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ABSTRACT

In this paper we answer a question of Gabriel Navarro about orbit sizes of

a finite linear group H ⊆ GL(V ) acting completely reducibly on a vector

space V : if the H-orbits containing the vectors a and b have coprime

lengths m and n, we prove that the H-orbit containing a + b has length

mn. Such groups H are always reducible if n,m > 1. In fact, if H is an

irreducible linear group, we show that, for every pair of non-zero vectors,

their orbit lengths have a non-trivial common factor.

In the more general context of finite primitive permutation groups G,

we show that coprime non-identity subdegrees are possible if and only

if G is of O’Nan-Scott type AS, PA or TW. In a forthcoming paper we

will show that, for a finite primitive permutation group, a set of pairwise

coprime subdegrees has size at most 2. Finally, as an application of our

results, we prove that a field has at most 2 finite extensions of pairwise

coprime indices with the same normal closure.

1. Introduction

1.1. Completely reducible linear groups. In this paper we are concerned

with the orbit lengths of a completely reducible linear group and with the

subdegrees of a primitive permutation group. Given a field k, a kH-module V

is said to be completely reducible if V is a direct sum of irreducible kH-modules.

Furthermore, the set of subdegrees of a finite transitive permutation group G

is the set of orbit lengths of the stabilizer Gω of a point ω.

Our first main result is a positive answer to a question of Gabriel Navarro [24]

about actions of a finite linear group. Indeed, Navarro asked whether a finite

completely reducible kH-module V with twoH-orbits of relatively prime lengths

m and n has an orbit of size mn.

Theorem 1.1: Let k be a field, let H be a finite group, let V be a completely

reducible kH-module and let a and b be elements of V . If the H-orbits aH

and bH have sizes m and n, and m,n are relatively prime, then CH(a + b) =

CH(a) ∩CH(b) and the H-orbit (a+ b)H has size mn.

We note that Theorem 1.1 explicitly exhibits an H-orbit of size mn, namely

the orbit containing a+b. Furthermore, Example 3.1 shows that the “completely

reducible” hypothesis in Theorem 1.1 is essential. Martin Isaacs [15, Theorem]

has proved a similar result under stronger arithmetical conditions on m, n and

the characteristic of k.
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Our second main result is a somehow remarkable theorem (in our opinion)

on irreducible linear groups. Theorem 1.2 shows that the groups arising in

Theorem 1.1 are always reducible if n,m > 1.

Theorem 1.2: Let k be a field, let H be a finite group, let V be a non-trivial

irreducible kH-module and let a and b be in V \ {0}. Then the sizes of the

H-orbits aH and bH have a non-trivial common factor.

The strategy for proving Theorem 1.2 is to reduce the problem inductively

to the case where H is a non-abelian simple group which admits a maximal

factorization H = AB with |H : A| relatively prime to |H : B|. Table 1 contains

all such triples (H,A,B). In the case where H is a sporadic simple group, we

use the information in Table 1 for the proof of Theorem 1.2. Furthermore, we

observe that as a consequence of Theorem 1.2, if (H,A,B) is one of the triples

in Table 1, then there are no irreducible representations of H with A and B

vector stabilizers.

A direct application of Theorem 1.2 gives the following corollary.

Corollary 1.3: Let k be a field, let H be a finite group, let V be a non-

trivial finite-dimensional kH-module and let a and b be elements of V . If both

H-orbits aH and bH span V , then |aH | and |bH | have a non-trivial common

factor.In the same direction as Corollary 1.3, in the case of p-soluble groups, we

prove the following theorem.

Theorem 1.4: Let k be a field of characteristic p ≥ 0, H a p-soluble finite

group, V a kH-module and a ∈ V fixed by a Sylow p-subgroup of H and with

the H-orbit aH spanning V . Then

(a) dimCV (H) ≤ 1; and

(b) if b ∈ V and gcd(|aH |, |bH |) = 1, then b ∈ CV (H).

Here, by abuse of notation, “0-soluble finite group” means “finite group” and

a “Sylow 0-subgroup” is the “identity subgroup”. In the proof of Theorem 1.4

we do not make use of the Classification of the Finite Simple Groups. Moreover,

since in an irreducible kH-module V every non-trivial H-orbit spans V , we see

that Theorem 1.4 (b) generalizes (for the class of p-soluble groups) Theorem 1.2

and, in particular, offers an independent and more elementary proof. Note that

if p does not divide the order of H (including the case p = 0), then H is p-

soluble, the Sylow p-subgroups of H are trivial and, in particular, Theorem 1.4

applies in this situation.
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1.2. Coprime subdegrees in primitive permutation groups. In the more

general context of finite primitive permutation groupsG, we investigate coprime

subdegrees according to the O’Nan-Scott type of G. (We say that a subdegree

d of G is non-trivial if d �= 1.) In particular, Theorem 1.2 yields that the

primitive permutation group G = V �H acting on V has no pair of non-trivial

coprime subdegrees. One of the most important modern methods for analyzing

a finite primitive permutation group G is to study the socle N of G, that is,

the subgroup generated by the minimal normal subgroups of G. The socle of

an arbitrary finite group is isomorphic to a direct product of simple groups,

and, for finite primitive groups, these simple groups are pairwise isomorphic.

The O’Nan-Scott theorem describes in detail the embedding of N in G and

collects some useful information on the action of N . In [26] eight types of

primitive groups are defined (depending on the structure and on the action

of the socle), namely HA (Holomorphic Abelian), AS (Almost Simple), SD

(Simple Diagonal), CD (Compound Diagonal), HS (Holomorphic Simple), HC

(Holomorphic Compound), TW (Twisted wreath), PA (Product Action), and

it is shown in [18] that every primitive group belongs to exactly one of these

types.

Theorem 1.5: Let G be a finite primitive permutation group. If G has two

non-trivial coprime subdegrees, then G is of AS, PA or TW type. Moreover, for

each of the O’Nan-Scott types AS, PA and TW, there exists a primitive group

of this type with two non-trivial coprime subdegrees.

It is possible for a single primitive group to have several different pairs of non-

trivial coprime subdegrees. We give a construction of groups of PA type with

this property in Example 4.3. However, in the case of primitive groups of TW

type, it is not possible to have as many as three pairwise coprime non-trivial

subdegrees.

Theorem 1.6: For a finite primitive permutation group of TW type, the max-

imal size of a set of pairwise coprime non-trivial subdegrees is at most 2.

Using the Classification of the Finite Simple Groups, we have proved the

following theorem in [8].

Theorem 1.7: Let G be a finite primitive permutation group. The maximal

size of a set of pairwise coprime non-trivial subdegrees of G is at most 2.
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Theorem 1.7 is related to a result on primitive groups first observed by Peter

Neumann to be a consequence of a 1935 theorem of Marie Weiss. Its state-

ment [25, Corollary 2, p. 93] is: if a primitive group has k pairwise coprime

non-trivial subdegrees, then its rank is at least 2k. Theorem 1.7 shows that this

result can only be applied with k = 1 or k = 2. In light of Theorems 1.5 and 1.6,

proving Theorem 1.7 reduces to consideration of primitive permutation groups

of AS and PA type. In this paper we show that a proof of Theorem 1.7 reduces

to a similar problem for transitive non-abelian simple permutation groups (it is

this reduction that is used in [8] to prove Theorem 1.7).

Definition 1.8: Let T be a non-abelian simple group and L a subgroup of T .

We say that L is pseudo-maximal in T if there exists an almost simple group

H with socle T and a maximal subgroup M of H with T �M and L = T ∩M .

We announce here a proof of the following theorem about non-abelian simple

groups (which again will be proved in [8]).

Theorem 1.9: Let T be a transitive non-abelian simple permutation group

and assume that the stabilizer of a point is pseudo-maximal in T . Then the

maximal size of a set of pairwise coprime non-trivial subdegrees of T is at most

2.

Since a pseudo-maximal subgroup of T is not necessarily a maximal subgroup,

we see that Theorem 1.9 is formally stronger than Theorem 1.7 for the class of

non-abelian simple permutation groups. However, we prove in this paper that

these two theorems are strongly related.

Theorem 1.10: Theorem 1.7 follows from Theorem 1.9.

