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ABSTRACT

In 2005, Ginzburg, Rallis and Soudry constructed, in terms of residues of

certain Eisenstein series, and by use of the descent method, families of non-

tempered automorphic representations of Sp4nm(A) and ˜Sp2n(2m−1)(A),

which generalized the classical work of Piatetski-Shapiro on Saito–Kuroka-

wa liftings. In this paper, we introduce a new framework (Diagrams of

Constructions) in order to establish explicit relations among the represen-

tations introduced in [GRS05]. In particular, we prove that these construc-

tions yield bijections between a certain set of cuspidal automorphic forms

on ˜Sp2n(A) and a certain set of square-integrable automorphic forms of

Sp4n(A). The proofs use new interpretations of composition of two con-

secutive descents with explicit identities, which we expect to be very useful

to further investigation of the automorphic discrete spectrum of classical

groups.
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1. Introduction

Let τ be an irreducible, unitary, cuspidal, automorphic representation of

GL2n(A), where A is the Adele ring of a number field F . Assume that the par-

tial exterior square L-function LS(s, τ,∧2) has a pole at s = 1 and the partial

standard L-function LS(s, τ) is nonzero at s = 1
2 . Fix a nontrivial character ψ of

F\A. The automorphic descent method ([GRS99b]) constructs a genuine, cusp-

idal, automorphic representation π̃ψ(τ) of the double cover S̃p2n(A) of Sp2n(A).

This representation is irreducible, lifts weakly to τ with respect to ψ, and is

ψ−1-globally generic. (See Section 2.2 for the precise definition.) See [S05] for

a survey on the descent method. A complete account of this theory appears

in the book [GRS11]. The irreducibility of π̃ψ(τ) follows from [JS03]. We note

that the conditions on the partial L-functions can be replaced by the corre-

sponding conditions on the complete L-functions. This can be easily checked

by using the bounds of the real exponents of the elements in the local unitary

dual of GL2n ([Vd86], [Tm86]). See also [Kh99, Prop. 3.4], for a proof that the

local exterior square L-function of irreducible unitary generic representations

of GL2n is holomorphic at Re(s) ≥ 1.

The representation π̃ψ(τ) is in fact obtained as follows. Let Eτ be the residual

representation of Sp4n(A) generated by the residues of the Eisenstein series

corresponding to

(1.1) Ind
Sp4n(A)

P 4n
2n (A)

(τ | det | 12 ),

where P 4n
2n is the standard Siegel parabolic subgroup. Our assumptions on

τ imply that this residue exists. The ψ-descent π̃ψ(τ) is the representation by

right translation acting in the space generated by the Fourier–Jacobi coefficients

FJψφ,n applied to Eτ , viewed as automorphic functions on S̃p2n(A). See Section

2.2 for the definition. The proof that π̃ψ(τ) is cuspidal depends just on the

fact that at one finite place v, where the local v-components τv and ψv are

unramified, τv is self-dual and has a trivial central character. This fact is

also sufficient to determine the Satake parameters, with respect to ψv, of each

irreducible constituent of π̃ψ(τ), at any such unramified place v. See [GRS99c,

Section 2] for definition and detailed discussion, and in particular, the fact

that these Satake parameters correspond to those of τv, by means of the local

Langlands functorial ψ-lift to GL2n(Fv).
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The fact that Eτ is the residual representation from the Eisenstein series with

the given cuspidal datum is used in the proof of the nonvanishing of the descent

π̃ψ(τ). See [GRS99a], [GRS99b], and [GRS02]. What we just explained shows

that if we replace Eτ by an irreducible, automorphic representation π, nearly

equivalent to (1.1), and apply the same Fourier–Jacobi coefficients, then we get

an automorphic representation π̃ of S̃p2n(A), which is cuspidal. Furthermore,

each irreducible subrepresentation of π̃ lifts weakly, with respect to ψ, to τ . In

order that π̃ be nonzero, we simply require that the coefficients FJψφ,n are not

identically zero on the space of π. Thus, we can repeat the descent construction

for such π, as we did for Eτ . We denote π̃ = D̃4n
2n,ψ(π). We also call this

representation the ψ-descent of π from Sp4n(A) to S̃p2n(A).

When we consider an irreducible, cuspidal automorphic representation π̃ of

S̃p2n(A), which admits a ψ-weak lift to GL2n(A), to an irreducible, unitary,

cuspidal automorphic representation τ , then, clearly, τ must be self-dual and

have trivial central character. One expects that the exterior square L-function

of τ has a pole at s = 1. (This is proved in [GJRS11] when π̃ is globally

generic; see also [GJRS11, Theorem 5.2], for a generalization.) So, we will

keep this condition in our assumptions. However, we relax the condition on the

nonvanishing of the central value of the standard L-function of τ , and demand

that there exists a twist of τ by a quadratic character, such that the central

value of the twisted standard L-function of τ is nonzero. See (3.1).

Assume then that τ is such a representation. In Section 3, we consider two

sets of irreducible, automorphic representations associated to τ and ψ. The first

set

N
˜Sp2n

(τ, ψ)

is the set of irreducible, genuine, cuspidal automorphic representations of

S̃p2n(A), which have a weak lift with respect to ψ to GL2n(A), with image

τ . The second set

NSp4n
(τ, ψ)

is the set of all irreducible, automorphic representations π of Sp4n(A), which

occur in the discrete automorphic spectrum, are nearly equivalent to (1.1), and

are such that the coefficients FJψφ,n are not identically zero on the space of π.

In both these sets cuspidal representations are counted with their multiplicities.

Note that by [A05], these multiplicities are expected to be identically one. In

case of Eτ we assume that it is not isomorphic to a cuspidal representation.



954 D. GINZBURG, D. JIANG AND D. SOUDRY Isr. J. Math.

However, we do not use the multiplicity one property in this paper, except for

the representation Eτ as above. Instead, we prove a weak version of multiplicity

one for S̃p2n(A), as a consequence of our proofs (Theorem 4.6).

Consider the set N ′
Sp4n

(τ, ψ), which consists of the cuspidal members of

NSp4n
(τ, ψ) and also the residual representation Eτ , when it exists. We ex-

pect that the sets NSp4n
(τ, ψ) and N ′

Sp4n
(τ, ψ) are equal (as a consequence of

[A05]). We prove in Section 3 that the sets N
˜Sp2n

(τ, ψ) and N ′
Sp4n

(τ, ψ) are not

empty. Our first main theorem is

Theorem 1.1: Let π ∈ N ′
Sp4n

(τ, ψ). Then the ψ-descent of π from Sp4n(A) to

S̃p2n(A),

Ψ′(π) = D̃4n
2n,ψ(π),

is an irreducible representation, which lies in N
˜Sp2n

(τ, ψ).

This is Theorem 4.1 and it is proved in Section 6. This theorem generalizes

the special case when π = Eτ , mentioned in the beginning, and provides another

proof for the irreducibility of π̃ψ(τ) ([JS03]).

We remark that in previous work on automorphic descents ([GRS99a],

[GRS99b], [GRS02], [GRS05] and [G08]), the descent constructions produced

only distinguished members in near equivalence classes of automorphic repre-

sentations. However, in Theorem 1.1 and the other main results in this paper,

we obtain more general (if not all) members in the near equivalence classes.

Thus, the automorphic descent Ψ′ defines a map

(1.2) Ψ′ : N ′
Sp4n

(τ, ψ) �→ N
˜Sp2n

(τ, ψ).

Our second main theorem is

Theorem 1.2: The map Ψ′ is surjective.

This theorem follows from Theorem 4.2, which is proved in Sec. 5. In order to

prove the surjectivity of Ψ′, we define a sort of inverse map Φ from N
˜Sp2n

(τ, ψ).

For π̃ ∈ N
˜Sp2n

(τ, ψ), Φ(π̃) is a direct sum of elements in N ′
Sp4n

(τ, ψ). By

definition,

(1.3) Φ(π̃) = D6n
4n,ψ−1(Ẽτ,π̃),

the ψ−1-descent, from S̃p6n(A) to Sp4n(A), of the residual representation Ẽτ,π̃
corresponding to the ψ-parabolic induction from τ | det |1 ⊗ π̃ (on the Levi sub-

group GL2n× Sp2n of Sp6n) to S̃p6n(A) (see Section 2.3 for the details). As for
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Eτ our working assumption is that no subrepresentation of Ẽτ,π̃ is isomorphic to

a cuspidal representation. This construction can be visualized by the following

diagram:

(1.4) Ẽτ,π̃ S̃p6n

D6n
4n,ψ−1

���
��

��
��

��

Sp4n

Ψ′= ˜D4n
2n,ψ����

��
��
��

π ∈ N ′
Sp4n

(τ, ψ)

π̃ ∈ N
˜Sp2n

(τ, ψ) S̃p2n

Res

��

Φ

����������

where Res denotes the mapping which takes π̃ on S̃p2n(A) to the residual rep-

resentation Ẽτ,π̃ of S̃p6n(A). In Theorem 4.2, we prove that

Ψ′(Φ(π̃)) = π̃.

Moreover, Ψ′ is nontrivial on each irreducible subrepresentation of Φ(π̃). This

means that for each irreducible subrepresentation π of Φ(π̃), we have

Ψ′(π) = π̃.

Our third main theorem is

Theorem 1.3: For each π ∈ N ′
Sp4n

(τ, ψ), we have

π ⊂ Φ(Ψ′(π)),

that is, π is a subrepresentation of Φ(Ψ′(π)).

This is Theorem 4.3 and is proved in Section 6. If we add the assumption

(Assumption (A) in §4) that the residual representations Ẽτ,π̃ are irreducible,

then we can prove that

π = Φ(Ψ′(π))

in Theorem 1.3. This is Theorem 4.4, which is proved in Section 6. Note that

Assumption (A) is true when π̃ is in addition generic. With Assumption (A),

Φ defines a mapping

(1.5) Φ : N
˜Sp2n

(τ, ψ) �→ N ′
Sp4n

(τ, ψ),

and the theorems above can be summarized together by
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Theorem 1.4: Suppose that Assumption (A) in Section 4 holds. Then Φ is

the inverse mapping to Ψ′, and hence Diagram (1.4) is commutative.

Thus, the set N
˜Sp2n

(τ, ψ) parameterizes the set N ′
Sp4n

(τ, ψ), by means of

the ψ-descent mapping from S̃p6n(A) to Sp4n(A), composed with the mapping

which associates the residual representation Ẽτ,π̃ to π̃ ∈ N
˜Sp2n

(τ, ψ). Note that

in the case where LS(12 , τ) = 0, the setN ′
Sp4n

(τ, ψ) (is nonempty and) consists of

cuspidal representations. These are CAP representations with respect to (1.1),

and are straightforward generalizations of the Saito–Kurokawa representations

of Sp4(A), constructed by Piatetski-Shapiro. See [PS83].

