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Budapest, P.O.Box 120, 1518, Hungary

e-mail: kope@cs.elte.hu

ABSTRACT

We investigate the list-chromatic number of infinite graphs. It is easy to

see that Chr(X) ≤ List(X) ≤ Col(X) for each graph X. It is consistent

that List(X) = Col(X) holds for every graph with Col(X) infinite. It is

also consistent that for graphs of cardinality ℵ1, List(X) is countable iff

Chr(X) is countable.

The paper [6] of Erdős and Hajnal initiated the systematic research of the

chromatic number of infinite graphs. They discovered that some of their proofs

(for example, that every graph with uncountable chromatic number contains

the 4-circuit) work for a broader class of graphs, the graphs with uncountable

coloring number. The coloring number thus invented was a new graph invariant

close to the chromatic number, but with better properties. It satisfies Shelah’s

Singular Cardinal Compactness Theorem. This, and an easy lemma make the

coloring number quite easy to control: it can be described by the stationarity

of certain sets of ordinals, defined from the graph.

In this paper we consider the list-chromatic number of infinite graphs, the

following modification of the chromatic number. The list-chromatic number of

a graph X , List(X), is the least cardinality κ such that X has a good coloring

f that for every vertex v its color, f(v), is an element chosen from a κ-element
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set F (v) preassigned to v. Each vertex has, therefore, its specific set of possible

colors.

The list-chromatic number, introduced by Vizing [20], and Erdős–Rubin–

Taylor [7], independently, is easily seen to be between the chromatic number

and the coloring number of X ; Chr(X) ≤ List(X) ≤ Col(X). In general,

Chr(X) and Col(X) can be far apart; there are bipartite graphs with large

coloring number. Namely, Col(K(κ, κ)) = κ and Col(K(κ, λ)) = κ+ when

κ < λ are infinite. We show that the list-chromatic number can consistently

be equal to the coloring number (at least for graphs of arbitrary cardinality

with infinite coloring number). Further, for graphs of cardinality ℵ1, the list

chromatic number can be equal to the chromatic number (if the latter number

is infinite). More precisely, there is a model of set theory, where the Continuum

Hypothesis (CH) fails, and List(X) is countable iff Chr(X) is countable.

In recent work, M. Kojman considered these notions, and showed that al-

though List(X) ≤ Col(X) always holds, it is consistent that List(X) and Col(X)

are not far from each other. Specifically, GCH implies Col(X) ≤ List(X)++

holds generally. We improve this to Col(X) ≤ List(X)+. Kojman also obtained

some non-GCH results using Shelah’s results ([13]).

We also consider a modification, List∗(X) of the list-chromatic number. In

this case, the sets F (v) assigned to the vertices are not arbitrary sets of some

cardinality κ, but κ-element subsets of κ. This definition, which is halfway

between the chromatic number and the list-chromatic number, is meaningful

only for κ infinite. We show, under GCH, that Col(X) ≤ List∗(X)+, if List∗(X)

is regular, and Col(X) ≤ List∗(X)++ if List∗(X) is arbitrary. We further give

forcing models, which show that, at least consistently, List∗(X) differs both

from Chr(X) and List(X).

The paper is organized as follows. After the necessary definitions we first

make some remarks on the fact that the definition of the list-chromatic num-

ber obviously uses the axiom of choice. We show that if the AC fails then

there is a graph which is not λ-choosable for arbitrarily large λ (Theorem 1).

It is also consistent that some graph is not λ-choosable for any cardinal λ

(Theorem 2). Then we give the obvious inequalities between the various no-

tions (Lemma 3). Theorem 4 and Lemma 5 are technical statements giving a

complete characterization of graphs with coloring number μ for a given infi-

nite cardinal μ. Then, we calculate List∗ and List for some bipartite graphs

(Lemmas 6–9). Theorem 10 shows that if X is a countably chromatic graph of
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cardinality κ and MAκ holds, then the list-chromatic number ofX is also count-

able. It is, therefore, consistent that for graphs X of cardinality ℵ1, List(X)

is countable iff Chr(X) is countable. Theorem 11 is a consistency result in

the opposite direction; it is consistent that ℵ1 < c and there is a bipartite

graph X of cardinality ℵ1 with List∗(X) > ω. Theorem 12 shows, under GCH,

that Col(X) ≤ List(X)+ and Col(X) ≤ List∗(X)++. Lemma 14 is a technical

lemma describing the effect of adding a Cohen real on the list-chromatic num-

ber of a graph in the ground model. In Theorem 15 we give the consistency of

Col(X) = List(X) for every graph with Col(X) infinite. In Theorem 16 we de-

duce from the axiom of constructibility the existence of a bipartite type 2 graph

X such that Col(X) = List∗(X) = ω1. Theorems 17 and 19 give the consistency

of GCH and the existence of graphs with ω1 = |X | = Col(X) > List(X) and

ω1 = |X | = List(X) > List∗(X), respectively. We notice that the consistency

of the statement “GCH plus each HM graph on ω1 has countable list-chromatic

number” can be established using Shelah’s D-completeness theory (Theorem

18). Finally, we prove a result promised in [15] (Theorem 20).

Acknowledgment. The author is grateful to the referee whose suggestions

have greatly improved the exposition.

Definitions: We apply (what we believe are) the current axiomatic set theory

conventions. If f is a function, A a set, then f [A] = {f(x) : x ∈ A}. Each

ordinal is identified with the set of smaller ordinals, and each cardinal with the

least ordinal of that cardinality. If κ > τ are uncountable, regular cardinals,

then Sκ
τ = {α < κ : cf(α) = τ}.

If S is a set, κ a cardinal, then we define [S]κ = {X ⊆ S : |X | = κ} and

[S]<κ = {X ⊆ S : |X | < κ}.
A graph (V,X) is any pair where V is a set (the vertices) and X ⊆ [V ]2

(the edges). In some cases we denote a graph by its edge set only. In a graph

(V,X) for any vertex v ∈ V , ΓX(v) or just Γ(v) is the neighborhood of v,

that is, ΓX(v) = {w ∈ V : {v, w} ∈ X}. If, further, V is an ordered set (most

of our graphs are on some ordinal), then we let Γ−
X(v) = {w < v : {w, v} ∈ X},

Γ+
X(v) = {w > v : {w, v} ∈ X}. A graph (V,X) is bipartite if V is the union of

the disjoint sets A and B (the bipartition classes) and all edges go between

A and B. A bipartite graph X with bipartition classes A, B is a graph of

type (κ, λ, μ) if |A| = κ, |B| = λ, and |Γ(x)| ≥ μ (x ∈ A). We sometimes call

a graph of type (λ+, λ, μ) a graph of type 1.
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K(κ, λ) denotes the complete bipartite graph with bipartition classes of cardi-

nalities κ, λ, respectively. A good coloring of a graph (V,X) is any function on

V such that f(x) �= f(y) holds whenever {x, y} ∈ X . The chromatic number

Chr(V,X) or Chr(X) of a graph (V,X) is the least cardinal κ such that there is

a good coloring f : V → κ. If κ is a cardinal, the graph (V,X) is κ-choosable,

if for every function F from V with |F (v)| = κ (v ∈ V ) (we call these fun-

cions assignments) there is a choice function f(v) ∈ F (v) (v ∈ V ) which is a

good coloring of (V,X). The list-chromatic number List(V,X) or List(X)

of a graph (V,X) is the least cardinal κ such that (V,X) is κ-choosable. The

restricted list-chromatic number, List∗(V,X) or List∗(X), is the smallest

cardinal κ ≥ ω such that the following holds: for every assignment F : V → [κ]κ

there is a choice function f(x) ∈ F (x) which is a good coloring of (V,X).

The coloring number Col(V,X) or Col(X) of a graph (V,X) is the smallest

cardinal μ such that there is a well ordering < of the vertex set V such that

|Γ−(x)| < μ holds for every x ∈ V .

A Hajnal–Máté graph (HM graph for short) is a graph X on some δ ≤ ω1

such that for every α < δ the set Γ−(α) is either finite or it is an ω-sequence

converging to α (and so α is limit). This notion was introduced and first in-

vestigated in [9]. We let S(X) be the set of those α for which the latter option

holds.

A graph X on some regular cardinal κ > ω is a graph of type (κ, μ) if there

is a stationary set S = S(X) ⊆ Sκ
cf(μ) such that for each α ∈ S the set Γ−(α) is

a set of ordinal μ, cofinal in α. Sometimes we call graphs of this kind graphs

of type 2.

If H ⊆ [S]ω is a set system, then we call H 2-chromatic, if there is a coloring

f : S → {0, 1} such that for each H ∈ H neither H ⊆ f−1(0) nor H ⊆ f−1(1)

holds.

Add(μ, κ) denotes the Cohen notion of forcing that adds κ subsets to μ.

Col(κ, λ) is the Levy-collapse making λ = κ+.