We conclude with a problem on relatively prime subdegrees in primitive

groups.

Problem 1.11: Determine the finite primitive permutation groups G having two

non-trivial coprime subdegrees m and n for which mn is not a subdegree of G.

This problem is related to another classical result due to Marie Weiss [25,

Theorem 3, p. 92]: if m and n are non-trivial coprime subdegrees of a primitive

group G and m < n, then G has a subdegree d such that d divides mn and

d > n. In Problem 1.11 we suggest that (apart from a small list of exceptions)
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d can be chosen to be mn. Actually, we know only one almost simple group G

where d cannot be taken to be nm.

Example 1.12: Let G be the sporadic simple group HS in its primitive per-

mutation representation of degree 3850 on the cosets of 24. Sym(6). Using the

computational algebra system magma [4], it is easy to check that the subdegrees

of G are 1, 15, 32, 90, 120, 160, 192, 240, 240, 360, 960, 1440. In particular, we see

that 15 and 32 are coprime but there is no subdegree of size 15× 32=480.

We are grateful to Michael Giudici for providing this beutiful example.

We now give some examples which demonstrate that Theorem 1.7 is false for

transitive groups that are not primitive. These examples show that there is

no upper bound on the number of pairwise coprime non-trivial subdegrees for

general transitive groups.

Example 1.13: Let G be the direct product F1× · · ·×F� of � Frobenius groups.

For each i ∈ {1, . . . , �}, let Ni be the Frobenius kernel of Fi and let Ki be a

Frobenius complement for Ni in Fi. Assume that |Ki| is coprime to |Kj |, for
every two distinct elements i and j in {1, . . . , �}. Write N = N1 × · · · × N�

and K = K1 × · · · × K�. Clearly, the group G acts on N as a holomorphic

permutation group, that is, N acts on N by right multiplication and K acts on

N by group conjugation. The stabilizer in G of the element 1 of N is K. Now,

for each i ∈ {1, . . . , �}, let ni ∈ Ni \ {1} and let ωi = (1, . . . , 1, ni, 1, . . . , 1) be

the element of N with ni in the ith coordinate and 1 everywhere else. Clearly,

|ωK
i | = |K : CK(ωi)| = |Ki|. Therefore G has a set of at least � pairwise

coprime non-trivial subdegrees.

However, if we restrict to faithful subdegrees of a transitive group G, that

is, subdegrees d such that there exists an orbit of length d of a stabilizer Gα on

which Gα acts faithfully, then in fact we can show that a conclusion analogous

to the statement of Theorem 1.7 does hold. We note that, in particular, every

primitive permutation group has a faithful subdegree [12, Theorem 3].

Theorem 1.14: Let G be a finite transitive permutation group of degree n > 1.

Assume that G is not regular and let H be the stabilizer of a point. Then a set

of faithful subdegrees that are pairwise coprime has size at most 2. Moreover,

if the Fitting subgroup of H is non-trivial, then any two faithful subdegrees of

G have a non-trivial common factor.
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The proof of Theorem 1.14 also yields the following result about field exten-

sions.

Theorem 1.15: Let k be a field and let k1, . . . , kt be finite extensions of k all

with the same normal closure K. Assume that the indices [ki : k] are pairwise

coprime. Then t ≤ 2.

1.3. Structure of the paper. The structure of this paper is straightforward:

we prove Theorem 1.2, Corollary 1.3 and Theorem 1.4 in Section 2; we prove

Theorem 1.1 in Section 3; we prove Theorem 1.5 in Section 4; we prove Theo-

rems 1.6 and 1.10 in Section 5; we prove Theorems 1.14 and 1.15 in Section 6;

and we give Table 1 in Section 7.

2. Proofs of Theorems 1.2 and 1.4 and Corollary 1.3

We say that a factorization H = AB is coprime if |H : A| is relatively prime to

|H : B| and both A,B are proper subgroups of H . Also H = AB is maximal

if A and B are maximal subgroups of H . We start by proving a preliminary

theorem on finite classical groups. We let τ denote the transpose inverse map

of GLn(q), that is, xτ = (xtr)−1 where xtr is the transpose matrix of x. We

denote by CSp(2n, q) the conformal symplectic group, that is, the elements of

GL2n(q) preserving a given symplectic form up to a scalar multiple.

Theorem 2.1: Let n ≥ 2.

(a) Every element of GLn(q) is conjugate to its inverse in GLn(q)〈τ〉.
(b) Every element of GUn(q) is conjugate to its inverse in GUn(q)〈τ〉.
(c) Every element of Sp(2n, q) is conjugate to its inverse in CSp(2n, q).

(d) Every element of Oε(n, q) is conjugate to its inverse in Oε(n, q), for

ε ∈ {±, ◦}.
Proof. We prove (a) and (b) first. Let X = GLn(k) be the algebraic group

obtained by taking the algebraic closure k of the finite field Fq. Let F : X → X

be the Lang–Steinberg map obtained by raising each entry of a matrix x of X

to the qth power, and G : X → X the Lang–Steinberg map F ◦ τ . As usual,

we denote by XF and by XG the fixed points of F and of G. In our case, we

have XF = GLn(q) and XG = GUn(q). Let x be in XF . Then xtr and x are

clearly conjugate in the algebraic group X and hence also xτ = (xtr)−1 and x−1

are conjugate in X . Since the centralizer of any element of X is connected, it
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follows by the Lang–Steinberg theorem that xτ and x−1 are conjugate in XF .

Therefore x and x−1 are conjugate in GLn(q)〈τ〉 and (a) is proved. Now, let x

be in XG. As we have noted in the proof of (a), the elements xτ and x−1 are

conjugate in the algebraic group X . It follows by the Lang–Steinberg theorem

that xτ and x−1 are conjugate in XG. Therefore x and x−1 are conjugate in

GUn(q)〈τ〉 and (b) is proved.

(c) and (d), when q is even, are the main theorem of [11]. Finally, (c) and

(d), when q is odd, are proved in [28].

Given a field k and a kH-module V , we let V ∗ = Homk(V, k) denote the dual

kH-module of V . Furthermore, we denote by VA the restriction of V to the

subgroup A of H . Finally, if A is a subgroup of H and if V is a kA-module,

then we denote by V H
A = V ⊗kA kH the module induced by V from A to H .

Lemma 2.2: Suppose that H = AB is a factorization. If V is a non-trivial

irreducible kH-module, then either A fixes no element of V \ {0} or B fixes no

element of V ∗ \ {0}.
Proof. We argue by contradiction and we assume that A fixes a ∈ V \ {0} and

that B fixes b ∈ V ∗ \ {0}.
Let Ω (respectively Δ) be the set of right cosets of A (respectively B) in

H . Clearly, H acts transitively on Ω and Δ, and as H = AB, the group

B is transitive on Δ and A is transitive on Ω. Let kHA (respectively kHB ) be

the permutation module for the action of H on Ω (respectively Δ). Since A

is transitive on Δ, the multiplicity of the trivial kA-module k in (kHB )A is 1,

that is, dimHomkA(k, (k
H
B )A) = 1. From Frobenius reciprocity, it follows that

dimHomkH(kHA , k
H
B ) = dimHomkA(k, (k

H
B )A) = 1. Therefore, the only H-

homomorphism of kHA to kHB is the homomorphism ϕ with Kerϕ of codimension

1 in kHA and with Imϕ the trivial submodule of kHB .

Since A fixes the non-zero vector a of V , we have 0 �= HomkA(k, VA) ∼=
HomkH(kHA , V ) and hence kHA has a homomorphic image isomorphic to V . Sim-

ilarly, since B fixes the non-zero vector b of V ∗, we have 0 �= HomkB(k, V
∗
B)

∼=
HomkH(kHB , V

∗) and hence kHB has a homomorphic image isomorphic to V ∗.
Using duality and the fact that k∗ ∼= k, we obtain that (kHB )∗ ∼= (k∗)HB ∼= kHB
has a submodule isomorphic to V ∗∗ ∼= V . This shows that there exists an H-

homomorphism ψ : kHA → kHB with kHA /Kerψ ∼= V and with Imψ ∼= V . Since

V is non-trivial, we obtain that dimHomkH(kHA , k
H
B ) > 1, a contradiction.
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Here we say that a factorization H = AB is exact if A ∩B = 1.

