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ABSTRACT

We study the topology of (properly) immersed complete minimal surfaces

P 2 in Hyperbolic and Euclidean spaces which have finite total extrinsic

curvature, using some isoperimetric inequalities satisfied by the extrinsic

balls in these surfaces (see [10]). We present an alternative and unified

proof of the Chern–Osserman inequality satisfied by these minimal sur-

faces (in R
n and in H

n(b)), based in the isoperimetric analysis mentioned

above. Finally, we show a Chern–Osserman-type equality attained by com-

plete minimal surfaces in the Hyperbolic space with finite total extrinsic

curvature.

1. Introduction

Let P 2 be a complete and minimal surface immersed in R
n and with finite

total curvature
∫
P KPdσ < ∞, KP being the Gauss curvature of the surface.
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Then we have the following equality (resp. inequality), known as the Chern–

Osserman formula (see [1], [3] and [6]):

(1.1)

−χ(P ) =
1

4π

∫
P

‖BP ‖2dσ − Supr
Vol(P 2 ∩B0,n

r )

Vol(B0,2
r )

≤ 1

4π

∫
P

‖BP ‖2dσ − k(P ),

where χ(P ) is the Euler characterisitic of P , k is its number of ends, BP is the

second fundamental form of P in R
n and Bb,n

r denotes the geodesic r-ball in

the simply connected real space form K
n(b).

To have finite total scalar (extrinsic) curvature
∫
P
‖BP ‖2dσ < ∞ is equivalent

to the finiteness of the total Gaussian curvature (the original assumption in [3])

when the surface is minimal and immersed in R
n. From this point of view, it is

natural to expect that it is possible to establish a Chern–Osserman inequality

(or equality) for complete minimal surfaces with finite total extrinsic curvature

(properly) immersed in the hyperbolic space. This question has been addressed

by Qing and Yi in the papers [12] and [13]. They proved, for a complete minimal

surface P 2 (properly) immersed in H
n(b) and such that

∫
P ‖BP ‖dσ < ∞, that

Supr
Vol(P 2 ∩B−1,n

r )

Vol(B−1,2
r )

< ∞

and the following version of the Chern–Osserman Inequality, in terms of the

volume growth of the extrinsic balls:

(1.2) −χ(P ) ≤ 1

4π

∫
P

‖BP ‖2dσ − Supr
Vol(P 2 ∩B−1,n

r )

Vol(B−1,2
r )

.

The proofs given by these authors are different from those for the Euclidean

case, and rely heavily on the properties of the hyperbolic functions.

We present in this paper a unified proof of the Chern–Osserman inequality (in

terms of the volume growth) for complete minimal surfaces with finite total ex-

trinsic curvature immersed in Euclidean or Hyperbolic spaces. This unification

is based on obtaining estimates for the Euler characteristic of the extrinsic balls

(given in Lemma 3.1 and Proposition 3.2) and on the isoperimetric inequality

for the extrinsic balls given in Theorem 1.1 in [10]. These results are based on

the divergence theorem and the Hessian and Laplacian comparison theory of

restricted distance functions (see [4], [5] and [11]) which involves bounds on the

mean curvature of the submanifold.

We have proved the following Chern–Osserman inequality, which encompasses

inequalities (1.1) and (1.2):
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Theorem A: Let P 2 be a complete minimal surface immersed in a simply

connected real space form K
n(b) with constant sectional curvature b ≤ 0. Let

us suppose that
∫
P ‖BP ‖2dσ < ∞. Then:

(1) P has finite topological type.

(2) Supt>0(Vol(Dt)/Vol(B
b,2
t )) < ∞, where Dt = P ∩ Bb,n

t is the extrinsic

t-ball in P (see Definition 2.1 in Section 2).

(3)

−χ(P ) ≤
∫
P
‖BP ‖2
4π

− Supt>0

Vol(Dt)

Vol(Bb,2
t )

,

where χ(P ) is the Euler characteristic of P .

