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ABSTRACT

We present proofs of the reverse Santaló inequality, the existence of M -

ellipsoids and the reverse Brunn–Minkowski inequality, using purely con-

vex geometric tools. Our approach is based on properties of the isotropic

position.

Received December 16, 2011 and in revised form March 19, 2012

1



2 A. GIANNOPOULOS, G. PAOURIS AND B.-H. VRITSIOU Isr. J. Math.

1. Introduction

We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We denote

the corresponding Euclidean norm by ‖ · ‖2, and write Bn
2 for the Euclidean

unit ball, and Sn−1 for the unit sphere. Volume is denoted by | · |.
A convex body K in R

n is a compact convex subset of Rn with non-empty

interior. We say that K is symmetric if x ∈ K implies that −x ∈ K. We say

that K is centered if its barycenter is at the origin, i.e.
∫
K〈x, θ〉 dx = 0 for every

θ ∈ Sn−1. For every interior point x of K, we define the polar body (K − x)◦

of K with respect to x as follows:

(1.1) (K − x)◦ := {y ∈ R
n : 〈z − x, y〉 ≤ 1 for all z ∈ K}.

Note that (K − x)◦◦ = K − x.

The purpose of this article is to present an alternative route to some funda-

mental theorems of the asymptotic theory of convex bodies: the reverse Santaló

inequality, the existence of M -ellipsoids and the reverse Brunn–Minkowski in-

equality. The starting point for our approach is the isotropic position of a

convex body, which can be shown to simultaneously be an M -position for the

body if its isotropic constant is bounded. The new ingredient in this paper is a

way to also show, using only basic tools from the theory of convex bodies and

log-concave measures, that every convex body with bounded isotropic constant

satisfies the reverse Santaló inequality, and then that all bodies do.

We first recall the statements and the history of the results. The classical

Blaschke–Santaló inequality states that for every symmetric convex body K in

R
n, the volume product s(K) := |K||K◦| is less than or equal to the volume

product s(Bn
2 ), and equality holds if and only if K is an ellipsoid. More gener-

ally, for every convex body K, there exists a unique point z in the interior of

K such that

(1.2) |(K − z)◦| = inf
x∈int(K)

|(K − x)◦|,

and for this point we have

(1.3) |K||(K − z)◦| ≤ s(Bn
2 )

(with equality again if and only ifK is an ellipsoid). This unique point is usually

called the Santaló point of K and is characterized by the following property:

the polar body (K − z)◦ of K with respect to the point z has its barycenter at

the origin if and only if z is the Santaló point of K. Observe now that the body
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K − bar(K) is centered and it is the polar body of (K − bar(K))◦ with respect

to the origin, hence 0 is the Santaló point of (K − bar(K))◦. This means that

for every centered convex body K,

(1.4) s(K) = |K||K◦| = inf
x∈int(K◦)

|K◦||(K◦ − x)◦|,

and this allows us to restate the Blaschke–Santaló inequality in a more concise

way: for every centered convex body K in R
n, s(K) ≤ s(Bn

2 ), with equality if

and only if K is an ellipsoid.

In the opposite direction, a well-known conjecture of Mahler states that

s(K) ≥ 4n/n! for every symmetric body K, and that s(K) ≥ (n+ 1)n+1/(n!)2

in the not necessarily symmetric case. This has been verified for some classes

of bodies, e.g., zonoids and 1-unconditional bodies (see [28], [18], [30] and [10]).

The reverse Santaló inequality, or the Bourgain–Milman inequality, tells us that

there exists an absolute constant c > 0 such that

(1.5)

(
s(K)

s(Bn
2 )

)1/n

≥ c

for every convex body K in R
n which contains 0 in its interior. The inequality

was first proved in [5] and answers the question of Mahler in the asymptotic

sense: for every centered convex body K in R
n, the affine invariant s(K)1/n is

of the order of 1/n. A few other proofs have appeared (see [20], [15], [25]), the

most recent of which give the best lower bounds for the constant c and exploit

tools from quite diverse areas: Kuperberg in [15] shows that in the symmetric

case we have c ≥ 1/2, and his proof uses tools from differential geometry, while

Nazarov’s proof [25] uses multivariable complex analysis and leads to the bound

c ≥ π2/32. It should also be mentioned that Kuperberg had previously given

an elementary proof [14] of the weaker lower bound s(K)1/n ≥ c/(n logn).

The original proof of the reverse Santaló inequality in [5] employed a dimen-

sion descending procedure which was based on Milman’s quotient of subspace

theorem. Thus, an essential tool was the MM∗-estimate which follows from

Pisier’s inequality for the norm of the Rademacher projection. In [20], Milman

offered a second approach, which introduced an “isomorphic symmetrization”

technique. This is a symmetrization scheme which is in many ways different

from the classical symmetrizations. In each step, none of the natural parame-

ters of the body is being preserved, but the ones which are of interest remain

under control. The MM∗-estimate is again crucial for the proof.
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Our approach is based on properties of the isotropic position of a convex

body and combines a very simple one-step isomorphic symmetrization argument

(which is reminiscent of [20]) with the method of convex perturbations that

Klartag invented in [12] for his solution to the isomorphic slicing problem. Aside

from the use of the latter, the approach is elementary, in the sense that it uses

only standard tools from convex geometry, namely, some classical consequences

of the Brunn–Minkowski inequality. Recall that a convex body K in R
n is called

isotropic if it has volume 1, it is centered and its inertia matrix is a multiple of

the identity: there exists a constant LK > 0 such that

(1.6)