The mapping Φ was considered in a more general setup in [GRS05], where a

construction of certain CAP representations was suggested, assuming the van-

ishing of certain Fourier coefficients on the construction data (Theorems A, B, C

in [GRS05]). In particular, the existence of the CAP representations of Sp4n(A)

just mentioned was obtained there. The new idea in this paper is to consider

the explicit relations between the map Φ, which was introduced in [GRS05],

and the automorphic descent Ψ′ introduced in [GRS99a]. In particular, from

Theorems 1.1–1.3, we deduce the irreducibility and the surjectivity properties

of the map Ψ′, and the analogs for Φ. We picture this in the following diagram

of constructions, which is an extended diagram of Diagram (1.4):

(1.6)

Sp8n
˜D8n
6n,ψ

�����
���

���
�

FC

��

Eτ,π

Ẽτ,π̃ S̃p6n

D6n

4n,ψ−1 ����
���

���
���

Sp4n

Res

��

Ψ′= ˜D4n
2n,ψ		���

��
��
��
�

π ∈ N ′
Sp4n

(τ, ψ)

π̃ ∈ N
˜Sp2n

(τ, ψ) S̃p2n

Φ



����������

Res

��

In Diagram (1.6), we want to show that the composition of the descent D̃8n
6n,ψ

with the descent D6n
4n,ψ−1 on the residual representation Eτ,π, with cuspidal

datum

(GL2n × Sp4n, τ | det |
3
2 ⊗ π),
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essentially recovers π on Sp4n(A), where GL2n × Sp4n is the Levi part of

the standard maximal parabolic subgroup P 8n
2n of Sp8n. More precisely, the

Sp4n(A)-module D6n
4n,ψ−1(D̃8n

6n,ψ(Eτ,π)) is equal to the Sp4n(A)-module obtained

by first applying to Eτ,π the constant term along P 8n
2n , which results with the

GL2n(A)× Sp4n(A)-module δ
1
2

P 8n
2n
| det ·|− 3

2 τ ⊗ π, and then taking the Whittaker

coefficient on the first factor (that is δ
1
2

P 8n
2n
| det ·|− 3

2 τ). Clearly, the Sp4n(A)-

module thus obtained is π. The composition of the last two maps (constant

term and Whittaker coefficient) is marked by the vertical arrow pointing down

FC. The more precise relations among all the mappings in Diagram (1.6) are

stated as two identities in Theorems 5.1 and 5.4. These identities are new and

crucial to the proofs of the main results of this paper. They can be viewed

as generalizations of the identity [GRS99b, (5.27)], which computes the ψ−1-

Whittaker coefficient of the ψ−1-descent of Eτ (assuming it exists). The ideas

of the proofs are very similar, but the arguments are more technical.

It is clear that Diagram (1.6) can be extended to include the groups S̃p4mn+2n

and Sp4mn for all possible integers m, and we may study the relations among

all the descent constructions in various sub-diagrams. At this point, we do not

have a good general formulation for such explicit relations and, also, we still

face some delicate problems in proving such relations. In this paper we study

Diagram (1.6). Further properties of Diagram (1.6) and its analogues for other

classical groups have been considered by the authors, and will result in explicit

constructions of automorphic representations of endoscopic type, including the

completion of proofs, regarding the endoscopic transfers for generic cuspidal

representations of classical groups, as started in [G08]. These will appear in

forthcoming works of ours.

Finally, as a consequence, we obtain the following interesting applications.

Theorem 1.5: Assume thatN
˜Sp2n

(τ, ψ) contains a ψ′-generic representation π̃.

Then the multiplicity of π̃ in the subspace of ψ′-generic cusp forms on S̃p2n(A)

is one.

This is Theorem 4.6, and is proved in Section 4.

Although in this paper we restrict attention to irreducible, unitary, cuspi-

dal automorphic representations τ of GL2n(A), we can repeat our results with

representations τ , which are isobaric sums of mutually different, irreducible,
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unitary, cuspidal automorphic representations

τ = τ1 � τ2 � · · ·� τr,

such that the exterior square L-functions LS(s, τi,∧2) has a pole at s = 1, for

every i = 1, 2, . . . , r, and there is a quadratic character χ, so that LS(12 , τi⊗χ) 	=
0, for all i = 1, 2, . . . , r. Note that in general, it is a hard and important question

to show that the central values LS(12 , τi⊗χ) for i = 1, 2, . . . , r are simultaneously

nonzero for some quadratic character χ. This could be interpreted in terms of

global theta correspondences below. Now, let us define N
˜Sp2n

(τ, ψ) similarly.

We know that every genuine, irreducible, cuspidal automorphic representation π̃

of S̃p2n(A), which is globally generic with respect to some Whittaker character,

lifts weakly to an automorphic representation τ of GL2n(A). Using the theta

correspondence to SO2n+1(A) (e.g., [F95], [JS07]), this follows from [CKPSS04].

If π̃ does not come from the split orthogonal group in 2n − 1 variables in the

theta correspondence, then τ is of the form above. Now we can repeat Theorem

1.5. This will prove

Theorem 1.6: Let π̃ be a genuine, irreducible, ψ-generic, cuspidal automor-

phic representation of S̃p2n(A). Assume that π̃ does not appear in the ψ-theta

correspondence from (split) SO2n−1(A). Then the multiplicity of π̃ is the sub-

space of ψ-generic cusp forms on S̃p2n(A) is one.

We note that π̃ in the theorem cannot appear in the ψ′-theta correspondence

to SO2n−1(A), for any other ψ′. We will address the details of the last theorem

in the future.

Acknowledgment. The authors wish to thank the referee for her/his careful

reading and useful comments.

2. Fourier coefficients

Let F be an algebraic number field and let A be the ring of Adeles of F . Let

Sp2k be the symplectic group of rank k, regarded as an algebraic group over F .

It is realized in matrices as follows:

Sp2k := {g ∈ GL2k | tg · J−
2k · g = J−

2k}.
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Here J−
2k is defined by

J−
2k :=

(
0 Jk

−Jk 0

)
,

where Jk is the k × k-matrix defined inductively by

Jk :=

(
0 1

Jk−1 0

)
and J1 := (1).

Next, we recall the Fourier coefficients of automorphic forms of Sp2k(A) as-

sociated with unipotent orbits of Sp2k, and then consider certain Fourier coef-

ficients, which will be used in this paper.

2.1. Fourier coefficients associated to unipotent orbits. Over the

algebraic closure F of F , unipotent orbits in Sp2k(F ) correspond to symplectic

partitions of 2k, i.e., to partitions having the property that odd numbers occur

with even multiplicity. To a given symplectic partition p of 2k, denote the

corresponding orbit by Op. The set of F -rational points of Op is a union of

unipotent orbits in Sp2k(F ). We will denote the set of these orbits by Op(F )

and call its elements F -stable unipotent orbits associated to p.

Let π be an automorphic representation of Sp2k(A). As in [GRS03], but with

a slightly different notation, for each unipotent orbit O in Sp2k(F ), the Fourier

coefficient of ϕπ ∈ π, attached to O, is defined by

(2.1) FψO (ϕπ) :=

∫
VO(F )\VO(A)

ϕπ(v)ψO(v)dv.

Here, VO is the F -unipotent subgroup attached to O and ψO is a character of

VO(A), attached to O, which is trivial on VO(F ), and depends on a choice of a

nontrivial character ψ of F\A, which we now fix. (See [GRS03] for the precise

definitions; there, VO is denoted by V2(O).) Note that VO depends only on

the symplectic partition, while ψO depends on the orbit O. In the sequel, for

specific Fourier coefficients, we will distinguish the various characters according

to the corresponding orbits. If FψO(ϕπ) is nonzero for some ϕπ ∈ π, we say

that π has a nonzero ψO-Fourier coefficient. Similar notions and notation hold

for the metaplectic group S̃p2k(A).

2.2. Fourier coefficients corresponding to certain partitions. In

this paper, we consider two families of Fourier coefficients.
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The first family is attached to the symplectic partitions [(2r)12(k−r)] of 2k
(that is the partition of 2k whose parts are 2r and 1 repeated 2(k−r) times). Let

V 2k
r be the unipotent subgroup V[(2r)12(k−r)] attached to the partition [(2r)12(k−r)].

In matrices, the elements of V 2k
r can be written as follows,

(2.2) v = v(u, x, z) =

⎛⎜⎝u x z

I2(k−r) x′

u∗

⎞⎟⎠ ∈ Sp2k,

where u ∈ Ur, which is the maximal upper unipotent subgroup of GLr, and

x ∈ Matr×2(k−r) is such that its r-th row is zero. The Sp2k(F )-orbits cor-

responding to the partition [(2r)12(k−r)] are parametrized by square classes

(F ∗)2\F ∗. For a representative a of such a square class, the corresponding

character ψV 2k
r ,a, attached to the partition [(2r)12(k−r)], is given by

(2.3) ψV 2k
r ,a(v(u, x, z)) := ψ(u1,2 + · · ·+ ur−1,r + azr,1).

For an automorphic representation π of Sp2k(A), the set of Fourier coefficients,

attached to this partition, is parametrized by

(2.4) Fψ
V 2k
r ,a(ϕπ) :=

∫
V 2k
r (F )\V 2k

r (A)

ϕπ(v)ψV 2k
r ,a(v)dv,

where a varies over a set of representatives of square classes in F ∗. Here, ϕπ is

a vector in the space of π. In the special case when r = k, V 2k
k is the standard

maximal unipotent subgroup of Sp2k, and Fψ
V 2k
r ,a(ϕπ) is the Whittaker–Fourier

coefficient of ϕπ with respect to the Whittaker character (see (2.3)) of V 2k
k (A),

which we denote by ψa,

ψa(v) = ψ(v1,2 + · · ·+ vk−1,k + avk,k+1), v ∈ V 2k
k (A).

Thus, the ψa-Whittaker coefficient corresponds to the partition [(2k)]. If the

ψa-Whittaker coefficient is nontrivial on π, we say that π is ψa-generic. As

usual, these notions apply to metaplectic groups as well.

The second family of Fourier coefficients that we consider is attached to

the symplectic partition [(2n)212r] of 4n + 2r. In Sp4n+2r, V[(2n)212r ] is an

F -subgroup of the unipotent radical of the standard parabolic subgroup of

Sp4n+2r, whose Levi part is GLn2 × Sp2r. To define characters of V[(2n)212r ],

we identify

(2.5) V[(2n)212r ]/[V[(2n)212r ], V[(2n)212r ]] ∼= Matn−1
2×2 ×Mat02×2,
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with

Mat02×2 = {A ∈ Mat2×2 : J2A = AtJ2}.
The Levi subgroup GLn2 × Sp2r acts on V[(2n)212r ]/[V[(2n)212r ], V[(2n)212r]] by

(2.6) (h1, . . . , hn; g) ◦ (X1, . . . , Xn−1;X0)

= (h1X1h
−1
2 , . . . , hn−1Xn−1h

−1
n ;hnX0(h

∗
n)

−1).

Representatives of generic GLn2 (F ) × Sp2r(F )-orbits (i.e., the F -stable orbits,

which correspond to the Zariski open orbit over F ) on the quotient

V[(2n)212r ](F )/[V[(2n)212r ](F ), V[(2n)212r](F )]

are given by

(2.7)

(
I2, . . . , I2;

(
0 a

b 0

))
, where a, b ∈ (F ∗)2\F ∗.

(We often identify an element of a square class with the square class itself.)

Define a character of V[(2n)212r ](A) as follows. Given v ∈ V[(2n)212r ](A), let v1

be its projection on V[(2n)212r](A)/[V[(2n)212r ](A), V[(2n)212r ](A)]. Identifying v1

with an element (X1, . . . , Xn−1;X0), as above, we define

(2.8) ψ[(2n)212r ];b,a(v) := ψ

(
tr

(
X1 + · · ·+Xn−1 +

(
0 a

b 0

)
X0

))
.

For an automorphic representation π of Sp4n+2r(A), the set of Fourier coef-

ficients attached to the partition [(2n)212r] is given by (notation as before)

(2.9) Fψ[(2n)212r ];b,a(ϕπ) :=

∫
V[(2n)212r ](F )\V[(2n)212r ](A)

ϕπ(v)ψ[(2n)212r ];b,a(v)dv.