Although with this approach we are not able to state equality (1.1) in the

Euclidean setting, we shall prove in Theorem B the following Chern–Osserman-

type equality for complete and minimal immersed (cmi for short) surfaces in

the Hyperbolic space:

Theorem B: Let P 2 be a complete immersed minimal surface in H
n(b). Let

us suppose that
∫
P
‖BP ‖2dσ < ∞. Then

(1.3) −χ(P ) =
1

4π

∫
P

‖BP ‖2dσ − Supt>0

Vol(Dt)

Vol(Bb,2
t )

− 1

2π
Gb(P ),

where Gb(P ) is a non-negative and finite quantity which does not depend on

the exhaustion by extrinsic balls {Dt}t>0 of P and is given by

Gb(P ) := lim
t→∞

(
hb(t)Vol(B

b,2
t )

( (Vol(Dt))

Vol(Bb,2
t )

)′
(1.4)

+

∫
∂Dt

〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
dσt

)
.

1.1. Outline. The outline of the paper is the following. In Section 2 we present

the basic facts about the Hessian comparison theory of the restricted distance

function we are going to use, obtaining as a corollary the compactification of cmi

surfaces in K
n(b) with finite total extrinsic curvature (Corollary 2.3). Section 3

is devoted to the unified proof of the Chern–Osserman inequality for complete

minimal surfaces with finite total extrinsic curvature immersed in Euclidean

and Hyperbolic spaces (Theorem A), and in Section 4 a Chern–Osserman-type

equality satisfied by the cmi surfaces in H
n(b) is proved (Theorem B).
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2. Preliminaries

2.1. The extrinsic distance. We assume throughout the paper that P 2 is

a complete, non-compact, immersed, 2-dimensional submanifold in a simply

connected real space form of non-positive constant sectional curvature K
n(b)

(Kn(b) = R
n when b = 0 and K

n(b) = H
n(b) when b < 0). All the points

in these manifolds are poles. Recall that a pole is a point o such that the

exponential map

expo : ToN
n → Nn

is a diffeomorphism. For every x ∈ Nn \ {o} we define ro(x) = distN (o, x),

and this distance is realized by the length of a unique geodesic from o to x,

which is the radial geodesic from o. We also denote by r the restriction

ro|P : P → R+∪{0}. This restriction is called the extrinsic distance function

from o in Pm. The gradients of r in N and P are denoted by ∇N r and ∇P r,

respectively. Let us remark that ∇P r(x) is just the tangential component in P

of ∇N r(x), for all x ∈ S. Then we have the following basic relation:

(2.1) ∇N r = ∇P r + (∇N r)⊥,

where (∇N r)⊥(x) = ∇⊥r(x) is perpendicular to TxP for all x ∈ P .

On the other hand, we should recall that all immersed surfaces P in the real

space forms of non-positive constant sectional curvature Nn = K
n(b) which

satisfy
∫
P
‖BP ‖2dσ < ∞ are properly immersed (see [1], [8] and [9]). Therefore,

we can omit the hypothesis about the properness of the immersion when we

assume that
∫
P ‖BP ‖2dσ < ∞.

Definition 2.1: Given a connected and complete surface P 2 properly immersed

in a manifold Nn with a pole o ∈ N , we denote the extrinsic metric balls of

radius t > 0 and center o ∈ N by Dt(o). They are defined as the intersection

Dt(o) = BN
t (o) ∩ P = {x ∈ P : r(x) < t},

where BN
t (o) denotes the open geodesic ball of radius R centered at the pole o

in Nn.

Remark a: We want to point out that the extrinsic domains Dt(o) are precom-

pact sets (because we assume in the definition above that the submanifold P is

properly immersed), with boundary ∂Dt(o) being an immersed curve in P for

t > 0 almost everywhere. The generic smoothness of ∂Dt(o) follows from the
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following considerations: the distance function r is smooth in K
n(b) \ {o} for

K
n(b) to possess a pole o ∈ K

n(b) (b ≤ 0). Hence the restriction r|P is smooth

in P , and consequently the radii t that produce smooth boundaries ∂Dt(o) are

dense in R by Sard’s theorem and the Regular Level Set Theorem.

Remark b: When the submanifold considered is totally geodesic, namely, when

P is a Hyperbolic or an Euclidean subspace K
m(b) of the ambient real space

form K
n(b), the extrinsic t-balls become geodesic t-balls, and its boundary is the

distance sphere of radius t in K
m(b). We recall here that the mean curvature of

the geodesic sphere of radius t in the real space form K
n(b) (denoted as Sb,n−1

t )

‘pointing inward’ is (see [10])

hb(t) =

⎧⎪⎪⎨
⎪⎪⎩

√
b cot

√
bt if b > 0,

1/t if b = 0,√−b coth
√−bt if b < 0.