∫
K

〈x, θ〉2dx = L2
K

for every θ ∈ Sn−1. It is relatively easy to show that every convex body has an

isotropic position and that this position is well-defined (by this we mean unique

up to orthogonal transformations): if K is a centered convex body, then any

linear image K̃ of K which has volume 1 and satisfies

(1.7)

∫
K̃

‖x‖22 dx = inf
{∫

T (K̃)

‖x‖22 dx : T is linear and volume-preserving
}

is an isotropic image of K. This also implies that any isotropic image of K

has the same isotropic constant, and thus LK can be defined for the entire

affine class of K. One of the main problems in the asymptotic theory of convex

bodies is the hyperplane conjecture, which, in an equivalent formulation, says

that there exists an absolute constant C > 0 such that

(1.8) Ln := max{LK : K is isotropic in R
n} ≤ C.

A classical reference on the subject is the paper of Milman and Pajor [21] (see

also [7]). The problem remains open: Bourgain [4] has obtained the upper bound

LK ≤ c 4
√
n logn, and Klartag [12] has improved that to LK ≤ c 4

√
n—see also

[13]. However, in this paper we only need a few basic results from the theory of

isotropic convex bodies and, more generally, of isotropic log-concave probability

measures. All this background information is given in Section 2; there we also

list a few more necessary tools from the general asymptotic theory of convex

bodies.

In Section 3 we prove the reverse Santaló inequality in two stages. First,

using elementary covering estimates, we prove a version of it which involves the

isotropic constant LK of K.
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Theorem 1.1: Let K be a convex body in R
n which contains 0 in its interior.

Then 4ns(K)1/n ≥ ns(K − K)1/n ≥ c1/LK , where c1 > 0 is an absolute

constant.

Then, we use Klartag’s ideas from [12] to show that every symmetric convex

body K is “close” to a convex body T with isotropic constant LT bounded by

1/
√
ns(K)1/n.

Theorem 1.2: LetK be a symmetric convex body in R
n. There exists a convex

body T in R
n such that (i) c2K ⊆ T−T ⊆ c3K and (ii) LT ≤ c4/

√
ns(K)1/n,

where c2, c3, c4 > 0 are absolute constants.

Since K and T −T have bounded geometric distance, we easily check that

s(K)1/n 
 s(T−T )1/n. Then we can use Theorem 1.1 for T to obtain the lower

bound LT ≥ c5/
(
ns(K)1/n

)
. Combining this estimate with Theorem 1.2(ii), we

immediately get the reverse Santaló inequality for symmetric bodies, and hence

for all bodies.

Theorem 1.3: Let K be a symmetric convex body in R
n. Then s(K)1/n ≥

c6/n, where c6 > 0 is an absolute constant.

In Section 4 we briefly indicate how one can use Theorem 1.3 in order to estab-

lish the existence of M -ellipsoids and the reverse Brunn–Minkowski inequality.

The procedure is rather standard.

The existence of an “M -ellipsoid” associated with any centered convex body

K in R
n was proved by Milman in [19] (see also [20]): there exists an absolute

constant c > 0 such that for any centered convex body K in R
n we can find an

origin symmetric ellipsoid EK satisfying |K| = |EK | and

(1.9)

1

c
|EK + T |1/n ≤ |K + T |1/n ≤ c|EK + T |1/n,

1

c
|E◦

K + T |1/n ≤ |K◦ + T |1/n ≤ c|E◦
K + T |1/n,

for every convex body T inR
n. The existence ofM -ellipsoids can be equivalently

established by introducing the M -position of a convex body. To any given

centered convex body K in R
n we can apply a linear transformation and find a

position K̃ = uK(K) of volume |K̃| = |K| such that (1.9) is satisfied with EK a

multiple of Bn
2 . This is the so-called M -position of K. It follows then that for
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every pair of convex bodies K1 and K2 in R
n and for all t1, t2 > 0,

(1.10) |t1K̃1 + t2K̃2|1/n ≤ c′
(
t1|K̃1|1/n + t2|K̃2|1/n

)
,

where c′ > 0 is an absolute constant, and that (1.10) remains true if we replace

K̃1 or K̃2 (or both) by their polars. This statement is Milman’s reverse Brunn–

Minkowski inequality.

Another way to define the M -position of a convex body is through covering

numbers. Recall that the covering number N(A,B) of a body A by a second

body B is the least integer N for which there exist N translates of B whose

union covers A. Then, as Milman proved, there exists an absolute constant

β > 0 such that every centered convex body K in R
n has a linear image K̃

which satisfies |K̃| = |Bn
2 | and

(1.11) max{N(K̃, Bn
2 ), N(Bn

2 , K̃), N(K̃◦, Bn
2 ), N(Bn

2 , K̃
◦)} ≤ exp(βn).

