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CMUP, Departamento de Matemática, Faculdade de Ciências

Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal

e-mail: jalmeida@fc.up.pt

AND

Alfredo Costa

CMUC, Department of Mathematics

University of Coimbra, 3001-454 Coimbra, Portugal

e-mail: amgc@mat.uc.pt

∗ Research funded by the European Regional Development Fund, through the

programme COMPETE, by the Portuguese Government through Centro de
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ABSTRACT

In previous work, the first author established a natural bijection between

minimal subshifts and maximal regular J -classes of free profinite semi-

groups. In this paper, the Schützenberger groups of such J -classes are

investigated, in particular in respect to a conjecture proposed by the first

author concerning their profinite presentation. The conjecture is estab-

lished for all non-periodic minimal subshifts associated with substitutions.

It entails that it is decidable whether a finite group is a quotient of such

a profinite group. As a further application, the Schützenberger group of

the J -class corresponding to the Prouhet–Thue–Morse subshift is shown

to admit a somewhat simpler presentation, from which it follows that it

has rank three, and that it is non-free relatively to any pseudovariety of

groups.

1. Introduction

In recent years, several results on closed subgroups of free profinite semigroups

have appeared in the literature [3, 4, 6, 25, 28, 9]. The first author explored a

link between symbolic dynamics and free profinite semigroups that allowed him

to show, for several classes of maximal subgroups of free profinite semigroups,

all associated with minimal subshifts [3, 4], that they are free profinite groups.

Rhodes and Steinberg [25] proved that the closed subgroups of free profinite

semigroups are precisely the projective profinite groups. Without using ideas

from symbolic dynamics, Steinberg proved that the Schützenberger group of the

minimal ideal of the free profinite semigroup over a finite alphabet with at least

two letters is a free profinite group with infinite countable rank [28]. The same

result holds for the Schützenberger group of the regular J -class associated to a

non-periodic irreducible sofic subshift [9]; the proof is based on the techniques

of [28] and on the conjugacy invariance of the group for arbitrary subshifts [8].

In this paper, we investigate the minimal subshift associated with the iteration

of a substitution ϕ over a finite alphabet A and the Schützenberger group G(ϕ)

of the corresponding J -class, J(ϕ), of the free profinite semigroup on A. A

minimal subshift can be naturally associated with the substitution ϕ if and only

if ϕ is weakly primitive [3, Theorem 3.7]. Since weakly primitive substitutions

are primitive on the subalphabet consisting of the letters that do not eventually

disappear under iteration of the substitution, we will stick in this paper to the

more familiar setting of primitive substitutions [13].



Vol. 196, 2013 SCHÜTZENBERGER GROUPS OF MINIMAL SUBSHIFTS 3

A primitive substitution always admits a so-called connection, which is a

special two-letter block ba of the subshift. Provided ϕ is an encoding of bounded

delay, from the set X of return words for ba, which constitute a finite set, it is

shown in [3] that one can then obtain a generating set for a certain maximal

subgroup H of J(ϕ) by cancelling the prefix b, adding the same letter as a suf-

fix, and applying the idempotent (profinite) iterate ϕω . In a lecture given at

the Fields Workshop on Profinite Groups and Applications (Carleton Univer-

sity, August 2005), the first author proposed, as a problem, a natural profinite

presentation for G(ϕ), namely

(1.1) 〈X | Φω(x) = x (x ∈ X)〉,

where Φ is a continuous endomorphism of the free profinite group on a suitable

finite alphabet X that encodes the action of a finite power of ϕ which acts on

the semigroup freely generated by X .

By a result of Lubotzky and Kovács [20], every finitely generated projective

profinite group has a finite presentation as a profinite group, and indeed a

presentation of the form (1.1) for some continuous endomorphism Φ of the

profinite group freely generated by X . Hence, by the previously mentioned

result of Rhodes and Steinberg, every finitely generated closed subgroup of a

free profinite semigroup has such a presentation. But, to be able to use a

presentation of the form (1.1), for instance to determine whether a given finite

group is a (continuous) homomorphic image of the profinite group so presented,

one needs to be able to verify the relations in a finite group, which imposes some

computability requirements on Φ. The problem proposed by the first author in

2005 already addressed this concern, proposing a suitable choice for Φ.

In this paper, we establish the conjecture in full generality, that is without any

further restrictions on the (weakly) primitive substitution ϕ other than being

non-periodic (Theorem 6.2, which is our main theorem), thereby showing that

it entails the decidability of whether a finite group is a continuous homomorphic

image of G(ϕ) (Corollary 3.3).1 The proof of the conjecture depends on a key

result from symbolic dynamics due to Mossé [22, 23] (see [13, Subsection 7.2.1]

for its significance and history). Its need had been previously avoided in [3]

using the bounded delay encoding condition, which is fulfilled in the case of

substitutions that induce automorphisms of the free group.

1 It is worth noting that it is decidable whether a given primitive substitution generates a

periodic subshift [24, 16].



4 J. ALMEIDA AND A. COSTA Isr. J. Math.

The case of a proper substitution, such that the images of all letters start

with the same letter and end with the same letter, has played a special role both

in symbolic dynamics [12] and in the connections with free profinite semigroups

[6, 3]. The former reference shows that every subshift generated by a primitive

substitution is conjugate to a subshift generated by a proper primitive substitu-

tion, which can be effectively computed. Since conjugate minimal subshifts have

isomorphic Schützenberger groups [8], it is worth considering the special case

of subshifts generated by proper primitive substitutions, whose Schützenberger

group we show to admit the presentation (1.1) with X the original alphabet

and Φ the original substitution, provided the subshift is non-periodic (Theo-

rem 6.4). This gives an alternative approach for the main theorem and its

decidability consequences.

The Prouhet–Thue–Morse infinite word and the corresponding subshift are

among the most studied in the literature [13]. They are generated by the sub-

stitution τ(a) = ab, τ(b) = ba. From the main theorem, we deduce that the

profinite group G(τ) admits a related profinite presentation with three gen-

erators and three relations (Theorem 7.4). We deduce that G(τ) cannot be

relatively free with respect to any pseudovariety of groups (Theorem 7.6). This

answers in a very strong sense the question raised by the first author as to

whether this profinite group is free [3]. In the same paper there is already an

argument to reduce the proof of this fact to showing that the Schützenberger

group G(τ) has rank three. From the same simpler presentation, we do prove

that this group has rank three (Theorem 7.7).

We also consider the only other type of example in the literature of a non-free

Schützenberger group G(ϕ) of a subshift defined by a substitution, illustrated

by the substitution ϕ(a) = ab, ϕ(b) = a3b [3, Example 7.2], which is proper.

For this group, again we prove that it is not free relatively to any pseudovariety

of groups (Theorem 7.2).

The paper is organized as follows. Section 2 discusses presentations of profi-

nite semigroups. Section 3 shows how certain presentations can be used to ob-

tain decidability results, which is our main motivation for considering profinite

presentations. Section 4 introduces the necessary background and terminol-

ogy on symbolic dynamics. The result of B. Mossé and its consequence that a

power of any non-periodic primitive substitution ϕ induces an automorphism of

a suitable maximal subgroup of J(ϕ) (Theorem 5.6) are presented in Section 5.
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Section 6 contains the main theorem and its version for proper primitive sub-

stitutions, as well as the connections between the two. Section 7 is dedicated

to applications of the main theorems and Section 8 concludes with some open

problems suggested by this work.

We indicate [4, 26] as supporting references on pseudovarieties and free profi-

nite semigroups, and [18, 13] for symbolic dynamics.

2. Presentations of pro-V semigroups

For a homomorphism ψ : S → U between semigroups, we denote by Kerψ the

set of all pairs (s1, s2) of elements of S such that ψ(s1) = ψ(s2).

It can be easily checked that an equivalence relation on a compact space is

open (respectively, closed, clopen) if so are its classes. In particular, an equiva-

lence relation on such a space is open if and only if it is clopen. A congruence

on a profinite semigroup S is said to be admissible if it is the intersection

of open congruences. In other words, a congruence ρ is admissible if and only

if it is closed and the quotient S/ρ is profinite. Thus, the admissible congru-

ences are the kernels of continuous homomorphisms into profinite semigroups.