For the statement and applications of Martin’s axiom, see [8].

If χ is a regular cardinal, then H(χ) denotes the set of those sets whose

transitive closure has cardinality less than χ. We usually consider the model

(H(χ),∈, <w), where <w is a well order of H(χ).

We first make some remarks showing that in the absence of the axiom of

choice, the list-chromatic number may not exist.
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Theorem 1: If the axiom of choice fails, then there is a graph X such that for

every cardinal κ there is a cardinal λ ≥ κ such that X is not λ-choosable.

Proof. As the axiom of choice fails, there is a set {Ai : i ∈ I} of nonempty

sets with no choice functions. Set μ =
∑{|Ai| : i ∈ I}, i.e., the cardinality

of B =
⋃{{i} × Ai : i ∈ I}. If κ > 0 is an arbitrary cardinal, |K| = κ, set

C = B ×K, L = ωC, let λ = |L|. Then λ ≥ κ and as

λ ≤ |Ai × L| ≤ |B × L| ≤ |C × L| = |1+ωC| = |ωC| = λ,

we have |Ai ×L| = λ for each i ∈ I. There is no choice function for the system

{Ai × L : i ∈ I}, as it would project to a choice function of {Ai : i ∈ I}.
Therefore, if X is the complete graph on I, then X is not λ-choosable.

Theorem 2: It is consistent with the negation of the axiom of choice, that

there is a graph which is not κ-choosable for any cardinal κ.

Proof. We use a model of Halpern and Howard (cf. [10], [11]), in which 2κ = κ

holds for any infinite cardinal κ and there is a system {Ai : i ∈ I} of sets which

does not have a choice function and |Ai| = 2 holds for every i ∈ I. Our graph

X is the complete graph on I. If κ is an infinite cardinal, let K be a set with

|K| = κ. If F is the assignment F (i) = Ai × K for X , then |Ai × K| = κ

by the hypothesis that for each infinite cardinal κ, 2κ = κ holds, and there is

no choice function for {F (i) : i ∈ I}, as it would project to a choice function

of {Ai : i ∈ I}. We obtained, therefore, that X is not κ-choosable for any

infinite cardinal κ. As X is an infinite complete graph, this holds for κ finite,

as well.

From now on we assume the axiom of choice.

Lemma 3: For every graph (V,X) we have

Chr(V,X) ≤ List∗(V,X) ≤ List(V,X) ≤ Col(V,X) ≤ |V |.
Proof. The first inequality follows from the fact that the assigment F (x) = κ

is of the kind considered in the definition of List∗(V,X). The second inequality

holds as the definition of List∗(V,X) is the same as that of the list-chromatic

number, only some specific assignments are used.

For the third inequality assume that Col(V,X) ≤ κ for some cardinal κ. This

means that there is a well ordering < of the vertex set V such that |Γ−(x)| < κ

holds for every x ∈ V . If F is a function with |F (x)| = κ for every x ∈ V , then
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we select the good coloring f(x) ∈ F (x) by transfinite recursion on <: let f(x)

be an arbitrary element of the set F (x) − {f(y) : y ∈ Γ−(x)}. The latter set

is nonempty as |F (x)| = κ and we subtract a smaller set. It is clear that f is,

indeed, a good coloring.

For proving the last inequality it suffices to consider any well ordering into

the order type |V |. Recall that in axiomatic set theory, |V |, the cardinality of

V , is identified with the smallest ordinal which is equicardinal to V , so a well

ordering into order type |V | is one where each element is preceded by less than

|V | elements.

Next we quote an important and powerful result of Shelah.

Theorem 4 (Shelah [18]): If X is a graph on a set V of cardinality λ, where λ is

singular, and Col(X |V ′) ≤ μ for every V ′ ⊆ V , |V ′| < λ, then Col(X) ≤ μ.

Lemma 5: (a) If X is a graph of type (λ+, λ, μ) or (κ, μ), then Col(X) > μ.

(b) If Col(X) > μ, then X contains a type 1 or type 2 subgraph.

Proof. We use the following characterization.

Claim: Let X be a graph on the regular cardinal κ such that if A ∈ [κ]<κ then

Col(X |A) ≤ μ. Define

S =
{
α < κ : (∃β(α) ≥ α)

∣
∣Γ−

X(β(α)) ∩ α
∣
∣ ≥ μ

}
.

Then X has Col(X) ≥ μ+ if and only if S is stationary.

Proof. See, e.g., in [14].

The Claim immediately gives part (a).

For part (b), assume that X is a graph on some κ with Col(X) ≥ μ+. By

passing to a subgraph of minimal cardinality with coloring number at least μ+,

we can assume that each X ′ ⊆ X with |X ′| < κ has Col(X ′) ≤ μ; κ is regular

by Theorem 4. By the Claim, the set

S = {α < κ : (∃β(α) ≥ α)|Γ−
X(β(α)) ∩ α| ≥ μ}

is stationary. For α ∈ S let f(α) ≤ α be the supremum of the first μ elements

of Γ−
X(β) ∩ α.

Assume first that the set S′ = {α ∈ S : f(α) < α} is stationary. Then by

Fodor’s theorem there is a stationary S′′ ⊆ S′ such that f(α) = γ for α ∈ S′′.
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We now have a graph of type 1; set A = γ, B = {β(α) : α ∈ S′′} and the edges

of X between A and B.

Assume finally that S′ is nonstationary. Let Y be the subgraph ofX obtained

by removing all vertices in
⋃{[α, β(α)) : α ∈ S − S′} and all edges {ξ, α} ∈ X

with ξ < α ∈ S′.
Then Y is a graph of type (κ, μ).

Lemma 6: If X is a bipartite graph with bipartition classes A and B, |A| = ω,

|B| = c, and |Γ(x)| = ω for each vertex x ∈ B, then List∗(X) = ω1.

Proof. We first show that List∗(X)≤ω1. Let F :A∪B→[ω1]
ω1 be an assignment

of X . We define the coloring f(x) ∈ F (x) (x ∈ A ∪ B) as follows. Let f(x) ∈
F (x) be arbitrary for x ∈ A. Then pick an element f(y) ∈ F (y)− {f(x) : x∈A}
for each y ∈ B. This is possible, as the latter set is nonempty.

For the other direction we are going to construct an assignment F :A∪B→[ω]ω

such that no good coloring can be chosen from F . Let {F (x) : x ∈ A} be

arbitrary pairwise disjoint elements of [ω]ω. For each g ∈ ∏{F (x) : x ∈ A}
choose an element yg ∈ B and make F (yg) = {g(x) : {x, yg} ∈ X}. The latter

set is plainly infinite, and we can make the choice as |B| = c by assumption.

Assume that f ∈ ∏
F is a good coloring of X . Set g = f |A. Then no color

f(yg) can be chosen from F (yg).

A similar argument gives the following.

Lemma 7 (GCH): Let X be a bipartite graph on the bipartition classes A and

B with |A| = λ+, |B| = λ, and |Γ(x)| ≥ μ (x ∈ A). Then:

(a) List(X) > μ,

(b) if λ = μ or μ is regular, then List∗(X) > μ.

Proof. (a) We can as well assume that |Γ(x)| = μ holds for every x ∈ A (by

removing edges). Let {F (y) : y ∈ B} be pairwise disjoint sets of cardinality μ.

For each g ∈ ∏{F (y) : y ∈ B} let xg be an element of A such that xg �= xg′

whenever g �= g′. Define F by F (xg) = {g(y) : y ∈ Γ(xg)} for these points; for

the other elements of A, set F (x) = μ. Now, there is no good coloring f ∈ ∏
F .

(b) The case when λ = μ follows from the preceding argument, as then

|⋃{F (y) : y ∈ B}| = μ.
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Assume now that μ is regular and X is a bipartite graph with bipartition

classes A and B with |A| = λ+, |B| = λ. Let λ be minimal that X contains a

subgraph of this kind. We assume that B = λ.

If τ < λ then |Γ(x) ∩ τ | = μ can hold only for at most λ x ∈ A, as otherwise

we could decrease the value of λ. Removing these elements of A, we obtain

that for each x ∈ A, Γ(x) is a cofinal set of λ, which is of type μ, specifically,

cf(λ) = μ. Let {λα : α < μ} be a continuous sequence of cardinals, converging

to λ, with λ0 = 0. Let {Aα : α < μ} be pairwise disjoint elements of [μ]μ

and set F (ξ) = Aα for λα ≤ ξ < λα+1. For each g ∈ ∏{F (ξ) : ξ < λ} pick

an element x(g) ∈ A with x(g) �= x(g′) for g �= g′. This is possible, as there

are μλ = λ+ such functions g. If we now let F (x(g)) = {F (y) : y ∈ Γ(x(g))}
then there is no good coloring f of X with f ∈ ∏

F , and we have therefore

established that List∗(X) > μ.

The above argument specifically gives the following, without assuming GCH.