2.3. Certain residues of Eisenstein series. Let τ be an irreducible, uni-

tary, cuspidal automorphic representation of GL2n(A), and let π̃ be an irre-

ducible, genuine, cuspidal automorphic representation of the metaplectic group

S̃p2n(A). Assume that π̃ has a weak functorial lift, with respect to ψ, to the

representation τ . Recall that there is no canonical way to determine Satake

parameters of π̃ at the places v, which are “unramified” for π̃. For such a place

v, we know that π̃v is a constituent of a representation of S̃p2n(A), induced

from a character of the inverse image of the standard Borel subgroup, B̃v. In

order to write such a character, we will use the Weil factor γψv , associated to
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ψv. It is a function on F ∗
v , taking values in the group of fourth roots of unity,

and satisfies

γψv (xy) = γψv (x)γψv (y)(x, y), x, y ∈ F ∗
v ,

where (, ) is the Hilbert symbol of Fv. Now the character above of B̃v is de-

termined on the inverse image of the diagonal subgroup, on which it is of the

form

(diag(t1, . . . , tn, t
−1
n , . . . , t−1

1 ), ε) �→ εγψv(t1 · · · tn)μ1(t1) · · ·μn(tn),
where μ1, . . . , μn are unramified characters of F ∗

v . Here we realized S̃p2n(A),

using the Rao cocycle. See, for example, [JS07]. When we say that π̃ has a

weak functorial lift, with respect to ψ, to the representation τ , we mean that at

almost all unramified places v, as above, τv is the unramified constituent of the

representation of GL2n(Fv) induced from the standard Borel subgroup and the

following character determined by π̃v, given (with the same notation as above)

on the diagonal subgroup by

diag(t1, . . . , t2n) �→ μ1(t1) · · ·μn(tn)μ−1
n (tn+1) · · ·μ−1

1 (t2n).

It is clear that τv is self-dual, with trivial central character, at almost all places

v, and, hence, by the strong multiplicity one property of automorphic represen-

tations of GL2n(A), we get that τ = τ̂ is self-dual. Similarly, τ has a trivial

central character. Let S be any finite set of places of F , containing those at

infinity, outside which π̃v is unramified, v is odd and ψv is normalized. Then

we have the equality of the partial tensor product L-functions

LSψ(s, π̃ × τ) = LS(s, τ × τ),

and we conclude that LSψ(s, π̃ × τ) has a pole at s = 1. Indeed, since τ is self-

dual, LS(s, τ × τ) has a pole at s = 1. As before, once we have fixed ψ, then we

can associate Satake parameters to π̃ at all places outside S. By definition, for

v outside S, the Satake parameter of π̃v, is the conjugacy class of the following

element in Sp2n(C) (using the notation above),

diag(μ1(p), . . . , μn(p), μ
−1
n (p), . . . , μ−1

1 (p)),

where p is a generator of the prime ideal of the ring of integers in Fv. This enables

us to define L-functions for metaplectic groups. See [GRS98] and [GJRS11],

where certain global integrals of Shimura type are introduced and shown to

represent the standard partial L-functions with respect to ψ, LSψ(s, π̃×σ), for
any irreducible, automorphic, cuspidal representation σ of GLk(A) (any k).
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Consider an Eisenstein series on S̃p6n(A), Ẽ(g, φτ,π̃;s), corresponding to a

holomorphic section φτ,π̃;s in

(2.10) Ind
˜Sp6n(A)
˜P 6n
2n (A)

(γψ · τ | det |s ⊗ π̃),

where P 6n
2n is the standard parabolic subgroup of Sp6n, whose Levi part is iso-

morphic to GL2n×Sp2n. By considering the constant term along P 6n
2n , it is easy

to see that Ẽ(g, φτ,π̃;s) has a pole at s = 1. Denote by Ẽτ,π̃ the corresponding

residual representation of S̃p6n(A).

The following theorem on Fourier coefficients of the residual representation

Ẽτ,π̃ is crucial to this paper.

Theorem 2.1: With notation as in the last paragraph, for all integers l, such

that n < l ≤ 3n, the residual representation Ẽτ,π̃ has no nonzero Fourier coeffi-

cient attached to the symplectic partition

[(2l)12(3n−l)].

Also, Ẽτ,π̃ has a nonzero Fourier coefficient associated with any choice of rep-

resentative of the unipotent orbit [(2n)14n], i.e., for all a ∈ F ∗, the Fourier

coefficient FψV 6n
n ,a , defined in (2.4), is nontrivial on Ẽτ,π̃.

Proof. The fact that Ẽτ,π̃ has no nonzero Fourier coefficient corresponding to

any unipotent orbit attached to [(2l)12(3n−l)], for n < l ≤ 3n, follows from

Lemma 3.1(2) and [GRS05, Lemma 3.3] (for k = 1). Thus, it remains to prove

the statement about the orbit [(2n)14n]. We need to prove that for all a ∈ F ∗,
the integral

(2.11) FψV 6n
n ,a(ξ̃τ,π̃) =

∫
V 6n
n (F )\V 6n

n (A)

ξ̃τ,π̃(v)ψV 6n
n ,a(v)dv

is not identically zero, as ξ̃τ,π̃ varies in Ẽτ,π̃. This is equivalent, by [GRS03,

Lemma 1.1], to the nonvanishing of the following Fourier coefficient on Ẽτ,π̃,

(2.12) Fψ(V ′)6nn ,a(ξ̃τ,π̃) =

∫
(V ′)6nn (F )\(V ′)6nn (A)

ξ̃τ,π̃(v)ψ(V ′)6nn ,a(v)dv,

where (V ′)6nn is the group of the following elements in Sp6n,

v(u, x, z) =

⎛⎜⎝u x z

I4n x′

u∗

⎞⎟⎠ ,
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where u ∈ Un, x ∈ Matn×4n is such that xn,1 = · · · = xn,2n = 0, and

ψ(V ′)6nn ,a(v(u, x, z)) = ψ(u1,2 + · · ·+ un−1,n + azn,1).

Thus, the nonvanishing, for some choice of data, of the Fourier coefficient (2.11)

is equivalent to that of the following coefficient,

(2.13) Fψ
˜V 6n
n ,a(ξ̃τ,π̃) =

∫
˜V 6n
n (F )\˜V 6n

n (A)

ξ̃τ,π̃(v)ψ˜V 6n
n ,a(v)dv,

where Ṽ 6n
n is the subgroup of v(u, x, z) ∈ (V ′)6nn , such that xn,2n+1 = · · · =

xn,3n = 0, and ψ
˜V 6n
n ,a is defined by restriction of ψ(V ′)6nn ,a to Ṽ 6n

n (A). Indeed, if

(2.13) is identically zero, then, being an inner integration of (2.12), we see that

(2.12) is identically zero. Conversely, if (2.12) is identically zero, then (2.11) is

identically zero, and this being an inner integration of (2.13), we see that (2.13)

is identically zero. The nontriviality of the coefficient (2.13) will follow from the

nontriviality of the following Fourier coefficient on our residual representation,

(2.14)

∫
V 4n
n (F )\V 4n

n (A)

∫
˜V 6n
n (F )\˜V 6n

n (A)

ξ̃τ,π̃(vv1)ψ˜V 6n
n ,a(v)ψV 4n

n ,−a(v1)dvdv1.

The proof that (2.14) is nontrivial is very similar to that in [GRS99b, Sec. 5].

Let ω̃ be the Weyl element of GL2n defined in [GRS99b, (4.31)],

ω̃2i,i =1, i = 1, . . . , n,

ω̃2i−1,i+n =1, i = 1, . . . , n,

ω̃i,j =0, otherwise.

Put

(2.15) ω =

⎛⎜⎝ω̃ I2n

ω̃∗

⎞⎟⎠ ∈ Sp6n(F ).

We identify Sp6n(F ) with the subgroup Sp6n(F ) × 1 of S̃p6n(A). Let R =

Ṽ 6n
n V 4n

n , and consider

B = ωRω−1.

The metaplectic cover splits over R(A) and R(A)× 1 is a subgroup of S̃p6n(A).

We identify these two subgroups. The same is true for B(A). Using the left

invariance to rational elements of ξ̃τ,π̃, the integral (2.14) is equal to

(2.16)

∫
B(F )\B(A)

ξ̃τ,π̃(vω)χψ,a(v)dv.
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Here we simply used conjugation by ω inside (2.14). The group B consists of

the following elements in Sp6n,

(2.17) v(T,C, Z) =

⎛⎜⎝T C Z

I2n C′

T ∗

⎞⎟⎠ ,

where the last two rows of C are zero and T ∈ GL2n has the form [GRS99b,

(4.34)], namely, if we write T as an n × n matrix of 2 × 2 block matrices

T = ([T ]i,j), 1 ≤ i, j ≤ n, then the blocks [T ]i,j have the following form,

[T ]n,1 = · · · = [T ]n,n−1 = 0, [T ]n,n = I2;

[T ]i,i is lower unipotent, for i < n. Finally, for i < j, [T ]i,j is lower triangular,

and for j < i < n, [T ]i,j is lower nilpotent. Denote this group of matrices T by

T (n). With these notations, χψ,a is the character of B(A) given by

(2.18) ψ(tr([T ]1,2 + [T ]2,3 + · · ·+ [T ]n−1,n) + a(Z2n,1 − Z2n−1,2)).

Now, exactly the same steps as in [GRS99b], pp. 894–895, show that the

integral (2.16) is equal to

(2.19)

∫
Y (A)

∫
E(F )\E(A)

ξ̃τ,π̃(vyω)ψ
′
E,a(v)dvdy,

where Y is the subgroup of lower unipotent matrices in B, E is the unipotent

group of Sp6n, which corresponds to the symplectic partition [(2n)212n], and

ψ′
E,a = ψ[(2n)212n];a,−a, the associated character (2.8). Thus, the dv integration

in (2.19) is the application of the Fourier coefficient Fψ[(2n)212n];a,−a .

Let us sketch the steps, as in loc. cit., which lead to (2.19). For this, consider

the following sequences of root subgroups of Sp6n. Let, for 1 ≤ r, s ≤ n,

(2.20)
Y (r,s) ={y(r,s)(t) = v(I2n + te2r,2s−1, 0, 0)},
X(r,s) ={x(r,s)(t) = v(I2n + te2r−1,2s, 0, 0)},

where ei,j denotes the 2n× 2n matrix, which has 1 in the (i, j) coordinate and

zero elsewhere. We used the notation of (2.17). Let, for 1 ≤ j ≤ i ≤ n − 1,

(B′)(i,j) be the group of all v(T,C, Z), such that the last two rows of C are
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zero, and T has the following form,

T =

⎛⎜⎜⎜⎜⎝
I2 ∗ ∗ ∗

. . . ∗ ∗
I2 ∗

T ′

⎞⎟⎟⎟⎟⎠ ,

where T ′ ∈ T (n− j + 1), and T�,2j−1 = 0, for all � > 2i. Now, define

(2.21)

B(i,j) =(B′)(i,j)
n∏

s=i+2

X(j,s),

C(i,j) ={b ∈ B(i,j)|b2i,2j−1 = 0},
D(j,i+1) =C(i,j)X(j,i+1),

A(j,i+1) =D(j,i+1)Y (i,j).

We let X(j,n+1) and T (1) be the trivial groups. Let χ
(i,j)
ψ,a be the following

character of C(i,j)(A),

(2.22)

χ
(i,j)
ψ,a (c) = ψ((c1,3 + c2,4) + (c3,5 + c4,6) + · · ·+ (c2n−3,2n−1 + c2n−2,2n)

+ a(c2n,4n+1 − c2n−1,4n+2)).

