(∫

Q

f

)
log

∫
Q
g∫

Q
f

]
.

All that remains is to note that when x = (y, r),

|T (x)− x|2 = |P (y)− y|2 + |Ty(r) − r|2 .

The bound (29) follows from (32), and the theorem is proven.
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4. Log-concavity

We begin this section with a discussion of Definition 1.4. As we shall see, this

definition fits very nicely with log-concave functions. Given two probability

densities f and g in R
n we write

D(g||f) =
∫
Rn

[
log

g(y)

f(y)

]
g(y)dy

for the relative entropy or the Kullback–Leibler divergence of g from f .

Lemma 4.1: Let f, g : Rn → [0,∞) be probability densities. Assume that f is

log-concave. Then,

T ire(g||f) ≤ D(g||f).

Proof. The function f is differentiable almost-everywhere in the convex set

Supp(f) as it is a log-concave function. Denote f = e−ψ. From the convexity

of ψ we see that for any point x ∈ Supp(f) in which f is differentiable,

ψ(x) +∇ψ(x) · (y − x) ≤ ψ(y) (y ∈ Supp(f)).

Let T be any transportation map from f to g. Denoting ϕ = − log g we find

that for almost any x ∈ Supp(f),

ST {g, f}(x) =
[
f(x) log

g(T (x))

f(x)
−∇f(x) · (T (x)− x)

]
= f(x)[ψ(x) − ϕ(T (x)) +∇ψ(x) · (T (x)− x)]

≤ f(x)[ψ(T (x)) − ϕ(T (x))] = f(x) log
g(T (x))

f(T (x))
.

Since T is a transportation map from f to g, then by applying the change of

variables y = T (x) we obtain∫
Supp(f)

ST {g, f} ≤
∫
Supp(f)

log
g(T (x))

f(T (x))
f(x)dx

=

∫
Supp(g)

[
log

g(y)

f(y)

]
g(y)dy = D(g||f)

and the lemma is proven.

For a log-concave density f , we may think about T ire(g || f) as a parameter

measuring the proximity of g to a translate of f . Let us mention here additional
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upper bounds for T ire(g || f). Let f, g : R
n → [0,∞) have finite, positive

integrals and denote ψ = − log f and ϕ = − log g. According to (5),

(33) sup
y∈Supp(g)

Sy{g, f}(x) = [∇f(x) · x− f(x) log f(x)] + f(x)ϕ∗(∇ψ(x)),

where ϕ∗(v) = supy∈Supp(g)[v · y − ϕ(y)] is the usual Legendre transform of ϕ.

Consequently, when f is locally-Lipschitz and x �→ |x|f(x) vanishes at infinity,
we have the bound

(34) T ire(g||f) ≤
∫
Rn

[
ϕ∗

(
∇ψ(x)

)
− log

(∫
g∫
f
· f(x)

)
− n

]
f(x)dx.

Inequality (34) is perhaps less appealing than Lemma 4.1, yet it is applicable

also in the non-log-concave case.

Our original motivation for Definition 1.4 is that, at least in the smooth,

log-concave case, the expression in (33) equals ∂hε(x)/∂ε|ε=0 where

hε(x) = sup
y∈Rn

f(x+ εy)1−εg(x− (1 − ε)y)ε (x ∈ R
n).

In other words, T ire(g||f) is related to a kind of “mixed volume” of log-concave

functions; see [12, Section 3] for further explanations.

Suppose that μ1 and μ2 are Borel probability measures on R
n. The trans-

portation cost between μ1 and μ2 is defined to be

W 2
2 (μ1, μ2) = inf

γ

∫
Rn×Rn

|x− y|2dγ(x, y),

where the infimum runs over all couplings γ of μ1 and μ2, i.e., all Borel prob-

ability measures γ on R
n × R

n whose first marginal is μ1 and whose second

marginal is μ2. See, e.g., Villani’s book [25] for more information about the

transportation metric W2. The following theorem reminds us of Talagrand’s

transportation-cost inequalities for product measures from [23].

Theorem 4.2: Let R ≥ 1 and let Q ⊂ R
n be a unit cube parallel to the axes.

Suppose that μ is a probability measure on Q with a log-concave density f .