We say that a convex body K which satisfies (1.11) is in M -position with

constant β. If K1 and K2 are two such convex bodies, there is a standard way

to show that they and their polar bodies satisfy the reverse Brunn–Minkowski

inequality (1.10). Note that M -ellipsoids and the M -position of a convex body

are not uniquely defined; see [2] for a recent description in terms of isotropic

restricted Gaussian measures.

Pisier (see [26] and [27, Chapter 7]) has proposed a different approach to

these results, which allows one to find a whole family of special M -ellipsoids

satisfying stronger entropy estimates. The precise statement is as follows. For

every 0 < α < 2 and every symmetric convex body K in R
n, there exists a

linear image K̃ of K which satisfies |K̃| = |Bn
2 | and

(1.12)

max{N(K̃, tBn
2 ), N(Bn

2 , tK̃), N(K̃◦, tBn
2 ), N(Bn

2 , tK̃
◦)} ≤ exp

(
c(α)n

tα

)

for every t ≥ 1, where c(α) is a constant depending only on α, with c(α) =

O
(
(2 − α)−1

)
as α → 2. We then say that K̃ is in M -position of order α (or

α-regular M -position). It is an interesting question to give an elementary proof

of the existence of, say, a 1-regular M -position. Another interesting question

is to check if the isotropic position is α-regular for some α ≥ 1 (assuming that

LK 
 1).
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2. Tools from asymptotic convex geometry

2.1. Basic notation. As mentioned at the beginning of the Introduction, we

denote the Euclidean norm on R
n by ‖·‖2. More generally, if B is any symmetric

convex body in R
n, we write ‖ ·‖B for the norm induced on R

n by B. For every

q ≥ 1, every convex body K and every symmetric convex body B, we define

(2.1) Iq(K,B) :=

(
1

|K|1+ q
n

∫
K

‖x‖qB dx

)1/q

.

If B is the Euclidean ball Bn
2 and K is an isotropic convex body in R

n, then

from (1.6) we see that

(2.2) I22 (K,Bn
2 ) =

∫
K

‖x‖22 dx =

∫
K

( n∑
i=1

〈x, ei〉2
)
dx = nL2

K ,

so LK = I2(K,Bn
2 )/

√
n. More generally, as was explained in the Introduction,

if K is an arbitrary convex body in R
n, and we write K̃ for the translate of K

which is centered, K̃ = K−bar(K), then the isotropic constant LK of K can

be defined by

(2.3)

LK :=
1√
n

inf
{
I2
(
T (K̃), Bn

2

)
: T is an invertible linear transformation

}
.

In the sequel, we write B for the homothetic image of volume 1 of a convex

body B ⊂ R
n, i.e. B := B

|B|1/n .
As a generalization to convex bodies, we also consider logarithmically concave

(or log-concave) measures on R
n. This more general approach is justified by a

well-known and very fruitful idea of K. Ball from [1] which allows one to transfer

results from the setting of convex bodies to the broader setting of log-concave

measures and vice versa. We write P[n] for the class of all Borel probability

measures on R
n which are absolutely continuous with respect to the Lebesgue

measure. The density of μ ∈ P[n] is denoted by fμ. A probability measure

μ ∈ P[n] is called symmetric if fμ is an even function on R
n. We say that

μ ∈ P[n] is centered if for all θ ∈ Sn−1,

(2.4)

∫
Rn

〈x, θ〉dμ(x) =
∫
Rn

〈x, θ〉fμ(x)dx = 0.

A measure μ on R
n is called log-concave if for any Borel subsets A and B

of R
n and any λ ∈ (0, 1), μ(λA + (1 − λ)B) ≥ μ(A)λμ(B)1−λ. A function

f : Rn → [0,∞) is called log-concave if log f is concave on its support {f > 0}.
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It is known that if a probability measure μ is log-concave and μ(H) < 1 for

every hyperplane H , then μ ∈ P[n] and its density fμ is log-concave (see [3]).

Note that if K is a convex body in R
n, then the Brunn–Minkowski inequality

implies that 1K is the density of a log-concave measure.

There is also a way to generalize the notion of the isotropic constant of a

convex body in the setting of log-concave measures. Set

(2.5) ‖μ‖∞ = sup
x∈Rn

fμ(x).

The isotropic constant of μ is defined by

(2.6) Lμ :=

( ‖μ‖∞∫
Rn fμ(x)dx

) 1
n

[detCov(μ)]
1
2n ,

where Cov(μ) is the covariance matrix of μ with entries

(2.7) Cov(μ)ij :=

∫
Rn xixjfμ(x) dx∫

Rn fμ(x) dx
−

∫
Rn xifμ(x) dx∫
Rn fμ(x) dx

∫
Rn xjfμ(x) dx∫
Rn fμ(x) dx

(in the case that μ is a centered probability measure, we can write more simply

Cov(μ)ij :=
∫
Rn xixjfμ(x) dx). It is straightforward to see that this definition

coincides with the original definition of the isotropic constant when fμ is the

characteristic function of a convex body. In addition, any bounds that we have

for the isotropic constants of convex bodies continue to hold essentially in this

more general setting. This can be seen through the following construction: let

μ ∈ P[n] and assume that 0 ∈ supp(μ). For every p > 0, we define a set Kp(μ)

as follows:

(2.8) Kp(μ) :=

{
x ∈ R

n : p

∫ ∞

0

fμ(rx)r
p−1dr ≥ fμ(0)

}
.