The groupsA(j,i+1), B(i,j), C(i,j), D(j,i+1), Y (i,j), X(j,i+1) and the character χ
(i,j)
ψ,a

satisfy the five conditions of the lemma in [GRS99b, Sec. 2.2]. In particular,

since X(j,i+1) and Y (i,j) normalize C(i,j), and their Adele points preserve χ
(i,j)
ψ,a ,

upon conjugation, we may extend χ
(i,j)
ψ,a to a character of B(i,j)(A) by making it

trivial on Y (i,j)(A) and also to a character of D(j,i+1)(A) by making it trivial on

X(j,i+1)(A). We will keep denoting these extensions (on each group) by χ
(i,j)
ψ,a ,

for simplicity. Finally, define, for h ∈ S̃p6n(A),

Si,j(ξ̃τ,π̃)(h) =

∫
B(i,j)(F )\B(i,j)(A)

ξ̃τ,π̃(vhω)χ
(i,j)
ψ,a (v)dv,

(2.23) S′
j,i+1(ξ̃τ,π̃)(h) =

∫
D(j,i+1)(F )\D(j,i+1)(A)

ξ̃τ,π̃(vhω)χ
(i,j)
ψ,a (v)dv.

Then

(2.24) Si,j(ξ̃τ,π̃)(1) =

∫
Y (i,j)(A)

S′
j,i+1(ξ̃τ,π̃)(y)dy.



Vol. 192, 2012 CORRESPONDENCES OF AUTOMORPHIC FORMS 967

The proof of this fact appears on [S05, pp. 374–375] (although for specific

groups A,B, . . . , D, but the proof uses only the five properties mentioned be-

fore). A general formulation with a proof appears in [GRS11, Lemma 7.1]. In

loc. cit. it is also proved that Si,j(ξ̃τ,π̃)(1) is not identically zero, if and only

if S′
j,i+1(ξ̃τ,π̃)(1) is not identically zero (as ξ̃τ,π̃ varies). Denote Si,j(ξ̃τ,π̃) =

Si,j(ξ̃τ,π̃)(1), S
′
j,i+1(ξ̃τ,π̃) = S′

j,i+1(ξ̃τ,π̃)(1). Then on Ẽτ,π̃,
(2.25) Si,j 	= 0 ⇔ S′

j,i+1 	= 0.

The proofs in loc. cit. show even more. Namely, given ξ̃τ,π̃, there is ξ̃′τ,π̃ (in

Ẽτ,π̃) such that, for all h ∈ S̃p2n(A) (with Sp2n embedded in the middle block

inside Sp6n),

(2.26)

∫
Y (i,j)(A)

∫
D(j,i+1)(F )\D(j,i+1)(A)

ξ̃τ,π̃(vyhω)χ
(i,j)
ψ,a (v)dvdy

=

∫
D(j,i+1)(F )\D(j,i+1)(A)

ξ̃′τ,π̃(vh)χ
(i,j)
ψ,a (v)dv.

This follows from [GRS11, Corollary 7.2]. The argument appears also in the

proof of [GRS99b, Lemma 1, p. 895]. The idea is that by the lemma of

Dixmier–Malliavin, we may assume that ξ̃τ,π̃ has the form ϕ ∗ ε̃τ,π̃, where

ϕ ∈ S(X(j,i+1)(A)) and the convolution is along X(j,i+1)(A) given by

ϕ ∗ ε̃τ,π̃ =

∫
X(j,i+1)(A)

ϕ(x)ρ(x)(ε̃τ,π̃)dx,

where ρ(x) denotes right translation by x. Let φ ∈ S(Y (i,j)(A)) be the Fourier

transform of ϕ, with respect to χ
(i,j)
ψ,a ; the root groups Y (i,j) and X(j,i+1) are in

duality under the commutator. Now, by an easy calculation, we get

(2.27)

∫
Y (i,j)(A)

∫
D(j,i+1)(F )\D(j,i+1)(A)

ϕ ∗ ε̃τ,π̃(vyh)χ(i,j)
ψ,a (v)dvdy

=

∫
D(j,i+1)(F )\D(j,i+1)(A)

φ � ε̃τ,π̃(vh)χ
(i,j)
ψ,a (v)dv,

where the convolution φ � ε̃τ,π̃ is, of course, along Y (i,j)(A). We ignored the

fixed right translation by ω. Note that (2.24), (2.26) imply that the space

spanned by the functions Si,j(ξ̃τ,π̃)(h) (functions of h ∈ S̃p2n(A)) is equal to

the space spanned by the functions S′
j,i+1(ξ̃τ,π̃)(h) (and so we may “ignore” the

dy-integration).
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We say that in the passage in (2.24), and in (2.25), from the integral Si,j

to the integral S′
j,i+1, we “exchanged the roots” Y i,j and Xj,i+1. Note that

B(n−1,1) = B, and for 2 ≤ i ≤ n − 1, D(1,i+1) = B(i−1,1). Using this and

(2.25), we get that Si,1(ξ̃τ,π̃) is not identically zero if and only if Si−1,1(ξ̃τ,π̃) is

not identically zero (i = n− 1, . . . , 2). Since the integral (2.16) is Sn−1,1(ξ̃τ,π̃),

and since D(1,2) = B(n−1,2), we get that the integral (2.16) is not identically

zero if and only if Sn−1,2(ξ̃τ,π̃) is not identically zero. In general, we have that

D(j,i+1) = B(i−1,j), for i ≥ j + 1, and D(j,j+1) = B(n−1,j+1). We use (2.25)

repeatedly as before, and get that the functionals Sn−1,j , j = 1, 2, . . . , n− 1 are

all together nontrivial, or all together trivial. Apply (2.25) one more time and we

get that the integral (2.16) is not identically zero if and only if S′
n−1,n(ξ̃τ,π̃) is not

identically zero. D(n−1,n) is the unipotent group E in (2.19), and the character

χ
(n−1,n)
ψ,a of D(n−1,n)(A) is the character ψ′

E,a. In order to get the equality of

(2.16) and (2.19), we need to replace each of the repeated applications of (2.25)

by the identity (2.24), namely

(2.28)

Sn−1,1(ξ̃τ,π̃)(1) =

∫
Y (n−1,1)(A)

Sn−2,1(ξ̃τ,π̃)(y)dy

=

∫
Y (n−1,1)(A)

∫
Y (n−2,1)(A)

Sn−3,1(ξ̃τ,π̃)(y2y1)dy2dy1

= · · · =
∫
Y (A)

S′
n−1,n(ξ̃τ,π̃)(y)dy,

where Y is the product of the unipotent groups Y (i,j) used at each step

Y (n−1,n−1)Y (n−2,n−2)Y (n−1,n−2) · · ·Y (2,2)Y (3,2)

· · ·Y (n−1,2)Y (1,1)Y (2,1) · · ·Y (n−1,1).

We conclude that the integrals (2.16) and (2.19) are equal, and the integral

(2.16) is not identically zero if and only if the inner integral of (2.19), which is

(up to a right translation by yω)

(2.29) Fψ[(2n)212n];a,−a(ξ̃τ,π̃),

is not identically zero on Ẽτ,π̃. Moreover, application of (2.26), at each step,

shows that for a given ξ̃τ,π̃, there is ξ̃′τ,π̃ (in Ẽτ,π̃) such that for all h ∈ S̃p2n(A),

(2.30)∫
Y (A)

∫
E(F )\E(A)

ξ̃τ,π̃(vyhω)ψ
′
E,a(v)dvdy =

∫
E(F )\E(A)

ξ̃′τ,π̃(vh)ψ
′
E,a(v)dv.
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Let

b =

(
1 −1

1 1

)
and, as in [GRS99b, (4.8)], consider

(2.31) b̂ = diag(b, . . . , b, I2n, b
∗, . . . , b∗) ∈ Sp6n(F ).

Then

(2.32) Fψ[(2n)212n];a,−a(ξ̃τ,π̃) =

∫
E(F )\E(A)

ξ̃τ,π̃(vb̂)ψE,a(v)dv,

where ψE,a is the character ψ′
E,a, conjugated by b̂. Write an element of the

unipotent subgroup E in the form

(2.33) v(A,C,Z) =

⎛⎜⎝A C Z

I2n C′

A∗

⎞⎟⎠ ,

where the last two rows of C are zero, and if we write A as an n× n matrix of

2× 2 blocks, then

(2.34) A =

⎛⎜⎜⎜⎜⎝
I2 A1,2 . . . A1,n

I2 . . . A2,n

. . .

I2

⎞⎟⎟⎟⎟⎠ .

Then we have with the notation in (2.33) and (2.34) the following expression:

(2.35) ψE,a(v(A,C,Z)) = ψ(tr(A1,2 +A2,3 + · · ·+An−1,n)− aZ2n−1,1).

By [GRS03, Lemma 1.1], it follows that the integral on the right-hand side of

(2.32) is not identically zero if and only if the following integral,

(2.36) FψE′,a(ξ̃τ,π̃) =

∫
E′(F )\E′(A)

ξ̃τ,π̃(v)ψE′,a(v)dv,

is not identically zero on Ẽτ,π̃. Here E′ is the unipotent F -group consisting of the

elements of the form (2.33), with A as in (2.34), and on C we require that only

its last row is zero; the character ψE′,a of E′(A) is defined by formula (2.35).

(Note that E′ is of the form V1([(2n)
212n]), in the notation of [GRS03, p. 3],

corresponding to the character (2.35).) From this point, the proof continues
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exactly as on [GRS99b, p. 890], starting from (5.3), using the same steps. Let

ν be the Weyl element in Sp4n(F ) defined in [GRS99b, (4.9)]:

νi,2i−1 =1, i = 1, . . . , 2n,

ν2n+i,2i =− 1, i = 1, . . . , n,

ν2n+i,2i =1, i = n+ 1, . . . , 2n,

νi,j =0, otherwise.

Write

ν =

(
ν1 ν2

ν3 ν4

)
,

where νi are 2n× 2n matrices. Let

(2.37) ν′ =

⎛⎜⎝ν1 ν2

I2n

ν3 ν4

⎞⎟⎠ .

Then

(2.38) FψE′,a(ξ̃τ,π̃) =

∫
B′(F )\B′(A)

ξ̃τ,π̃(vν
′)ψB′,a(v)dv,

where B′ = ν′E′ν−1. The elements in B′ have the following form,

(2.39) v =

⎛⎜⎜⎜⎜⎜⎝
u1 u2 c z1 z2

0 u3 0 0 z′1
0 d′ I2n 0 c′

y1 y2 d u∗3 u′2
0 y′1 0 0 u∗1

⎞⎟⎟⎟⎟⎟⎠ ∈ Sp6n(F ),

where u1, u3 are n × n upper unipotent, z1, y1 are n × n upper nilpotent, and

the last row of d is zero. In the notation of (2.39),

(2.40)

ψB′,a(v) = ψ((u1)1,2 + · · ·+ (u1)n−1,n − a(u2)n,1 − (u3)1,2 − · · · − (u3)n−1,n).

Now we carry out the process of exchanging roots, exactly as we did in [GRS99b],

from (5.3) till (5.16). In this process, we need to use the property that, for all

n < l ≤ 3n, Ẽτ,π̃ has no nonzero Fourier coefficient attached to [(2l)12(3n−l)].
Note that we did not use this property up to this point in the proof. We get

that the right-hand side of (2.38) is equal to

(2.41)

∫
L(A)

∫
V 6n
2n (F )\V 6n

2n (A)

ξ̃τ,π̃(vyν
′)ψ′

a(v)dvdy,
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where L is the subgroup consisting of lower unipotent matrices in B′, and ψ′
a

is the character of V 6n
2n (A) given by the same formula as (2.40), namely

(2.42) ψ′
a(v) = ψ(v1,2 + · · ·+ vn−1,n − avn,n+1 − vn+1,n+2 − · · · − v2n−1,2n).