Assume that

(35) f(λx+ (1− λ)y) ≤ R[λf(x) + (1− λ)f(y)]

for any 0 < λ < 1 and any x, y ∈ Q for which x − y is proportional to one of

the standard unit vectors in R
n. Let ν be a probability measure on Q that is
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absolutely continuous with respect to μ. Then

W 2
2 (μ, ν) ≤ CR2D(ν||μ),

where D (ν ||μ) = ∫
g(log g)dμ for g = dν/dμ, the usual relative entropy func-

tional, and where C ≤ 40/9 is a universal constant.

Proof. By a standard approximation argument (e.g., convolve μ with a tiny

gaussian and restrict to the cube Q), we may assume that f and g are positive

and C1-smooth up to the boundary in Q, and in particular both functions are

positive and Lipschitz. According to Theorem 3.1 and Lemma 4.1,

W 2
2 (μ, ν) ≤ CR2 · T ire(g||f) ≤ CR2 ·D(ν||μ).

Transportation-cost inequalities such as Theorem 4.2 are the subject of the

comprehensive survey by Gozlan and Léonard [10]. The fact that transporta-

tion-cost inequalities imply concentration inequalities goes back to Marton [17].

The following proof reproduces her argument, and is included here for com-

pleteness.

Proof of Theorem 1.2. Denote E = Q \ (A + tBn). If μ(E) = 0 then there is

nothing to prove. Otherwise, we apply Theorem 4.2 for the measure ν = μ|E .
Thus there exists a coupling γ of μ and μ|E with∫

Q×E
|y − x|2dγ(x, y) ≤ 40

9
R2D(ν||μ) = 40

9
R2 · log 1

μ(E)
.

According to the Markov–Chebyshev inequality, there exists a subset F ⊆ Q×E
with γ(F ) ≥ 41/81 such that for any (x, y) ∈ F ,

(36) |y − x|2 ≤ 9R2 log
1

μ(E)
.

Since γ is a coupling and μ(A) ≥ 1/2 with γ(F ) ≥ 41/81, there exists (x, y) ∈ F

with x ∈ A. For such (x, y),

x ∈ A, y ∈ E and |x− y| ≤ 3R ·
√
log

1

μ(E)
,

where we used (36). However, all points in E are of distance at least t from all

points of A. Consequently,

t ≤ 3R ·
√
log

1

μ(E)
.
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Therefore, μ(E) ≤ exp(−t2/α2) for α = 3R and μ(A+ tBn) ≥ 1−exp(−t2/α2),

as required.

Proof of Theorem 1.1. Let T > 0. Observe that the validity of both the as-

sumptions and the conclusions of the theorem is not altered under the scaling

� �→ T �, M �→ T−2M.

We may thus normalize so that � = 1. All that remains is to verify that the

assumptions of Theorem 1.2 are satisfied with R = eM/8. Fix i = 1, . . . , n and

x ∈ Q and denote h(t) = ψ(x+ tei). Then h is well-defined on a certain interval

I ⊂ R of length one, and our goal is to show that for any a, b ∈ I and 0 < λ < 1,

(37) e−h(λa+(1−λ)b) ≤ eM/8[λe−h(a) + (1− λ)e−h(b)].

In view of the arithmetic/geometric means inequality, the desired inequality

(37) would follow once we establish that

(38) −h(λa+ (1− λ)b) ≤M/8− λh(a)− (1− λ)h(b).

In order to prove (38), we use our assumption that h′′(t) ≤ M in the interval

I. According to the Taylor theorem, for any x, y ∈ I,

(39) h(y)− h(x) − h′(x)(y − x) ≤M
(x − y)2

2
.

We will apply inequality (39) for y = a, b and x = λa + (1− λ)b, then add the

resulting inequalities with coefficients λ and 1− λ. This yields

(40) λh(a) + (1− λ)h(b)− h(λa+ (1− λ)b) ≤M
λ(1 − λ)(b − a)2

2
≤ M

8

as λ(1 − λ) ≤ 1/4 and |b− a| ≤ 1. The inequality (38) follows from (40).