Since the intersection of admissible congruences is admissible, for every relation

R ⊆ S × S there is a smallest admissible congruence containing R, which we

call the admissible congruence generated by R. In the case of a profinite

group, it turns out that a congruence is admissible if and only if it is closed

[27, Proposition 2.2.1(a)]. See [26, Section 3.1] for further details, although we

prefer not to call profinite an admissible congruence on a profinite semigroup S

since every closed congruence is a profinite subsemigroup of the product S×S,
but not every closed congruence is admissible.

Throughout this section, we let V be a pseudovariety of semigroups. Consider

a set X and a binary relation R on the pro-V semigroup ΩXV freely generated

byX [4]. The quotient of ΩXV by the admissible congruence generated by R is a

pro-V semigroup [4, Proposition 3.7] which is said to admit the V-presentation

〈X | R〉V. In this paper, we are interested in the cases where V is either G, the

pseudovariety of all finite groups, or S, the pseudovariety of all finite semigroups,

the latter serving sometimes as a convenient way to deal with the former.

We recall that the monoid EndS of continuous endomorphisms of a finitely

generated profinite semigroup S is profinite for the pointwise convergence topol-

ogy, which coincides with the compact-open topology [17, Proposition 1]. For
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this reason, for the remainder of the paper we only consider finite generating

sets. Thus, for ϕ in the profinite monoid EndΩXS, we may consider the idem-

potent continuous endomorphism ϕω.

Consider a pro-V semigroup T and an onto continuous homomorphism π

from ΩXV onto T , where X is an arbitrary set. Let ϕ be a continuous en-

domorphism of T . By the universal property of ΩXV, there is at least one

continuous endomorphism Φ of ΩXV such that Diagram (2.1) commutes. Call

such an endomorphism a lifting of ϕ via π.

ΩXV
Φ ��

π

��

ΩXV

π

��
T

ϕ �� T

(2.1)

Remark 2.1: If ϕ is an automorphism of T then π ◦ Φω = π.

Proof. The facts that Diagram (2.1) commutes and π is continuous entail the

equality π ◦ Φω = ϕω ◦ π. On the other hand, ϕω is the identity on T because

ϕ is an automorphism of T .

Suppose now that ϕ is an automorphism of the pro-V semigroup T . Put

R = {(Φω(x), x) : x ∈ X}

and let ρ be the admissible congruence on ΩXV generated by R. From Re-

mark 2.1 it follows that R ⊆ Kerπ, which yields ρ ⊆ Kerπ. If ρ = Kerπ,

then

(2.2) 〈X | Φω(x) = x (x ∈ X)〉V

is a presentation of T . Note also that u ρ Φω(u) for every u ∈ ΩXS since ρ is

a closed congruence containing R. It follows that KerΦω ⊆ ρ. Conversely, we

have R ⊆ KerΦω since Φω is idempotent, which entails ρ ⊆ KerΦω. We have

thus shown that ρ = KerΦω.

Lemma 2.2: Let T be a pro-V semigroup and suppose that there is a commu-

tative diagram (2.1) of continuous homomorphisms, where π is onto and ϕ is

an automorphism of T . If Kerπ ⊆ KerΦω, then T admits the presentation

〈X | R〉V.
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Proof. By Remark 2.1, we have Kerπ ⊇ KerΦω. Hence, if Kerπ ⊆ KerΦω,

then T 	 ΩXV/KerΦω = ΩXS/ρ = 〈X | R〉V.

The group analogue of Lemma 2.2 involving the group kernel, which is just a

translation in the language of profinite group theory of the lemma, also follows

from a result of Lubotzky [20, Proposition 1.1], who presents a proof attributed

to L. Kovács. The same proof can also be found in the second edition of [27],

namely by combining Lemma C.1.5 and Example C.1.6.

Let W be a subpseudovariety of V. For a pro-W semigroup, there is a simple

relationship between V-presentations and W-presentations. If λ : ΩXV → S is

a continuous homomorphism onto a pro-W semigroup, then λ = λ′ ◦ q, where
q : ΩXV → ΩXW is the canonical homomorphism and λ′ : ΩXW → S is a

continuous homomorphism. Let u, v ∈ ΩXV. It is routine to check that if Kerλ

is the admissible congruence on ΩXV generated by R ⊆ ΩXV × ΩXV, then

Kerλ′ is the admissible congruence on ΩXW generated by (q× q)(R). We thus

have the following simple observation, which we record here for later reference.

Lemma 2.3: Let W be a subpseudovariety of V. If the pro-W semigroup

S admits the presentation 〈X | R〉V, then it also admits the presentation

〈X | (q × q)(R)〉W.

We say that a pro-V semigroup S is V-projective if, whenever T and U are

pro-V semigroups and f : S → T and g : U → T are continuous homomorphisms

with g onto, there is some continuous homomorphism f ′ : S → U such that the

following diagram commutes:

S

f

��

f ′

���
�
�
�

U
g

�� T.

Proposition 2.4: The following are equivalent for a pro-V semigroup S and a

finite set X :

(1) S admits a presentation of the form (2.2) for some continuous endomor-

phism Φ of ΩXV;

(2) S is V-projective and X-generated;

(3) S is a retract of ΩXV.
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Proof. (1)⇒ (3) Let Φ be a continuous endomorphism of ΩXV and denote by

T the image of the retraction Φω. It suffices to establish that T admits the

presentation (2.2). For this purpose, we apply the general setting of this section

to the following commutative diagram:

ΩXV

Φω

��

Φω

�� ΩXV

Φω

��
T

id �� T

From Lemma 2.2 we deduce that indeed T admits the presentation (2.2).

(2)⇒ (1) Let π : ΩXV → S be an onto continuous homomorphism. Since S

is V-projective, there is a continuous homomorphism γ : S → ΩXV such that

π ◦ γ is the identity on S. Consider the diagram

ΩXV
γ◦π ��

π

��

ΩXV

π

��
S

id
��

γ

�����������
S.

Since γ ◦ π is idempotent and Kerπ ⊆ Ker (γ ◦ π), Lemma 2.2 yields that S

admits the presentation 〈X | (γ ◦ π)ω(x) = x (x ∈ X)〉V.
(3)⇒ (2) Suppose that the continuous homomorphism r : ΩXV → S is a

retraction. Let T and U be pro-V semigroups and let f : S → T and g : U → T

be continuous homomorphisms with g onto. Denote by i the inclusion mapping

S → ΩXV. Then we have the following diagram

ΩXV

h

����
��
��
��
��
��
��
��
��
r

��
f◦r

��

S

i

��

h◦i
		���

���
���

���
��

f

��
U

g
�� T,

where the existence of the continuous homomorphism h such that the outer tri-

angle commutes follows from the universal property of the free pro-V semigroup

ΩXV. Since r ◦ i is the identity on S, we deduce that g ◦ h ◦ i = f ◦ r ◦ i = f ,

and so we may take f ′ = h ◦ i.
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Combining Proposition 2.4 with the fact that closed subgroups of a free profi-

nite semigroup are G-projective [25], we obtain the following result.

Corollary 2.5: Every finitely generated closed subgroup of a free profinite

semigroup admits a presentation of the form

(2.3) 〈X | Φω(x) = x (x ∈ X)〉G
for some continuous endomorphism Φ of ΩXG.

The next result provides a method to drop relations in such presentations

corresponding to superfluous generators.

For a profinite semigroup S and a subset X , the notation 〈X〉 stands for the
closed subsemigroup of S generated by X .

Proposition 2.6: Let Φ be a continuous endomorphism of ΩXV, x0 an element

of the finite set X , and Y = X \ {x0}. Suppose that w ∈ 〈Y 〉 is such that

Φω(x0) = Φω(w) and let r be the unique continuous endomorphism of ΩXV

that fixes each y ∈ Y and maps x0 to w. Then the pro-V semigroup presented

by

(2.4) 〈X | w = x0, Φ
ω(x) = x (x ∈ X)〉V

also admits the presentation

(2.5) 〈Y | Ψω(y) = y (y ∈ Y )〉V,

where Ψ = r ◦ Φ.

Proof. Note that we may add in the presentation (2.5) the generator x0 and

the relation w = x0 without changing the pro-V semigroup thus presented.