Lemma 2.3: Suppose that H = AB is a coprime exact factorization. If V is

a non-trivial irreducible kH-module, then either A or B fixes no element of

V \ {0}.

Proof. We argue by contradiction and we assume that both A and B fix some

non-zero vector of V . Let r be the characteristic of the field k. Since |H : A|
is relatively prime to |H : B| and A ∩ B = 1, we have that either r does

not divide |A| or r does not divide |B|. Replacing A with B if necessary,

we may assume that r does not divide |B|. Since the characteristic of k is

coprime to the order of B, the module VB is a completely reducible kB-module.

Therefore, VB =W1 ⊕ · · ·⊕Ws where Wi is an irreducible kB-module, for each

i ∈ {1, . . . , s}. Since B fixes a non-zero vector of V , we have that, for some

i ∈ {1, . . . , s}, Wi is a trivial kB-module. Now, V ∗
B =W ∗

1 ⊕· · ·⊕W ∗
s and hence

W ∗
i is a trivial submodule of V ∗

B. This shows that B fixes a non-zero vector of

V ∗, but this contradicts Lemma 2.2.

The following lemma is Lemma 5.1 in [13].

Lemma 2.4: Suppose that every element of H is conjugate to its inverse via an

element of Aut(H). If V is an irreducible kH-module, then V ∗ ∼= V x for some

x ∈ Aut(H).

Proof. Write G = H � Aut(H). We can view H as a subgroup of G. Since H

is normal in G, from [23, Theorem 8.6] we see that the module M = (V G
H )H is

completely reducible with irreducible summands V x, for x ∈ G. Furthermore,

since every element ofH is conjugate to its inverse via an element ofG, we obtain

that the Brauer character of M is real valued. Now, from [23, Theorem 1.19

and Lemma 2.2], we see that completely reducible modules with real Brauer

characters are self-dual and hence M is self-dual, that is, M∗ ∼= M . Hence V ∗

is an irreducible direct summand of M , and so V ∗ ∼= V x for some x ∈ G.

Lemma 2.5: Suppose that every element of H is conjugate to its inverse via an

element of Aut(H). If H = AB is a coprime factorization and V is a non-trivial

irreducible kH-module, then either A fixes no element of V \ {0} or B fixes no

element of V \ {0}.
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Proof. From Lemma 2.4, V ∗ ∼= V x for some x ∈ Aut(H). As H = AB is a

coprime factorization, we obtain H = ABx.

We argue by contradiction and we assume that A fixes the non-zero vector

a of V and that B fixes the non-zero vector b of V . So Bx fixes the vector bx

of V x and, as V x ∼= V ∗, the group Bx fixes some non-zero vector of V ∗. This

contradicts Lemma 2.2 applied to G = ABx, and so the lemma is proven.

In the following proposition we prove Theorem 1.2 in the case that the group

H is a non-abelian simple group.

Proposition 2.6: Let H be a non-abelian simple group, V be a non-trivial

irreducible kH-module, and a and b be in V \{0}. Then the sizes of the H-orbits

aH and bH have a non-trivial common factor.

Proof. We argue by contradiction and we assume that aH and bH have relatively

prime sizes. Since |aH | = |H : CH(a)| and |bH | = |H : CH(b)| are coprime,

H = CH(a)CH(b) is a coprime factorization. Now we use the classification of

the finite simple groups.

If H is a classical group, we see from Theorem 2.1 that every element of H

is conjugate to its inverse via an element of Aut(H). Clearly, the same result

holds true if H is an alternating group. Therefore, if H is a classical group or

an alternating group, we obtain a contradiction from Lemma 2.5 (applied with

A = CH(a) and B = CH(b)). This shows that H is either an exceptional group

of Lie type or a sporadic simple group. From Table 1, we see that exceptional

groups of Lie type do not admit coprime factorizations. Therefore, H is a

sporadic simple group. Again, using Table 1, we see that the only sporadic

simple groups admitting a coprime factorization are M11,M23 and M24. In the

rest of this proof we consider separately each of these groups. Note that Table 1

determines all possible coprime factorizations H = AB with A and B maximal

in H .

Case H = M11. We first consider the case that CH(a) ⊆ A = L2(11) and

CH(b) ⊆ B = M10. We have |H : A| = 12, |H : B| = 11 and A ∩ B ∼= Alt(5).

As 2 and 3 divide |H : A| and as B ∼= Alt(6).2 has no subgroups of index 5, in

order to have gcd(|H : A|, |H : CH(b)|) = 1, we must have B = CH(b). Since

|H : CH(b)| = |H : B| = 11 and |H : CH(a)| is coprime to 11, the group CH(a)

has order divisible by 11 and hence it contains a Sylow 11-subgroup S. Now
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we have H = SCH(b) with S ∩ CH(b) = 1 and hence the result follows from

Lemma 2.3.

Now we consider the case that CH(a) ⊆ A = L2(11) and CH(b) ⊆ B =M9.2.

We have |H : A| = 12, |H : B| = 55 and A ∩ B ∼= Alt(4). Since |A ∩ B| =
|H : A| = 12, by coprimality we have B = CH(b). Therefore, |H : CH(b)| = 55

and 55 divides |CH(a)|. From the subgroup structure of A = L2(11), we see

that CH(a) contains a subgroup S of order 55. In particular, H = SCH(b) and

S ∩CH(b) = 1, and the result follows from Lemma 2.3.

Case H =M23. In this case we have three maximal factorizations to consider.

We start by studying the case thatCH(a) ⊆ A =M22 andCH(b) ⊆ B = 23 : 11.

As |H : A| = 23 and gcd(|H : CH(a)|, |H : CH(b)|) = 1, we have that 23

divides CH(b). Let S be a Sylow 23-subgroup of CH(b). Now, H = CH(a)S

and CH(a) ∩ S = 1, and the result follows as usual from Lemma 2.3.

The other two maximal coprime factorizations of M23 in Table 1 are exact

and hence the result follows again from Lemma 2.3.

Case H = M24. We have CH(a) ⊆ A = M23, CH(b) ⊆ B = 26.3. Sym(6),

|H : A| = 24, |H : B| = 1771 = 7 · 11 · 23 and |A ∩ B| = 5760 = 27 · 32 · 5.
Since |H : CH(a)| is divisible by 2 and 3, and |H : CH(b)| is relatively prime

to |H : CH(a)|, we have that CH(b) contains a Sylow 2-subgroup and a Sylow

3-subgroup of H . Thus |CH(b)| is divisible by 210 · 33 and |B : CH(b)| ≤ 5.

Since B has no subgroup of index 5, we obtain B = CH(b). With a similar

argument applied to CH(a), we get that 7 · 11 · 23 divides |CH(a)|. From [6],

we see that M23 has no proper subgroup of order divisible by 7, 11 and 23.

Therefore A = CH(a).

Let M be the permutation module kHA . (Thus M is the permutation module

of the 2-transitive action of H on a set Ω of size 24. In particular, M is one

of the modules investigated by Mortimer in [22].) Since A fixes the non-zero

vector a of V , we have HomkA(k, VA) �= 0 and so, from Frobenius reciprocity,

we obtain HomkH(M,V ) �= 0. Hence the kH-module V is isomorphic to M/W ,

for some maximal kH-submodule W of M . Let (eω)ω∈Ω be the canonical basis

of M and let p be the characteristic of k.

Let e =
∑

ω∈Ω eω, C = 〈e〉 and C⊥ = {∑ω∈Ω cωeω | ∑ω∈Ω cω = 0}. Clearly,

C and C⊥ are submodules of M . Assume that p �= 2, 3. From [22, Table 1],

we see that the module M is completely reducible, M = C ⊕ C⊥ and C⊥ is an

irreducible kH-module. Since V is a non-trivial kH-module, we obtain V ∼= C⊥.



756 S. DOLFI ET AL. Isr. J. Math.

Since M is self-dual, we obtain that M∗ ∼= M and hence V ∗ ∼= V . Therefore,

since B fixes the non-zero vector b of V , it also fixes a non-zero vector of V ∗,
but this contradicts Lemma 2.2.