The sets Kp(μ) were introduced in [1] and allow us to study log-concave mea-

sures using convex bodies. K. Ball proved that if μ is log-concave, then Kp(μ)

is a convex body. Moreover, if μ is centered, then Kn+1(μ) is also centered, and

we can prove that

(2.9) c1LKn+1(μ) ≤ Lμ ≤ c2LKn+1(μ)

for some constants c1, c2 > 0 independent of n.

For basic facts from the Brunn–Minkowski theory and the asymptotic theory

of finite-dimensional normed spaces, we refer to the books [31], [24] and [27].

The letters c, c′, c1, c2 etc. denote absolute positive constants whose value

may change from line to line. Whenever we write a 
 b for two quantities a, b
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associated with convex bodies or measures on R
n, we mean that we can find

positive constants c1, c2, independent of the dimension n, such that c1a ≤ b ≤
c2a. Also, if K,L ⊆ R

n, we will write K 
 L if there exist absolute positive

constants c1, c2 such that c1K ⊆ L ⊆ c2K.

In the rest of the Section, we collect several tools and results from the

asymptotic theory of convex bodies which will be used in Section 3.

2.2. Some lemmas on covering numbers. Let K,B be convex bodies in

R
n with B symmetric. One can give an estimate for the covering numbers

N(K, tB), t > 0, in terms of the quantity

(2.10) I1(K,B) =
1

|K|1+ 1
n

∫
K

‖x‖B dx.

Lemma 2.1: Let K be a convex body of volume 1 in R
n containing 0 as an

interior point. For any symmetric convex body B in R
n and any t > 0, one has

(2.11) logN(K, tB) ≤ c1nI1(K,B)

t
+ log 2,

where c1 > 0 is an absolute constant.

Remark 2.1: (i) In the case that B is the Euclidean ball Bn
2 andK is an isotropic

convex body, we have that I1(K,B) ≤ √
nLK and therefore

(2.12) logN(K, tBn
2 ) ≤

c′1n
3/2LK

t

for any t > 0 (for very large t the estimate is trivially true, since every isotropic

body K satisfies the inclusion K ⊆ cnLKBn
2 for some absolute constant c > 0;

see, e.g., [7, Theorem 1.2.4]). Given (1.7), this is essentially the best way we

can apply Lemma 2.1 when B = Bn
2 . This version of the lemma appeared in

the Ph.D. Thesis of Hartzoulaki [11] (see [7, Theorem 1.6.4]), but the same

argument yields Lemma 2.1 too (the key idea of that argument comes from

Talagrand’s proof of the dual Sudakov inequality). The parameter I1(K,Bn
2 )

has been used again in entropy estimates for isotropic convex bodies [22], and

also in a proof of the low M∗-estimate in the case of quasi-convex bodies [17] .

(ii) Knowing that we have for any set S,

(2.13) N(S − S, 2Bn
2 ) = N(S − S,Bn

2 −Bn
2 ) ≤ N(S,Bn

2 )
2,
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we can use (2.12) to also get an upper bound for the covering numbers of the

difference body of an isotropic convex body K by the Euclidean ball:

(2.14) logN(K −K, tBn
2 ) ≤

2c′1n
3/2LK

t
.

(iii) Lemma 2.1 is also related to the problem of estimating the mean width of

an isotropic convex body K, namely the parameter w(K) :=
∫
Sn−1 hK(θ)dσ(θ)

where hK is the support function of K and σ is the uniform probability measure

on Sn−1. The best upper bound we have is w(K) ≤ cn3/4LK (there are several

arguments leading to this estimate; see [9] and the references therein). It is

known (see, e.g., [8, Theorem 5.6]) that an improvement of the form

(2.15) logN(K, tBn
2 ) ≤

c′1n
3/2LK

t1+δ

(for some δ > 0) in (2.12) would immediately imply a better bound for w(K)

in the isotropic case.

The next lemma allows us to bound the dual covering numbers N(Bn
2 , tK

◦)
(the proof, which we include for the reader’s convenience, uses a well-known

idea from [32]; see also [16, Section 3.3]).

Lemma 2.2: Let K be a convex body in R
n which contains 0 in its interior.

For every t > 0 we set A(t) := t logN(K, tBn
2 ) and B(t) := t logN(Bn

2 , tK
◦).

Then, one has

(2.16) sup
t>0

B(t) ≤ 16 sup
t>0

A(t).

In particular, if K is isotropic (or a translate of an isotropic convex body which

still contains 0 in its interior), then (2.12) and (2.14) imply that

(2.17) logN(Bn
2 , tK

◦) ≤ logN
(
Bn

2 , t(K −K)◦
) ≤ c2n

3/2LK

t
,

where c2 > 0 is an absolute constant.