Let θ be the admissible congruence on ΩXV generated by the relation w = x0.

Since r(u) θ u for every u ∈ ΩXV, we conclude that Ψ(v) = r(Φ(v)) θ Φ(v)

whenever v ∈ ΩXV.

Let ρ and σ be the admissible congruences on ΩXV generated by the relation

w = x0 together with, respectively, the relations Φω(x) = x (x ∈ X) and

Ψω(y) = y (y ∈ Y ). To complete the proof, it suffices to show that ρ = σ.

For this purpose, in view of the preceding paragraph, it remains to show that

Φω(x0) σ x0. Indeed, we have

Φω(x0) = Φω(w) θ Ψω(w) σ w σ x0,

which gives the desired relation since θ ⊆ σ.
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Note that, with the same proof, we could relax the hypothesis Φω(x0) =

Φω(w) to the relation Φω(x0) θ Φ
ω(w).

3. Decidability

For a set X , denote by T (X) the semigroup of all full transformations of X . The

following lemma will be useful. As has been observed by the referee, it can be

seen as an application of Yoneda’s Lemma but we prefer to give an elementary

proof.

Lemma 3.1: Let A be a finite set, V be a pseudovariety of semigroups,

ϕ ∈ EndΩAV, and S a semigroup from V. Consider the transformation

ϕS ∈ T (SA) defined by ϕS(f) = f̂ ◦ ϕ|A, where f̂ is the unique extension

of f ∈ SA to a continuous homomorphism ΩAV→ S. Then the correspondence

EndΩAV→ T (SA)
ϕ �→ ϕS

is a continuous anti-homomorphism. In particular, we have (ϕω)S = (ϕS)
ω.

Proof. Let ϕ, ψ ∈ EndΩAV and f ∈ SA. Since
̂

f̂ ◦ ϕ|A = f̂ ◦ ϕ, we obtain the

following chain of equalities:

(ϕ ◦ ψ)S(f) = f̂ ◦ ϕ ◦ ψ|A = ̂f̂ ◦ ϕ|A ◦ ψ|A = ψS(f̂ ◦ ϕ|A) = ψS ◦ ϕS(f),

which proves that our mapping is an anti-homomorphism. To prove that it

is continuous, consider a net limit ϕ = limϕi in EndΩAV. Then, for every

f ∈ T (SA) and every a ∈ A, we may perform the following computation:

ϕS(f)(a) = f̂(ϕ(a)) = f̂
(
(limϕi)(a)

)
= f̂(limϕi(a))

= lim f̂(ϕi(a)) = lim(ϕi)S(f)(a),

which yields the desired equality ϕS = lim(ϕi)S .

The following result will be useful to draw structural and computational in-

formation about presentations of the form (2.2). To state it, we require some

further terminology. For a semigroup S, we say that a mapping f ∈ SA is

a generating mapping if f(A) generates S. Given a pseudovariety of semi-

groups V, a subpseudovariety W, and an endomorphism ϕ of ΩAV, let ϕW be

the unique continuous endomorphism of ΩAW such that ϕW ◦ p = p ◦ ϕ, where
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p : ΩAV → ΩAW is the canonical projection. In particular, if ϕ ∈ EndΩAW,

then ϕW = ϕ.

Proposition 3.2: Let V and W be pseudovarieties of semigroups such that

W ⊆ V. Let A be a finite alphabet and let ϕ be a continuous endomorphism

of ΩAV. The following are equivalent for an arbitrary semigroup S from W:

(1) S is a continuous homomorphic image of the semigroup presented by

(3.1) 〈A | ϕωW(a) = a (a ∈ A)〉W;

(2) there is some generating mapping f : A → S and some integer n such

that 1 ≤ n ≤ |SA| and ϕnS(f) = f ;

(3) there is some generating mapping f : A → S and some integer n such

that ϕnS(f) = f .

Proof. Let T be the profinite semigroup defined by the presentation (3.1) and

consider the natural homomorphisms p : ΩAV→ ΩAW and π : ΩAW→ T .

We begin by proving (1)⇒ (2). Suppose that θ : T → S is an onto continuous

homomorphism. Consider the mapping f = θ ◦ π ◦ p|A ∈ SA, whose unique

continuous homomorphic extension f̂ : ΩAV → S is the mapping θ ◦ π ◦ p.
Since ϕW ◦ p = p ◦ ϕ, we deduce that ϕkS(f) = θ ◦ π ◦ ϕkW ◦ p|A for every

k ≥ 0, where we write ϕ0 and ϕ0
W for the identity mappings on ΩXV and ΩXW,

respectively. Hence, for every a ∈ A, the following equalities hold: ϕωS(f)(a) =

θ ◦ π ◦ ϕωW(a) = θ ◦ π ◦ ϕ0
W(a) = ϕ0

S(f)(a) = f(a). We have thus proved that

ϕωS(f) = f . As ϕS is a transformation of the set SA, the successive iterates

f, ϕS(f), ϕ
2
S(f), . . . , ϕ

|SA|
S (f) cannot all be distinct and ϕωS(f) must be found in

the sequence on the first repeated point or between it and its first repetition.

Hence, the equality ϕωS(f) = f implies that ϕnS(f) = f for some integer n such

that 1 ≤ n ≤ |SA|.
The implication (2)⇒ (3) being trivial, it remains to prove the implication

(3)⇒ (1). It suffices to show that f̂ factors through π ◦ p. Since S ∈ W, f̂

factors through p, and we have the following commutative diagram, where the

existence of the dashed arrow θ is yet to be established:

ΩAV
f̂ ��

p

��

S

ΩAW
π ��

η



��������
T

θ

���
�
�
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Thus, it is enough to verify that, for every a ∈ A, η(ϕωW(a)) = η(a). Taking into

account the definition of p, the desired equality is equivalent to η(ϕωW(p(a))) =

η(p(a)). In view of ϕW ◦p = p◦ϕ and η ◦p = f̂ , this translates into the equality

f̂(ϕω(a)) = f̂(a). Indeed, by hypothesis, we have ϕnS(f) = f for some n, hence

f is fixed by all powers of ϕnS and, therefore, also by ϕωS = (ϕnS)
ω .

We say that a profinite semigroup S is decidable if there is an algorithm to

determine, for a given finite semigroup T , whether there is a continuous homo-

morphism from S onto T . For instance, if V is a pseudovariety of semigroups

and A is a finite set, then ΩAV, the pro-V semigroup freely generated by A, is

decidable if and only if it is decidable whether a finite A-generated semigroup

belongs to V. Thus, the pseudovariety V has a decidable membership problem

if and only if all finitely generated free pro-V semigroups are decidable.

The following immediate application of Proposition 3.2 could be stated, and

essentially proved in the same way, for much more general presentations. To

avoid introducing further notation, we stick here to the type of presentations in

which we are mostly interested.

Corollary 3.3: Let ϕ be an endomorphism of the free group FG(A) on a

finite set A and let ϕ̂ be its unique extension to a continuous endomorphism

of ΩAG. Then the profinite group presented by 〈A | ϕ̂ω(a) = a (a ∈ A)〉G is

decidable.

4. Preliminaries on symbolic dynamics

Let A be a finite alphabet. We denote by A+ the free semigroup on A. A code

is a nonempty subset of A+ that generates a free subsemigroup.

The subsemigroup of ΩAS generated by A is a free semigroup, and so we

identify it with A+. The elements of ΩAS \ A+ are said to be infinite, while

those of A+, which are isolated elements of ΩAS, are said to be finite.

We may represent an element x of AZ as the biinfinite word

· · ·x(−2)x(−1) · x(0)x(1)x(2) · · · .

For x ∈ AZ and integers k, � with k ≤ �, we denote by x[k,�] the word

x(k)x(k + 1) · · ·x(�); a word of this form is called a finite block of x.



Vol. 196, 2013 SCHÜTZENBERGER GROUPS OF MINIMAL SUBSHIFTS 13

A symbolic dynamical system X of AZ, also called subshift or shift

space of AZ, is a nonempty closed subset of AZ invariant under the shift op-

eration and its inverse [18]. We denote by L(X ) the set of all finite blocks of

elements of X .
A subshift X is minimal if it does not contain proper subshifts. There

is another useful characterization of minimal subshifts, with a combinatorial

flavor. An element x ∈ AZ is uniformly recurrent if for every finite block w

of x, there is a positive integer N such that w is a factor of every finite block

of x with length N . It turns out that a subshift is minimal if and only if it is

generated by a uniformly recurrent biinfinite sequence [13, Proposition 5.1.13].