Now assume p = 3. From [22, Lemma 2], we have that C ⊆ C⊥ and C⊥ is the

unique maximal submodule of M . Therefore W = C⊥ and V ∼= M/C⊥ ∼= C is

a trivial kH-module, a contradiction. Therefore it remains to consider the case

p = 2.

Since 2 divides |Ω| = 24, we have C ⊆ C⊥. From [17, Beispiele 2 b)], we see

that C⊥ is the unique maximal submodule of M and hence V ∼= M/C⊥ ∼= C is

a trivial kH-module, a contradiction.

Now we are ready to prove Theorems 1.2, 1.4 and Corollary 1.3.

Proof of Theorem 1.2. We argue by contradiction and we let H be a minimal

(with respect to the group order) counterexample. Let a, b ∈ V \ {0} with |aH |
relatively prime to |bH |.
If H is a cyclic group of prime order p, then every H-orbit on V \ {0} has

size p, a contradiction. Similarly, from Proposition 2.6 we see that the group H

is not a non-abelian simple group. Thus H has a non-identity proper normal

subgroup N . From the Clifford correspondence, VN = W1 ⊕ · · · ⊕ Wk with

Wi a homogeneous kN -module, for each i ∈ {1, . . . , k}, and with H acting

transitively on the set of direct summands {W1, . . . ,Wk} of V . (A module is said

to be homogeneous if it is the direct sum of pairwise isomorphic submodules.)

Write a =
∑k

i=1 ai and b =
∑k

i=1 bi with ai, bi ∈ Wi, for each i ∈ {1, . . . , k}.
Let i and j be in {1, . . . , k} with ai �= 0 and bj �= 0. Since H acts transitively

on {W1, . . . ,Wk}, there exist h and k in H with Wh
i = W1 and W k

j = W1. In

particular, replacing a and b by ah and bk if necessary, we may assume that

i = j = 1. Since N is a normal subgroup of H , we get that |aN | divides
|aH | (respectively |bN | divides |bH |). Furthermore, since N acts trivially on

{W1, . . . ,Wk}, we obtain that CN (a) ⊆ CN (a1) and CN(b) ⊆ CN (b1), that is,

|aN1 | divides |aN | and |bN1 | divides |bN |. In particular, |aN1 | and |bN1 | are coprime.

As W1 is a homogeneous kN -module, there exists an irreducible kN -module

U such that W1 = U1 ⊕ · · · ⊕ Ur with Ui
∼= U , for each i ∈ {1, . . . , r}. Assume

that U is the trivial kN -module. So, N acts trivially on W1. Since H permutes

transitively the set of direct summands {W1, . . . ,Wk} and since N is normal in

H , we obtain that N acts trivially on V and N = 1, a contradiction. Therefore

U is a non-trivial irreducible kN -module and, in particular, |aN1 |, |bN1 | > 1.
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Write a1 =
∑r

i=1 xi and b1 =
∑r

i=1 yi with xi, yi ∈ Ui, for each i ∈ {1, . . . , r}.
Since N stabilizes the direct summands {U1, . . . , Ur} of U , we obtain that

CN (a1) =
⋂r

i=1 CN (xi) and CN (b1) =
⋂r

i=1 CN (yi). In particular, for each

i ∈ {1, . . . , r}, we have that |xNi | divides |aN1 | and |yNi | divides |bN1 |. Since

a1, b1 �= 0, there exist i, j ∈ {1, . . . , r} with xi �= 0 and yj �= 0. Fix ϕi : Ui → U

and ϕj : Uj → U two N -isomorphisms and write x = ϕi(xi) and y = ϕj(yj). In

particular, x and y are non-zero elements of the non-trivial irreducible kN -

module U . Furthermore, since ϕi and ϕj are N -isomorphisms, we obtain

CN (xi) = CN (x) and CN (yj) = CN (y) and thus |xN | and |yN | are coprime.

This contradicts the minimality of H and hence the theorem is proved.

Proof of Corollary 1.3. We argue by contradiction and we assume that V is a

non-trivial finite-dimensional kH-module and that a and b are elements of V

with V = 〈ah | h ∈ H〉 = 〈bh | h ∈ H〉 and with gcd(|aH |, |bH |) = 1. Now we

argue by induction on dimk V . If V is irreducible, then the result follows from

Theorem 1.2. So, we assume that this is not the case. Let W be a minimal

submodule of V and suppose that V/W is non-trivial. Clearly, (a +W )H and

(b + W )H span V/W and hence, by induction, the lengths of the orbits of

(a +W )H and (b +W )H are not coprime. As |(a + W )H | divides |aH | and
|(b +W )H | divides |bH |, we have that |aH | and |bH | are not coprime.

Suppose now that V/W is the trivial kH-module. We claim that in this case

V splits overW , that is, V = 〈v〉⊕W for some element v of V fixed by H . If the

characteristic of V is zero, then V is semisimple and our claim is immediate.

Suppose that V has characteristic p > 0. Replacing a by b if necessary, we

may assume that p � |aH | and hence CH(a) contains a Sylow p-subgroup P

of H . We claim that V ∼= k ⊕W , that is, V splits over W . The module V

corresponds to an element δ of Ext1G(k,W ) ∼= H1(G,W ∗) (see [3, Section (III) 2]

for the last isomorphism). On the other hand, V splits over W as a kP -module

because P ⊆ CH(a) and a /∈ W . Thus δ = 0 in H1(P,W ∗). However, from [3,

Theorem 10.3], we see that the restriction map res : H1(G,W ∗) → H1(P,W ∗)
is injective. So δ = 0 is H1(G,W ∗) and V splits over W . In particular, H fixes

a vector v ∈ V \W and V = 〈v〉 ⊕W .

Write a = λv+ a′ and b = μv+ b′ with λ, μ ∈ k, a′ ∈ W and b′ ∈W . Clearly,

a′, b′ �= 0 because aH and bH span V and V is not the trivial module. Similarly,

W is not the trivial kH-module. Since H fixes v, we have CH(a) = CH(a′) and
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CH(b) = CH(b′) and hence |a′H |, |b′H | are relatively prime. This contradicts

Theorem 1.2 applied to the irreducible moduleW and to the vectors a′, b′.

Proof of Theorem 1.4. Write A = CH(a). Since H is p-soluble and A contains

a Sylow p-subgroup of H , the group H contains a p′-subgroup L with H = AL.

(For example, H = AL for each Hall p′-subgroup L of H .) Now, let L be any

p′-subgroup of H with H = AL and define ψL : V → V by setting

ψL(v) =
∑

x∈L

vx.

We claim that CV (L) = ψL(V ). For v ∈ V and y ∈ L, we have

ψL(v)
y =

(
∑

x∈L

vx

)y

=
∑

x∈L

vxy =
∑

x∈L

vx = ψL(v).

So ψL(V ) ⊆ CV (L). Conversely, if v ∈ CV (L), then

ψL(v) =
∑

x∈L

vx =
∑

x∈L

v = |L|v.

As |L| is coprime to p, we have v = ψL(v/|L|) ∈ ψL(V ).

We now show that CV (H) = CV (L). As L ⊆ H , we have CV (H) ⊆ CV (L).

As H = AL, we have aH = aAL = aL. So, for every v ∈ aH , the image ψL(v)

is a multiple of the sum of the elements of aL = aH . We deduce that ψL(v) is

H-invariant, that is, H fixes ψL(v). Since aH spans V , we obtain that H fixes

every element of ψL(V ) = CV (L), that is, CV (L) ⊆ CV (H).

Now we are ready to prove (a). Since aH = aL and aH spans V , the vector

space V is generated by a as a kL-module. Thus, the map π : kL → V , given

by π(
∑

x∈L αxx) =
∑

x∈L αxa
x, defines a kL-homomorphism of kL onto V .

Since p is coprime to |L|, by Maschke’s theorem the kL-module V is isomor-

phic to a direct summand of the group-algebra kL. Therefore dimCV (H) =

dimCV (L) ≤ dimCkL(L) = 1.