2.2. Hessian comparison analysis of the extrinsic distance. Let us

now consider Dt an extrinsic ball in a complete and properly immersed minimal

surface P in the real space form K
n(b) with b ≤ 0. We are going to apply the

Gauss–Bonnet formula to the curve ∂Dt. To do that, we need to compute its

geodesic curvature in the following

Proposition 2.2: When ∂Dt is a smooth curve, its geodesic curvature k∂Dt
g

is given by

(2.2) k∂Dt
g =

hb(t)

‖∇P r‖ +
〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
.

Proof. Let {e, ν} ⊂ TP be an orthonormal frame along the curve ∂Dt, where e

is the unit tangent vector to ∂Dt and ν = ∇P r/‖∇P r‖ is the unit normal to

∂Dt in P , pointing outward.

From the definition of the geodesic curvature of the extrinsic boundaries ∂Dt,

we have

(2.3) ktg = −
〈
∇P

e e,
∇P r

‖∇P r‖
〉

Then, taking into account the definition of the Hessian

HessP r(e, e) = 〈∇P∇P r, e〉
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and the fact that ∇P r and e are orthogonal,

(2.4) ktg =
1

‖∇P r‖Hess
P r(e, e).

But given X ∈ TqP unitary (see [5] and [11] for detailed computations),

(2.5) HessP (r)(X,X) = hb(r)
(
1− 〈X,∇K

n(b)r 〉2 )+ 〈∇K
n(b)r, BP (X,X) 〉,

where BP is the second fundamental form of P in N . Applying at this point

equation (2.5) we have

(2.6) ktg =
1

‖∇P r‖{hb(r) + 〈∇⊥r, BP (e, e)〉}.

Now we consider {Dt}t>0 an exhaustion of P by extrinsic balls. Recall than

an exhaustion of the submanifold P is a sequence of subsets {Dt ⊆ P}t>0 such

that

• Dt ⊆ Ds when s ≥ t,

• ⋃
t>0 Dt = P .

Using the equality (2.2) for the geodesic curvature of the extrinsic curves we

have the following result:

Theorem 2.3: Let P 2 be a complete minimal surface immersed in a simply

connected real space form K
n(b) with constant sectional curvature b ≤ 0. Let

us suppose that
∫
P
‖BP ‖2dσ < ∞. Then:

(i) P is diffeomorphic to a compact surface P ∗ punctured at a finite number

of points.

(ii) For all sufficiently large t > R0 > 0, χ(P ) = χ(Dt) and hence, given

{Dt}t>0 an exhaustion of P by extrinsic balls,

χ(P ) = lim
t→∞χ(Dt).

Proof. Let us consider {Dt}t>0 an exhaustion of P by extrinsic balls, centered

at the pole o ∈ K
n(b). We apply Lemma 2.2 to the smooth curves ∂Dt: As

−‖BP ‖ ≤ 〈BP (e, e),∇⊥ r〉 ≤ ‖BP ‖,
we have, on the points of the curve q ∈ ∂Dt,

(2.7)
‖∇P r‖(q) · k∂Dt

g (q) = hb(ro(q)) + 〈BP (e, e),∇⊥ r〉(q)
≥ hb(ro(q))− ‖BP ‖(q).
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Using now Proposition 2.2 in [1], when P 2 is a cmi in R
n, or Lemma 3.1 in

[9], when P 2 is a cmi in H
n(b), we know that ‖BP ‖(q) goes uniformly to 0 as

t = ro(q) → ∞. Hence, for all the points q ∈ ∂Dt and for sufficiently large t,

(2.8) ‖∇P r‖(q) · k∂Dt
g (q) > 0.

We are going to examine this last assertion in more detail: when the

ambient space is the Hyperbolic space H
n(b) (b < 0), then we have that

hb(ro(q)) − ‖BP ‖(q) > 0 on ∂Dt and for all sufficiently large t because, ap-

plying Lemma 3.1 in [9], ‖BP ‖(q) goes uniformly to 0 as t = ro(q) → ∞ and

we have in this case that hb(r) =
√−b coth

√−br ≥ √−b > 0 ∀r ≥ 0.