A trivial example of minimal subshift is that of a minimal finite subshift,

generated by a periodic biinfinite word. Such a subshift is said to be periodic.

Given a subshift X and u ∈ L(X ), say that a nonempty word v is a return

word of u in X if vu ∈ L(X ), u is a prefix of vu and u occurs in vu only as a

prefix and a suffix. The set of all return words of u is denoted R(u). See [7] for

a recent account on return words. A subshift generated by an element of AZ is

minimal if and only if each of its finite blocks has a finite set of return words.

The following discussion summarizes results that can be found in [3, Section 2]

and [5, Section 6]. If the subshift X is minimal, then the topological closure

of L(X ) in ΩAS is the disjoint union of L(X ) and a J -class J(X ) of maximal

regular elements of ΩAS. The correspondence X �→ J(X ) is a bijection between

the set of minimal subshifts of AZ and the set of maximal regular J -classes of
ΩAS. Moreover, an infinite element w of ΩAS belongs to J(X ) if and only if all

its finite factors lie in L(X ).
It is natural to ask what is the structure of the (isomorphic) maximal sub-

groups of J(X ), denoted G(X ). Since the expression “maximal subgroup of

J(X )” refers to a concrete subgroup of the free profinite semigroup and we wish

to investigate its structure as an abstract profinite group, we prefer to call G(X )
the Schützenberger group of X . This is in accordance with the literature

in semigroup theory in which, more generally, one associates an abstract group

with every D-class of a semigroup, which is known as its Schützenberger

group.

For instance, it is proved in [3] that, if X is an Arnoux–Rauzy subshift of

degree k, of which the case k = 2 is that of the extensively studied Sturmian

subshifts [19, 13], then G(X ) is a free profinite group of rank k. An example of
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a minimal subshift X such that G(X ) is not freely generated, with rank two, is

also given in the same paper [3, Example 7.2].

A right (respectively left) infinite word is an element of AN (resp. of AZ
−
).

Given w ∈ ΩAS, we denote by −→w (resp. ←−w ) the right (resp. left) infinite word

whose finite prefixes (resp. suffixes) are those of w.

Lemma 4.1 ([5, Lemma 6.6]): For a minimal subshift X , two elements u, v ∈
J(X ) are R-equivalent if and only if −→u = −→v and L-equivalent if and only if
←−u =←−v .

Taking into account [6, Lemma 8.2], we deduce that w ∈ J(X ) lies in a

subgroup if and only if the doubly infinite word ←−w · −→w belongs to X . Indeed,

w ∈ J(X ) lies in a subgroup if and only if w2 stays in the same J -class, that is
it has the same finite factors as w. Now, by [6, Lemma 8.2], the finite factors

of w2 are those of w together with the products of the form uv, where u is a

finite suffix of w and v is a finite prefix of w. Thus, altogether, the finite factors

of w2 are the finite factors of ←−w · −→w .

The maximal subgroups H of J(X ) are thus in bijection with the elements

of X via the mapping that sends H to←−w ·−→w , where w is any element of H . For

x ∈ X , we denote by Hx the maximal subgroup corresponding to x.

By a substitution over a finite alphabet A we mean an endomorphism

of the free semigroup A+. The substitution ϕ over the alphabet A is primitive

if there is a positive integer n such that, for all a, b ∈ A, a occurs in ϕn(b) and

lim |ϕn(b)| = ∞, where |u| denotes the length of the word u. It is well known

that to each primitive substitution ϕ over a finite alphabet A, we can associate

a minimal subshift Xϕ. In terms of biinfinite words, there are some such words

that are periodic for the action of ϕ given by

x �→ · · ·ϕ(x(−2))ϕ(x(−1)) · ϕ(x(0))ϕ(x(1))ϕ(x(2)) · · ·

(cf. [13, Exercise 1.2.1]) and the subshift Xϕ is generated by it. A finite word

belongs to the language L(Xϕ) if and only if it is a factor of ϕk(a) for all a ∈ A
and all sufficiently large k ≥ 1. Note that ϕ(L(Xϕ)) ⊆ L(Xϕ) (see, for instance,
[3, Lemma 4.1(a)]). We say that ϕ is periodic in case so is Xϕ.
We shall denote J(Xϕ) and G(Xϕ) respectively by J(ϕ) and G(ϕ): this nota-

tion is more synthetic and emphasizes the exclusive dependence of these struc-

tures on ϕ, which in turn is a mathematical object completely determined by
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a finite amount of data, namely the images (in A+) of letters by ϕ. Naturally,

we also call G(ϕ) the Schützenberger group of the primitive substitution ϕ.

The unique continuous endomorphism of ΩAS extending ϕ will also be de-

noted by ϕ. A connection for ϕ is a word ba, with b, a ∈ A, such that

ba ∈ L(Xϕ), the first letter of ϕω(a) is a, and the last letter of ϕω(b) is b. Every

primitive substitution has a connection [3, Corollary 4.12]. In terms of the sub-

shift Xϕ, a connection is simply a word of the form x(−1)x(0) for some periodic

point x of the action of ϕ on biinfinite words. For a connection ba, the inter-

section Hba of the R-class containing ϕω(a) with the L-class containing ϕω(b)
is a maximal subgroup of J(ϕ). There is a finite power ϕ̃ of ϕ such that the

first letter of ϕ̃(a) is a and the last letter of ϕ̃(b) is b. We call ϕ̃ a connective

power of ϕ (with respect to the connection ba).

We let Xϕ(a, b) = b−1(R(ba)b). To avoid overloaded notation, Xϕ(a, b) will

be usually denoted by X . The set R(ba) is easily recognized to be a code

and so is X = b−1(R(ba)b). Let i be the unique homomorphism from the

semigroup freely generated by X into the semigroup freely generated by A such

that i(x) = x for all x ∈ X . Then i is injective, because X is a code. If x ∈ X
then ϕ̃(x) belongs to the subsemigroup of A+ generated by X . Therefore, we

can consider the word wx = i−1(ϕ̃(x)), the unique decomposition of ϕ̃(x) in the

elements of X . The homomorphism i has a unique extension to a continuous

homomorphism ΩXS→ ΩAS, which we also denote by i, and which we call the

encoding associated with the connection ba.

Theorem 4.2 ([21, Corollary 2.2]): The mapping i is injective.

Let q be the canonical projection ΩXS → ΩXG, namely the unique continu-

ous homomorphism from ΩXS into ΩXG that is the identity on the generators.

Then there are unique continuous endomorphisms ϕ̃X and ϕ̃X,G such that Di-

agram (4.1) commutes. More explicitly, for each x ∈ X we have ϕ̃X(x) = wx

and ϕ̃X,G(x) = wx, where we regard wx as a semigroup word and a group word,

respectively.

ΩAS

ϕ̃

��

ΩXS
i�� q ��

ϕ̃X

��

ΩXG

ϕ̃X,G

��
ΩAS ΩXS

i�� q �� ΩXG

(4.1)
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5. Maximal subgroups fixed by powers of primitive substitutions

Let A be a finite alphabet and let X ⊆ AZ be a subshift. Given a word u ∈ L(X ),
let n be a nonnegative integer less than or equal to the length of u. Let u1 and

u2 be words such that u = u1u2 and |u1| = n. An n-delayed return word

of u in X is a word v such that u1vu2 ∈ L(X ) and u1v ∈ R(u)u1 (see [12,

Definition 11]). The set of n-delayed return words of u in X shall be denoted

by R(n, u) or R(u1, u2). Note that

R(u1, u2) = u−1
1 (R(u)u1),

thus R(u1, u2) and R(u) have the same cardinality.

Lemma 5.1: Let X be a minimal subshift of AZ. Let v ∈ ΩAS be an element

of a maximal subgroup of J(X ). If u1 and u2 are words such that u1 is a suffix

and u2 is a prefix of v, then v belongs to 〈R(u1, u2)〉.