Lemma 8: If κ is an infinite cardinal then List∗(Kκ,2κ) = κ+.

Lemma 9: If X is a bipartite graph with bipartition classes A and B, |A| = ω,

|B| < c, then List(X) ≤ ω.

Proof. Let A = {an : n < ω}, B = {bα : α < κ} where κ < c. Let F be an

assignment on A ∪ B with |F (x)| = ω for x ∈ A ∪ B. Choose xs ∈ F (an) for

every function s : n → 2 (n < ω) such that {xs : s : n → 2, n < ω} are all

distinct. For h : ω → 2 set Kh = {xh|n : n < ω}.
If h : ω → 2 then |Kh| = ω, and for h �= h′, |Kh ∩Kh′ | < ω. Therefore for

each α < κ there can be only one h such that F (bα) ⊆ Kh holds. We can choose

a function h : ω → 2 such that for no α < κ does F (bα) ⊆ Kh hold.

Given h as above, set f(an) = xh|n, f(bα) ∈ F (bα)−Kh, a good coloring of

X .

Theorem 10 (MAκ): If (V,X) is a graph with |V | ≤ κ and Chr(X) ≤ ω, then

List(X) ≤ ω.

Proof. Let V =
⋃{Vi : i < ω} be a partition witnessing that Chr(X) ≤ ω, i.e.,

if {x, y} ∈ X , x ∈ Vi, y ∈ Vj , then i �= j. Assume we are given an assignment

F : V → [κ]ω.

Define the poset (P,≤) as follows. Set p = (s, g) ∈ P if
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(a) s ∈ [V ]<ω,

(b) g is a function on s, g(x) ∈ F (x),

(c) g(x) �= g(y) for x ∈ Vi, y ∈ Vj , i �= j.

p′ = (s′, g′) ≤ p = (s, g) if s′ ⊇ s, g′ ⊇ g, i.e., g′ extends g.
Notice that (c) implies that g is good coloring of X on s.

Claim 1: If x ∈ V , then Dx = {(s, g) : x ∈ s} is dense in (P,≤).

Proof. Given x ∈ V and (s, g) ∈ P with x /∈ s, extend (s, g) to (s′, g′) where

s′ = s ∪ {x} and g′ ⊇ g with g′(x) ∈ F (x) − {g(y) : y ∈ s}.
Claim 2: (P,≤) is ccc.

Proof. Assume that pα ∈ P for α < ω1. By the Δ-system lemma we can assume

that pα = (s∪ sα, gα) where the members of the family {s}∪ {sα : α < ω1} are

pairwise disjoint. With a similar argument we assume that the range of gα is

t ∪ tα with the members of the family {t} ∪ {tα : α < ω1} pairwise disjoint. As
∏{F (x) : x ∈ s} is countable, we can assume that gα|s = g for α < ω1.

If y ∈ t, α < ω1, there is a unique iα(y) < ω such that if gα(x) = y then

x ∈ Viα(y). Shrinking the family again, we can assume that iα(y) = i(y) for

y ∈ t. We claim that now (s′, g′) with s′ = s∪sα∪sβ , g
′ = gα∪gβ is a condition

extending pα, pβ for any α �= β.

First, g′ is a function as gα|s = g = gβ|s. Obviously, g′(x) ∈ F (x) for x ∈ s′.
In order to show (c) for g′, assume that g′(x) = g′(x′) = y. As pα, pβ are

conditions, x ∈ s∪sα, x′ ∈ s∪sβ (or vice versa), and y ∈ t. Therefore x ∈ Viα(y),

x′ ∈ Viβ(y) and by our above arguments iα(y) = iβ(y), that is, x and x′ are in

the same Vi.

Let G ⊆ P be a filter meeting each Dx (x ∈ V ). Let f(x) be the unique value

such that some (s, g) ∈ G has x ∈ s, f(x) = g(x). Then f(x) ∈ F (x) for each

x ∈ V and f is a good coloring of X .

A result complementing the above is the following.

Theorem 11: It is consistent that ℵ1 < c and there is a bipartite graph X of

cardinality ℵ1 with List∗(X) > ω.

Proof. We show that if there is a non-2-chromatic systemH={Hα:α<ω1}⊆ [ω]ω,

then there is a graph as described. For this, let A = {aα : α < ω1} and
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B = {bα : α < ω1} be disjoint sets of cardinality ℵ1 and let

X = {(aα, bβ) : α, β < ω1}

be the complete bipartite graph on A and B. Define the assignment

F : A ∪B → [ω]ω by F (aα) = F (bα) = Hα.

Assume that f(aα) ∈ F (aα), f(bα) ∈ F (bα) for α < ω1 and f is a good

coloring of X . Then the sets U = {f(aα) : α < ω1} and V = {f(bα) : α < ω1}
must be disjoint as X is the complete bipartite graph. As f(aα) ∈ Hα ∩U and

f(bα) ∈ Hα ∩ V , the sets U , V give a good 2-coloring of H, a contradiction.

The consistency of ℵ1 < c with the existence of a non-2-chromatic set sys-

tem of cardinality ℵ1 consisting of countable sets was first proved by Kunen

(unpublished; see, however, [4]). Kunen’s argument was the following. Let V

be a model of ℵ1 < c. Force with the finite support iteration {Pα : α ≤ ω1}
where the factor Qα is defined as follows. Let Dα be a nonprincipal ultrafil-

ter on ω in V Pα . Set q ∈ Qα if q = (x,A), x ∈ [ω]<ω, A ∈ D, x ∩ A = ∅;
q′ = (x′, A′) ≤ q = (x,A) if x′ ⊇ x, x′ − x ⊆ A, A′ ⊆ A. It is immediate

that P = Pω1 is ccc. Density arguments give that if Gα ⊆ Qα is generic, then

Aα =
⋃{x : (x,A) ∈ Gα} is a set Aα ∈ [ω]ω such that for every B ∈ V Pα ,

B ⊆ ω, either B ∩Aα or (ω −B) ∩Aα is finite. This implies that if

H =
{
Aα − s : α < ω1, s ∈ [ω]<ω

}

then H is not 2-chromatic in V P .

Theorem 12 (GCH): Assume that List(X) is infinite. ThenCol(X)≤List(X)+,

Col(X) ≤ List∗(X)++, and if List∗(X) is regular, then Col(X) ≤ List∗(X)+.

Proof. In order to prove the first statement, it suffices to show the following. If

μ is an infinite cardinal, and Col(X) > μ+, then List(X) > μ.

For this, assume that Col(X) > μ+. We can assume that κ = |X | is minimal

with respect to this condition and, for simplicity, that X is on κ. Then, by the

Claim in Lemma 5, κ is regular, and there is a stationary set S ⊆ κ such that

for each α ∈ S there is some β(α) with α ≤ β(α) < κ that |Γ−(β(α))| ≥ μ+.

By thinning out S, we can obtain that the mapping α �→ β(α) is injective. For

each α ∈ S let f(α) denote the supremum of the first μ elements of Γ−(β(α)).
Then obviously f(α) < α, and so we can apply Fodor’s lemma and get γ < κ

and a stationary S′ ⊆ S such that f(α) = γ for α ∈ S′.
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If we now set λ = |γ|, then we have a subgraph of X of the following type: a

bipartite graph with bipartition classes A and B, |A| = λ+, |B| = λ, for each

x ∈ A, |Γ(x)| ≥ μ. We can apply Lemma 7(a) to obtain List(X) > μ.

In order to prove the other two claims, it suffices to show that if μ is regular

and List∗(X) ≤ μ, then Col(X) ≤ μ+. This follows as above, using Lemma

7(b).

Before proceeding to the next result, we notice the following.

Lemma 13: If Col(X) = ω, then List(X) = ω.

Proof. It suffices to show that X contains finite subgraphs with arbitrarily large

finite list-chromatic number. Theorem 9.1 of Erdős and Hajnal in [6] states that

if 2 ≤ k < ω and Col(X) ≥ 2k − 2, then X contains a finite subgraph Y with

Col(Y ) ≥ k. Alon in [2] gives a function f(n) such that if the finite graph Y

has Col(Y ) ≥ f(n) then List(Y ) ≥ n. As by the above result X contains finite

subgraphs with arbitrary large coloring number, List(X) = ω follows.

Lemma 14 (GCH): Let κ > ω be regular, and, if κ = λ+, λ singular, assume�λ.

Let X be a (κ, μ)-graph with some μ < κ. If P = Add(κ, 1), then List(X) > μ

holds in V P .

We notice that the hypothesis �λ is used only in Case 6 below.

Proof. We assume, therefore, that X is a graph on κ, S ⊆ κ is stationary, and,

for each α ∈ S, Γ−(α) is a cofinal subset of α of order type μ. Notice that

cf(α) = cf(μ) for α ∈ S.