We now prove (b). Let b ∈ V with gcd(|aH |, |bH |) = 1. Write B = CV (b)

and observe that H = AB. Since a is fixed by a Sylow p-subgroup of H , we

see that p does not divide |H : A| = |B : (A ∩ B)| and so A ∩ B contains a

Sylow p-subgroup of B. As H is p-soluble, we get that B is p-soluble and that

B contains a p-complement L, say. So, B = (A ∩B)L and H = AB = AL. In

particular, we are in the position to apply the first part of the proof to L. Thus

b ∈ CV (B) ⊆ CV (L) = CV (H).
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3. Proof of Theorem 1.1

In this section we use Theorem 1.2 to prove Theorem 1.1. We start by showing

that the hypothesis “completely reducible” is essential.

Example 3.1: Let p be an odd prime, V be the 2-dimensional vector space of

row vectors over a field Fp of size p, λ be a generator of the multiplicative group

Fp \ {0} and

H = 〈g, h〉 with g =

(
1 0

1 1

)

, h =

(
λ 0

0 1

)

.

The group H has order p(p − 1) and has p + 1 orbits on V . Namely, for each

a ∈ Fp \ {0}, the set {(x, a) | x ∈ Fp} is an H-orbit of size p. Furthermore,

{(0, 0)} and {(a, 0) | a ∈ Fp \ {0}} are H-orbits of size 1 and p− 1, respectively.

Write e1 = (λ, 0) and e2 = (0, 1 − λ). We have CH(e1) = 〈g〉, CH(e2) = 〈h〉
and CH(e1 + e2) = 〈gh〉 �= CH(e1) ∩CH(e2) = 1.

Here is an example for the prime p = 2. Let H = Sym(4) be the symmetric

group of degree 4 and M the permutation module with basis e1, e2, e3, e4 over

a field k of size 2. It is easy to see that the only kH-submodules of M are 0,

M1 = 〈e1 + e2 + e3 + e4〉, M2 = 〈e1 + e2, e1 + e3, e1 + e4〉 and M , and that

0 ⊂ M1 ⊂ M2 ⊂ M , that is, M is uniserial. Let V be the kH-module M/M1.

Clearly, H acts faithfully on V and, as M2/M1 is the unique proper submodule

of V , we have that V is not completely reducible. Write a = e1 +M1 and b =

e1 + e2 +M1. We have CH(a) = 〈(2, 3), (3, 4)〉 and CH(b) = 〈(1, 2), (1, 3, 2, 4)〉
and so aH has size 4 and bH has size 3. Finally, CH(a+ b) = CH(e2 +M1) =

〈(1, 3), (3, 4)〉 �= 〈(3, 4)〉 = CH(a) ∩CH(b). Furthermore, the orbits of H on V

have sizes 1, 3 and 4.

We note that an example similar to Example 3.1 is in [15, Example 1].

Proof of Theorem 1.1. As V is completely reducible, we have V = CV (H)⊕W
for some direct summand W of V . Clearly, replacing V by W if necessary,

we may assume that CV (H) = 0, that is, H fixes no non-zero vector of V .

There is also no loss in assuming that V is generated by a and b as a kH-

module. Let V (a) and V (b) denote the kH-submodules generated by a and b,

respectively. We claim that V (a) ∩ V (b) = 0, whence V = V (a) ⊕ V (b) and

CH(a+ b) = CH(a) ∩CH(b) as required.
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Suppose not. Let S be a simple kH-submodule of V (a) ∩ V (b). Since

CH(V ) = 0, H does not act trivially on S. Since V is completely reducible,

V = S⊕T as kH-modules. Let π denote the projection of V onto S with kernel

T . Clearly, |aH | is a multiple of |π(a)H | and similarly for b. Since S ≤ V (a),

π(a) �= 0 (and similarly for b). Thus, the lengths of the H-orbits in S of π(a)

and π(b) are coprime contradicting Theorem 1.2.

We point out that from Theorem 1.1 we can easily deduce the following well-

known result of Yuster (see [29] or [16, 3.34]).

Corollary 3.2: Let H and A be finite groups with |H | relatively prime to

|A| and with H acting as a group of automorphisms on A. If, for a, b ∈ A,

the H-orbits aH and bH have relatively prime size, then H has an orbit of size

|aH ||bH |.
Proof. As |H | is relatively prime to |A|, from [14, Lemma 2.6.2] we see that

we may assume that A is a direct product of elementary abelian groups. In

particular, from Maschke’s theorem, A is a completely reducible H-module,

possibly of mixed characteristic. Now the result follows from Theorem 1.1.

4. Proof of Theorem 1.5

The main ingredient in the proof of Theorem 1.5 is Theorem 1.2 and the positive

solution of Fisman and Arad [9] of Szep’s conjecture.

Theorem 4.1 ([9]): Let G = AB be a finite group such that A and B are both

subgroups of G with non-trivial centres. Then G is not a non-abelian simple

group.

We start by considering some examples.

Example 4.2: Primitive groups of AS type. From [21], we see that the

sporadic simple group G = J1 has a primitive permutation representation of

rank 5 on a set Δ of size 266. The subdegrees of G are 1, 11, 12, 110 and 132. In

particular, G has two coprime subdegrees. No primitive group of smaller rank

has this property: the proof of this assertion requires the classification of the

finite simple groups [5, Remark, p. 33].

Now we give an infinite family of examples. Let p be a prime with p ≡ ±1

mod 5 and with p ≡ ±1 mod 16, and let G = PSL(2, p). From [27, Chapter 3,
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Section 6], we see that G contains a maximal subgroup H with H ∼= Alt(5).

Consider G as a primitive permutation group acting on the set Δ of right cosets

of H in G. Let K be a maximal subgroup of H with K ∼= Alt(4). As 8

divides |G|, we see from [27, Chapter 3, Section 6] that NG(K) ∼= Sym(4).

Let g ∈ NG(K) \ H . Then K = H ∩ Hg, |H : H ∩ Hg| = 5 and so G has a

suborbit of size 5 on Δ. Similarly, let nowK be a Sylow 5-subgroup of H . Using

the generators of H given in [27, Chapter 3, Section 6], we see, with a direct

computation, that there exists g ∈ NG(K) \ H with K = H ∩ Hg. Therefore

|H : H ∩ Hg| = 12 and so G has a suborbit of size 12. Furthermore, another

explicit computation with the generators of H shows that there exists g ∈ G

with H ∩Hg = 1. So G has a suborbit of size 60 = 5 · 12.
Example 4.3: Primitive groups of PA type. Let G be a primitive group

of AS type on Δ with non-trivial coprime subdegrees a and b. Let δ, δ1 and δ2

be in Δ with a = |δGδ
1 |, b = |δGδ

2 |. For each n ≥ 2, the wreath product W =

Gwr Sym(n) endowed with its natural product action on Ω = Δn is a primitive

group of PA type. Consider the elements α = (δ, . . . , δ), β = (δ1, . . . , δ1) and

γ = (δ2, . . . , δ2) of Ω. We have |βWα | = an and |γWα | = bn and so an and bn are

two coprime subdegrees of W . In many cases there are several pairs of coprime

non-trivial subdegrees of W . For example, if n ≥ 3 and n is coprime to b, then

the point β′ = (δ1, δ, . . . , δ) lies in a Wα-orbit of size na and we have also na

and bn as coprime non-trivial subdegrees.

In particular, this construction can be applied with G and Δ as in Exam-

ple 4.2.

Example 4.4: Primitive groups of TW type. In this example we construct

a primitive group of TW type with two non-trivial coprime subdegrees. We start

by recalling the structure and the action of a primitive group of twisted wreath

type. We follow [7, Section 4.7]. Let T be a non-abelian simple group, H be a

group, L be a subgroup of H and ϕ : L → Aut(T ) be a homomorphism with

the image of ϕ containing the inner automorphisms of T . Let R be a set of left

coset representatives of L in H and TH be the set of all functions f : H → T

from H to T . Clearly, TH is a group under pointwise multiplication, and H

acts as a group of automorphisms on TH by setting fx(z) = f(xz), for f ∈ TH

and for x, z ∈ H . Write

N = {f ∈ TH | f(zl) = f(z)ϕ(l) for all z ∈ H and l ∈ L}.
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It is easy to verify that N is an H-invariant subgroup of TH isomorphic to

TR. In fact, the restriction mapping f �→ f |R is an isomorphism of N onto

TR. The semidirect product G = N � H is said to be the twisted wreath

product determined by H and ϕ. The group G acts on Ω = N by setting

αnh = (αn)h, for each α ∈ Ω, n ∈ N and h ∈ H . (In particular, N acts on Ω by

right multiplication and H acts on Ω by conjugation.) From [7, Lemma 4.7B],

we see that if H is a primitive permutation group with point stabilizer L and

if the image of ϕ is not a homomorphic image of H , then G acts primitively on

Ω and the socle of G is N .