Proof. Since v lies in a subgroup, v3 also belongs to J(X ), whence so does

u1vu2. The set L(X ) is closed under taking factors by [5, Proposition 2.4],

and so there is a sequence (wn) of words in L(X ) that converges to u1vu2.

We may as well assume that u1u2 is a prefix and a suffix of each wn. Hence,

wn(u1u2)
−1 is a product of words in R(u1u2) and, therefore, u

−1
1 wnu

−1
2 belongs

to the subsemigroup generated by R(u1, u2), from which the lemma follows by

[1, Exercise 10.2.10].

We recall that the evaluation mapping

(5.1)
ΩMS× (ΩAS)

M →ΩAS

(w, v1, . . . , vM ) �→w(v1, . . . , vM )

is continuous for every positive integer M [2, Subsection 2.3].

Proposition 5.2: Let X be a minimal non-periodic subshift of AZ and let

x ∈ X . Suppose there are strictly increasing sequences of positive integers (pn)n

and (qn)n such that R(pn, x[−pn,qn]) has exactly M elements rn,1, . . . , rn,M , for

every n. Let (r1, . . . , rM ) be an arbitrary accumulation point of the sequence

(rn,1, . . . , rn,M )n in (ΩAS)
M . Then 〈r1, . . . , rM 〉 is the maximal subgroup Hx

of J(X ).

Proof. Clearly the proof needs only to deal with the case where the sequence

(rn,1, . . . , rn,M )n converges to (r1, . . . , rM ). Since rn,i ∈ L(X ) for all n, we know
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that ri ∈ L(X ). Let
p(n,i) = min{pn, |rn,i|} and q(n,i) = min{qn + 1, |rn,i|}.

By [10, Lemma 3.2],

limmin{|v| : v ∈ R(pn, x[−pn,qn])} =∞.
Hence, ri ∈ J(X ) and lim p(n,i) = lim q(n,i) = ∞. Since for all n the word

x[0,q(n,i)] is a prefix of rn,i and x[−p(n,i),−1] is a suffix of r(n,i), we obtain ri ∈ Hx

by definition of Hx.

Let g be an element of Hx. By Lemma 5.1, there is an element wn ∈ ΩMS

such that g = wn(rn,1, . . . , rn,M ). Let w be an accumulation point of (wn)n

in ΩMS. Since the evaluation mapping (5.1) is continuous, it follows that g =

w(r1, . . . , rM ). This proves that Hx = 〈r1, . . . , rM 〉.
The following result shows that a primitive substitution ϕ induces natural

actions on certain maximal subgroups of J(ϕ).

Lemma 5.3: Let ϕ be a primitive substitution and let ba be a connection for ϕ.

If ϕ̃ is a connective power of ϕ, then ϕ̃(Hba) ⊆ Hba.

Proof. Let u be a word from R(b, a). Then ϕn(u) belongs to L(Xϕ) for every n.
Hence, ϕω(u) belongs to J(ϕ). Since u starts with a and ends with b, it follows

that ϕω(u) ∈ Hba. Let K = ϕ̃(Hba). Since, by [3, Proposition 4.2], ϕ maps

J(ϕ) to itself, K is a subgroup of ΩAS contained in J(ϕ). Thus, since Hba is a

maximal subgroup of ΩAS, to show that ϕ̃(Hba) ⊆ Hba, it suffices to show that

K ∩ Hba is nonempty. Indeed, ϕ̃ϕω(u) = ϕωϕ̃(u) belongs to K, by definition

of K, and to Hba, since ϕ̃ is a connective power of ϕ.

Let ϕ be a primitive substitution over A. A biinfinite fixed point of ϕ is

an element x of AZ such that x[0,n] is a prefix of ϕ(x[0,n]) and x[−n,−1] is a suffix

of ϕ(x[−n,−1]), for every positive integer n.

Given a biinfinite word x ∈ AZ and a positive integer �, let ∼� be the equiv-

alence relation on Z defined by i ∼� j if x[i−�,i+�] = x[j−�,j+�]. Note that, for

k > �, ∼k refines ∼�.
Suppose additionally that x is a biinfinite fixed point of ϕ. Following the

notation of [13],2 let

E1(ϕ) = {0} ∪
⋃

n≥1

{
−|ϕ(x[−n,−1])|, |ϕ(x[0,n−1])|

}
.

2 The minus sign in −|ϕ(x[−n,−1])| in the formula for E1(ϕ) is missing in [13, Section 7.2.1].

The correct formulation can be found in [12, Section 2.4].
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The substitution ϕ is said to be bilaterally recognizable if there exists � > 0

such that E1 is a union of ∼�-classes. Denote by �(ϕ) the least possible value

of �.

The following result of Mossé [22, 23], stated in [13, Theorem 7.2.2], will be

crucial in the sequel.

Theorem 5.4: Every non-periodic primitive substitution with a biinfinite fixed

point is bilaterally recognizable.

In the case of non-periodic primitive substitutions, the following consequence

of Theorem 5.4 provides the key tool to prove the reverse inclusion of that given

by Lemma 5.3.

Proposition 5.5: Let ϕ be a non-periodic primitive substitution and let ba be

a connection for ϕ. If ϕ̃ is a connective power of ϕ, then Hba ⊆ Im ϕ̃.

Proof. Let x be the unique element of the subshift Xϕ such that Hx = Hba. By

Lemma 5.3, x is also the biinfinite word

· · · ϕ̃(x(−2))ϕ̃(x(−1)) · ϕ̃(x(0))ϕ̃(x(1))ϕ̃(x(2)) · · · .

Therefore, x is a biinfinite fixed point of ϕ̃. By Theorem 5.4, ϕ̃ is bilaterally

recognizable.

By [12, Proposition 25 and Theorem 24], the sequence |R(n, x[−n,n])| is bounded.
Hence, there is a strictly increasing sequence (pn) for which |R(pn, x[−pn,pn])| is
a constant M , and such that pn > �(ϕ̃) for all n.

Let R(pn, x[−pn,pn]) = {rn,1, . . . , rn,M}. Let k ∈ {1, . . . ,M}. Because x is

uniformly recurrent, there are i > 0 and j > i such that

(5.2) x[−pn,pn] = x[i−pn,i+pn] = x[j−pn,j+pn]

and rn,k = x[i,j−1]. Since 0 ∈ E1(ϕ̃) and pn > �(ϕ̃), it follows from (5.2) that

i, j ∈ E1(ϕ̃). As rn,k = x[i,j−1], we conclude that rn,k belongs to Im ϕ̃.

Let (r1, . . . , rM ) be an accumulation point of the sequence (rn,1, . . . , rn,M )n.

Since Im ϕ̃ is closed in ΩAS, we have rk ∈ Im ϕ̃ for all k. It then follows from

Proposition 5.2 that Hba ⊆ Im ϕ̃.

We can now establish the announced reverse inclusion of that given by Lemma

5.3 in the case of non-periodic primitive substitutions.
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Theorem 5.6: Let ϕ be a non-periodic primitive substitution. Consider a

connection ba for ϕ and a connective power ϕ̃. Then Hba = ϕ̃(Hba) = ϕω(Hba).

Proof. Let k be a positive integer. Then ϕ̃k is also a connective power of ϕ

relatively to the connection ba. Therefore, by Proposition 5.5, we obtain the

inclusionHba ⊆ Im ϕ̃k. Hence, given g ∈ Hba, for each positive integer k, there is

uk ∈ ΩAS such that g = (ϕ̃)k!(uk). Since the evaluation mapping on continuous

endomorphisms of finitely generated profinite semigroups is continuous (cf. [17,

Proposition 1]), there is an accumulation point u of the sequence (uk) such that

g = ϕ̃ω(u) = ϕω(u). Hence, we have ϕω(g) = g. This proves the equality

Hba = ϕω(Hba).

By Lemma 5.3, the inclusion ϕ̃(Hba) ⊆ Hba holds. Hence, ϕ̃k!−1(Hba) ⊆ Hba

holds for all k ≥ 1, which shows that ϕ̃ω−1(Hba) ⊆ Hba because Hba is closed.

We then have

Hba = ϕω(Hba) = ϕ̃(ϕ̃ω−1(Hba)) ⊆ ϕ̃(Hba),

which, together with Lemma 5.3, establishes the equality Hba = ϕ̃(Hba).