We can assume that P is the following poset: p ∈ P if p : α → [κ]μ for some

α < κ; p′ ≤ p if p′ end-extends p. If G is a V -P generic filter, then F =
⋃
G

is an assignment F : κ → [κ]μ. We are going to prove that, in V [G], there is

no good coloring f ∈ ∏
F for X . Assume that p ∈ P forces that f ∈ ∏

F is a

good coloring of X .

We consider six cases.

Case 1. κ is inaccessible and μ is regular.

Let N be an elementary submodel with

{X,P, p, f} ⊆ N ≺ (H(χ),∈, <w)

for some large regular χ with [N ]<μ ⊆ N and δ = N ∩ κ ∈ S.
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Set H = Γ−(δ), the set of points below δ which are joined to δ. By assump-

tion, tp(H) = μ and sup(H) = δ.

Construct the decreasing sequence {pξ : ξ < μ} of conditions in N as follows.

Let p0 = p. If ξ < μ is limit, let pξ be
⋃{pη : η < ξ}, the largest lower bound

of {pη : η < ξ}. If pξ ∈ N is given, set αξ = Dom(pξ) < δ, pick xξ ∈ H −αξ, let

p′ξ ∈ N be an extension of pξ such that p′ξ(xξ) is disjoint from pξ(β) for β < αξ,

and let pξ+1 ∈ N be an extension of p′ξ with pξ+1 ‖−− f(xξ) = yξ for some yξ.

Finally, let p′ =
⋃{pξ : ξ < μ}. Clearly, Dom(p′) = δ. Extend p′ to p′′ where

p′′(δ) = {yξ : ξ < μ}. Notice that yξ �= yη for η < ξ < μ, so the latter set is

indeed of cardinality μ. If now p∗ ≤ p′′ determines f(δ), say p∗ ‖−− f(δ) = yξ,

then p∗ ‖−− f(δ) = f(xξ), while {xξ, δ} ∈ X , so p∗ forces a contradiction.

Case 2. κ is inaccessible and μ is singular.

Fix a sequence {μα : α < cf(μ)} of cardinals converging to μ.

Let χ be a large regular cardinal and choose an elementary submodel N such

that

{p,X, f} ⊆ N ≺ (H(χ),∈, <w)

such that [N ]<cf(μ) ⊆ N , δ = N ∩ κ ∈ S is a cardinal and

⋃
{P(α) : α < δ} ⊆ N.

Set H = Γ−(δ), the set of points less than δ, joined to δ. For τ < cf(μ) let

Hτ denote the set of the first μτ elements of H .

We are going to construct a sequence {pξ : ξ < cf(μ)} of conditions as follows.

Set p0 = p. If ξ < cf(μ) is limit, let pξ =
⋃{pη : η < ξ}. Given pξ ∈

N , we construct pξ+1 as follows. Set αξ = Dom(pξ); let τξ be the minimal

τ < cf(μ) such that Hτ �⊆ αξ. Extend pξ to a p′ξ+1 ∈ N such that the sets

{p′ξ+1(β) : β ∈ Hτξ − αξ} are disjoint from
⋃
pξ[αξ] and each other. Next

select pξ+1 ∈ N such that pξ+1 ≤ p′ξ+1 and pξ+1 determines the values of f on

Hτξ − αξ. Finally, set p′ =
⋃{pξ : ξ < cf(μ)}. Then Dom(p′) = δ and we can

define an extension p∗ of p′ which forces that

F (δ) =
{
f(β) : β ∈

⋃
{Hτξ − αξ : ξ < cf(μ)}

}
.

As the latter set is of cardinality μ, this is possible. We are done, as p∗ forces

that f(δ) = f(β) for some β ∈ H .

Case 3. κ = λ+ and μ is regular with μ ≤ cf(λ).
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Pick N with

{p,X, f} ⊆ N ≺ (H(χ),∈, <w)

such that [N ]<μ ⊆ N and δ = N ∩ λ+ ∈ S.

Set H = Γ−(δ), the set of points less than δ, which are joined to δ.

Construct the decreasing sequence {pξ : ξ < μ} of conditions with pξ ∈ N as

follows. Set p0 = p. If ξ < μ is limit, let pξ =
⋃{pη : η < ξ}. If pξ ∈ N is given,

set αξ = Dom(pξ), βξ = min(H − αξ). Let p
′
ξ ∈ N be a condition extending pξ

such that p′ξ(βξ) is disjoint from pξ[H ∩αξ]. Then, extend p′ξ to some condition

pξ+1 ∈ N which determines the value of f(βξ). Set p′ =
⋃{pξ : ξ < μ}, a con-

dition with Dom(p) = δ. Next, extend p′ to p∗ forcing F (δ) = {f(βξ) : ξ < μ}.
Notice that this latter set is of cardinality μ. As no element of F (δ) can be

chosen as f(δ), we are done.

Case 4. κ = λ+, μ < cf(λ) is singular.

Fix a sequence {μα : α < cf(μ)} of cardinals converging to μ.

Pick N with

{p,X, f} ⊆ N ≺ (H(χ),∈, <w)

such that [N ]<cf(μ) ⊆ N ,
⋃{[α]μ : α < δ} ⊆ N , and δ = N ∩ λ+ ∈ S.

Set H = Γ−(δ), the set of points less than δ, joined to δ. For τ < cf(μ) let

Hτ denote the set of the first μτ elements of H .

We are going to construct a sequence {pξ : ξ < cf(μ)} of conditions in N

as follows. Set p0 = p. If ξ < cf(μ) is limit, let pξ =
⋃{pη : η < ξ}. Given

pξ ∈ N , we construct pξ+1 as follows. Set αξ = Dom(pξ); let τξ be the minimal

τ < cf(μ) such that Hτ �⊆ αξ. Extend pξ to a p′ξ+1 ∈ N such that the sets

{p′ξ+1(β) : β ∈ Hτξ − αξ} are disjoint from
⋃
pξ[αξ] and each other. Next

select pξ+1 ∈ N such that pξ+1 ≤ p′ξ+1 and pξ+1 determines the values of f on

Hτξ − αξ. Finally, set p′ =
⋃{pξ : ξ < cf(μ)}. Then Dom(p′) = δ and we can

define an extension p∗ of p′ which forces that

F (δ) =
{
f(β) : β ∈

⋃
{Hτξ − αξ : ξ < cf(μ)}

}
.

As the latter set is of cardinality μ, this is possible. We can now conclude as in

Case 2.

Case 5. κ = λ+, μ is singular with cf(μ) ≤ cf(λ) < μ.

Fix a sequence ϕ = 〈ϕα : α < λ+〉 where ϕα : α → λ is injective. Fix also an

increasing sequence {μτ : τ < cf(μ)} of regular cardinals converging to μ with

cf(λ) < μ0.
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Pick N such that

{p,X, f, ϕ} ∪
⋃

{P(α) : α < λ} ⊆ N ≺ (H(χ),∈, <w)

with [N ]<cf(μ) ⊆ N and δ = N ∩ λ+ ∈ S.

Claim 1: If T ⊆ δ, sup(T ) < δ, τ = |T | is regular, cf(λ) < τ < λ, then there is

a subset T ′ ⊆ T , |T ′| = τ , T ′ ∈ N .

Proof. Pick α with sup(T ) < α < δ. The set Z = ϕα[T ] ⊆ λ and has cardinality

τ , so there is a subset Z ′ ⊆ Z which is bounded below λ and |Z ′| = τ . By our

construction, Z ′ ∈ N , and so T ′ = ϕ−1
α [Z ′] ⊆ T and T ′ ∈ N .

Set H = Γ−(δ), the set of points less than δ, which are joined to δ. Let Hτ

denote the set of the first μτ elements of H (τ < cf(μ)).

We are going to define a decreasing sequence {pξ : ξ < cf(μ)} of conditions

from N . Set p0 = p. If ξ < cf(μ) is limit, let pξ =
⋃{pη : η < ξ}. Given

pξ, we define pξ+1 as follows. Set αξ = Dom(pξ). Let τ(ξ) < cf(μ) be such

that Hτ(ξ) �⊆ αξ. Now Hτ(ξ) − αξ has ordinal μτ(ξ), a regular cardinal with

cf(λ) < μτ(ξ). We can apply Claim 1, and obtain a set Tξ ⊆ Hτ(ξ) − αξ

with |Tξ| = μτ(ξ) and Tξ ∈ N . Let p′ξ ∈ N be an extension of pξ such that

Dom(p′ξ) = sup(Tξ) and the sets {p′ξ(β) : β ∈ Tξ} are disjoint from pξ[αξ]

and each other. Let pξ+1 be an extension of p′ξ which determines the values of

f(β) for β ∈ Tξ. Set p′ =
⋃{pξ : ξ < cf(μ)}. Extend p′ to a p∗ which forces

F (δ) = {f(β) : β ∈ T } where T =
⋃{Tξ : ξ < cf(μ)}. Now p∗ forces that f is

not a good coloring.

Case 6. κ = λ+ for some λ with cf(λ) < cf(μ).