Write H = PSL(2, 7)2 � 〈ι〉 where ι is the involutory automorphism of

PSL(2, 7)2 = PSL(2, 7) × PSL(2, 7) defined by (x, y)ι = (y, x). Write L =

{(x, x) | x ∈ PSL(2, 7)}〈ι〉. The group H is a primitive group of SD type in its

action on the right cosets of L. Let T be PSL(2, 7) and let ϕ : L → Aut(T ) be

the mapping sending (x, x)ιi to the inner automorphism of T given by x, for

each x ∈ PSL(2, 7) and i ∈ {0, 1}. Clearly, ϕ is a homomorphism whose image

contains the inner automorphisms of T . Let G be the twisted wreath product

determined by H and ϕ and let N be its socle as described above. Since H

has no homomorphic image isomorphic to T , we see that G is a primitive per-

mutation group on Ω = N . The group H is the stabilizer Gf of the function

f : H → T mapping every element of H to the identity of T .

Write

γ =

[
1 1

0 1

]

(regarded as an element of T ). Let C = (〈γ〉 × 〈γ〉) � 〈ι〉 as a subgroup of H

and define g : H → T by

g(z) =

⎧
⎨

⎩

γϕ(l) if z = cl, for some c ∈ C and l ∈ L,

1 if z ∈ H \ CL.

We claim that the function g is well-defined. In fact, if z = c1l1 = c2l2 for

c1, c2 ∈ C and l1, l2 ∈ L, then l2l
−1
1 ∈ C ∩ L = 〈(γ, γ)〉〈ι〉. Hence l2 = ul1 with

u = (γk, γk)ιi for some k ∈ {0, . . . , 6} and i ∈ {0, 1}. In particular, since γk

centralizes γ, we obtain γϕ(l1) = γϕ(u)ϕ(l1) = γϕ(ul1) = γϕ(l2) and hence the

image γϕ(l) is independent of the representation z = cili of z.

Fix z in H . Distinguishing the cases z ∈ CL and z /∈ CL, it is easy to verify

that g(zl) = g(z)ϕ(l) for each l ∈ L and z ∈ H , and hence g ∈ Ω. For each
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c ∈ C and z ∈ H , we have gc(z) = g(cz) = g(z), and hence C ⊆ CH(g). We

claim that C = CH(g). Let h = (h1, h2)ι
j be in CH(g). Suppose that h /∈ CL.

As g(1) = γ �= 1 and gh(1) = g(h) = 1, we obtain g �= gh. Thus h ∈ CL

and CH(g) ⊆ CL. As C ⊆ CH(g), replacing h by ch for a suitable element

c ∈ C, we may assume that h ∈ L, that is, h = (x, x)ιi for some x ∈ T and

i ∈ {0, 1}. Now γ = g(1) = gh(1) = g(h) = γϕ(x). Hence x ∈ CT (γ) = 〈γ〉,
h ∈ C ∩ L and our claim is proved. Thus the H-orbit containing g has size

|H : C| = 242 = 576, and 576 is a subdegree of G.

Write

a =

[
0 4

5 4

]

and b =

[
2 1

0 4

]

(again thought of as elements of T ). The element a has order 4, the element b

has order 3, and 〈a, b〉 ∼= Sym(4). Let D = (〈a, b〉×〈a, b〉)�〈ι〉 and let t = (γ, 1).

A direct computation shows that Dt ∩ L is a dihedral group of size 8, namely

〈(a2, a2), (r, r)ι〉 with r =

[
3 5

4 0

]

and with centre

〈(η, η)〉 where η = r2 =

[
1 1

5 6

]

.

Define

h(z) =

⎧
⎨

⎩

ηϕ(l) if z = dtl, for some d ∈ D and l ∈ L,

1 if z /∈ DtL.

We claim that the function h is well-defined. In fact, if z = d1tl1 = d2tl2

for d1, d2 ∈ D and l1, l2 ∈ L, then l2l
−1
1 = t−1d−1

2 d1t ∈ Dt ∩ L. Hence

l2 = ul1 with u ∈ Dt ∩ L. In particular, since u centralizes (η, η), we ob-

tain ηϕ(l1) = ηϕ(u)ϕ(l1) = ηϕ(ul1) = ηϕ(l2) and so the image ηϕ(l) is independent

of the representation z = ditli of z.

Fix z in H . As above, by distinguishing the cases z ∈ DtL and z /∈ DtL, it

is easy to verify that h(zl) = h(z)ϕ(l) for each l ∈ L, and hence h ∈ Ω. From

the definition of h, we see that for each d ∈ D and z ∈ H , we have hd(z) =

h(dz) = h(z). Hence D ⊆ CH(h). Since D is a maximal subgroup of H , we

obtain D = CH(h). Thus the H-orbit containing h has size |H : D| = 72 = 49,

and 49 is a subdegree of G.
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This shows that G has two coprime subdegrees, namely 576 and 49. Now, us-

ing the computational algebra system GAP [10], it is easy to show that CH(fg) =

CH(f)∩CH(g). In particular, the suborbit of G containing fg has size 576 ·49.
Proof of Theorem 1.5. From Examples 4.2, 4.3 and 4.4 and Theorem 1.2, it

suffices to show that if G is a primitive group of type HS, HC, SD or CD, then

G has no non-trivial coprime subdegrees. We argue by contradiction and we

assume that G is a primitive group on Ω of HS, HC, SD or CD type with two

non-trivial coprime subdegrees.

We first consider the case that G is of HS or HC type. Let N = T1 × · · · × T�

be the socle of G, with Ti ∼= T for some non-abelian simple group T , for each

i ∈ {1, . . . , �}. From the description of the O’Nan-Scott types in [26], we see

that � is even (with � = 2 if G is of HS type and with � > 2 if G is of

HC type). Furthermore, relabelling the indices {1, . . . , �} if necessary, M1 =

T1 × · · · × T�/2 ∼= T �/2 and M2 = T�/2+1 × · · · × T� = T �/2 are minimal normal

regular subgroups of G, and Ω can be identified with T �/2. Namely, the action

of N on Ω is permutation isomorphic to the action of T �/2×T �/2 on T �/2 given

by

z(a,b) = a−1zb = (a−1
1 z1b1, . . . , a

−1
�/2z�/2b�/2),

for a = (a1, . . . , a�/2), b = (b1, . . . , b�/2), z = (z1, . . . , z�/2) ∈ T �/2. Under this

identification, the stabilizer in T �/2×T �/2 of the element (1, . . . , 1) of T �/2 is the

set {(a, a) | a ∈ T �/2} acting on T �/2 by conjugation, that is, z(a,a) = a−1za.

Let ω1, ω2 be elements of Ω \ {ω} with m = |ωGω
1 | coprime to n = |ωGω

2 |.
Since N is normal in G, we have that m′ = |ωNω

1 | = |Nω : Nω,ω1 | divides m
and n′ = |ωNω

2 | = |Nω : Nω,ω2 | divides n. In particular, m′ and n′ are coprime.

Identifying Ω with T �/2 (as above), ω with (1, . . . , 1), Nω with T �/2 (as above),

ω1 with (x1, . . . , x�/2) and ω2 with (y1, . . . , y�/2), we get

Nω,ω1
∼=CT �/2((x1, . . . , x�/2)) = CT (x1)× · · · ×CT (x�/2),

Nω,ω2
∼=CT �/2((y1, . . . , y�/2)) = CT (y1)× · · · ×CT (y�/2).