The first author [3, Theorem 4.13] managed to avoid using Mossé’s Theo-

rem 5.4 to obtain the equality Hba = ϕω(Hba) by adding the extra synchro-

nization hypothesis that ϕ is an “encoding of bounded delay with respect to the

finite factors of J(ϕ)” (cf. [3]). This restriction turns out not to be significant

in case ϕ induces an automorphism of the free group FG(A), because then the

extra hypothesis always holds [3, Corollary 5.6].

Theorem 5.6 fails if ϕ is periodic. For example, consider the periodic primitive

substitution defined by ϕ(a) = aba and ϕ(b) = bab. Then ba is a connection for

ϕ, and Xϕ(a, b) = {ab}. Note that ϕn(ab) = (ab)3
n

, for every positive integer

n. By the definition of Hba, we know that K = 〈ϕω(ab)〉 is a closed subgroup

of Hba. Note that (ab)ω+1 is H-equivalent to ϕω(ab), that is (ab)ω+1 ∈ Hba.

Note also that (ab)ω+1 /∈ K. If we had Hba ⊆ Imϕω , then we would have

(ab)ω+1 = ϕω(ab)ω+1 ∈ K, a contradiction. This shows the necessity of the

non-periodicity hypothesis in Theorem 5.6.

6. Presentations of Schützenberger groups of primitive substitutions

By Corollary 2.5, every finitely generated maximal subgroup of ΩXS admits a

finite presentation of the form (2.3). However, to be able to apply the decidabil-

ity results of Section 3, one needs computability properties of the continuous
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endomorphism Φ of ΩXG. In this section, we show that this is always possible

for the Schützenberger group of an arbitrary primitive substitution over a finite

alphabet.

We separate into two subsections the general case, which involves return

words, and a special case, in which the idempotent iterate ϕω of the substitution

ϕ maps all letters to the same H-class. In the special case, the presentation can

be expressed more directly in terms of the given substitution. In the third

subsection, we show that one can actually obtain the general case from the

special one.

6.1. The general case. We first apply the simple remarks of Subsection 2

to obtain a semigroup presentation for a profinite subgroup associated with a

primitive substitution ϕ and a connection of ϕ.

Proposition 6.1: Let ϕ be a primitive substitution over the alphabet A,

ba be a connection for ϕ, and ϕ̃ be a connective power of ϕ. Put X =

Xϕ(a, b) and H = Im (ϕω ◦ i), where i is the encoding associated with ba. Then

Ker (ϕω ◦ i) ⊆ Ker ϕ̃ωX and so H admits the presentation

(6.1) 〈X | ϕ̃ωX(x) = x (x ∈ X)〉S.

Proof. Note that ϕω(i(X)) is contained in Hba [3, Proposition 4.8(1)], whence

H is a subgroup of ΩAS. Moreover, ϕ̃ acts as an automorphism on H and

as an endomorphism of Im i. We obtain the following commutative diagram,

where the commutativity of the outer rectangle follows from that of the largest

trapezoid.

ΩXS
ϕ̃ω+1

X ��

ϕ̃ω◦i

��

ΩXS

ϕ̃ω◦i

��

ΩXS
ϕ̃X ��

i
��

ϕ̃ω◦i

����
��
��
��
��
��

ΩXS

i
��

ϕ̃ω◦i



	
		

		
		

		
		

	

Im i
ϕ̃ ��

ϕ̃ω��











Im i

ϕ̃ω ����
���

���

H
ϕ̃=ϕ̃ω+1

�� H

Let (u, v) ∈ Ker (ϕ̃ω ◦ i). We claim that (u, v) ∈ Ker ϕ̃ωX = Ker ϕ̃ω+1
X . Indeed,

since i is injective by Theorem 4.2, it suffices to show that u and v have the same
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image under i ◦ ϕ̃ωX . Now, by the commutativity of the diagram, the following

holds for an arbitrary w ∈ ΩXS: i ◦ ϕ̃ωX(w) = ϕ̃ω ◦ i(w). Combining with the

hypothesis that ϕ̃ω ◦ i(u) = ϕ̃ω ◦ i(v), we deduce that i ◦ ϕ̃ωX(u) = i ◦ ϕ̃ωX(v). We

have thus shown that Ker (ϕ̃ω ◦ i) ⊆ Ker ϕ̃ωX . To conclude the proof, it suffices

to invoke Lemma 2.2.

We are now ready for the main theorem of this paper.

Theorem 6.2: Let ϕ be a non-periodic primitive substitution over the alphabet

A. Let ba be a connection of ϕ and let X = Xϕ(a, b). Then G(ϕ) admits the

presentation

(6.2) 〈X | ϕ̃ωX,G(x) = x (x ∈ X)〉G,

where ϕ̃ is a connective power of ϕ.

Proof. Let H = Im (ϕω ◦ i). As in the proof of Proposition 6.1, we know that H

is contained in Hba. On the other hand, by Lemma 5.1, Hba is contained in Im i,

whence ϕω(Hba) ⊆ Im (ϕω ◦ i) = H . By Theorem 5.6, it follows that H = Hba.

Hence, H is the Schützenberger group G(ϕ). According to Proposition 6.1, H

admits the profinite semigroup presentation (6.1). Lemma 2.3 yields that H

admits the presentation

〈X | q(ϕ̃ωX(x)) = q(x) (x ∈ X)〉G,

where q : ΩXS → ΩXG is the canonical projection. In view of commutativity

of Diagram (4.1), and noting also that q(x) = x for each x ∈ X , it remains to

observe that the above presentation is just a reformulation of (6.2).

6.2. The case of proper substitutions. This subsection is dedicated to a

special case in which the Schützenberger group of the primitive substitution is

realized as a retract of the free profinite semigroup under the ω-power of the

substitution. This leads to a somewhat simpler presentation of the form (1.1).

We say that a substitution ϕ over a finite alphabet A is proper if there are

letters a, b ∈ A such that, for every d ∈ A, the word ϕ(d) starts with a and ends

with b.

Lemma 6.3: Let ϕ be a non-periodic proper substitution over a finite alphabet

A. Then Imϕω is a maximal subgroup of ΩAS contained in J(ϕ).
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Proof. By [6, Proposition 5.3], all the elements of ΩAS of the form ϕω(a) (a ∈ A)
lie in the same maximal subgroup H . By Theorem 5.6, the image of ϕω is

H .

The special case of the following result where ϕ is an encoding of bounded

delay with respect to the finite factors of J(ϕ) was announced in a lecture by

the first author at the Fields Workshop on Profinite Groups and Applications

(Carleton University, August 2005). Its proof appears here for the first time,

and furthermore does not depend on that hypothesis.

Theorem 6.4: Let ϕ be a non-periodic proper primitive substitution over a

finite alphabet A. Then G(ϕ) admits the presentation

(6.3) 〈A | ϕωG(a) = a (a ∈ A)〉G.

Proof. By Lemma 6.3, H = Imϕω is a maximal subgroup of ΩAS and it is also

the Schützenberger group of ϕ. In particular, ϕ acts on H as an automorphism.

Consider the following commutative diagram

ΩAS
ϕω+1

��

ϕω

��

ΩAS

ϕω

��
H

ϕ �� H.

Since Kerϕω ⊆ Kerϕω+1, it follows from Lemma 2.2 that H admits the presen-

tation 〈A | ϕω(a) = a (a ∈ A)〉S. Applying Lemma 2.3, we deduce that H can

also be presented as 〈A | p(ϕω(a)) = p(a) (a ∈ A)〉G. Finally, since p◦ϕ = ϕG◦p
and p(a) = a for every a ∈ A, the latter presentation coincides with (6.3).

6.3. A reduction to the proper case. In this subsection, we show how to

reduce the case of a general primitive substitution to that of a proper primitive

substitution, thus providing an alternative proof of Theorem 6.2 based on The-

orem 6.4. The first ingredient is the following lemma, which can be extracted

from [12, Lemma 21], noting that the definition of proper substitution adopted

in that paper translates in the language of the present paper as a substitution

which admits a power which is proper.