It is well-known (see, e.g., V. Milman and Schechtman [20, Section 2 and

Appendix V]) that Theorem 1.1 implies a concentration inequality for Lipschitz

functions as follows:

Corollary 4.3: Let Q,μ, α be as in Theorem 1.1 (or as in Theorem 1.2). Let

f : Q→ R be a 1-Lipschitz function, i.e., |f(x)−f(y)| ≤ |x−y| for any x, y ∈ Q.

Denote E =
∫
Q
fdμ. Then, for any t > 0,

μ{x ∈ Q; |f(x)− E| ≥ t} ≤ Ce−ct
2/α2

,

where c, C > 0 are universal constants.
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In particular, we deduce from Corollary 4.3 that in the notation of Theorem

1.1,

(41) Cov(μ) ≤ Cα2 · Id

in the sense of symmetric matrices, where Cov(μ) is the covariance matrix of

the probability measure μ and C > 0 is a universal constant.

Remark 4.4: Regarding the dependence of α(�,M) on M in Theorem 1.1: Let

X0, . . . , Xn be independent standard Gaussian random variables. Consider the

random vector

Y =
(X1, . . . , Xn)

100
√
logn

+
(X0, . . . , X0)

100
√
logn

,

and let Z be the conditioning of Y to the cube Q = [−1/2, 1/2]n. Denote by μ

the distribution of Z, a probability measure on Q. It is not too difficult to verify

that μ satisfies the requirements of Theorem 1.1 with � = 1 and M = C logn.

Set

A =
{
x ∈ Q;

∑
i

xi ≤ 0
}
.

Then μ(A) = 1/2. However, one may compute that for any t ≤ cn1/2/
√
logn,

μ(A+ tBn) ≤ 2/3.

This shows that α(1, C logn) ≥ cn1/2/
√
logn. Therefore, the exponential de-

pendence of the dimension-free expression α(�,M) on �2M is inevitable. A

simple variant of this example shows that it is also impossible to replace the

cube Q of sidelength � in Theorem 1.1 by a Euclidean ball of radius �
√
n. For

another example in which the cube behaves better than the Euclidean ball, see

[13, Corollary 3].

It was explained by E. Milman [19] that in the log-concave case, Gaussian

concentration inequalities, quadratic transportation-cost inequalities, and log-

Sobolev inequalities are all essentially equivalent up to universal constants. In

particular, by using the results of Otto and Villani [21, Corollary 3.1], we deduce

from Theorem 4.2 the following log-Sobolev and Poincaré inequalities:

Corollary 4.5: Let �,M,Q, μ be as in Theorem 1.1 (or as in Theorem 1.2,

with � = 1 and R = eM/8). Then, for any locally-Lipschitz function f : Q → R
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with
∫
Q
f2dμ = 1,∫

Q

f2 log(f2)dμ ≤ C1�
2eM�2/4

∫
Q

|∇f |2dμ,

and for any integrable, locally-Lipschitz function f : Q→ R with
∫
Q fdμ = 0,∫

Q

f2dμ ≤ C2�
2eM�2/4

∫
Q

|∇f |2dμ.

Here, C1 ≤ 160/9 and C2 ≤ 20/9 are universal constants.

It is conceivable that Theorem 1.1 and Corollary 4.5 will turn out to be rele-

vant to the analysis of lattice models in physics. For instance, one may suggest

an Ising model with bounded, real spins as in Royer [22, Section 4.2] in which the

assumptions of Theorem 1.1 are satisfied. Essentially, we require that the spins

lie in the interval [−1, 1], that the entire Hamiltonian is convex (just convex, not

strictly-convex) and that the second derivatives of the pairwise potentials and

the self-interactions are bounded. Perhaps the logarithmic Sobolev inequality

of Corollary 4.5 may be of some use in this context.

5. Yet another approach for Theorem 4.2

In this section we present a sketch of an alternative proof of Theorem 4.2,

in the spirit of the transportation arguments of Cordero-Erausquin [6]. The

derivation below is applicable for the two types of transportation maps, Brenier

and Knothe.

Let f, g, μ and ν satisfy the assumptions of Theorem 4.2. As is explained

above, it suffices to consider the case where f and g are positive, Lipschitz

functions. In particular, it is well-known that both the Brenier map and the

Knothe map from μ to ν are C1-smooth up to the boundary (see Cordero-

Erausquin [7]).