In particular, m′ =
∏�/2

i=1 |T : CT (xi)| and n′ =
∏�/2

i=1 |T : CT (yi)|. As m′

is coprime to n′, for each i, j ∈ {1, . . . , �/2}, the indices |T : CT (xi)| and

|T : CT (yj)| are coprime and hence T = CT (xi)CT (yj). As ω1, ω2 �= 1, there

exist i, j ∈ {1, . . . , �/2} with xi �= 1 and yj �= 1. So T = CT (xi)CT (yj) is a

coprime factorization and Theorem 4.1 yields that T is not a non-abelian simple

group, a contradiction.
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It remains to consider the case that G is of SD or CD type. From the de-

scription of the O’Nan-Scott types in [26], we may write the socle N of G as

N = (T1,1 × · · · × T1,r)× (T2,1 × · · · × T2,r)× · · · × (Ts,1 × · · · × Ts,r),

with Ti,j ∼= T for some non-abelian simple group T , for each i ∈ {1, . . . , r} and

j ∈ {1, . . . , s}, where r ≥ 2 and s ≥ 1 (with s = 1 if G is of SD type and with

s ≥ 2 if G is of CD type). The set Ω can be identified with

(T1,1× · · ·×T1,r−1)× (T2,1× · · ·×T2,r−1)× · · · × (Ts,1× · · ·×Ts,r−1) ∼= T s(r−1)

and, for the point ω ∈ Ω identified with (1, . . . , 1), the stabilizer Nω is

D1 × · · · × Ds
∼= T s where Di is the diagonal subgroup {(t, . . . , t) | t ∈ T } of

Ti,1×· · ·×Ti,r. That is to say, the action of Nω on Ω is permutation isomorphic

to the action of T s on T s(r−1) by “diagonal” componentwise conjugation: the

image of the point (x1,1, . . . , x1,r−1, . . . , xs,1, . . . , xs,r−1) under the permutation

(t1, . . . , ts) is

(xt11,1, . . . , x
t1
1,r−1, x

t2
2,1, . . . , x

t2
2,r−1, . . . , x

ts
s,1, . . . , x

ts
s,r−1).

Let ω1, ω2 be elements of Ω \ {ω} with m = |ωGω
1 | coprime to n = |ωGω

2 |.
Since N is normal in G, we have that m′ = |ωNω

1 | = |Nω : Nω,ω1| divides
m and n′ = |ωNω

2 | = |Nω : Nω,ω2 | divides n. In particular, m′ and n′ are

coprime. Identifying ω1 with (x1,1, . . . , x1,r−1, . . . , xs,1, . . . , xs,r−1) and ω2 with

(y1,1, . . . , y1,r−1, . . . , ys,1, . . . , ys,r−1), we get

Nω,ω1
∼=CT (〈x1,1, . . . , x1,r−1〉)× · · · ×CT (〈xs,1, . . . , xs,r−1〉),

Nω,ω2
∼=CT (〈y1,1, . . . , y1,r−1〉)× · · · ×CT (〈ys,1, . . . , ys,r−1〉).

In particular,

m′ =
s∏

i=1

|T : CT (〈xi,1, . . . , xi,r−1〉)|

and

n′ =
s∏

i=1

|T : CT (〈yi,1, . . . , yi,r−1〉)|.

As ω1, ω2 �= ω, there exist i1, i2 ∈ {1, . . . , r − 1} and j1, j2 ∈ {1, . . . , s} with

xi1,j1 �= 1 and yi2,j2 �= 1. Now, since CT (〈xi1,1, . . . , xi1,r−1〉) ⊆ CT (xi1,j1) � T

and CT (〈xi2,1, . . . , xi2,r−1〉) ⊆ CT (xi2,j2) � T and since m′ is relatively prime

to n′, we obtain T = CT (xi1,j1)CT (xi2,j2). From Theorem 4.1, T is a not

non-abelian simple group, a contradiction.
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5. Proofs of Theorems 1.6 and 1.10

Before proving Theorems 1.6 and 1.10 we need the following definition and

lemmas.

Definition 5.1: If G is a finite group, we let μ(G) denote the maximal size of

a set {Gi}i∈I of proper subgroups of G with |G : Gi| and |G : Gj | relatively
prime, for each two distinct elements i and j of I.

Lemma 5.2: If K is a direct product of isomorphic non-abelian simple groups,

then μ(K) ≤ 2.

Proof. We have K = T1 × · · · × T� with Ti ∼= T , for some non-abelian sim-

ple group T and for some � ≥ 1. We argue by contradiction and we assume

that μ(K) ≥ 3, that is, K has three proper subgroups A1, A2 and A3 with

|K : A1|, |K : A2| and |K : A3| relatively prime. Write ai = |K : Ai| for
i ∈ {1, 2, 3}. Replacing Ai with a maximal subgroup of K containing Ai if nec-

essary, we may assume that Ai is maximal in K, for i ∈ {1, 2, 3}. In particular,

(up to relabelling the simple direct summands of K) we have that either

A1 = M1 × T2 × · · · × T� (for some maximal subgroup M1 of T1) or A1 =

{(t1, tη1) | t1 ∈ T1} × T3 × · · · × T� (for some isomorphism η : T1 → T2). In

the latter case we have that a1 = |T | is not relatively prime to a2 and to a3,

a contradiction. Therefore, up to relabeling the indices, we may assume that

Ai = Mi × T2 × · · · × T� with Mi a maximal subgroup of T1, for i ∈ {1, 2, 3}.
This gives that the non-abelian simple group T1 admits three coprime factor-

izations T1 = M1M2 = M1M3 = M2M3 with |T1 : M1|, |T1 : M2| and |T1 : M3|
relatively prime. A simple inspection in Table 1 shows that this is impossible.

The same conclusion can be obtained using [2], where the authors determine

all multiple factorizations of finite non-abelian simple groups T = MiMj, for i

and j distinct elements of {1, 2, 3}. In particular, it is readily checked that in

none of the multiple factorizations in [2] are the indices |T : M1|, |T : M2| and
|T :M3| pairwise coprime.

Lemma 5.3: Let G be a transitive permutation group on Ω and let ω be in Ω.

Suppose that N is normal in Gω and N fixes a unique point on Ω. Then the

number of coprime subdegrees of G is at most μ(N).

Proof. Let O1, . . . , Or be orbits of Gω on Ω \ {ω} of pairwise coprime sizes and

let ωi ∈ Oi, for i ∈ {1, . . . , r}. Now the orbits of N on Oi have all the same



Vol. 195, 2013 COPRIME SUBDEGREES 767

size, mi say, and mi divides |Oi|. Since N fixes only the point ω of Ω, we have

that mi > 1. Therefore {Nωi}i∈{1,...,r} is a set of proper subgroups of N with

pairwise coprime indices. Thus r ≤ μ(N).

Proof of Theorem 1.6. Let G be a primitive group of TW type. We use the

notation introduced in the first paragraph of Example 4.4: so G = N�H is the

twisted wreath product determined by H and ϕ : L → Aut(T ). Recall that G

acts primitively on N , with N acting on itself by right multiplication and with

H acting on N by conjugation. In particular, H is the stabilizer of the point

1 ∈ N . Let K be a minimal normal subgroup of H . From [7, Theorem 4.7B (i)],

K is a direct product of non-abelian simple groups. Write � = |H : L|. Hence

N = T1×· · ·×T� with Ti ∼= T , for each i ∈ {1, . . . , �}. Furthermore, L = NH(Ti)

for some i ∈ {1, . . . , �}. Relabeling the Tj if necessary, we may assume that

i = 1. From [7, Theorem 4.7B (ii)], the group L is a core-free subgroup of H

and hence K � L.

We claim that K ∩ L acting by conjugation on the simple group T1 induces

all the inner automorphisms. If not, then K ∩ L ⊆ CH(T1) because K ∩ L is a

normal subgroup of L and T1 is non-abelian simple. Thus the homomorphism

ϕ : L→ Aut(T ) can be extended to a homomorphism ϕ̂ : KL→ Aut(T ) of the

group KL by setting ϕ̂(kl) = ϕ(l), for each l ∈ L and k ∈ K. As L � KL, this

contradicts the maximality condition of H in G given in [1, Lemma 3.1 (b)], and

the claim is proved. In particular, since K is a normal subgroup of H and since

H acts transitively on the � simple direct summands {T1, . . . , T�}, we obtain

that K ∩NH(Ti) induces by conjugation all the inner automorphisms of Ti, for

each i ∈ {1, . . . , �}. This gives CN (K) = 1 and so K fixes a unique point of N .