We sketch the proof of the equality of (2.38) and (2.41). Denote by Z2n

the subgroup v(U2n, 0, 0) of B
′. Recall that U2n denotes the standard maximal

unipotent subgroup of GL2n. For 1 ≤ i ≤ j ≤ 2n, define

Xi,j ={v(I2n, 0, t(ei,j + e2n+1−j,2n+1−i)},
Yi,j ={v̄(I2n, 0, t(ei,j + e2n+1−j,2n+1−i)},

where

v̄(A,C,Z) =

⎛⎜⎝AC I2n

Z C′ A∗

⎞⎟⎠ ∈ Sp6n, A ∈ GL2n.

For 1 ≤ i, j ≤ 2n, define

X ′
i,j ={v(I2n, tei,j, 0)},
Y ′
i,j ={v̄(I2n, tei,j, 0)}.

The group B′ is generated by Z2n, Xi,j , and Yi,j , for 1 ≤ i < j ≤ 2n, by X ′
i,j ,

for 1 ≤ i ≤ n and 1 ≤ j ≤ 2n, and by Y ′
i,j , for 1 ≤ i ≤ 2n and n+ 1 ≤ j ≤ 2n.

Let 1 ≤ i < j ≤ n + 1. Assume that i + 1 ≤ j − 1. We define Ci,j to be

the group generated by Z2n, the groups X ′
r,s, Y

′
k,� ⊂ B′, the groups Yr,� ⊂ B′,

except the indices (r, �), where r, � ≤ j − 1 and the indices (r, j), where r ≥ i,

and the groups Xr,�, with � ≤ r < j − 2, or r = j − 1 and i + 1 ≤ � ≤ j − 1.

When i = 1 = j (and 1 ≤ i < j ≤ n + 1), the definition of Ci,j is the same,

except that in the list of subgroups Xr,�, we take the indices (r, �) as follows:

� ≤ r ≤ j − 2. Denote Bi,j = Ci,jYi,j , Di,j = Ci,jXj−1,i, Ai,j = Di,jYi,j . We

denote by ηψ,a the restriction of the right-hand side of (2.40) to Z2n(A). Then

we can exchange the roots Yi,j , Xj−1,i, as we did in (2.24), (2.25), applying

[GRS11, Lemma 7.1]. Indeed the groups Ai,j , Bi,j , Ci,j , Di,j , Yi,j , Xj−1,i satisfy

the five conditions of the lemma in [GRS99b, Sec. 2.2]. In particular, we may

extend ηψ,a from Z2n(A) to Ci,j(A) and also to Bi,j(A), Di,j(A), so that it is

trivial on the corresponding subgroups Xr,�(A), Yr,�(A). We denote each such

extension by η
(i,j)
ψ,a . Define, as in (2.23), for h ∈ S̃p6n(A),

Ri,j(ξ̃τ,π̃)(h) =

∫
Bi,j(F )\Bi,j(A)

ξ̃τ,π̃(vhν
′)η(i,j)ψ,a (v)dv,
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(2.43) R′
i,j(ξ̃τ,π̃)(h) =

∫
Di,j(F )\Di,j(A)

ξ̃τ,π̃(vhν
′)η(i,j)ψ,a (v)dv.

Then

(2.44) Ri,j(ξ̃τ,π̃)(1) =

∫
Yi,j(A)

R′
i,j(ξ̃τ,π̃)(y)dy.

Denote Ri,j(ξ̃τ,π̃) = Ri,j(ξ̃τ,π̃)(1), R
′
i,j(ξ̃τ,π̃) = R′

i,j(ξ̃τ,π̃)(1). Then, as in (2.25),

we have on Ẽτ,π̃,
(2.45) Ri,j 	= 0 ⇔ R′

i,j 	= 0.

Note that B1,2 = B′, and the right-hand side of (2.38) is R1,2(ξ̃τ,π̃). Note also

that, for 2 ≤ i < j ≤ n + 1, Di,j = Bi−1,j , and for 1 ≤ j ≤ n, D1,j = Bj,j+1.

Using this and (2.45) repeatedly as before, we get that R1,2(ξ̃τ,π̃) is not iden-

tically zero if and only if R′
1,j(ξ̃τ,π̃) is not identically zero (j = 2, . . . , n+ 1).

Thus, R1,2(ξ̃τ,π̃) is not identically zero if and only if R′
1,n+1(ξ̃τ,π̃) is not identi-

cally zero. When we replace each of the repeated applications of (2.45) by the

identity (2.44), we get the identity

(2.46) R1,2(ξ̃τ,π̃)(1) =

∫
Y (A)

R′
1,n+1(ξ̃τ,π̃)(y)dy,

where Y is the product of the unipotent groups Yi,j used at each step

Y1,n+1Y2,n+1 · · ·Yn,n+1 · · ·Y1,3Y2,3Y1,2.
Let xn+1,n(t) = v(I2n, 0, ten+1,n) ∈ Xn+1,n(A), and consider the smooth func-

tion on F\A, t �→ R′
1,n+1(ξ̃τ,π̃)(xn+1,n(t)), and its Fourier expansion. Each

nontrivial Fourier coefficient of this function is a Fourier coefficient of ξ̃τ,π̃ asso-

ciated to the partition [2n+2, 14n−2], and hence is zero, by the first part of the

theorem. Thus, only the trivial character contributes to the Fourier expansion,

and we get that

(2.47) R′
1,n+1(ξ̃τ,π̃)(h) =

∫
Xn+1,n(F )\Xn+1,n(A)

R′
1,n+1(ξ̃τ,π̃)(xh)dx.

Extend η
(1,n+1)
ψ,a from D1,n+1(A) to D1,n+1Xn+1,n(A) by the trivial charac-

ter of Xn+1,n(A). To lighten notation, we will denote this extension and

the ones which will follow by η′ψ,a. Now, we exchange roots as before, ex-

changing Yn−1,n+2, Yn−2,n+2, . . . , Y1,n+2 with Xn+1,n−1, Xn+1,n−2, . . . , Xn+1,1,

respectively. Then we go on exchanging Y ′
2n,n+2, Y

′
2n−1,n+2, . . . , Y

′
1,n+2 with

X ′
1,2n, X

′
1,2n−1, . . . , X

′
1,1, respectively. Denote by D1,n+2 the unipotent group
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obtain by the following sequence of operations. Start with D1,n+1Xn+1,n,

“take off” Yn−1,n+2, meaning: consider the subgroup Cn−1,n+2 of D1,n+1Xn+1,n

generated by all its root subgroups except Yn−1,n+2, and “add” Xn+1,n−1,

meaning: consider the group generated by Cn−1,n+2 and Xn+1,n−1 (this is

Cn−1,n+2Xn+1,n−1.) Denote this group by Dn−1,n+2. Now, from Dn−1,n+2,

“take off” Yn−2,n+2 and then “add” Xn+1,n−2. Denote the resulting group by

Dn−2,n+2, and so on, until we exchange Y1,n+2 with Xn+1,1, and get D1,n+2.

We continue like this with the roots Y ′
2n−i,n+2, X

′
1,2n−i, i = 0, 1, . . . , 2n−1, and

denote the resulting unipotent group by D′
1,n+2. All the root exchanges above

are possible, in the sense that Lemma 7.1 in [GRS11] is applicable. Denote

R′
1,n+2(ξ̃τ,π̃)(h) =

∫
D′

1,n+2(F )\D′
1,n+2(A)

ξ̃τ,π̃(vhν
′)η′ψ,a(v)dv.

Denote also R′
1,n+2(ξ̃τ,π̃) = R′

1,n+2(ξ̃τ,π̃)(1). Then from (2.47) and successive

applications of the root exchanges which we just made, we conclude, as in (2.45),

(2.48) R1,2 	= 0 ⇔ R′
1,n+2 	= 0.

Now we repeat the step (2.47) by considering xn+2,n−1(t)=v(I2n, 0, ten+2,n−1)∈
Xn+2,n−1(A) and the Fourier expansion of the smooth function, on F\A,
t �→ R′

1,n+2(ξ̃τ,π̃)(xn+2,n−1(t)). Each nontrivial Fourier coefficient of this func-

tion is a Fourier coefficient of ξ̃τ,π̃ associated to the partition [2n+4, 14n−4], and

hence is zero, by the first part of the theorem. Thus, only the trivial character

contributes to the Fourier expansion, and we get that

(2.49) R′
1,n+2(ξ̃τ,π̃)(h) =

∫
Xn+2,n−1(F )\Xn+2,n−1(A)

R′
1,n+2(ξ̃τ,π̃)(xh)dx.

Now we exchange the roots

Yn−2,n+3, Yn−3,n+3, . . . , Y1,n+3, Y
′
2n,n+3, Y

′
2n−1,n+3, . . . , Y

′
1,n+3

with

Xn+2,n−2, Xn+2,n−3, . . . , Xn+2,1, X
′
2,2n, X

′
2,2n−1, . . . , X

′
2,1,

respectively. We continue like this until we “exhaust” all the roots Yi,j , Y
′
r,s in

B′; the column

Yn−i+1,n+i, Yn−i,n+i, . . . , Y1,n+i, Y ′
2n,n+i, Y

′
2n−1,n+i, . . . , Y

′
1,n+i

is exchanged with the row

Xn+i−1,n−i+1, Xn+i−1,n−i, . . . , Xn+i−1,1, X
′
i−1,2n, X

′
i−1,2n−1, . . . , X

′
i−1,1,
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respectively. We get the group D′
1,n+i, as above. Then define the integral

R′
1,n+i(ξ̃τ,π̃)(h) as above, and using the property that, for all n < l ≤ 3n, Ẽτ,π̃

has no nonzero Fourier coefficient attached to [(2l)12(3n−l)], we conclude that

R′
1,n+i(ξ̃τ,π̃)(h) is left Xn+i,n−i+1(A)-invariant. We do this for i = 2, 3, . . . , n.

The unipotent group V 6n
2n in (2.41) is D′

1,2nX2n,1. The inner integral in (2.41) is

R′
1,2n(ξ̃τ,π̃)(y); R

′
1,2n(ξ̃τ,π̃)(h) is left X2n,1(A)-invariant. All in all, we conclude

that R1,2(ξ̃τ,π̃)(1), the integral (2.38), is not identically zero, if and only if the

integral

(2.50)

∫
V 6n
2n (F )\V 6n

2n (A)

ξ̃τ,π̃(v)ψ
′
a(v)dv

is not identically zero (as ξ̃τ,π̃ varies in Ẽτ,π̃). Moreover, by (2.46), and the

similar identities obtained with the further root exchanges, we get the equality

of (2.38) and (2.41). Note, also, that we may repeat, at each step, the argument

in (2.27) and obtain, as in (2.30), that, given ξ̃τ,π̃, there is ξ̃′τ,π̃ such that, for

all h ∈ S̃p2n(A),

(2.51)∫
L(A)

∫
V 6n
2n (F )\V 6n

2n (A)

ξ̃τ,π̃(vyhν
′)ψ′

a(v)dvdy =

∫
V 6n
2n (F )\V 6n

2n (A)

ξ̃′τ,π̃(vh)ψ
′
a(v)dv.