Denote ψ = − log f , a convex function. Let F be any smooth transportation

map from μ to ν. Then, similarly to (8) above, we have

log | detF ′(x)| = −ψ(x) + ψ(F (x)) − log g(F (x)) (x ∈ Q)

where F ′(x) is the n×n matrix which is the derivative of F . In the case where

F is the Brenier map, the matrix F ′(x) is symmetric and positive-definite. In
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the case where F is the Knothe map, the matrix F ′(x) is upper-triangular with
positive entries on the diagonal. In both cases, denoting F = (F1, . . . , Fn),

(42) log | detF ′(x)| = log detF ′(x) ≤
n∑
i=1

log ∂iFi(x) (x ∈ Q).

Indeed, in the Knothe case (42) is simply an equality, while in the Brenier case

we may use Hadamard’s determinant inequality in order to establish (42). Next,

denote θ(x) = F (x) − x, so that ∂iFi(x) = 1 + ∂iθi(x). We use the elementary

inequality for the logarithm function in (10) and obtain

n∑
i=1

log ∂iFi(x) ≤
n∑
i=1

[
∂iθi(x)− 3

10
Λ(∂iθi(x))

]
.

The convexity of ψ implies that

ψ(F (x)) − ψ(x) ≥ ∇ψ(x) · (F (x) − x) = ∇ψ(x) · θ(x) =
n∑
i=1

θi(x)∂
iψ(x).

Combining all of the above, we arrive at the inequality

(43) log g(F (x)) ≥ 3

10

n∑
i=1

Λ(∂iθi(x)) −
n∑
i=1

[∂iθi(x)− ∂iψ(x) · θi(x)],

valid pointwise in Q. Here comes a fundamental property of both the Brenier

map and the Knothe map: In both cases, the map F preserves each of the

(n− 1)-dimensional facets of the cube Q. In other words, let A±
1 , . . . , A

±
n be an

enumeration of all the 2n facets of dimension n−1 of the cube Q. Assume that

±ei is the outer unit normal to the cube Q at the facet A±
i . We claim that for

any i,

(44) x ∈ A±
i =⇒ θi(x) = 0.

It is quite clear that (44) holds in the case of the Knothe map. In order to argue

for (44) in the Brenier case, recall that here

(F (x) − F (y)) · (x− y) > 0 (x, y ∈ Q, x = y)

as F is the gradient of a strictly-convex function. In particular, when F (x) ∈ A±
i

then necessarily x ± tei ∈ Q for t ∈ (0, ε) for some ε > 0. Hence F (x) ∈ A±
i

implies that x ∈ A±
i . Arguing similarly for the inverse map F−1, which is the

Brenier map from ν to μ, we conclude that (44) holds true in the Brenier case

as well.
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We may now multiply (43) by e−ψ and integrate over the cube Q. Observe

that for any i = 1, . . . , n,∫
Q

[∂iθi(x)− ∂iψ(x) · θi(x)]e−ψ =

∫
Q

∂i(θie
−ψ) = 0,

thanks to the boundary condition (44). Furthermore, this boundary condition

allows us to use the one-dimensional Lemma 2.5, and conclude that∫
Q

Λ(θi(x))dμ(x) ≤ 4R2

3

∫
Q

Λ(∂iθi(x))dμ(x)

for i = 1, . . . , n. We therefore obtain∫
Q

n∑
i=1

Λ(θi(x))dμ(x) ≤40

9
R2

∫
Q

[log g(F (x))]dμ(x)

=
40

9
R2

∫
Q

[log g(y)]dν(y).

It remains to note that always |θi(x)| = |Fi(x)− xi| ≤ 1 since Q is a unit cube.

Consequently Λ(θi(x)) = |θi(x)|2 and hence∫
Q

|F (x)− x|2dμ(x) =
∫
Q

|θ(x)|2dμ(x)

≤40

9
R2

∫
Q

[log g(y)]dν(y) =
40

9
R2 ·D(ν||μ).

This finishes the sketch of the alternative proof of Theorem 4.2.
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