Lemma 6.5: Let ϕ be a primitive substitution over a finite alphabet A and let

ba be a connection for ϕ. Let X = Xϕ(a, b) and suppose that ϕ̃ is a connective

power of ϕ such that min{|ϕ̃(a)|, |ϕ̃(b)|} > max{|x| : x ∈ X}. Then ϕ̃X is a
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proper primitive substitution over the alphabet X . The subshift Xϕ ⊆ AZ is

periodic if and only if so is Xϕ̃X ⊆ XZ.

Provided ϕ is non-periodic, for a choice of ϕ̃ as in Lemma 6.5, we may apply

Lemma 6.3 to conclude that Im ϕ̃ωX = ImϕωX is a maximal subgroup of J(ϕX),

which we denote by K.

On the other hand, Theorem 5.6 shows that, for a connection ba of ϕ, the

maximal subgroup Hba is such that Hba = ϕω(Hba). Hence, for the encoding i

associated with ba, we have

Hba = ϕω(Hba) ⊆ ϕω(i(ΩXS)) = i(ϕωX(ΩXS)) = i(K).

Since K is a subgroup and Hba is a maximal subgroup, we have i(K) = Hba.

As i is injective by Theorem 4.2, we obtain the following result.

Theorem 6.6: Let ϕ be a non-periodic primitive substitution over a finite

alphabet and let ϕ̃X be as in Lemma 6.5. Then the encoding i associated

with the connection ba defines an isomorphism between a maximal subgroup

of J(Xϕ̃X ) and Hba.

Combining Theorems 6.4 and 6.6, it is now immediate to obtain an alternative

way to deduce Theorem 6.2.

7. Applications

This section is devoted to applications of the main results of Section 6.

7.1. Decidability of Schützenberger groups of primitive substitu-

tions. The following result is our main motivation for obtaining presentations

of Schützenberger groups. The periodic case of the following theorem follows

from the fact that the corresponding Schützenberger group is a free procyclic

group [6, Theorem 7.5]. For this reason, the two alternative proofs presented

below handle only the non-periodic case.

Theorem 7.1: Let ϕ be a primitive substitution over a finite alphabet. Then

the profinite group G(ϕ) is decidable.

First proof. By [3, Lemmas 3.3 and 4.5], one may effectively compute a connec-

tion ba for ϕ and the set X = Xϕ(a, b). Thus, to conclude the proof, it suffices

to invoke Corollary 3.3 taking into account Theorem 6.2.
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Second proof. Assuming that the substitution ϕ is proper, Corollary 3.3 com-

bined with Theorem 6.4, yields that the group G(ϕ) is decidable. To obtain the

general case, we invoke a result from symbolic dynamics which states that, for

every primitive substitution ϕ, one can effectively compute a proper primitive

substitution ψ such that the subshifts Xϕ and Xψ are conjugate [12] (see also

[11, Proposition 31]). Since the profinite groups G(ϕ) and G(ψ) are isomorphic

by [8, Theorem 3.11], and the latter is decidable, so is the former.

Note that, while the first proof depends less on results on symbolic dynamics,

the second proof does not depend on the injectivity of the encoding i associated

with the connection (Theorem 4.2). By using also the injectivity of i, one

may modify the second proof by applying instead Theorem 6.6 to obtain the

isomorphism of G(ϕ) with a decidable profinite group.

7.2. A first non-relatively free example. We give an example to illus-

trate how to apply Theorem 6.4 to prove that the Schützenberger group of a

primitive substitution is not relatively free. Let A = {a, b} and define a sub-

stitution ϕ by ϕ(a) = ab and ϕ(b) = a3b, which is non-periodic and proper

primitive. Hence, by Theorem 6.4, the group G(ϕ) admits the presentation

〈a, b | ϕωG(a) = a, ϕωG(b) = b〉G.

It is shown in [3, Example 7.2] that G(ϕ) is not a free profinite group. We

proceed to improve this result by showing that it is not relatively free, that is,

not of the form ΩXV, although in fact we do not know whether the pseudovariety

generated by all its finite continuous homomorphic images is a proper subclass

of G.

Theorem 7.2: Let ϕ be the substitution given by ϕ(a) = ab and ϕ(b) = a3b.

Then G(ϕ) is not a relatively free profinite group.

Proof. By Lemma 6.3, the closed subsemigroup H = 〈ϕω(a), ϕω(b)〉 is a max-

imal subgroup isomorphic to G(ϕ). The argument in [3, Example 7.2] shows

that H cannot be relatively free with respect to any pseudovariety contain-

ing the two-element group. Hence, it suffices to show that the pseudovariety

generated by the finite continuous homomorphic images of H contains the two-

element group, i.e., that H has a continuous homomorphic image of finite even

order. We claim, more specifically, that the alternating group A5 is a continuous

homomorphic image of H .
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Let A = {a, b} and let h : ΩAS → A5 be the unique continuous homo-

morphism such that h(a) = (1 2 3) and h(b) = (3 4 5). Note that h is onto.

To establish the claim, in view of Proposition 3.2 it is enough to check that

h ◦ ϕ12|A = hA. Although the length of the word ϕn(a) depends exponen-

tially on n, the verification can be done easily by applying Lemma 3.1 since

h ◦ ϕ12|A = (ϕA5)
12(h|A). The computation of (ϕA5)

12(h|A) can be carried out

either by hand or by using a computer algebra system like GAP [14] and it

confirms that indeed (ϕA5)
12 fixes h|A, thereby proving the theorem.

7.3. The case of the Prouhet–Thue–Morse substitution. Let A be the

two-letter alphabet {a, b}. The Prouhet–Thue–Morse substitution is the

non-periodic primitive substitution τ over A given by τ(a) = ab and τ(b) =

ba [13]. Note that no power of τ is proper. The word aa is a connection for

τ and τ̃ = τ2 is a connective power of τ . The four elements of X = Xτ (a, a)

are x = abba, y = ababba, z = abbaba and t = ababbaba, cf. [7, Section 3.2].

By Theorem 6.2, the H-class H = Haa of τω(a), which is generated by τω(X),

admits the following presentation:

(7.1) 〈X | τ̃ωX,G(u) = u (u ∈ X)〉G.

More precisely, the kernel of the continuous homomorphism ΩXG → H that

maps each u ∈ X to τω(u) is the closed congruence generated by the relations

in the presentation (7.1). Let α = τω(x), β = τω(y), γ = τω(z), and δ = τω(t).

Remark 7.3: Let ζ be a continuous semigroup homomorphism from ΩAS into

a profinite semigroup S. Suppose that ζ(x) belongs to a subgroup of S. Then

ζ(y) · ζ(x)ω−1 · ζ(z) = ζ(t).

Proof. We have ζ(ababba) · ζ(abba)ω−1 · ζ(abbaba) = ζ(ab) · ζ(abba)ω+1 · ζ(ba),
and ζ(abba)ω+1 = ζ(abba), because ζ(abba) is a group element of S.

Applying Remark 7.3 to the continuous homomorphism τω , we conclude that

βα−1γ = δ in H , so that the profinite group H is generated by {α, β, γ} and

so the relation yx−1z = t turns out to be a consequence of the relations in the

presentation (7.1).

A routine calculation shows that the images of letters of X by τ̃X are given

by

τ̃X(x) = zxy, τ̃X(y) = ztxy, τ̃X(z) = zxty, τ̃X(t) = ztxty.

We proceed to give an alternative presentation of G(τ) as a profinite group.
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Theorem 7.4: The group G(τ) admits the following presentation:

(7.2) 〈x, y, z | Ψω(x) = x, Ψω(y) = y, Ψω(z) = z〉G,

where Ψ is the unique continuous endomorphism of Ω{x,y,z}G such that Ψ(x) =

zxy, Ψ(y) = zyx−1zxy, and Ψ(z) = zxyx−1zy.

Proof. Let X = {x, y, z, t} and Y = X \ {t}. Consider the continuous endo-

morphism r of ΩXG which fixes the elements of Y and maps t to yx−1z. Let

Φ = τ̃X,G. Note that Ψ has been defined so that r◦Φ coincides with Ψ on Y . We

extend Ψ to ΩXG by putting Ψ(t) = r(Φ(t)), which yields the equality Ψ = r◦Φ.
On the other hand, we have Φ(t) = ztxty = ztxy · (zxy)−1 · zxty = Φ(yx−1z).