Proof. For any t > 0 we have (t2K◦) ∩ (4K) ⊆ 2tBn
2 . Passing to the polar

bodies we see that

(2.18) Bn
2 ⊆ conv

(
t

2
K◦,

2

t
K

)
⊆ t

2
K◦ +

2

t
K.
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We write

(2.19)

N(Bn
2 , tK

◦) ≤ N

(
t

2
K◦ +

2

t
K, tK◦

)
= N

(
2

t
K,

t

2
K◦

)

≤ N

(
2

t
K,

1

4
Bn

2

)
N

(
1

4
Bn

2 ,
t

2
K◦

)

= N

(
K,

t

8
Bn

2

)
N(Bn

2 , 2tK
◦).

Taking logarithms we get B(t) ≤ 8A(t/8) + 1
2B(2t), for all t > 0. This implies

that B := supt>0 B(t) ≤ 16A, and the result follows.

The last covering lemma contains some standard entropy estimates which are

valid for arbitrary convex bodies in R
n.

Lemma 2.3: Let K and L be convex bodies in R
n. If L is symmetric, then

(2.20) N(K,L) ≤ |K + L/2|
|L/2| ≤ 2n

|K + L|
|L| ,

whereas in the general case

(2.21) N(K,L) ≤ 4n
|K + L|

|L| .

Moreover,

(2.22)
|K + L|

|L| ≤ 2nN(K,L).

Proof. Both (2.22) and (2.20) are direct consequences of the definitions (recall

that if N is a maximal subset of K with respect to the property “if x, y ∈ N and

x �= y, then ‖x−y‖L ≥ 1”, we obviously have that every two sets x+L/2, y+L/2

with x, y ∈ N, x �= y, have disjoint interiors, while K ⊆ ⋃
x∈N(x+L)). To prove

(2.21), we note that N(K + x, L + y) = N(K,L) for every x, y ∈ R
n, and also

that the ratio |K+L|/|L| remains unaltered if we translate K or L. This means

that we can assume L is centered, in which case it follows from [23, Corollary

3] that |L ∩ (−L)| ≥ 2−n|L|. But then, from (2.20) we get that

(2.23) N(K,L) ≤ N(K,L ∩ (−L)) ≤ 2n
|K + (L ∩ (−L))|

|L ∩ (−L)| ≤ 4n
|K + L|

|L| ,

and we have (2.21).
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Corollary 2.4: Let K and L be two convex bodies in R
n. Then

(2.24) N(K,L)1/n 
 |K + L|1/n
|L|1/n .

It also follows that if K and L have the same volume, then

(2.25) N(K,L)1/n ≤ 8N(L,K)1/n.

2.3. The method of convex perturbations. In [12] Klartag gave an

affirmative answer to the following question: even if we don’t know that ev-

ery convex body in R
n has bounded isotropic constant, given a body K can

we find a second body T “geometrically close” to K with isotropic constant

LT 
 1? Here when we say that K and T are “geometrically close”, we will

mean that there exists an absolute constant c > 0 such that for some x, y ∈ R
n,

(2.26)
1

c
(T − x) ⊆ K − y ⊆ c(T − x).

The method Klartag used is based on two key observations. The first one is

that in order to find a body T close to K which has bounded isotropic constant,

it suffices to define a positive log-concave function on K (vanishing everywhere

else) with bounded isotropic constant and the extra property that its range is

not too large.

Proposition 2.5: Let K be a convex body in R
n and let f : K → (0,∞) be

a log-concave function such that

(2.27) sup
x∈K

f(x) ≤ mn inf
x∈K

f(x)

for some m > 1. Let x0 be the barycenter of f , i.e.,

x0 =

∫
Rn xf(x) dx∫
Rn f(x) dx

,

and set g(x) = f(x + x0). Then, for the centered convex body T := Kn+1(g),

defined as in (2.8), we have that Lf 
 LT and

(2.28)
1

m
T ⊆ K − x0 ⊆ mT.

The second observation is that a family of suitable candidates for the function

f we need so as to apply Proposition 2.5 can be found through the logarithmic
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Laplace transform on K. In general, the logarithmic Laplace transform of a

finite Borel measure μ on R
n is defined by

(2.29) Λμ(ξ) := log

(∫
Rn

e〈ξ,x〉
dμ(x)

μ(Rn)

)
.

In [12], Klartag makes use of the following properties of Λμ:

Proposition 2.6: Let μ = μK denote the Lebesgue measure on some convex

body K in R
n. Then

(2.30)
(∇Λμ

)
(Rn) = int(K)

(actually, for the arguments in [12] and for our proof here, it suffices to know

that
(∇Λμ

)
(Rn) ⊆ K). If μξ is the probability measure on R

n with density

proportional to the function e〈ξ,x〉1K(x), then

(2.31) bar(μξ) = ∇Λμ(ξ) and Hess (Λμ)(ξ) = Cov(μξ).

Moreover, the map ∇Λμ, which is one-to-one, transports the measure ν with

density detHess (Λμ) to μ. In other words, for every continuous non-negative

function φ : Rn → R,

(2.32)∫
K

φ(x) dx =

∫
Rn

φ(∇Λμ(ξ)) det Hess(Λμ)(ξ) dξ =

∫
Rn

φ(∇Λμ(ξ))dν(ξ).