This is the only case that uses the hypothesis �.

Notice that we have cf(μ) > ω.

By assumption, there is a �-sequence C = {Cα : α < λ+, limit}. Let the

increasing enumeration of Cα be Cα = {γα
ξ : ξ < tp(Cα)}, where we assume

γα
0 = 0.

Fix the strictly increasing sequence {λα : α < cf(λ)} of cardinals converging

to λ. Let {μτ : τ < cf(μ)} be a sequence as follows. If μ is regular, then set

μτ = τ for τ < μ. If μ is singular, then let {μτ : τ < cf(μ)} be a sequence of

regular cardinals converging to μ.

Fix also a sequence ϕ = {ϕα,β : α < β < λ+} where ϕα,β : [α, β) → λ is an

injection.
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Choose an elementary submodel
⋃

{P(τ) : τ < λ} ∪ {p, C, ϕ,X, f} ⊆ N ≺ (H(χ),∈, <w)

where χ is a large regular cardinal, such that |N | = λ, δ = N ∩ λ+ ∈ S. Notice

that tp(Cδ) ≤ λ as C is a �-sequence, and by cf(λ) < cf(μ) we cannot have

equality here, so tp(Cδ) < λ.

Set H = Γ−(δ), the set of points below δ which are joined to δ. By assump-

tion, tp(H) = μ and sup(H) = δ.

Set, for η < cf(λ),

Aη =
{
〈ξ, x〉 : ξ < tp(Cδ), ϕ

−1
γδ
ξ ,γ

δ
ξ+1

(x) ∈ H,x < λη

}
.

Clearly, {Aη : η < cf(λ)} is increasing in η and, as Aη ⊆ tp(Cδ)× λη, Aη ∈ N .

Further, H =
⋃{Bη : η < cf(λ)} where

Bη = {ϕ−1
γδ
ξ ,γ

δ
ξ+1

(x) : 〈ξ, x〉 ∈ Aη}.
As cf(λ) �= cf(μ), there is an η < cf(λ) such that |Bη| = μ. If we write

H = Bη, then H ⊆ H and |H | = μ.

Claim 2: If α < δ then H ∩ α ∈ N .

Proof. Assume first that γ < δ is a limit point of Cδ. Then there is a limit

ζ < tp(Cδ) such that γ = γδ
ζ . Then Cγ = Cδ ∩ γ and

H ∩ γ =
{
ϕ−1
γγ
ξ ,γ

γ
ξ+1

(x) : 〈ξ, x〉 ∈ Aη, ξ < ζ
}

is in N , as Aη ∈ N .

If α < δ is arbitrary, as cf(δ) = cf(μ) > ω, we can let γ be a limit point of Cδ

such that α < γ < δ and then H ∩ α = (H ∩ γ) ∩ α is in N .

Recall that we have fixed a sequence 〈μτ : τ < cf(μ)〉 of regular cardinals

converging to μ. Let Hτ denote the set of the first μτ members of H .

We construct a decreasing sequence {pξ : ξ < cf(μ)} of conditions, as follows.

Set p′0 = p. For 0 < ξ < cf(μ) let p′ξ =
⋃{pη : η < ξ}, i.e., pξ−1, if ξ

is successor, and the largest lower bound of {pη : η < ξ} if ξ is limit. Set

αξ = Dom(p′ξ). Let τξ < cf(μ) be the least τ such that Hτξ �⊆ αξ. Let p′′ξ be

the <w-minimal extension of p′ξ such that Dom(p′′ξ ) = sup(Hτξ) and the sets

{p′′ξ (β) : αξ ≤ β ∈ Hτξ} are pairwise disjoint and disjoint from
⋃
p′ξ[αξ]. Let

pξ be the <w-least extension of p′′ξ which determines the values of f for each

element of Hτξ − αξ. Finally, set p
′ =

⋃{pξ : ξ < cf(μ)}.



82 PÉTER KOMJÁTH Isr. J. Math.

Claim 3: pξ ∈ N (ξ < cf(μ)).

Proof. As for each ξ < cf(μ) the sequence 〈pη : η ≤ ξ〉 can be defined from

H ∩ α for α < δ sufficiently large.

From Claim 3 we obtain that all pξ are defined and Dom(p′) = δ. Set

Z =
⋃

{Hτξ − αξ : ξ < cf(μ)}.
Notice that |Z| = μ. Now p′ forces that the sets {F (β) : β ∈ Z} are disjoint

and p′ determines f(β) ∈ F (β) for these values of β. Let p∗ ≤ p′ be a condition

with p∗(δ) = {f(β) : β ∈ Z}. Then obviously p∗ forces that f is not a good

coloring of X .

Theorem 15: It is consistent that GCH holds, and if X is a graph with

Col(X) ≥ ω then List(X) = Col(X).

Proof. Let V be a model of ZFC+GCH plus �λ for each singular cardinal λ.

This is consistent as it can be obtained by iterated forcing; it also follows from

the axiom of constructibility, V=L. We force with (P,≤), the Easton support

iteration of Add(κ, κ+) for each uncountable regular κ. Forcing with (P,≤)

does not collapse cardinals and does not change cofinalities; see Lemma 2.5 of

[12]. Let X be a graph in V [G] such that Col(X) ≥ ω; we have to show that

List(X) ≥ Col(X). By Lemma 14 we can assume that Col(X) > ω. As each

uncountable cardinal is either a successor cardinal, or a supremum of successor

cardinals, it suffices to prove that if Col(X) ≥ μ+ then List(X) ≥ μ+. Lemma

5 further reduces this to the cases when X is of type 1 or 2. The case when X

is of type 1 is settled by Lemma 7.

We can therefore assume that X is a graph on some regular cardinal κ > μ

and

S =
{
α < κ : tp(Γ−(α)) = μ, sup(Γ−(α)) = α

}

is stationary.

Split P as follows: P = Pκ ∗ Q ∗ P κ+1
∞ where Pκ is the iteration up to

and excluding κ, Q = Add(κ, κ+), and P κ+1
∞ is the rest of the iteration. As

we consider Easton supports, P κ+1
∞ does not introduce any new κ-sequence of

ordinals, therefore X is in V Pκ∗Q and it suffices to show that List(X) ≥ μ+

holds in this model.

Set W = V Pκ . If κ = λ+ for some singular cardinal λ, then λ+ remains

cardinal and successor of λ in W , hence �λ still holds in W .
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As Q is κ+-c.c., there is some α < κ+ such that X is in W ′ = WAdd(κ,α). By

moving the addition of the α-th Cohen subset of κ to the end of the forcing, we

can arrange that V Pκ∗Q = (W ′′)Add(κ,1) for some appropriate W ′′ containing
X . We finally apply Lemma 13 and obtain an assignment F witnessing that

List(X) ≥ μ+ in V Pκ,Q, and therefore in V P by our remark above.

Theorem 16 (V=L): There is a type 2 graph X with Chr(X) = 2, List∗(X) =

ω1, Col(X) = ω1.

Proof. Let S, T ⊆ ω1 be disjoint stationary sets. As V=L is assumed, ♦S and

♦T both hold and so there exist sequences {fα : α ∈ S} and {fα : α ∈ T } such

that if f : ω1 → ω, then both {α ∈ S : fα = f |α} and {α ∈ T : fα = f |α} are

stationary.

Our X will be bipartite with bipartition classes S and T , with Γ−(α) = ∅
(α ∈ T ), and Γ−(α) is either ∅ or an ω-sequence converging to α for α ∈ S.

Also, we are going to determine an assignment F : S ∪ T → [ω]ω that will

eventually witness List∗(X) > ω.

For α ∈ S ∪ T , set

Iα =
{
i < ω : sup(f−1(i) ∩ T ) = α

}
.

If α ∈ T and Iα is finite, then we let F (α) = ω − Iα.

If α ∈ S and Iα is infinite, enumerate Iα as Iα = {in : n < ω}, and set

Γ−(α) = {βn : n < ω} where the element βn ∈ f−1(in) ∩ T is chosen so that

βn → α. Further, let F (α) = Iα. Otherwise, set Γ−(α) = ∅ and F (α) = ω.

Claim: There is no good coloring f of X such that f(α) ∈ F (α) for α ∈ S ∪T .

Proof. Assume on the contrary that f : S ∪ T → ω is a good coloring of X and

f(α) ∈ F (α) for α ∈ S ∪ T . First, we claim that

I =
{
i < ω : sup(f−1(i) ∩ T ) = ω1

}

is infinite. Indeed, assume I is finite, and define

γ = sup{f−1(i) : i ∈ ω − I}.
The set

E = {α > γ : i ∈ I −→ sup(f−1(i) ∩ α) = α}
is a closed, unbounded set in ω1. Pick α ∈ E ∩ T such that fα = f |α. Then

Iα = I and f(α) ∈ F (α) = ω − Iα = ω − I which is a contradiction, as α > γ.
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We obtained, therefore, that I is infinite. Again, E is closed, unbounded,

where α ∈ E if the following hold: if i ∈ ω − I then sup(f−1(i)) < α; if i ∈ I

then sup(f−1(i)∩α) = α. Pick α ∈ S∩E with fα = f |α. Now Iα = I, f(α) �= i

for i /∈ I, and for each i ∈ I there is a β ∈ Γ−(α) with f(β) = i, so, as f is

supposed to be a good coloring, f(α) �= i, either.