When the ambient space is the Euclidean space we need a more careful anal-

ysis: applying Proposition 2.2 in [1] we have that, for all sufficiently large

t, Supq∈∂Dt
‖BP ‖ ≤ ε(t)/t, where ε(t) is a non-negative function such that

ε(t) → 0 when t → ∞. Hence we have, for all sufficiently large t and ∀q ∈ ∂Dt,

that h0(ro(q))− ‖BP ‖(q) ≥ (1− ε(t))/t > 0.

Hence ‖∇P r‖ > 0 in ∂Dt, for all sufficiently large t (in the Euclidean case,

we have moreover Lemma 2.4 in [1] where it is proved that, when P is a cmi

surface in R
n with finite total extrinsic curvature, then ‖∇P r‖ > 1

2 outside a

compact in P ). Fixing a sufficiently large radius R0, we can conclude that the

extrinsic distance ro has no critical points in P \DR0 .

The above inequality implies that for this sufficiently large fixed radius R0,

there is a diffeomorphism

Φ : P \DR0 → ∂DR0 × [0,∞[.

In particular, P has only finitely many ends, each one of finite topological

type.

To prove this we apply Theorem 3.1 in [7], concluding that, as the extrinsic

annuli AR0,R(o) = DR(o) \ DR0(o) contain no critical points of the extrinsic

distance function ro : P −→ R
+ because of inequality (2.8), then DR(o) is

diffeomorphic to DR0(o) for all R ≥ R0.

The above diffeomorphism implies that we can construct P from DR0 (R0

large enough) attaching annuli, and that χ(P \ Dt) = 0 when t ≥ R0. Then,

for all t > R0,

χ(P ) = χ(Dt ∪ (P \Dt)) = χ(Dt).
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3. Proof of Theorem A

We begin with the following results which are the common ingredients of the

proof, for both the Euclidean and Hyperbolic cases:

Lemma 3.1: Let P 2 ⊂ K
n(b) be a surface properly immersed in a real space

form with curvature b ≤ 0, let Dt be an extrinsic disc in P of radius t > 0 and

let ∂Dt be the extrinsic circle. Then

(3.1)

∫
∂Dt

‖∇⊥r‖2
‖∇P r‖ dσt ≤

∫
∂Dt

dσt

‖∇P r‖ − hb(t)Vol(Dt).

Proof. Tracing equality (2.5) we obtain the following expression for the Lapla-

cian of the extrinsic distance in this context:

(3.2) ΔP (r) = (2− ‖∇P r‖2)hb(r) + 2〈∇Nr, HP 〉,
where HP denotes the mean curvature vector of P in N and hb(r) is the mean

curvature of the geodesic r-spheres in K
n(b). Applying the divergence theorem

we have

(3.3)

∫
∂Dt

‖∇⊥r‖2
‖∇P r‖ dσt =

∫
∂Dt

1

‖∇P r||dσt −
∫
∂Dt

‖∇P r‖dσt

=

∫
∂Dt

1

‖∇P r‖dσt −
∫
Dt

ΔP rdσ

=

∫
∂Dt

1

‖∇P r‖dσt −
∫
Dt

(2− ‖∇P r‖2)hb(r)dσ

≤
∫
∂Dt

1

‖∇P r‖dσt −
∫
Dt

hb(r)dσ

≤
∫
∂Dt

1

‖∇P r‖dσt − hb(t)Vol(Dt).

Proposition 3.2: Let P 2 ⊂ K
n(b) be a complete minimal surface properly

immersed in a real space form with curvature b ≤ 0, let Dt be an extrinsic disc

in P of radius t > 0 and let ∂Dt be its boundary. Then

(3.4) − 2πχ(Dt) +
(
b+

f2
b,α(t)hb(t)

2

)
Vol(Dt)

+
(
hb(t)−

f2
b,α(t)

2

) ∫
∂Dt

1

‖∇P r‖dσt ≤ 1

2
R(t) +

1

2f2
b,α(t)

R′(t),
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where R(t) =
∫
Dt

‖BP ‖2dσ, ‖BP ‖ is the norm of the second fundamental form

of P in K
n(b), χ(Dt) is the Euler’s characterisc of Dt and, given any fixed

number α ∈]0, 2[,

f2
b,α(t) = αhb(t).