Now the proof follows from Lemmas 5.2 and 5.3.

Before concluding this section we show that coprime subdegrees in primitive

groups G of AS or PA type determine coprime subdegrees in transitive non-

abelian simple groups T , and we give a strong relation between G and T . Let G

be a primitive group of AS or PA type. We recall that from the description of

the O’Nan-Scott types in [26] the group G is a subgroup of the wreath product

H wrSym(�) endowed with its natural product action on Δ�, with H an almost

simple primitive group on Δ (we have � = 1 and G = H if G is of AS type,

and � > 1 if G is of PA type). Furthermore, if T is the socle of H , then

N = T1 × · · · × T� is the socle of G, where Ti ∼= T for each i ∈ {1, . . . , �}. Write

Gi = NG(Ti) and denote by πi : Gi → H the natural projection. From [26],
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we see that replacing H by πi(Gi) if necessary, we may assume that πi(Gi) is

surjective. In this case, we say that H is the component subgroup of G. In

particular, if G is of AS type, the component subgroup of G is G itself.

(We recall that the definition of pseudo-maximal subgroup is in Definition

1.8.)

Proposition 5.4: Let G be a primitive permutation group of AS or PA type

acting on Δ� with component subgroup H ⊆ Sym(Δ) and let T be the socle

of H . For δ ∈ Δ, the stabilizer Tδ is a pseudo-maximal subgroup of T . Fur-

thermore, if G has k non-trivial coprime subdegrees, then T acting on Δ has at

least k non-trivial coprime subdegrees.

Proof. As H is a primitive group of AS type on Δ, we have that Hδ is a

maximal subgroup of the almost simple group H with T � Hδ, for each δ ∈ Δ.

Therefore Tδ = T ∩Hδ is a pseudo-maximal subgroup of T and, in particular,

NH(Tδ) = Hδ. Let Λ be the set of fixed points of Tδ on Δ and let δ1, δ2 ∈ Λ.

By transitivity, there exists h ∈ H with δh1 = δ2, that is, Tδ = Tδ2 = Tδh1 =

T h
δ1

= T h
δ . Therefore h ∈ NH(Tδ) = Hδ and Λ is the Hδ-orbit containing δ, that

is, Λ = {δ} and Tδ fixes a unique point of Δ.

Let δ ∈ Δ and write α = (δ, . . . , δ) ∈ Δ�. Let N = T1 × · · · × T� be the socle

of G. Clearly, Gα ⊆ Hδ wrSym(�) and, as Gα is a maximal subgroup of G and

as N ⊆ G, we obtain Nα = (T1)δ × · · · × (T�)δ.

Assume that G has k non-trivial coprime subdegrees n1, . . . , nk. Now, there

exist βi = (δi,1, . . . , δi,�) with ni = |βGα

i |, for i ∈ {1, . . . , k}. Since N is a

normal subgroup of G, we obtain that n′
i = |βNα

i | divides ni, and so n′
1, . . . , n

′
k

are pairwise coprime. Furthermore

βNα

i = (δi,1, . . . , δi,�)
(T1)δ×···×(T�)δ = δ

(T1)δ
i,1 × · · · × δ

(T�)δ
i,�

for each i ∈ {1, . . . , k}, and so n′
i =

∏�
j=1 |δTδ

i,j |.
As n′

i is coprime with n′
j , for each distinct i and j in {1, . . . , k}, the subdegrees

|δTδ
i,x| and |δ′Tδ

j,y | of T acting on Δ are coprime, for each x, y ∈ {1, . . . , �}. Since

for each i ∈ {1, . . . , k} we have βi �= α, there exists ji ∈ {1, . . . , �} with δi,ji �= δ.

Since Tδ fixes only the element δ of Δ, we have |δTδ

i,ji
| > 1. Thus |δTδ

1,j1
|, . . . , |δTδ

k,jk
|

are k non-trivial coprime subdegrees of T acting on Δ.

Proof of Theorem 1.10. Assume that Theorem 1.9 holds true. Let G be a prim-

itive permutation group on Ω with three non-trivial coprime subdegrees. From
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Theorems 1.5 and 1.6, G is of AS or PA type. Since Theorem 1.9 holds true,

Proposition 5.4 yields a contradiction.

6. Proofs of Theorems 1.14 and 1.15

As usual, we denote by F(G) the Fitting subgroup of the finite group G, that

is, the largest normal nilpotent subgroup of G. The proof of Theorems 1.14 and

1.15 will follow from Lemma 6.1 and from the results in Section 5.

Lemma 6.1: Let H be a finite permutation group. Let O1, . . . , Ot be H-orbits

having pairwise coprime size, with |Oi| > 1 and with H faithful on Oi for each

i ∈ {1, . . . , t}. Then t ≤ 2. Moreover, if F(H) �= 1, then t = 1

Proof. For each i ∈ {1, . . . , t}, let ωi be an element of Oi and set Hi = Hωi .

By hypothesis, Hi is a proper core-free subgroup of H . Let N be a minimal

normal subgroup of H and set Ni = Hi ∩ N . As Hi is core-free in H , we

have Ni � N . Note that |HiN : Hi| = |N : (Hi ∩ N)| = |N : Ni| and hence

|H : Hi| is a multiple of |N : Ni|. This shows that {Ni}i=1,...,t is a family of

proper subgroups of N with |N : Ni| relatively prime to |N : Nj |, for each two

distinct elements i and j in {1, . . . , t}. Hence t ≤ μ(N). If N is a p-group

(for some prime p) then μ(N) = 1, and if N is non-abelian then μ(N) ≤ 2 by

Lemma 5.2.

Proof of Theorem 1.14. Let G be a non-regular finite transitive permutation

group on Ω and let α be in Ω. Set H = Gα. The result now follows from

Lemma 6.1.

Proof of Theorem 1.15. If t = 1, then there is nothing to prove. So we may

assume that t ≥ 2. We claim that K/k is a separable extension (and so, as

K/k is normal, a Galois extension). This is clear if k has characteristic 0.

Suppose then that k has characteristic p > 0. Now, if for some i ∈ {1, . . . , t}
the extension ki/k is separable, then K/k is separable (being the normal closure

of a separable extension). Therefore we may assume that ki/k is inseparable,

for each i ∈ {1, . . . , t}. This gives that p divides [ki : k], for each i ∈ {1, . . . , t}.
As t ≥ 2, we obtain a contradiction and the claim is proved.

Let H be the Galois group Gal(K/k) and set Hi = Gal(K/ki), for i ∈
{1, . . . , t}. Since the normal closure of ki is K, we obtain that Hi is core-free
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in H . Therefore H1, . . . , Ht is a family of core-free subgroups of H of pairwise

coprime index. Now apply Lemma 6.1 to obtain t ≤ 2.

7. Coprime factorizations of non-abelian simple groups

Liebeck, Praeger and Saxl [19, 20] completely classified the maximal factor-

izations of all finite almost simple groups. Tables 1–6 and Theorem D of [19]

determine all the triples (G,A,B) where G is a non-abelian simple group, and

A and B are maximal subgroups of G with G = AB.

Now, if A′ and B′ are subgroups of G with |G : A′| relatively prime to

|G : B′|, then G = A′B′. In particular, A′ and B′ give rise to a coprime

factorization of G. Moreover, if A (respectively B) is a maximal subgroup of

G with A′ ⊆ A (respectively B′ ⊆ B), then G = AB is a maximal coprime

factorization. Therefore, the list of all non-abelian simple groups admitting a

coprime factorization can be easily obtained with some elementary arithmetic

from [19]. Namely, for each triple (G,A,B) in Tables 1–6 and in Theorem D

of [19], it suffices to check whether |G : A| is relatively prime to |G : B|. Table 1
in this paper gives all possible maximal coprime factorizations (G,A,B) and,

in particular, the list of all non-abelian simple groups admitting a coprime

factorization. The notation we use is standard and follows the notation in [19,

Section 1.2].
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