Klartag’s approach has been recently applied in [6] where Dadush, Peikert

and Vempala provide an algorithm for enumerating lattice points in a convex

body, a result which has further applications to integer programming and other

problems about lattice points. In particular, they use the arguments from [12]

in order to give an expected 2O(n)-time algorithm for computing an M -ellipsoid

for any convex body in R
n.

3. Proof of the reverse Santaló inequality

We now prove the reverse Santaló inequality using the results that were de-

scribed in Section 2. The proof consists of three steps which roughly are the

following: (i) we obtain a lower bound for the volume product s(K) which is

optimal up to the value of the isotropic constant LK of K, (ii) by adapting

Klartag’s main argument from [12] we show that every symmetric convex body

K has bounded geometric distance (in the sense defined in (2.26)) from a second

convex body T whose isotropic constant LT can be expressed in terms of s(K),
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and (iii) we use the lower bound for s(T ) in terms of LT , and the fact that s(K)

and s(T ) are comparable, to get a lower bound for s(K) in which LK does not

appear anymore.

3.1. Lower bound involving the isotropic constant. Our first step will

be to prove the following lower bound for s(K).

Proposition 3.1: Let K be a convex body in R
n which contains 0 in its

interior. Then

(3.1) 4|K|1/n|nK◦|1/n ≥ |K −K|1/n|n(K −K)◦|1/n ≥ c1
LK

,

where c1 > 0 is an absolute constant.

Proof. Wemay assume that |K|=1. From the Brunn–Minkowski inequality and

the classical Rogers–Shephard inequality (see [29]), we have 2≤|K −K|1/n≤4.

Since (K −K)◦ ⊆ K◦, we immediately see that

(3.2) |K|1/n|nK◦|1/n ≥ 1

4
|K −K|1/n|n(K −K)◦|1/n,

so it remains to prove the second inequality. Since

(3.3)
∣∣A(K)−A(K)

∣∣∣∣(A(K)−A(K)
)◦∣∣ = |K −K||(K −K)◦|

for any invertible affine transformation A of K, we may assume for the rest of

the proof that K is isotropic. We define

(3.4) K1 :=
K −K

LK
∩B

n

2

and observe that the inclusion K1 ⊆ B
n

2 implies that B
n

2 ⊆ c1nK
◦
1 for some

absolute constant c1 > 0. Moreover,

(3.5) nK◦
1 
 conv{nLK(K −K)◦, B

n

2} ⊆ nLK(K −K)◦ +B
n

2 ,

therefore we can use (2.22) from Lemma 2.3 to bound |nK◦
1 | from above; recall-

ing (2.17) from Lemma 2.2 as well (with t 
 √
nLK), we see that

(3.6)

c−n
1 ≤ |nK◦

1 | ≤ cn2 |conv{nLK(K −K)◦, B
n

2 }|
≤ (2c2)

n|nLK(K −K)◦|N
(
B

n

2 , nLK(K −K)◦
)

≤ (2c2)
n|nLK(K −K)◦|N(

Bn
2 , c3

√
nLK(K −K)◦

)
≤ ec4n|nLK(K −K)◦|.
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This shows that there exists an absolute constant c′1 > 0 so that

(3.7) |nLK(K −K)◦|1/n ≥ c′1,

and since |K −K|1/n ≥ 2, we have proven that

(3.8) |K −K|1/n|(K −K)◦|1/n ≥ 2c′1
nLK

.

3.2. A variant of Klartag’s argument. Our second step will be to show

that every convex body K in R
n has bounded geometric distance from a second

convex body T whose isotropic constant LT can be bounded in terms of s(K−K).

Proposition 3.2: Let K be a convex body in R
n. For every ε ∈ (0, 1) there

exist a centered convex body T ⊂ R
n and a point x ∈ R

n such that

(3.9)
1

1 + ε
T ⊆ K + x ⊆ (1 + ε)T

and

(3.10) LT ≤ c2√
εns(K−K)1/n

,

where c2 > 0 is an absolute constant.

Proof. We may assume that K is centered and that |K−K| = 1. Indeed, once

we prove the proposition for K̃ := (K−bar(K))/|K−K|1/n and some ε ∈ (0, 1),

and find a convex body T which satisfies (3.9) and (3.10) with K̃ instead of

K, it will immediately hold that the pair (K, |K−K|1/nT ) also satisfies these

properties, because LT and s(K−K) are affine invariants.

Recall from Proposition 2.6 that if μ = μK is the Lebesgue measure restricted

on K, then the function ∇Λμ transports the measure ν with density

(3.11)
dν

dξ
= detHess (Λμ)(ξ) ≡ detCov(μξ)

to μ. This implies that

(3.12) ν(Rn) =

∫
Rn

1 detHess (Λμ)(ξ) dξ =

∫
K

1 dx = |K| ≤ |K−K| = 1.