Proof. Integrating equation (2.2) along ∂Dt and using the Gauss–Bonnet the-

orem, we obtain

(3.5) 2πχ(Dt)−
∫
Dt

KPdσ

= hb(t)

∫
∂Dt

1

‖∇P r‖dσt +

∫
∂Dt

〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
dσt,

where we denote by KP the Gauss curvature of P .

But on ∂Dt,

−‖BP ‖‖∇
⊥ r‖

‖∇P r‖ ≤
〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
≤ ‖BP ‖‖∇

⊥ r‖
‖∇P r‖ ,

so as fb,α(t) ≥ 0∀t > 0, taking into account the arithmetic–geometric inequality

and applying the co-area formula, we have

(3.6)

2πχ(Dt)−
∫
Dt

KPdσ

=hb(t)

∫
∂Dt

1

‖∇P r‖dσt +

∫
∂Dt

〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
dσt

≥hb(t)

∫
∂Dt

1

‖∇P r‖dσt

− 1

2

∫
∂Dt

‖BP ‖2
f2
b,α(r)‖∇P r‖dσt − 1

2

∫
∂Dt

f2
b,α(r)‖∇⊥ r‖2

‖∇P r‖ dσt

≥hb(t)

∫
∂Dt

1

‖∇P r‖dσt − 1

2f2
b,α(t)

R′(t)− f2
b,α(t)

2

∫
∂Dt

‖∇⊥ r‖2
‖∇P r‖ dσt.

Then, using inequality (3.1) of Lemma 3.1 in the last member of the inequali-

ties (3.6) and applying the Gauss equation for minimal surfaces in the real space
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forms Kn(b), we have

2πχ(Dt)− bVol(Dt) +
1

2
R(t) ≥

(
hb(t)−

f2
b,α(t)

2

) ∫
∂Dt

1

‖∇P r‖dσt(3.7)

− 1

2f2
b,α(t)

R′(t) +
f2
b,α(t)hb(t)

2
Vol(Dt),

and hence

(3.8) − 2πχ(Dt) +
(
b+

f2
b,α(t)hb(t)

2

)
Vol(Dt)

+
(
hb(t)−

f2
b,α(t)

2

) ∫
∂Dt

1

‖∇P r‖ ≤ 1

2
R(t) +

1

2f2
b,α(t)

R′(t).

We are going to divide the proof into two cases: Case I, where the ambient

space is the Hyperbolic space H
n(b), and Case II where the ambient space is

the Euclidean space R
n.

Case I. Let us consider P (properly) immersed in H
n(b). Let {Dt}t>0 be an

exhaustion of P by extrinsic balls. Using the co-area formula, we know that,

for t > 0 almost everywhere,

(3.9)
d

dt
Vol(Dt) =

∫
∂Dt

1

‖∇P r‖dσt.

Hence, applying Proposition 3.2 we have

(3.10) − 2πχ(Dt) +
(
b+

f2
b,α(t)hb(t)

2

)
Vol(Dt)

+
(
hb(t)−

f2
b,α(t)

2

) d

dt
Vol(Dt) ≤ 1

2
R(t) +

1

2f2
b,α(t)

R′(t).

On the other hand, from (3.9), d
dt Vol(Dt) ≥ Vol(∂Dt). Therefore, using in-

equality (3.10) we obtain

(3.11) − 2πχ(Dt)

+Vol(Dt)
[(

b+
f2
b,α(t)hb(t)

2

)
+
(
hb(t)−

f2
b,α(t)

2

)Vol(∂Dt)

Vol(Dt)

]
≤ 1

2
R(t)+

1

2f2
b,α(t)

R′(t).
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Applying the isoperimetric inequality in [10] (Theorem 1.1), we have

(3.12) − 2πχ(Dt)

+ Vol(Dt)
[(

b+
f2
b,α(t)hb(t)

2

)
+
(
hb(t)−

f2
b,α(t)

2

)Vol(Sb,1
t )

Vol(Bb,2
t )

]

≤ 1

2
R(t) +

1

2f2
b,α(t)

R′(t),

where Sb,1
t and Bb,2

t denote, respectively, the geodesic t-sphere and t-ball in

K
2(b). Hence, using the fact that

bVol(Bb,2
t ) + hb(t)Vol(S

b,1
t ) = 2π ∀t > 0,

we obtain, with some computations,

−2πχ(Dt) +
Vol(Dt)

Vol(Bb,2
t )

[
2π − 2π

f2
b,α(t)

2

Vol(Bb,2
t )

Vol(Sb,1
t )

]
(3.13)

≤ 1

2
R(t) +

1

2f2
b,α(t)

R′(t).