With the Claim we have proved the Theorem.

Theorem 17: GCH is consistent with the existence of a graph with |X | = ω1,

Col(X) = ω1, List(X) = ω.

Proof. We show that GCH is consistent with the existence of a type 2 graph X

with List(X) = ω.

Let V be a model of GCH. We are going to construct an iterated forcing

{Pα : α ≤ ω2} with countable supports. The first factor, Q0, adds a type 2

graph X with initial segment forcing. That is, q ∈ Q0 if q = (δ + 1, x) where

δ < ω1 and x is an HM graph on δ + 1; q′ = (δ′ + 1, x′) ≤ q = (δ + 1, x) if

δ′ ≥ δ and x = [δ + 1]2 ∩ x′. The height of q, h(q), is the first coordinate

of q. If G0 is V –Q0-generic, we let X be the graph added by Q0, that is,

X =
⋃{x : (δ + 1, x) ∈ G0}.

We set S = S(X) = {β < ω1 : |Γ−
X(β)| = ω}.

If Pα is specified, let Fα : ω1 → [ω1]
ℵ0 be an assignment in V Pα . We let

q ∈ Qα if either q = ∅ or q : δ → ω1 is a good coloring of X for some δ /∈ S with

q(γ) ∈ Fα(γ) for γ < δ; q′ ≤ q if q′ end-extends q. Here the height of q, h(q),

is the domain of of q.

As we have already indicated, we iterate with countable supports, that is,

|supp(p)| ≤ ω for p ∈ Pα, where supp(p) = {β < α : p(β) �= 1}.
Claim 1: If β < α < ω2, p ∈ Pα, q = p|β, r = p|[β, α), q′ ≤ q, then there is a

unique p′ ∈ Pα such that p′|β = q′, p′|[β, α) = r.

Proof. Straightforward.

In what follows, if p ∈ Pα, β < α, p|β = q, p|[β, α) = r then we use the

notation p = q + r.

Claim 2: In V Pα (α < ω2), each condition in Qα has extensions of arbitrarily

large height.
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Proof. The statement is obvious for α = 0; each condition in Q0 has extensions

of arbitrarily large height.

Assume that α > 0. In V Pα , we are given the graph X on ω1, the assignment

Fα : ω1 → [ω1]
ℵ0 , a condition q : δ → ω1 for some δ /∈ S and we want to extend

it to q′ ≤ q where q′ : δ′ /∈ S. Let {Yξ : δ ≤ ξ < δ′} be a system of disjoint sets

with Yξ ⊆ Fα(ξ), |Yξ| = ω. These sets can be chosen as {Fα(ξ) : δ ≤ ξ < δ′} is

a family of countably many infinite sets. Let

Y ′
ξ = Yξ − {τ < δ : {τ, ξ} ∈ X} .

As X is an HM graph, we subtract finitely many elements, therefore Y ′
ξ is

infinite. Finally, pick the distinct elements q′(ξ) ∈ Y ′
ξ for δ ≤ ξ < δ′.

Claim 3: If α ≤ ω2, p ∈ Pα, ξ < ω1, then there is a condition p′ ∈ Pα, p
′ ≤ p,

such that h(p′(β)) ≥ ξ for every β ∈ supp(p′).

Proof. Immediate by transfinite induction, using Claim 2.

For α ≤ ω2 we let Dα be the set of conditions p such that for each β ∈
supp(p), p|β fully determines p(β) and there is some limit ordinal δ such that

h(p(0)) = δ + 1, p(0) forces that δ /∈ S, and h(p(β)) = δ for each β ∈ supp(p),

β �= 0. We call δ the height of p and denote it by h(p), although the height of

p(0) is δ + 1.

Claim 4: Let α ≤ ω2. If p0 ≥ p1 ≥ p2 ≥ · · · are in Dα then there is a p ∈ Dα

such that, for each n, p ≤ pn.

Proof. Let δn be the height of pn. If δk = δk+1 = · · · for some k < ω, then we

may let p be simply the coordinatewise union of the pn’s.

In the other case we can assume, by possibly thinning out the sequence, that

δ0 < δ1 < · · · . Set δ = sup{δn : n < ω}. Let p be the following condition. If

pn(0) = (δn + 1, xn), then x =
⋃{xn : n < ω}, p(0) = (δ + 1, x) (this makes

sure that δ /∈ S), p(ξ) =
⋃{pn(ξ) : n < ω} for the other coordinates.

We call the condition p constructed above the canonical limit of {pn:n<ω}.
Claim 5: (a) Dα is dense in Pα (α ≤ ω2).

(b) Forcing with Pα does not introduce new reals (α ≤ ω2).

Proof. Notice that if we have (a) for some α, then we have (b) for α by Claim

4.
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We prove (a) by induction on α. Assume we have (a) for α and want to show

it for α+ 1. Let p+ q be an element of Pα+1 where p ∈ Pα, q ∈ Qα.

Extend p to a p0 ∈ Dα of height δ0 which determines q0 = q and forces that

h(q0) < δ0. For n = 0, 1, . . . inductively extend pn to a pn+1 ∈ Dα of height

δn+1 > δn which determines a qn+1 ≤ qn with h(qn+1) = δn. Finally let p be

the canonical limit of {pn : n < ω} and q =
⋃{qn : n < ω}. Clearly p+q ≤ p+q

and p+ q ∈ Dα+1.

Assume now that α is a limit ordinal. The case cf(α) ≥ ω1 is obvious as we are

forcing with countable supports. Assume that cf(α) = ω and let {αn : n < ω}
be a sequence converging to α. Let p ∈ Pα be arbitrary. Define by induction

on n < ω the conditions pn ∈ Dαn such that

(1) pn+1|αn ≤ pn,

(2) pn+1|[αn, αn+1) ≤ p|[αn, αn+1),

(3) h(pn) < h(pn+1).

Then the canonical limit of {pn : n < ω} will be in Dα and below p.

Claim 6: Pα is ℵ2-c.c. (α ≤ ω2).

Proof. Assume that pγ ∈ Pα for γ < ω2. We can assume that pγ ∈ Dα, by

CH, that supp(pγ) = A ∪ Bγ where the sets {A,Bγ : γ < ω2} are disjoint and

h(pγ) = δ for γ < ω2. Further, again by CH, we can assume that pγ(0), and, in

general, that pγ(ξ) is the same for all γ < ω2, for all ξ ∈ A. But now for any

γ < γ′ the coordinatewise union of the conditions pγ , pγ′ is a common extension

of pγ and pγ′ .

Claim 7: S remains stationary when forcing with Pω2 .

Proof. Assume that 1 forces that E ⊆ ω1 is a closed, unbounded set. Pick

E ∈ N ≺ (H(θ);∈, <w), where θ is a large regular cardinal, <w is a well order

of H(θ), |N | = ω. Set δ = N ∩ω1. Fix a sequence {δn : n < ω} converging to δ.

Set U = (N ∩ ω2)− {0}. Enumerate U as U = {αn : n < ω}.
Subclaim 1: There are ordinals ξn < δ, conditions ps ∈ Pα ∩N , and ordinals

ν(s) (s : {α0, . . . , αn−1} → 2) (n < ω), such that

(1) δn < ξn (n < ω);

(2) ps ‖−− ν(s) ∈ E;

(3) ξn−1 < ν(s) < ξn (s : {α0, . . . , αn−1} → 2);

(4) h(ps) < ξn (s : {α0, . . . , αn−1} → 2);
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(5) ps|αi ‖−−Fαi(ξn) = X(αi, s, ξn) (i < n);

(6) ps(αi)(ξn) = τ(αi, s(i), ξn) where τ(αi, 0, ξn), τ(αi, 1, ξn) ∈ X(αi, s, ξn),

they differ from each other and from each τ(αi, ε, ξm) (ε < 2, m < n);

(7) ps ≤ ps′ where s′ = s|{α0, . . . , αn−2};
(8) if s|α = s′|α, then ps|α = ps′ |α (α < ω2).

Proof. We construct these objects by induction on n < ω. For n = 0 we choose

a condition p∅ ∈ N ∩ P such that p∅ ‖−− ν(∅) ∈ E for some ν(∅) < δ and then

pick ξ0 such that max(δ0, ν(∅)) < ξ0 < δ.