Thus, for every ε > 0 we may write

(3.13) |εn(K−K)◦| min
ξ∈εn(K−K)◦

detCov(μξ)

≤
∫
εn(K−K)◦

detCov(μξ) dξ = ν(εn(K−K)◦) ≤ 1,
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which means that there exists ξ ∈ εn(K−K)◦ such that

(3.14)

detCov(μξ) = min
ξ′∈εn(K−K)◦

det Cov(μξ′) ≤ |εn(K−K)◦|−1 =
(
εns(K−K)1/n

)−n

(where the last equality holds because |K −K| = 1). Now, from the definition

of μξ and (2.6) we have that

(3.15) Lμξ
=

(
supx∈K e〈ξ,x〉∫

K
e〈ξ,x〉dx

) 1
n

[det Cov(μξ)]
1
2n .

Since ξ ∈ εn(K−K)◦ and K ∪ (−K) ⊂ K−K, we know that |〈ξ, x〉| ≤ εn for

all x ∈ K, therefore supx∈K e〈ξ,x〉 ≤ exp(εn). On the other hand, since K is

centered, from Jensen’s inequality we have that

(3.16)
1

|K|
∫
K

e〈ξ,x〉dx ≥ exp

(
1

|K|
∫
K

〈ξ, x〉 dx
)

= 1,

which means that
∫
K e〈ξ,x〉dx ≥ |K| ≥ 4−n|K−K| by the Rogers–Shephard

inequality. Combining all these we get

(3.17) Lμξ
≤ 4eε√

εns(K−K)1/n
.

Finally, we note that the function fξ(x) = e〈ξ,x〉1K(x) (which is proportional

to the density of μξ) is obviously log-concave and satisfies

(3.18) sup
x∈supp(fξ)

fξ(x) ≤ e2εn inf
x∈supp(fξ)

fξ(x)

(since |〈ξ, x〉| ≤ εn for all x ∈ K). Therefore, applying Proposition 2.5, we can

find a centered convex body Tξ in R
n such that

(3.19) LTξ

 Lfξ = Lμξ

≤ 4eε√
εns(K−K)1/n

and

(3.20)
1

e2ε
Tξ ⊆ K − bξ ⊆ e2εTξ

where bξ is the barycenter of fξ. Since e2ε ≤ 1 + cε when ε ∈ (0, 1), the result

follows.
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3.3. Removing the isotropic constant. Combining the previous two re-

sults we can remove the isotropic constant LK from the lower bound for s(K)1/n.

Theorem 3.3: Let K be a convex body in R
n which contains 0 in its interior.

Then

(3.21) |K|1/n|nK◦|1/n ≥ c3,

where c3 > 0 is an absolute constant.

Proof. Since |K|1/n|nK◦|1/n ≥ 1
4 |K−K|1/n|n(K−K)◦|1/n, we may assume for

the rest of the proof that K is symmetric. Using Proposition 3.2 with ε = 1/2,

we find a convex body T ⊂ R
n and a point x ∈ R

n such that

(3.22)
2

3
T ⊆ K + x ⊆ 3

2
T

and LT ≤ c0/
√
ns(K)1/n for some absolute constant c0 > 0. Proposition 3.1

shows that

(3.23) |T − T |1/n|n(T − T )◦|1/n ≥ c1
LT

,

where c1 > 0 is an absolute constant too. Observe that 2
3 (T − T ) ⊆ K −K =

2K ⊆ 3
2 (T − T ), and thus K◦ ⊇ 4

3 (T − T )◦. Therefore, combining the above,

we get

(3.24)

ns(K)1/n = |nK◦|1/n|K|1/n ≥ 4

9
|n(T − T )◦|1/n|T − T |1/n

≥ c′1
LT

≥ c2

√
ns(K)1/n,

and so it follows that

(3.25) s(K)1/n ≥ c3
n

with c3 = c22. This completes the proof.

Remark 3.1: Having proved the reverse Santaló inequality, one can go back to

Proposition 3.2 and insert the lower bound for s(K−K), exactly as in Klartag’s

solution of the isomorphic slicing problem. We see that if K is a convex body

in R
n, then for every ε ∈ (0, 1) there exist a centered convex body T ⊂ R

n and

a point x ∈ R
n such that

(3.26)
1

1 + ε
T ⊆ K + x ⊆ (1 + ε)T
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and

(3.27) LT ≤ c4√
ε
,

where c4 > 0 is an absolute constant.

4. M-ellipsoids and the reverse Brunn–Minkowski inequality

Pisier notes in [27] that the asymptotic form of the Santaló inequality and its

inverse and the existence of an M -position for any convex body are intercon-

nected results. In fact, there is a standard way to prove the reverse Santaló

inequality if we know that every centered convex body has an M -ellipsoid (see

the final comment of this paper). In this last Section we briefly discuss how

one can establish the inverse implication and, as a consequence, get the reverse

Brunn–Minkowski inequality too, using simple “geometric” arguments.

4.1. Existence of M -ellipsoids. Let K be a centered convex body in R
n.

We will give a proof of the existence of an M -ellipsoid for K. The next Propo-

sition is the first step.

Proposition 4.1: Let K be a centered convex body in R
n. Then there exists

an ellipsoid EK such that |K| = |EK | and
(4.1) max{logN(K, tEK), logN(E◦

K , tK◦)} ≤ cn

t

for all t > 0, where c > 0 is an absolute constant.