Therefore, for all t > 0,

(3.14)
Vol(Dt)

Vol(Bb,2
t )

(
1− αhb(t)

2

Vol(Bb,2
t )

Vol(Sb,1
t )

)
− χ(Dt) ≤ R(t)

4π
+

R′(t)
4παhb(t)

.

As

‖BP ‖2
hb(t)

≤ 1√−b
‖BP ‖2,

then
∫
P
‖BP ‖2dσ < ∞ implies

∫
P

‖BP ‖2
hb(t)

dσ < ∞.

Hence, by the co-area formula,

(3.15)

∫ ∞

0

(∫
∂Dt

‖BP ‖2
‖∇P r‖hb(r)

)
dt =

∫ ∞

0

(R′(t)
hb(t)

)
dt < ∞.

Therefore, there is a monotone increasing (sub)sequence {ti}∞i=1 tending to

infinity (namely, ti → ∞ when i → ∞) such that R′(ti)/hb(ti) → 0 when

i → ∞.
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Let us consider the exhaustion of P by these extrinsic balls, namely, {Dti}∞i=1.

Then we have, replacing t by ti and taking limits when i → ∞ in inequality

(3.14) and applying Theorem 2.3 (ii),

(3.16) Supi
Vol(Dti)

Vol(Bb,2
ti )

(
1− α

2

)
− χ(P ) ≤ lim

i→∞
R(ti)

4π
=

1

4π

∫
P

‖BP ‖2dσ < ∞

for all α such that 0 < α < 2.

Hence, as Vol(Dt)/Vol(B
b,2
t ) is a continuous non-decreasing function of t, we

can conclude that

Supt>0

Vol(Dt)

Vol(Bb,2
t )

< ∞ and − χ(P ) < ∞.

Then, letting α tend to 0 in (3.16), we get, for all t > 0,

(3.17) Supt>0

Vol(Dt)

Vol(Bb,2
t )

− χ(P ) ≤
∫
P ‖BP ‖2

4π
.

Case II. Let us consider P immersed in R
n. We consider, as in the proof

above, an exhaustion of P by extrinsic balls, {Dt}t>0, but now, and following

[1], these extrinsic balls will be centered at the origin 0 ∈ R
n, which we assume,

without loss of generality, belongs to the surface P . Applying Proposition 3.2

we have

(3.18) − 2πχ(Dt) +
( α

2t2

)
Vol(Dt)

+
(1
t
− α

2t

) ∫
∂Dt

1

‖∇P r‖ ≤ 1

2
R(t) +

t

2α
R′(t).

Now, as
∫
P
||BP ||2dσ < ∞, we can apply Proposition 2.2 in [1], so we have,

for α ∈]0, 2[,

(3.19)
t

2α
R′(t) =

t

2α

∫
∂Dt

‖BP ‖2
‖∇P r‖dσ ≤ μ(t)

2αt

∫
∂Dt

1

‖∇P r‖dσ,

μ(t) being such that limt→∞ μ(t) = 0 and therefore, from (3.18),

(3.20) − 2πχ(Dt) + Vol(Dt)
( α

2t2

)

+
(1
t
− α

2t
− μ(t)

2αt

) ∫
∂Dt

1

‖∇P r‖dσt ≤ 1

2
R(t).

On the other hand,
1

t
− α

2t
− μ(t)

2αt
≥ 0
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if and only if μ(t) ≤ α(2 − α), which is true for t large enough, namely, for

t > tα because limt→∞ μ(t) = 0. Hence, as

Vol(∂Dt) ≤
∫
∂Dt

1

‖∇P r‖dσt,

and applying Theorem 1.1 in [10], we have that inequality (3.20) becomes, for

all t > tα,

(3.21) −2πχ(Dt) +
Vol(Dt)

Vol(B0,2
t )

[
2π(1− α

2
− μ(t)

2α
) +

πα

2

]
≤ 1

2
R(t).

Then, taking limits when t → ∞ in inequality (3.21) and applying Theorem

2.3, we have that limt→∞ μ(t) = 0 and χ(P ) = limt→∞ χ(Dt), so we obtain, for

all α such that 0 < α < 2,

(3.22) 2π Supt
Vol(Dt)

Vol(B0,2
t )

(
1− α

2
+

πα

2

)
− 2πχ(P ) ≤

∫
P ‖BP ‖2

2
< ∞.