For the inductive step assume that we have already determined ξn and the

system of conditions {ps : s : {α0, . . . , αn−1} → 2}. Choose the ordinal δn+1 <

ξn+1 < δ such that ξn+1 > h(ps), ν(s) holds for every s as above. Next we define

ps for every s : {α0, . . . , αn} → 2 by ps = ps∗ where s∗ = s|{α0, . . . , αn−1}. Re-
order {α0, . . . , αn} as {β0, . . . , βn} with β0 < β1 < · · · < βn.

Split each ps as

ps = q∅ + qi0 + · · ·+ qi0i1···in

where ij = s(βj), qi0···ik−1
∈ P

βk−1

βk
(with βn+1 = ω2). The indexing, that is,

that qi0i1···ik = ps|[βk, βk+1) depends only on the sequence i0i1 · · · ik, is justified
by (8).

Enumerate {s : {β0, . . . , βk−1} → 2, k ≤ n + 1} as {sj : j ≤ m} with m =

2n+2 − 1 such that shorter sequences precede longer ones. Set q0t = qt for each

sequence t. We are going to construct the decreasing sequence q0t ≥ · · · ≥ qjt ≥
· · · ≥ qmt . At step j we set qj+1

t = qjt unless t is a segment of sj . If it is, we

proceed as follows. Let

qj+1
∅ + qj+1

i0
+ · · ·+ qj+1

i0i1···ik−1
≤ qj∅ + qji0 + · · ·+ qji0i1···ik−1

force that Fβk
(ξn+1) = X(βk, i0i1 · · · ik−1, ξn+1) and

qj+1
i0i1···ik−1

(βk−1)(ξn+1) = τ(βk−1, ik−1, ξn+1),

where τ(βk−1, 0, ξn+1), τ(βk−1, 1, ξn+1) ∈ X(βk−1, i0i1 · · · ik−2, ξn+1) are differ-

ent from each other and from each τ(βk−l, ε, ξm) (ε < 2, m ≤ k). Further, if

k = n+1 then we also make qj+1
∅ + qj+1

i0
+ · · ·+ qj+1

i0i1···ik−1
force that ν(sj) ∈ E

for some ν(sj) > ξn+1.

Eventually we obtain the conditions

ps = qm∅ + qmi0 + · · ·+ qmi0i1···in ,
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and s(β0)= i0, s(β1)= i1, . . . , s(βn)= in. The system {ps : s : {β0, . . . , βn} → 2}
satisfies (5–8).

Let {ps : s : {α0, . . . , αn−1} → 2, n < ω} be a system as in Subclaim 1. For

g : U → 2 set pg =
⋃{psn : n < ω} where sn = g|{α0, . . . , αn−1}.

Notice that pg is not a condition as the height of pg(0) is not a successor

ordinal.

Subclaim 2: If g|α = g′|α then pg|α = pg′ |α (α < ω2).

Proof. By property (8) in Subclaim 1, psn |α = ps′n |α where

sn = g|{α0, . . . , αn−1}, and s′n = g′|{α0, . . . , αn−1}

for n < ω.

Enumerate U in increasing order as U = {αξ : ξ < θ}. We are going to

construct pξ ∈ Pαξ
, gξ = g|αξ, gξ : U ∩ αξ → 2, such that

(1) h(pξ(τ)) ≥ δ + 1 (τ ∈ supp(pξ));

(2) pξ|αη ≤ pη (η < ξ);

(3) pξ determines that Fαξ
(δ) = X(αξ, δ);

(4) pξ ≤ pg|αξ
.

To start, we let p0 be pg(0) (any g) which is a graph on δ, extend it to a

graph on δ + 1, by joining δ to each ξn (n < ω).

At step αξ set Tk = {τ(αξ, k, ξn) : i < n < ω} for k < 2, where i is the index

of αξ in the ω-enumeration of U . As T0 ∩ T1 = ∅, we can choose k < 2 such

that it is not true that all but finitely many elements of X(αξ, δ) are in Tk. Let

g(αξ) be this k. Then, X(αξ, δ) �⊆ {pg(αξ)(ξn) : n < ω}, as the latter set is Tk

with finitely many elements added. Choose an

r ∈ X(αξ, δ)− {pg(αξ)(ξn) : n < ω}

and let pg(αξ)(δ) = r.

The condition p = pαθ
finally obtained forces δ ∈ S and p ≤ ps for s =

g|{α0, . . . , αn−1} for n < ω, therefore p ‖−− δ ∈ E, i.e., p ‖−− δ ∈ S ∩ E, a

contradiction.

As Claim 7 implies Col(X) = ω1, and the generic functions for the factors

Qα establish List(X) = ω, the proof of the Theorem is concluded.
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With the powerful method of Shelah’s D-completeness systems one can prove

a much stronger result.

Theorem 18: It is consistent with GCH that every HM graph X on ω1 has

List(X) ≤ ω.

Proof. If X is an HM-graph on ω1 and F : ω1 → [ω1]
ℵ0 is an assignment, let

QX,F be the following notion of forcing: q ∈ QX,F if either q=∅ or q : α+1→ω1

is a good coloring of X |α+ 1 with q(β) ∈ F (β) for β ≤ α; q′ ≤ q if q′ extends
q as a function; (QX,F ,≤) is D-complete, as shown in [1] and [18] for the case

when F (α) = ω (α < ω1). The theory of D-completeness gives the result.

Theorem 19: It is consistent with GCH that there exists a graph X on ω1 for

which List(X) = ω1 and List∗(X) = ω hold.

Proof. Let V model GCH. We are going to force with a countable support

iteration of length ω2.

The first iterand, Q0, will add the graph X on ω1 and the assignment wit-

nessing List(X) = ω1. We let q ∈ Q0 if q = (δ + 1, x, g) where δ < ω1, x is an

HM graph on δ + 1, g is a function on S(x), g(ξ) ∈ [ξ]ω . We call δ the height

of q and denote it by h(q).

We order Q0 as follows: q′ = (δ′ + 1, x′, g′) ≤ q = (δ + 1, x, g) if δ′ ≥ δ,

x = x′ ∩ [δ + 1]2, and g′ ⊇ g, that is, g′(ξ) = g(ξ) holds for every ξ ∈ S(x).

Claim 1: Every q ∈ Q0 has extensions of arbitrarily large height.

Proof. If q = (δ + 1, x, g) and δ′ ≥ δ then q′ = (δ′ + 1, x, g) extends q.

Claim 2: If q0 ≥ q1 ≥ · · · where qn = (δn + 1, xn, gn), δ0 < δ1 < · · · ,
then q ≤ qn for all n, where δ = sup{δn : n < ω}, x =

⋃{xn : n < ω},
g =

⋃{gn : n < ω}, q = (δ + 1, g, x).

Proof. Obvious.

We call the above condition q the no-edge limit of {qn : n < ω}.
Claim 3: If q = (δ + 1, x, g) ∈ Q0, then there exists an extension

q′ = (δ′ + 1, x′, g′) ≤ q with some element β ∈ S(x′) such that δ < min(g(β))

and Γ−
x′(β) ∩ (δ + 1) = ∅.

Proof. Straightforward.
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If G0 ⊆ Q0 is generic then we let X =
⋃{x : (δ + 1, x, g) ∈ G0}, the

HM graph added by Q0, and S = S(X). Moreover, let g∗(β) = g(β) for any

(δ+1, x, g) ∈ G0 where g is defined at β, and so g∗ : S → [ω1]
ω is the assignment

added by Q0.

If α < ω2 and we have constructed Pα then let Fα : ω1 → [ω]ω be an

assignment, and set q ∈ Qα if for some δ /∈ S we have q : δ → ω, q(ξ) ∈ Fα(ξ)

(ξ < δ) and q is a good coloring of X on δ; h(q) = δ is the height of q. As

we will prove that GCH still holds in the intermediate models, it is possible

to enumerate all possible assignments as {Fα : α < ω2}. Our forcing will be

P = Pω2 .

Claim 4: In V Pα , every q ∈ Qα has extensions of arbitrarily large height

(1 ≤ α < ω2).

Proof. Assume that q ∈ Qα, h(q) = δ and we are given δ′ > δ, δ′ /∈ S; for exam-

ple, δ′ can be a successor ordinal. Choose the distinct elements

{q′(ξ) : δ ≤ ξ < δ′} such that

q′(ξ) ∈ Fα(ξ)− {q(η) : {η, ξ} ∈ X}
for δ ≤ ξ < δ′. This is possible, as one has to choose distinct elements from

countably many infinite sets.

For p ∈ Pα set p ∈ Dα if for every β ∈ supp(p) the condition p|β fully

determines p(β), and there is an ordinal δ such that p(0) = (δ+1, x, g), δ /∈ S(x),

and h(p(β)) = δ for all 0 < β ∈ supp(p). The ordinal δ, denoted by h(p), is

called the height of p.

Claim 5: Dα is < ω1-closed.