The same argument shows that (2.50) is equal to

(2.52)

∫
U6n

2n (F )\U6n
2n (A)

ξ̃τ,π̃(v)ψ
′′
a (v)dv,

where U6n
2n is the unipotent radical of the standard parabolic subgroup, whose

Levi part is isomorphic to GL2n
1 × Sp2n, and ψ′′

a is the character of U6n
2n (A)

given by the same formula as (2.42). To show this, we realize the compact

abelian group F 2n\A2n in terms of Heisenberg group H2n+1 in 2n+ 1 variable

as follows. Let Z be the center of H2n+1. Then X := H2n+1/Z is an affine

space of dimension 2n. Thus, we may identify the quotient F 2n\A2n with

X (F )\X (A), which we embed inside Sp6n as

(2.53) i : (x; t) �→

⎛⎜⎜⎜⎜⎜⎝
I2n−1

1 x t

I2n x′

1

I2n−1

⎞⎟⎟⎟⎟⎟⎠ .
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Now, we consider the function

(2.54) x �→ (x; t) �→
∫
V 6n
2n (F )\V 6n

2n (A)

ξ̃τ,π̃(vi(x; t))ψ
′
a(v)dv,

for x ∈ A2n. Note again that the last integral is i(Z(A))-invariant. The integral

(2.54) is a smooth function on F 2n\A2n. Consider, as before, its Fourier expan-

sion. Each Fourier coefficient with respect to a nontrivial character of F 2n\A2n

is zero on Ẽτ,π̃, since it can be expressed as a sum of coefficients corresponding

to [(2l)12(3n−l)], for l > 2n. See Lemma 3.4 in [GRS05]. The integral (2.52) is

not identically zero, since it is equal to

(2.55)

∫
U2n(F )\U2n(A)

CN6n
2n
(ξ̃τ,π̃)(u)ψ

′
U2n,a(u)du.

Recall that U2n denotes the standard maximal unipotent subgroup of GL2n.

The character ψ′
U2n,a

is the Whittaker character of U2n(A) given by the formula

(2.42); N6n
2n is the unipotent radical of P 6n

2n , the standard parabolic subgroup,

whose Levi part is isomorphic to GL2n × Sp2n, and CN6n
2n
(ξ̃τ,π̃) is the constant

term along N6n
2n , applied to ξ̃τ,π̃. Let us write ξ̃τ,π̃ as the residue at s = 1 of an

Eisenstein series corresponding to a holomorphic section φτ,π̃;s in (2.10). Then

CN6n
2n
(ξ̃τ,π̃) = Ress=1CN6n

2n
(Ẽ(·, φτ,π̃;s)).

Since the Eisenstein series Ẽ(·, φτ,π̃;s) is induced from a cuspidal representation

on the maximal parabolic subgroup P̃ 6n
2n (A), the constant term CN6n

2n
(Ẽ(·, φτ,π̃;s))

is a sum of two terms: the first term is the section φτ,π̃;s, which is holomorphic

and does not contribute to the residue at s = 1, and the second term is the

intertwining operator Ms, corresponding to the long Weyl element, modulo the

Levi part of P 6n
2n , applied to φτ,π̃;s. See [MW95], II.1.7. Thus,

CN6n
2n
(ξ̃τ,π̃) = Ress=1Ms(φτ,π̃;s).

The right-hand side of the last equality takes values in the space of

γψ(det)| det |2n− 1
2 τ ⊗ π̃.

The integral (2.55) is then an application of the Whittaker coefficient with

respect to the character ψ′
U2n,a

to elements of τ , and hence is not identically

zero. This completes the proof of the theorem.

Note that in the last proof we proved that the Fourier coefficient (2.11) is

nontrivial (on our residual representation) if and only if the Fourier coefficient



976 D. GINZBURG, D. JIANG AND D. SOUDRY Isr. J. Math.

(2.55) is nontrivial (for any given a ∈ F ∗). In Theorem 5.1 we will write a

precise identity relating these two coefficients, by keeping track of the various

identities, such as (2.46) etc.

2.4. Fourier–Jacobi coefficients and descent. The Fourier coefficient

Fψ
V 2k
r ,a , defined in (2.4), is closely related to a Fourier–Jacobi coefficient. Such

coefficients, when applied to certain residual representations, yield automorphic

descents. See [GRS99a] and [GRS05], and also see [I94], [GRS98], [GRS03], and

[GJR04].

Let, for 1 ≤ r ≤ k, U2k
r denote the unipotent radical of the standard para-

bolic subgroup Q2k
r of Sp2k, whose Levi part is isomorphic to GLr1 × Sp2(k−r).

Recall that V 2k
r is the unipotent subgroup defined in (2.2). Note that U2k

r−1

is the subgroup of elements v ∈ V 2k
r , such that vr,2k−r+1 = 0. Of course,

V 2k
r is a subgroup of U2k

r . The Heisenberg group of dimension 2(k − r) + 1,

H2(k−r)+1, is isomorphic to the quotient group U2k
r /U2k

r−1 and embeds in Sp2k

like in (2.53). It is isomorphic to U
2(k−r+1)
1 . Denote the projection composed

with the embedding by

(2.56) �k−r : U2k
r → U2k

r /U2k
r−1

∼= H2(k−r)+1
∼= U

2(k−r+1)
1 .

Denote by ψU2k
r

the following character of U2k
r (A),

(2.57) ψU2k
r
(u) = ψ(u1,2 + u2,3 + · · ·+ ur−1,r).

This character of U2k
r (A) is obtained first by restricting the standard Whittaker

character of the standard maximal unipotent subgroup of Sp2k to U2k
r−1(A), and

then extending this restriction to U2k
r (A) by the trivial character.

For a given a ∈ F ∗, denote by ωψa the Weil representation of the semi-direct

product

H2(k−r)+1(A) · S̃p2(k−r)(A),
attached to the character ψa. This representation acts on S(Ak−r), the space

of all Schwartz–Bruhat functions in (k − r)-variables. For φ ∈ S(Ak−r),
l ∈ H2(k−r)+1(A) and h ∈ S̃p2(k−r)(A), denote by θ̃ψ

a

φ,k−r(lh) the corresponding

theta function. This is an automorphic function on H2(k−r)+1(A) · S̃p2(k−r)(A).
For an automorphic form ϕ on Sp2k(A), the Fourier–Jacobi coefficient of ϕ

(with respect to ψa and k − r) is defined by the following integral,

(2.58) FJψ
a

φ,k−r(ϕ)(h) :=
∫
U2k
r (F )\U2k

r (A)

ϕ(uh)θ̃ψ
a

φ,k−r(�k−r(u)h)ψU2k
r
(u)du.
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It defines an automorphic form on S̃p2(k−r)(A). Let π be an automorphic repre-

sentation of Sp2k(A). We denote by D̃2k
2(k−r),ψa(π) the automorphic representa-

tion of S̃p2(k−r)(A) generated by all Fourier–Jacobi coefficients FJψ
a

φ,k−r(ϕπ), for
all vectors ϕπ in the space of π and all φ in S(Ak−r). We refer to D̃2k

2(k−r),ψa(π)

as the ψa-descent of π from Sp2k(A) to S̃p2(k−r)(A).

Similarly, for an automorphic form ϕ̃ on S̃p2k(A), the Fourier–Jacobi coeffi-

cient of ϕ̃ (with respect to ψa and k − r) is defined by the following integral,

(2.59) FJψ
a

φ,k−r(ϕ̃)(h) :=
∫
U2k
r (F )\U2k

r (A)

ϕ̃(uh)θ̃ψ
a

φ,k−r(�k−r(u)h)ψU2k
r
(u)du.

It defines an automorphic form on Sp2(k−r)(A). Let π̃ be an automorphic repre-

sentation of S̃p2k(A). We denote by D2k
2(k−r),ψa(π̃) the automorphic representa-

tion of Sp2(k−r)(A) generated by all Fourier–Jacobi coefficients FJψ
a

φ,k−r(ϕ̃π̃), for
all vectors ϕ̃π̃ in the space of π̃ and all φ in S(Ak−r). We refer to D2k

2(k−r),ψa(π̃)

as the ψa-descent of π̃ from S̃p2k(A) to Sp2(k−r)(A).
Note that when we factor the integrations in (2.58) and (2.59) through

V 2k
r (F )\V 2k

r (A), then the inner integration becomes an application of the Fourier

coefficient Fψ
V 2k
r ,a in (2.4) to ϕ. The following Lemma is proved in [I94]. See

also [GRS03, Lemma 1.1].

Lemma 2.2: Let a ∈ F ∗. For any automorphic representation π of Sp2k(A), the

Fourier coefficient Fψ
V 2k
r ,a is not identically zero on π if and only if the Fourier–

Jacobi coefficient FJψ
a

φ,k−r(ϕ) is not identically zero, as ϕ varies in the space

of π and as φ varies in S(Ak−r). A similar statement holds for automorphic

representations of S̃p2k(A).

Let τ be an irreducible, unitary, cuspidal automorphic representation of

GL2n(A), such that LS(s, τ,∧2) has a pole at s = 1, and LS(12 , τ) 	= 0. Note

that these assumptions for partial L-functions are equivalent to the same as-

sumptions for the corresponding full L-functions. (At the places of S, we take

Shahidi’s definition of the local L-function.) This follows from the structure of

the exponents of the representations in the local unitary dual of general linear

groups and analytic properties (e.g., holomorphic for Re(s) > 0 when the rep-

resentation is tempered) of the corresponding local L-functions at the ramified

local places. The result is that the local L-function L(s, τv,∧2) is holomorphic

at Re(s) ≥ 1 and L(s, τv) is holomorhic at Re(s) ≥ 1
2 . Consider an Eisenstein



978 D. GINZBURG, D. JIANG AND D. SOUDRY Isr. J. Math.

series E(g, φτ,s) on Sp4n(A) associated to a holomorphic section φτ,s in

Ind
Sp4n(A)

P 4n
2n (A)

(τ | det |s),

where P 4n
2n is the Siegel parabolic subgroup of Sp4n. By our assumptions on

τ , E(g, φτ,s) has a simple pole at s = 1
2 (as the section varies). See [GRS99a,

Prop. 1]. We denote by Eτ the residual representation generated by the residues

(2.60) ξτ (g) := Ress= 1
2
E(g, φτ,s).

The following theorem is a summary of results proved in [GRS99a], [GRS99b],

[GRS99c], [GRS02], [JS03], and [JS04] (with ψ replaced by ψ−1).

Theorem 2.3: The ψ-descent from Sp4n(A) to S̃p2n(A) of Eτ , D̃4n
2n,ψ(Eτ ), is

an irreducible, genuine, ψ−1-generic, cuspidal automorphic representation of

S̃p2n(A), which lifts weakly to τ with respect to ψ.

For the notion of weak lift with respect to ψ, see the beginning of Sec. 2.3.

We also know the converse (see [S05]).

Theorem 2.4: Assume that π̃ is an irreducible, genuine, cuspidal automorphic

representation of S̃p2n(A), which is ψ−1-generic. Assume that π̃ lifts weakly,

with respect to ψ, to an irreducible cuspidal automorphic representation τ of

GL2n(A). Then LS(s, τ,∧2) has a pole at s = 1, and LS(12 , τ) 	= 0, and hence

the residual representation Eτ exists. Similarly, the residual representation of

S̃p6n(A), Ẽτ,π̃ exists.

The third part of the next theorem relates the two residual representations

Eτ and Ẽτ,π̃ . Here we use our working assumption that Eτ is not isomorphic to

a cuspidal representation. This will follow from Arthur’s work [A05].

Theorem 2.5: Let π̃ be an irreducible, genuine, cuspidal automorphic repre-

sentation of S̃p2n(A), which has a ψ-weak lift to an irreducible cuspidal auto-

morphic representation τ of GL2n(A). Then the following hold.

1. As an automorphic representation of Sp4n(A), the descentD6n
4n,ψ−1(Ẽτ,π̃)

is nontrivial and square-integrable. Moreover, it is a subrepresentation

in the space of the automorphic discrete spectrum of Sp4n(A).

2. This descent D6n
4n,ψ−1(Ẽτ,π̃) is cuspidal if and only if π̃ is not ψ−1-generic.
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3. If π̃ is ψ−1-generic, then the descent D6n
4n,ψ−1(Ẽτ,π̃) is a direct sum of the

residual representation Eτ and a cuspidal automorphic representation

of Sp4n(A).