Therefore we obtain

Supt>0

Vol(Dt)

Vol(B0,2
t )

< ∞ and − χ(P ) < ∞.

Then, letting α tend to 0, we obtain, for all t > 0,

(3.23) Supt>0

Vol(Dt)

Vol(B0,2
t )

− χ(P ) ≤
∫
P
‖BP ‖2
4π

.

4. Proof of Theorem B

In Corollary 2.3, we obtained a sufficiently large radius R0 such that the ex-

trinsic distance rp has no critical points in P \DR0 .

Hence for this sufficiently large fixed radius R0, there is a diffeomorphism

Φ : P \DR0 → ∂DR0 × [0,∞[

so, in particular, P has only finitely many ends, each of finite topological type.

The above diffeomorphism implied that we could construct P from DR0 (R0

large enough) attaching annuli and that χ(P \Dt) = 0 when t ≥ R0, and hence

for all t > R0, χ(P ) = χ(Dt).

Let us consider now an exhaustion by extrinsic balls {Dt}t>0 of P such that

the extrinsic distance ro has no critical points in P \DR0 .
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Applying now the Gauss–Bonnet Theorem to the extrinsic balls Dt,

(4.1) 2πχ(P ) =

∫
Dt

KPdσ +

∫
∂Dt

kgdσt.

Taking into account equation (2.2) and the Gauss formula, we have, for every

sufficiently large radius t > R0,

(4.2)

2πχ(P ) =− 1

2

∫
Dt

‖BP ‖2 + bVol(Dt) + hb(t)(Vol(Dt))
′

+

∫
∂Dt

〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
dσt

=− 1

2

∫
Dt

‖BP ‖2dσ

+
Vol(Dt)

Vol(Bb,2
t )

(
b ·Vol(Bb,2

t ) + hb(t)(Vol(Dt))
′Vol(B

b,2
t )

Vol(Dt)

+
Vol(Bb,2

t )

Vol(Dt)

∫
∂Dt

〈BP (e, e),
∇⊥ r

‖∇P r‖〉dσt

)
.

But 2π = b ·Vol(Bb,2
t ) + hb(t)Vol(S

b,1
t ) ∀t > 0, so, for every sufficiently large

radius t > R0 and after some computations,

(4.3)

2πχ(P ) =− 1

2

∫
Dt

‖BP ‖2dσ + 2π
Vol(Dt)

Vol(Bb,2
t )

+ hb(t)Vol(B
b,2
t )

( (Vol(Dt))

Vol(Bb,2
t )

)′
+

∫
∂Dt

〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
dσt.

The above equation is valid for all t > R0, so, taking limits when t → ∞, we

can define

(4.4)

Gb(P ) := lim
t→∞

(
hb(t)Vol(B

b,2
t )

( Vol(Dt)

Vol(Bb,2
t )

)′

+

∫
∂Dt

〈
BP (e, e),

∇⊥ r

‖∇P r‖
〉
dσt

)
.

Using equalities (4.3), we have that

(4.5) Gb(P ) = 2πχ(P ) +
1

2

∫
Dt

‖BP ‖2dσ − 2π Supt
Vol(Dt)

Vol(Bb,2
t )

< ∞,

and hence Gb(P ) does not depend on the exhaustion {Dt}t>0.



Vol. 194, 2013 EXTRINSIC ISOPERIMETRY AND COMPACTIFICATION 553

References

[1] M. T. Anderson, The compactification of a minimal submanifold in Euclidean space by

the Gauss map , I.H.E.S. Preprint, 1984.

[2] S. S. Chern and R. Osserman Complete Minimal Surfaces in Euclidean Space, Academic

Press, New York, 1984.

[3] S. S. Chern and R. Osserman, Complete minimal surface in En, The Journal d’Analyse
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