Proof. Assume that p0 ≥ p1 ≥ · · · are elements of Dα. Set δn = h(pn). We can

assume that either δ0 = δ1 = · · · or δ0 < δ1 < · · · . In the former case we simply

take the following union of the conditions: supp(p) =
⋃{supp(pn) : n < ω},

and if β ∈ supp(p) then p(β) = pn(β) where n < ω is arbitrary such that

β ∈ supp(pn).

In the latter case, i.e., if δ0 < δ1 < · · · , we define p as follows. Let p(0) be

the no-edge limit of {pn(0) : n < ω}. If 0 < β ∈ ⋃{supp(pn) : n < ω} then we

let

p(β) =
⋃

{pn(β) : k ≤ n < ω},
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where k is sufficiently large such that β ∈ supp(pk).

We call the condition constructed in the previous Claim the canonical limit

of {pn : n < ω}. Similarly we can define the canonical limit of {pξ : ξ < ϕ} for

any decreasing sequence of some limit length ϕ < ω1 from Dα.

Claim 6: Dα is dense in Pα (α ≤ ω2).

Proof. By transfinite induction on α.

Assume that we have the Claim for α and we are given the condition (p, q) ∈
Pα+1 = Pα∗Qα. We choose by recursion the conditions p = p0 ≥ p1 ≥ p2 ≥ · · · ,
ordinals δ0 < δ1 < · · · , names q = q0, q1, . . . , such that

(1) pn+1 ∈ Dα;

(2) h(pn) = δn (1 ≤ n < ω);

(3) pn+1 determines qn and forces that h(qn) = δn;

(4) pn+1 ‖−− δn+1 /∈ S;

(5) pn+2 ‖−− qn+1 ≤ qn.

Let p be the canonical limit of {pn : n < ω}, and q be the union of

{qn : n < ω}. Notice that p ‖−− q ∈ Qα as sup{δn : n < ω} /∈ S. Then

clearly (p, q) ∈ Dα+1 and (p, q) ≤ (p, q).

Next assume that cf(α) = ω and we have the Claim for all ordinals β < α.

Let p ∈ Pα be arbitrary. Fix a sequence {αn : n < ω} converging to α with

α0 = 0. Choose the conditions pn and ordinals δn for n < ω such that

(1) pn ∈ Dαn ;

(2) pn+1|αn ≤ pn;

(3) pn+1|[αn, αn+1) ≤ p|[αn, αn+1);

(4) δn = h(pn), and δ0 < δ1 < · · · .
We now let p be the canonical limit of {pn : n < ω}. Clearly, p ∈ Dα and

h(p) = δ where δ = sup{δn : n < ω}.
If α is limit with cf(α) > ω then we immediately get the result by

induction.

Claim 7: (P,≤) is ℵ2-c.c.

Proof. Assume that pξ ∈ P for ξ < ω2. Without loss of generality we can as-

sume that pξ ∈ Dω2 , h(pξ) = δ, supp(pξ) = S∪Sξ where the sets {S, Sξ : ξ < ω2}
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are pairwise disjoint. As there are at most ℵ1 structures on (δ + 1)× S, there

are ξ < η < ω2 such that pξ|S = pη|S.
If p ∈ P is the following condition,

p(α) =

⎧
⎨

⎩

pξ(α) α ∈ S ∪ Sξ;

pη(α) α ∈ Sη,

then clearly p ≤ pξ, pη.

In order to prove the Theorem assume that some p∗ ∈ Dω2 forces that there

is a choice function H(ξ) ∈ g∗(ξ) for ξ ∈ S which is a good coloring of X on S.

Without loss of generality, supp(p∗) is infinite.

Claim 8: There exist conditions p∗ ≥ p0 ≥ p1 ≥ · · · , ordinals in ∈ supp(pn),

h(pn) < αn < βn < ω1, kn < ω, such that

(1) pn ‖−−H(βn) = αn;

(2) pn ∈ Dω2 ;

(3) {in : n < ω} =
⋃{supp(pn) : n < ω} − {0};

(4) pn(ij)(βn) = kj (j ≤ n);

(5) for each p ≤ pn, there exist p
′ ≤ p, α, β, such that h(p) < α < β < h(p′),

p′ ‖−−H(β) = α, and p′(ij)(β) = kj (j ≤ n).

Proof. With an obvious bookkeeping we can take care of (3); further, if we can

find a condition with (5) then there is a condition satisfying (1) and (4), as well.

We can therefore assume that we are given pn and in+1 and we cannot choose

an appropriate pn+1 ≤ pn satisfying (5).

Choose the decreasing sequence pn ≥ q0 ≥ q1 ≥ · · · of conditions, such

that qt ∈ Dω2 and there is no q ≤ qt in which there are h(qt) < α < β

with q ‖−−H(β) = α and q(ij)(β) = kj (j ≤ n), q(in+1)(β) = t. Now let

q ≤ qt (t < ω), q ∈ Dω2 . Pick q′ ≤ q with some h(q) < α < β < h(q′),
q′ ‖−−H(β) = α, q′(ij)(β) = kj (j ≤ n). This is possible as q ≤ pn. Then

q′(in+1)(β) = t for some t < ω and this contradicts the choice of qt.

Let {pn, αn, βn, kn : n < ω} be given as in Claim 8. Set β = sup{βn : n < ω}.
Let {iξ : ξ < ϕ} be the increasing enumeration of

⋃{supp(pn) : n < ω}−{0} for
some ordinal ϕ < ω1. We are going to define a descending sequence {rξ : ξ < ϕ}
of conditions such that rξ ∈ Diξ and rξ ≤ pn|iξ (n < ω). Let r0 ∈ Q0 be the
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following condition. If pn(0) = (βn+1, xn, gn), then r0 = (β+1, x, g) where x =
⋃{xn : n < ω} ∪ {{βn, β} : n < ω}, and g ⊇ gn such that g(β) = {αn : n < ω}.
If ξ < ϕ is limit, then we let rξ ∈ Diξ be the canonical lower bound of

{rη : η < ξ}.
Assume next that rξ is given and ξ+1 < ϕ. We construct rξ+1 as follows. Let

rξ+1|iξ ∈ Diξ be such that it determines Fiξ(β) ∈ [ω]ω. Next, to define rξ+1(β),

extend
⋃{pn(β) : n < ω} by assigining to β some value rξ+1(β) ∈ Fiξ(β),

rξ+1(β) /∈ {pn(iξ) : n < ω}. This is possible, as the latter set is finite.

With the construction of the sequence {rξ : ξ < ϕ} finished, let r be rϕ if

ϕ is a successor ordinal, and the canonical limit of {rξ : ξ < ϕ} if ϕ is a limit

ordinal. Then, r forces that Γ−
X(β) = {βn : n < ω}, g∗(β) = {αn : n < ω},

H(βn) = αn (n < ω). Now it is not possible to choose any αn as H(β).

Finally, we pay our debt to [15].

Theorem 20: It is consistent that c = ℵ2, and if {Aα : α < ω2} ⊆ [ω2]
ℵ1 then

there is a coloring g : ω2 → ω such that g assumes every value on every Aα.

Proof. Let V be a model of GCH. We force with Add(ω, ω2) ⊕ Add(ω1, ω3).

Classical theory (see, e.g., [16]) gives that the forcing is cardinal preserving.

Set P = Add(ω, ω2). Let (Q,≤) be the following notion of forcing: q ∈ Q if

q is a function with Dom(q) ∈ [ω2]
≤ℵ0 , Ran(q) ⊆ ω. q′ ≤ q if q′ extends q. Let

(Qξ,≤) be a copy of (Q,≤) for ξ < ω3. Let Q(X) be the countable support

product of {(Qξ,≤) : ξ ∈ X}. Finally, set Q = Q(ω3). We force with P ⊕ Q

(which is equivalent to the above said Add(ω, ω2)⊕Add(ω1, ω3)). Let G ⊆ P⊕Q

be generic. If A = {Aα : α < ω2} ⊆ [ω2]
ℵ1 has A ∈ V [G], then A ∈ P⊕Q(ξ) for

some ξ < ω3, as P ⊕Q is ℵ3-c.c. Split Q as Q(ω3−{ξ})⊕Q({ξ}); then P ⊕Q =

P ⊕Q(ω3−{ξ})⊕Q({ξ}) and A ∈ W where W = V [G∩(P ⊕Q(ω3−{ξ}))]. By
the product theorem (see [16]) the final model is obtained from W via forcing

with (Q,≤).

It suffices, therefore, to show that if A ∈ W , and if we force with (Q,≤),

then the generic function is a function g : ω2 → ω as required by the Theorem.

Indeed, assume that we are given q ∈ Q, α < ω2, and i < ω. Then choose q′ ≤ q

such that q′(η) = i for some η ∈ Aα. This is possible, as Dom(q) is countable

and Aα is uncountable. Then q′ forces that g(η) = i, and we are done.
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[5] P. Erdős, Problems and results in chromatic number theory, in Proof Techniques in

Graph Theory, (F. Harary, ed.), Academic Press, New York, 1969, pp. 47–55.
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