Proof. The nonvanishing of the descent D6n
4n,ψ−1(Ẽτ,π̃) in Part 1 follows from

Theorem 2.1 and Lemma 2.2. Next, we will prove the square integrability of

the descent D6n
4n,ψ−1(Ẽτ,π̃). We will do this by computing the constant terms and

automorphic exponents of the descent along all maximal parabolic subgroups,

and then we will use the criterion for square-integrability of automorphic forms

in [MW95, I.4.11]. The calculations of these constant terms will also prove all

the remaining assertions of the theorem.

Let P 4n
r (with 1 ≤ r ≤ 2n) be the standard maximal parabolic subgroup of

Sp4n whose Levi part is isomorphic to GLr × Sp2(2n−r). We denote by N4n
r its

unipotent radical. Let ξ̃τ,π̃ ∈ Ẽτ,π̃. Denote the constant term of the Fourier–

Jacobi coefficient FJψ
−1

φ,2n(ξ̃τ,π̃) along P
4n
r by

(2.61) CN4n
r
(FJψ

−1

φ,2n(ξ̃τ,π̃)).

We can write a general formula for the constant term (2.61) evaluated at the

identity. It has the following form:

(2.62)

r∑
j=0

∑
γ∈P 1

r−j,1j (F )\GLr(F )

∫
L(A)

φ1(i(λ))FJ
ψ−1

φ2,2n−r(CN6n
r−j

(ξ̃τ,π̃))(γ̂λβ)dλ.

Here, we assume that φ = φ1 ⊗ φ2 with φ1 ∈ S(Ar) and φ2 ∈ S(A2n−r); the
subgroup P 1

r−j,1j of GLr consists of all matrices of the form(
g x

0 z

)
∈ GLr,

where z ∈ Uj (the standard maximal unipotent subgroup of GLj); for a ∈ GLk,

k ≤ 3n, we denote â = diag(a, I2(3n−k), a∗); the group L is unipotent and

consists of all matrices

λ =

(
Ir 0

x In

)∧
∈ Sp6n,

and in this notation i(λ) is the last row of x; and finally

β = βr =

(
Ir

In

)∧
.
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In the last formula, we restrict CN6n
r−j

(ξ̃τ,π̃) to S̃p6n−2r+2j(A), and then we

apply the Fourier–Jacobi coefficient FJψ
−1

φ2,2n−r, which takes automorphic forms

on S̃p6n−2r+2j(A) to those on Sp4n−2r(A).

The proof of the formula follows exactly the same steps in [GRS99a, pp. 844–

847]. The difference is that at the last reference, at each step in the development

of this computation, when we reached a constant term (of Eτ ), we knew it was

zero, and then we did not need to write its contribution. See also the proof of

[GRS05, Prop. 5.2]. The proof of this formula appears in general and in detail

in Sec. 7.6 in the book [GRS11].

Now, we have a similar case here, since CN6n
r−j

(ξ̃τ,π̃) is identically zero, unless

j = r or r− j = 2n. This is due to the cuspidality of τ and π̃. Since r ≤ 2n, the

second case is possible only for j = 0. In the first case, j = r, the corresponding

term in (2.62), which is the integral of FJψ
−1

φ2,2n−r((ξ̃τ,π̃)) along L(A), is identi-

cally zero by Theorem 2.1, since FJψ
−1

φ2,2n−r((ξ̃τ,π̃)) involves a Fourier coefficient

corresponding to [2(n+r), 12(2n−r)] applied to Ẽτ,π̃ (as an inner integral). Thus,

all constant terms above, corresponding to r < 2n, are zero, and for r = 2n,

only the term corresponding to j = 0 remains in (2.62).

It follows that the constant term along P 4n
2n (evaluated at the identity) is

equal to

(2.63)

∫
L(A)

φ1(i(λ))FJ
ψ−1

φ2,0
(CN6n

2n
(ξ̃τ,π̃))(λβ2n)dλ.

The Fourier–Jacobi coefficient in the integrand is just the ψ−1-Whittaker coef-

ficient, applied to CN6n
2n
(ξ̃τ,π̃), when restricted to S̃p2n(A) (there is no φ2 now;

φ = φ1). Clearly, the integral (2.63) is not identically zero if and only if the ψ−1-

Whittaker coefficient is nontrivial on CN6n
2n
(ξ̃τ,π̃), when restricted to S̃p2n(A).

We know that this constant term is equal to the residue at s = 1 of the in-

tertwining operator corresponding to the long Weyl element, modulo the Weyl

group of the Levi part of P 6n
2n , and it takes values in the space of

δ
1
2

P 6n
2n
γψ(det)| det |−1τ ⊗ π̃.

See the explanation right after (2.55). We conclude that π̃ is not ψ−1-generic

if and only if (2.63) is identically zero. This means that π̃ is not ψ−1-generic if

and only if all the constant terms of the descent D6n
4n,ψ−1(Ẽτ,π̃) are zero, i.e. the

descent D6n
4n,ψ−1(Ẽτ,π̃) is cuspidal. This completes the proof of Part 2.
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Assume now that π̃ is ψ−1-generic. In this case, the above discussion shows

that the descent D6n
4n,ψ−1(Ẽτ,π̃) has only one constant term, which is (2.63), the

one along the parabolic subgroup P 4n
2n .

In order to calculate the automorphic exponents attached to this nontrivial

constant term (see [MW95, I.3.3]) we compute the action of g ∈ GL2n(A),

viewed as the Levi part of P 4n
2n (A). Note that

β2n =

(
I2n

In

)∧
.

The conjugation of g by β2n is denoted by ĝ, which can be viewed as an element

in the Levi part of P 4n
2n (A). Using the fact that g acts on φ = φ1 by right

translation twisted by | det(g)| 12 and the Weil factor of det(g), with respect to

ψ−1, and then changing variables in (2.63), λ �→ λg−1, we conclude that g acts

on (2.63) by τ(g) twisted by the character

(2.64) | det(g)|n = δP 4n
2n
(m(g))

1
2 | det(g)|− 1

2 ,

where

m(g) =

(
g

g∗

)
∈ Sp4n(A).

Therefore, we showed that the descent D6n
4n,ψ−1(Ẽτ,π̃) has only one nontrivial

constant term, and it provides us with a unique exponent, namely (2.64), and

this unique exponent is negative. By the square-integrability criterion of Lang-

lands ([MW95, Sec. I.4.11]) the descent D6n
4n,ψ−1(Ẽτ,π̃) is square-integrable as an

automorphic representation of Sp4n(A). Moreover, since this unique constant

term of D6n
4n,ψ−1(Ẽτ,π̃) affords the representation δ

1
2

P 4n
2n
| det ·|− 1

2 ⊗ τ of GL2n(A),

we conclude that

D6n
4n,ψ−1(Ẽτ,π̃) ⊂ L2

d(Sp4n(F )\Sp4n(A)),
that is, the descent D6n

4n,ψ−1(Ẽτ,π̃) (is non-cuspidal and) appears in the dis-

crete automorphic spectrum. By Theorem 2.4, the residual representation Eτ
of Sp4n(A) is nonzero if π̃ is ψ−1-generic. Note that the residual representation

Eτ of Sp4n(A) has only one nonzero constant term, which is the one along P 4n
2n ,

and this nonzero constant term has exactly the same exponent as D6n
4n,ψ−1(Ẽτ,π̃),

namely the one that appears in (2.64). Furthermore, this residual representa-

tion Eτ is irreducible. Hence the descent D6n
4n,ψ−1(Ẽτ,π̃) can be written as a direct

sum of the residual representation Eτ and a cuspidal representation of Sp4n(A)
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(which may be zero, irreducible, or reducible). This completes the proof of Part

3.

The irreducibility of the residual representation Eτ of Sp4n(A) can be deduced

from the facts that the residual representation Eτ is square-integrable, and at

each place v,

Ind
Sp4n(Fv)

P 4n
2n (Fv)

(τv| det | 12 )
has a unique semisimple quotient. The latter follows from the fact that τv, being

generic, can be written as the full parabolic induction from its Langlands data,

and since it is also unitary, we also know (see [Tm86]) that its exponents are in

the open interval (− 1
2 ,

1
2 ). (This argument was explained to us by Erez Lapid,

and we thank him for that.) This completes the proof of the theorem.

3. Certain near-equivalence sets

Let Ad(G) be the set of all irreducible, automorphic representations of G(A),

occurring as subrepresentations in the space of square-integrable automorphic

functions of G(A). In this paper, G(A) is either S̃p2k(A) or Sp2k(A). Recall

that two irreducible automorphic representations πi =
⊗

v πi,v, for i = 1, 2, of

G(A) are said to be near-equivalent if the local components π1,v and π2,v are

equivalent representations of G(Fv), at almost all places v of F . We are going

to define certain near-equivalence subsets in Ad(G), which will be the main

objects studied in the following sections.

3.1. Certain near-equivalence subsets in Ad(S̃p2n). From this point, till

the end of this paper, we fix an irreducible unitary cuspidal automorphic rep-

resentation τ of GL2n(A), such that

(3.1)
LS(s, τ,∧2) has a simple pole at s = 1, and

there exists a ∈ F ∗, such that LS(12 , τ ⊗ χa) 	= 0,

where χa is the quadratic character given by the global Hilbert symbol (·, a).
Definition 3.1: For τ as above, denote by N

˜Sp2n
(τ, ψ) the set of all irreducible

(genuine) cuspidal automorphic representations of S̃p2n(A), which lift weakly

to τ with respect to ψ.

From the definition, it is clear that the set N
˜Sp2n

(τ, ψ) consists of certain

near-equivalent members of Ad(S̃p2n). In fact, for any two members π̃1, π̃2 in



Vol. 192, 2012 CORRESPONDENCES OF AUTOMORPHIC FORMS 983

N
˜Sp2n

(τ, ψ), at any place v of F , where both π̃1,v and π̃2,v are unramified, they

share the same local Satake parameter (with respect to ψv) with τv. Hence π̃1

and π̃2 are near-equivalent.

Note that for τ and a ∈ F ∗ as in (3.1),

(3.2) N
˜Sp2n

(τ, ψ) = N
˜Sp2n

(τ ⊗ χa, ψ
a).

This follows from the following property of the Weil factors,

γψa(x) = γψ(x)χa(x).

Proposition 3.2: The set N
˜Sp2n

(τ, ψ) is not empty. Moreover, there is an

element π̃ in N
˜Sp2n

(τ, ψ) which is (globally) generic.

Proof. For the given representation τ , fix a ∈ F ∗, such that LS(12 , τ ⊗ χa) 	= 0.

Thus, the residual representation Eτ⊗χa of Sp4n(A) exists (is nonzero). We can

consider the following ψa-descent from Sp4n(A) to S̃p2n(A),

π̃ = D̃4n
2n,ψa(Eτ⊗χa).

By Theorem 2.3, π̃ is an irreducible, genuine, ψ−a-generic, cuspidal automorphic

representation of S̃p2n(A), and lies in the set N
˜Sp2n

(τ ⊗ χa, ψ
a). By (3.2), it

follows that π̃ is ψ−a-generic member in N
˜Sp2n

(τ, ψ).

3.2. Certain near-equivalence sets in Ad(Sp4n). Recall that an irredu-

cible cuspidal automorphic representation π of Sp4n(A) is a CAP representation,

with respect to the CAP-datum

(3.3)
(
GL2n, τ,

1
2

)
if at almost all finite places v of F , where the local components πv and τv are

unramified, πv is isomorphic to the irreducible unramified constituent of

Ind
Sp4n(Fv)

P 4n
2n (Fv)

(τv| det | 12 ).
If π ∈ Ad(Sp4n) (cuspidal or not) satisfies the property above, we will say that

π is of type (GL2n, τ,
1
2 ).