As argued above, from Theorem 6.2 it follows that G(τ) admits the presentation

〈X | yx−1z = t, Φω(u) = u (u ∈ X)〉G.

To finish the proof, it now suffices to invoke Proposition 2.6.

For a profinite group G and a pseudovariety of groups V, denote by GV the

largest pro-V factor group of G. For a prime p, let Abp denote the pseudovariety

of all elementary Abelian p-groups. The following result is well known (cf. [27,

Proposition 3.4.2 and Lemma 3.3.5]).

Lemma 7.5: Let V and W be pseudovarieties of groups such that V ⊆ W and

suppose that G is a finitely generated free pro-W group. Then GV is a free

pro-V group and, if V contains some nontrivial group, then the two groups have

the same rank.

In [3, Example 7.3] it was proved that the profinite group G(τ) is not free

on three generators: although the computation starts from an incorrect set of

return words, the same argument goes through with the correct set. We may

now adopt a different approach to establish the following improvement.

Theorem 7.6: The profinite group G(τ) is not relatively free.

Proof. We first note that, in view of Theorem 7.4, the following presentation

defines a finite quotient group Kp of G(τ):

〈x, y, z | Ψω(x) = x, Ψω(y) = y, Ψω(z) = z,

xy = yx, yz = zy, zx = xz, xp = yp = zp = 1〉G.
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Let Y = {x, y, z}. By Lemma 2.3, the group Kp also admits the presentation

〈x, y, z | Λω(x) = x, Λω(y) = y, Λω(z) = z〉Abp ,

where Λ is the continuous endomorphism of ΩY Abp induced by Ψ, which is

given by Λ(x) = zxy and Λ(y) = Λ(z) = y2z2. In the group Kp, we have

y = Λω(y) = Λω(z) = z. Moreover, identifying each function f from Y to Kp

with the triple (f(x), f(y), f(z)) and applying iteratively the transformation

ΛKp ∈ T (KY
p ), one obtains inductively ΛnKp

(x, y, y) = (xy2(4
n−1)/3, y4

n

, y4
n

).

By Lemma 3.1, it follows that, in Kp and for n = m! sufficiently large, the

equalities xy2(4
n−1)/3 = x and y4

n

= y hold. In particular, for p = 2, we get

y = 1, which shows that K2 is a cyclic group of order 2. On the other hand, for

a prime p > 2, the previous calculations show that Kp is an elementary Abelian

p-group of rank two.

Suppose thatG(τ) were a free pro-V group for some pseudovariety of groupsV.

By the above, V contains Abp for every prime p. Moreover, since G(τ)Abp
= Kp,

the above calculations imply that G(τ)Abp has rank 1 for p = 2 and rank 2 for an

odd prime p, which contradicts Lemma 7.5. Hence, G(τ) cannot be a relatively

free profinite group.

The proof of Theorem 7.6 shows that the rank of G(τ) is either two or three.

The following result settles the precise value of the rank. It is a further appli-

cation of the presentation of G(τ) given by Theorem 7.4.

Theorem 7.7: The group G(τ) has a group of order 18 of rank three as a

continuous homomorphic image. Hence, G(τ) has rank three.

Proof. Set Y = {x, y, z}. Let K be the group given by the following presenta-

tion:

〈a, b, c | a2 = b3 = c3 = 1, bc = cb, aba = b2, aca = c2〉G.

Note that K is the semidirect product of the subgroup 〈b, c〉, which is the direct

product of two three-element groups, by the two-element subgroup 〈a〉. Let

h : ΩY G→ K be the continuous homomorphism that sends x, y, z respectively

to a, b, c.

We first verify that h(Ψ2(u)) = h(u) for all u ∈ Y . Since the calculations are

quite similar, we treat only the case where u = y, leaving the other two cases
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for the reader to check:

h(Ψ2(y)) = caba−1cb · cba−1cab · (cab)−1 · caba−1cb · cab · cba−1cab

= c · aba · cbcbac · aba · cbcabcb · aca · b
= c · b2 · cbcbac · b2 · cbcabcb · c2 · b = b = h(y).

From Proposition 3.2, it follows that K is a continuous homomorphic image

of G(τ). Since it is easily checked that K has rank three, it follows that so

does G(τ).

One can also use the same technique as in the proof of Theorem 7.2 to estab-

lish that other finite groups are continuous homomorphic images of G(τ), as in

the following observation.

Remark 7.8: The alternating group A5 is a continuous homomorphic image

of G(τ).

Proof. Let A = {a, b} and consider the transformation τA5 ∈ AA5 associated

with the substitution τ according to Lemma 3.1. Identifying here f ∈ AA5 with

the pair (f(a), f(b)), we have τA5(x, y) = (xy, yx). Again, a straightforward

calculation shows that τ6A5
fixes the pair of 3-cycles ((1 2 3), (3 4 5)). Hence,

for the continuous homomorphism h : ΩAS → A5 given by h(a) = (1 2 3) and

h(b) = (3 4 5), by Lemma 3.1 we obtain the equalities h(τω(a)) = (1 2 3) and

h(τω(a)) = (3 4 5), from which it follows that h(τω(abba)) = (1 3 2 5 4) and

h(τω(ababba)) = (1 5 2). This proves the claim since A5 is generated by the

latter two cycles, while τω(abba) and τω(ababba) belong to G(τ).

We do not know whether the finite quotients of G(τ) generate a proper pseu-

dovariety of groups. On the other hand, every finite cyclic group is a continuous

homomorphic image of G(τ). Indeed, adding to the defining relations of the pre-

sentation of G(τ) given by Theorem 7.4, the relations y = z = 1, we obtain the

free procyclic group.

The following result adds further information about the presentation of The-

orem 7.4.

Proposition 7.9: For each u ∈ {x, y, z}, the pseudoidentity Ψω(u) = u fails in

the two-element group C2. Hence, for each u ∈ {x, y, z}, the relationΨω(u) = u,

which holds in G(τ), is nontrivial.
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Proof. Let a be the nonidentity element ofC2 and let Y = {x, y, z}. Then, in the

notation of Lemma 3.1, one verifies that the transformation ΨC2 is idempotent.

Moreover, if we identify each function f ∈ CY2 with the triple (f(x), f(y), f(z)),

then ΨC2(f1, f2, f3) = (f3f1f2, 1, 1). In particular, we obtain ΨωC2
(a, a, 1) =

ΨωC2
(a, 1, a) = (1, 1, 1). Hence, none of the pseudoidentities Ψω(u) = u, with

u ∈ Y , is satisfied by C2.

8. Open problems

We end with a few open problems.

Problem 8.1: Let ϕ be a primitive substitution over a finite alphabet. And let

V(ϕ) be the pseudovariety generated by the (continuous) homomorphic images

of G(ϕ).

(1) When is V(ϕ) = G?

(2) “Compute”V(ϕ).

Problem 8.2: (1) For which (minimal) subshifts X is the associated

Schützenberger group G(X ) decidable?
(1) In particular, is there any such group which is undecidable?

It is well known that a free profinite group relatively to an extension-closed

pseudovariety is G-projective as a profinite group (cf. [15] and [29, Corollary

11.2.3]) and so, in view of the results of [3] or [25], finitely generated such

groups certainly appear as closed subgroups of free profinite semigroups on

two generators. P. Zalesskĭı asked in the Fields Workshop on Profinite Groups

and Applications (Carleton University, August 2005) and also in the Meeting

of the ESI Programme on Profinite Groups (Vienna, December 2008) whether

in particular free pro-p groups can appear as Schützenberger groups of free

profinite semigroups. In our setting, and in view of the results of this section,

this suggests the following question.

Problem 8.3: Let Φ be a continuous endomorphism of ΩXG and let G be the

profinite group presented by 〈X | Φω(x) = x (x ∈ X)〉. Under what assumptions

on Φ is G a relatively free profinite group?

As has been pointed out by the referee, if H is a pseudovariety of groups that

contains every finite group whose Frattini quotient belongs to H, then ΩXH
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admits such a presentation. Indeed every free pro-H group is G-projective [27,

Proposition 7.6.7], and every finitely generated G-projective profinite group has

such a presentation by Corollary 2.5.

Acknowledgment. We thank the anonymous referee for several suggestions,
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