Proof. As explained in Remark 3.1, we can combine Theorem 3.3 with Proposi-

tion 3.2 to find a centered convex body T with isotropic constant LT ≤ C such

that

(4.2)
2

3
T ⊆ K + x ⊆ 3

2
T

for some x ∈ R
n. Let Q(T ) be an isotropic position of T . From Remark 2.1(ii)

and Lemma 2.2 we know that

(4.3)

max{logN(
Q(T )−Q(T ), t

√
nBn

2

)
, logN

(
Bn

2 , t
√
n(Q(T )−Q(T ))◦

)} ≤ cn

t

for every t > 0. Since

(4.4)
2

3
(Q(T )−Q(T )) ⊆ Q(K)−Q(K) ⊆ 3

2
(Q(T )−Q(T ))
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and Q(K) ⊆ Q(K)−Q(K), (Q(K)−Q(K))◦ ⊆ (Q(K))◦, from (4.3) it follows

that

(4.5) max{logN(
Q(K), t

√
nBn

2

)
, logN

(
Bn

2 , t
√
n(Q(K))◦

)} ≤ c′n
t

for every t > 0. We define EK := Q−1(a
√
nBn

2 ) where a is chosen so that

|Q(K)| = |a√nBn
2 | (equivalently, so that |EK | = |K|), and from (4.5) we get

that

(4.6) max{logN(K, tEK), logN(E◦
K , tK◦)} ≤ c′an

t

for all t > 0. It remains to observe that

(4.7) |√nBn
2 |1/n 
 1 = |Q(T )|1/n 
 |Q(K + x)|1/n = |Q(K)|1/n,

whence it follows that a 
 1.

Combining Proposition 4.1 with the classical Santaló inequality and Corollary

2.4, we can now prove the existence ofM -ellipsoids for any centered convex body

in R
n.

Theorem 4.2: Let K be a centered convex body in R
n. There exists an ellip-

soid EK such that |K| = |EK | and
(4.8)

max
{
logN(K, EK), logN(EK ,K), logN(K◦, E◦

K), logN(E◦
K ,K◦)

} ≤ cn,

where c > 0 is an absolute constant.

Proof. Let EK be the ellipsoid defined in Proposition 4.1. It immediately follows

that

(4.9) max
{
N(K, EK), N(E◦

K ,K◦)
} ≤ exp(cn).

For the other two covering numbers we use Lemma 2.3: N(EK ,K)≤8nN(K, EK),

which means that logN(EK ,K) ≤ (log 8)n+ logN(K, EK). Similarly,

(4.10) N(K◦, E◦
K) ≤ 2n

|K◦ + E◦
K |

|E◦
K | ≤ 2n

|K◦ + E◦
K |

|K◦| ≤ 4nN(E◦
K ,K◦),

where we have also used the fact that |K| = |EK | ⇒ |K◦| ≤ |E◦
K | from the

classical Santaló inequality. This completes the proof.



20 A. GIANNOPOULOS, G. PAOURIS AND B.-H. VRITSIOU Isr. J. Math.

4.2. Reverse Brunn–Minkowski inequality. As a consequence of Theo-

rem 4.2 and Corollary 2.4, we get the “reverse” Brunn–Minkowski inequality.

Theorem 4.3: Let K be a centered convex body in R
n. There exists an ellip-

soid EK such that |K| = |EK | and for every convex body T in R
n,

e−(c+log8) |EK + T |1/n ≤ |K + T |1/n ≤ ec+log8 |EK + T |1/n,(4.11)

e−(c+log8) |E◦
K + T |1/n ≤ |K◦ + T |1/n ≤ ec+log8 |E◦

K + T |1/n,(4.12)

where c is the constant we found in Theorem 4.2.

Proof. Let EK be the ellipsoid defined in Proposition 4.1. Using Lemma 2.3,

we can write

(4.13)
|EK + T |1/n ≤ 2|T |1/nN(EK , T )1/n ≤ 2|T |1/nN(EK ,K)1/nN(K,T )1/n

≤ 2ec|T |1/nN(K,T )1/n ≤ 8ec|K + T |1/n.
The same reasoning gives us the second part of (4.11) and (4.12).

To conclude this discussion, let us finally explain why, once we know that for

every centered convex body K there exists an ellipsoid EK such that

(4.14)

max
{
logN(K, EK), logN(EK ,K), logN(K◦, E◦

K), logN(E◦
K ,K◦)

} ≤ cn

for some absolute constant c > 0, it is easy to prove that

(4.15) e−2(c+log8)s(Bn
2 ) ≤ s(K) ≤ e2(c+log8)s(Bn

2 )

for all centered bodies K. Indeed, if EK is an M -ellipsoid for K as above, then

from Lemma 2.3,

|EK +K|1/n
|K|1/n ≤ 2N(EK ,K)1/n ≤ 2ec ≤ 2ecN(K, EK)1/n ≤ 8ec

|EK +K|1/n
|EK |1/n ,

so |EK |1/n ≤ 8ec|K|1/n, and in the same manner

(4.16) max
{ |K|1/n
|EK |1/n ,

|E◦
K |1/n

|K◦|1/n ,
|K◦|1/n
|E◦

K |1/n
}
≤ 8ec.

(4.15) now follows.
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