Definition 3.3: Let τ be as in (3.1). We denote by NSp4n
(τ, ψ) the set of all

representations π ∈ Ad(Sp4n), such that π is of type (GL2n, τ,
1
2 ), and such

that it has a nonzero Fourier coefficient with respect to the character ψV 4n
n ,1,

i.e. the Fourier coefficient FψV 4n
n ,1 defined in (2.4) is nontrivial on the space of

π.



984 D. GINZBURG, D. JIANG AND D. SOUDRY Isr. J. Math.

The first result is

Proposition 3.4: The set NSp4n
(τ, ψ) is not empty.

Proof. By Proposition 3.2, N
˜Sp2n

(τ, ψ) is not empty. Let π̃ be an element

in this set. Then π̃ lifts weakly to τ with respect to ψ. Hence the residual

representation Ẽτ,π̃ of S̃p6n(A) exists (nonzero). By Theorem 2.5, the descent

D6n
4n,ψ−1(Ẽτ,π̃), as an automorphic representation of Sp4n(A), is nonzero and

can be expressed as a direct sum of irreducible square-integrable automorphic

representations of Sp4n(A), that is,

(3.4) D6n
4n,ψ−1(Ẽτ,π̃) = π1 ⊕ π2 ⊕ · · ·

where all irreducible summands πi belong to Ad(Sp4n), the discrete spectrum of

Sp4n(A). Moreover, all the summands are cuspidal if π̃ is not ψ−1-generic. Oth-

erwise, there is one non-cuspidal summand, which is the residual representation

Eτ . Furthermore, by the calculation of [GRS05, Proposition 5.4] (for k = 1),

every irreducible summand in (3.4) is of type (GL2n, τ,
1
2 ). See also [GRS05,

Lemma 3.1].

To complete the proof, it is enough to show that one of the πi’s belongs to

the set NSp4n
(τ, ψ). This means that one of the πi’s has a nonzero Fourier

coefficient FψV 4n
n ,1(ϕπi) for some ϕπi in the space of the πi. In fact, we show

that if πi is any summand in (3.4), then the Fourier coefficient FψV 4n
n ,1(ϕπi) is

not identically zero on the space of πi.

Assume, first, that πi is cuspidal. From the definition of πi, we deduce that

the integral

(3.5) 〈ϕπi ,FJψ
−1

φ,2n(ξ̃τ,π̃)〉 =
∫
Sp4n(F )\Sp4n(A)

ϕπi(h)FJ
ψ−1

φ,2n(ξ̃τ,π̃)(h)dh

is not zero for some elements ϕπi ∈ πi, ξ̃τ,π̃ ∈ Ẽτ,π̃. Replacing in (3.5) the

residue ξ̃τ,π̃ by a corresponding Eisenstein series Ẽ(g, φτ⊗π̃; s), we deduce that

the following integral,

(3.6)

〈ϕπi ,FJψ
−1

φ,2n(Ẽ(·, φτ⊗π̃; s))〉 =
∫
Sp4n(F )\Sp4n(A)

ϕπi(h)FJ
ψ−1

φ,2n(Ẽ(·, φτ⊗π̃; s)(h)dh,

is a nonzero meromorphic function, for some choice of data. As in the proof

of [GJR04, Proposition 6.6], we unfold the integral and obtain the following
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integral,

(3.7) 〈FJψφ,n(ϕπi), ϕ̃π̃〉 =
∫
Sp2n(F )\Sp2n(A)

FJψφ,n(ϕπi)(g)ϕ̃π̃(g)dg,

as inner integration, for appropriate cusp forms ϕ̃π̃ in π̃. See [GJRS11] for the

theory of global integrals (3.6) in general. We conclude that FJψφ,n(ϕπi) is not

identically zero on πi. From Lemma 2.2, it follows that FψV 4n
n ,1(ϕπi) is nonzero

for some choice of data.

Assume, next, that πi = Eτ is a summand of (3.4). It follows from Theorem

2.3 (applied with ψ−1 instead of ψ) that the Fourier coefficient FψV 4n
n ,1(Eτ ) is

not identically zero on Eτ , and now apply Lemma 2.2 as before.

This proves that all the irreducible summands in (3.4) belong to the set

NSp4n
(τ, ψ), and, in particular, it is not empty.

By combining Theorem 2.5 with the proof of Proposition 3.4, we obtain the

following refinement of Proposition 3.4.

Corollary 3.5: Let τ satisfy (3.1). Suppose that LS(12 , τ) = 0. Then the set

NSp4n
(τ, ψ) contains at least one irreducible cuspidal automorphic representa-

tion of Sp4n(A). If LS(12 , τ) is nonzero, then the set NSp4n
(τ, ψ) contains at

least the residual representation Eτ of Sp4n(A).

Remark 3.6: In our definitions the representations in N
˜Sp2n

(τ, ψ) and the cus-

pidal representations in NSp4n
(τ, ψ) appear with multiplicities. We do assume

that Eτ (when it exists) is not isomorphic to a cuspidal representation. One ex-

pects that the multiplicity one property in the automorphic discrete spectrums

of Sp2m(A) and SO2m+1 holds in general. See [A05]. This would also imply

the multiplicity one property for the cuspidal spectrum of S̃p2m(A), by using

the theta correspondence. See [JS07, Theorems 1.1, 1.3]. In this paper, except

for Eτ , as above, we do not use these multiplicity one properties. We analyze

each automorphic representation in our sets in its concrete realization as an

irreducible submodule in the space of square-integrable automorphic functions

on G(A), where G(A) is either Sp4n(A) or S̃p2n(A).

4. Formulation of the main theorems

The proof of Proposition 3.4 shows more, namely, with π̃ ∈ N
˜Sp2n

(τ, ψ), each

irreducible subrepresentation of the descent D6n
4n,ψ−1(Ẽτ,π̃) lies in NSp4n

(τ, ψ).
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Let N 0
Sp4n

(τ, ψ) be the subset of cuspidal representations in NSp4n
(τ, ψ). Define

N ′
Sp4n

(τ, ψ) to be the following subset of NSp4n
(τ, ψ).

If LS(12 , τ) = 0, then we define

N ′
Sp4n

(τ, ψ) := N 0
Sp4n

(τ, ψ),

and if LS(12 , τ) 	= 0, then we define

N ′
Sp4n

(τ, ψ) := N 0
Sp4n

(τ, ψ) ∪ {Eτ}.
Note that when LS(12 , τ) 	= 0, the residual representation Eτ exists, since we

always assume that τ satisfies (3.1). By Theorem 2.5, for each π̃ ∈ N
˜Sp2n

(τ, ψ),

all irreducible subrepresentations of D6n
4n,ψ−1(Ẽτ,π̃) lie in N ′

Sp4n
(τ, ψ). We expect

that

N ′
Sp4n

(τ, ψ) = NSp4n
(τ, ψ).

In fact, this will be a consequence of Arthur’s theorem on the structure of the

discrete spectrum of Sp4n(A) ([A05]) and the generalized Ramanujan conjec-

ture. However, it seems difficult to prove this equality directly.

Define, for π̃ ∈ N
˜Sp2n

(τ, ψ),

(4.1) Φ(π̃) := D6n
4n,ψ−1(Ẽτ,π̃).

Thus, Φ(π̃) is a nontrivial square integrable automorphic representation of

Sp4n(A), and each irreducible subrepresentation of Φ(π̃) lies in N ′
Sp4n

(τ, ψ).

We have a mapping in the reverse sense, namely the descent map D̃4n
2n,ψ

applied to the elements π of NSp4n
(τ, ψ). Here, the results of [GRS99b] and

[GRS02] apply directly, since the proof that D̃4n
2n,ψ(π) is cuspidal depends only

on the structure of the local component of π at one unramified place. Recall

that at each unramified finite place v, the local component πv is isomorphic to

the unramified constituent of

Ind
Sp4n(Fv)

P 4n
2n (Fv)

(τv| det | 12 ),
and the calculation of the Satake parameter at each unramified local place v

of an irreducible summand of D̃4n
2n,ψ(π) depends only on πv. Since D̃4n

2n,ψ(π)

is nontrivial by definition, we get that every irreducible subrepresentation of

D̃4n
2n,ψ(π) lies in N

˜Sp2n
(τ, ψ).

Define

(4.2) Ψ(π) := D̃4n
2n,ψ(π).
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Thus, Ψ(π) is a nontrivial, genuine, cuspidal automorphic representation of

S̃p2n(A), and each irreducible subrepresentation of Ψ(π) lies in N
˜Sp2n

(τ, ψ).

Define

(4.3) Ψ′ := Ψ|N ′
Sp4n

(τ,ψ),

the restriction of Ψ to the subset N ′
Sp4n

(τ, ψ).

One of our main results is

Theorem 4.1: Let π be in the set N ′
Sp4n

(τ, ψ). Then the descent

Ψ′(π) = Ψ(π) = D̃4n
2n,ψ(π)

is an irreducible automorphic representation of S̃p2n(A).

We will prove this theorem in Section 6.

This theorem provides a mapping,

(4.4) Ψ′ : N ′
Sp4n

(τ, ψ) → N
˜Sp2n

(τ, ψ).

Theorem 4.1 generalizes the irreducibility of the descent in Theorem 2.3. In

fact, if LS(12 , τ) 	= 0 (and, as always, we assume that τ satisfies (3.1)), then the

representation

(4.5) π̃ψ(τ) = Ψ(Eτ )

is irreducible (and nonzero). In this sense, the proof of Theorem 4.1 provides

a new proof of this deep result, which was proved in a different way in [JS03].

(By reviewing the proofs in Sections 5, 6, it is not hard to check that the proof

of Theorem 4.1 does not use Theorem 2.3.) The representation π̃ψ(τ) is also

called the descent (with respect to ψ) of τ (as well as the descent of Eτ ) to

S̃p2n(A).

The mapping Φ provides a sort of inverse to Ψ′. We will prove

Theorem 4.2: For any π̃ in the set N
˜Sp2n

(τ, ψ), we have the equality

Ψ(Φ(π̃)) = π̃

as subspaces in the space of square-integrable automorphic functions on S̃p2n(A).

In particular, for each π̃ ∈ N
˜Sp2n

(τ, ψ), there is π ∈ N ′
Sp4n

(τ, ψ) such that

Ψ′(π) = π̃ (as subspaces).
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Here, we conveniently extended the definition of Ψ, so that if we write Φ(π̃)

as a sum of irreducible subrepresentations

Φ(π̃) = π1 ⊕ π2 ⊕ · · · ,
then

Ψ(Φ(π̃)) = Ψ(π1) + Ψ(π2) + · · · .
This extension of the definition of Ψ makes sense. Recall that each irreducible

subrepresentation π of Φ(π̃) lies in N ′
Sp4n

(τ, ψ), and hence Ψ(π) = Ψ′(π), so
that in Theorem 4.2, Ψ(Φ(π̃)) = Ψ′(Φ(π̃)).
In the reverse direction, we can prove, at this point,

Theorem 4.3: For each representation π ∈ N ′
Sp4n

(τ, ψ), π is a subrepresenta-

tion of Φ(Ψ′(π)), (actual inclusion of subspaces of square-integrable automor-

phic functions on Sp4n(A).

In order to have the full analogue of Theorem 4.2, we need the following

result, which we formulate as an assumption.

Assumption (A): For a representation π̃ in N
˜Sp2n

(τ, ψ), the residual repre-

sentation Ẽτ,π̃ of S̃p6n(A) is irreducible.

The need of Assumption (A) will become clear in the course of our proof. We

remark that this assumption is an expected theorem when admitting Arthur’s

conjectures. See [M11, Theorem 7.1]. We also remark that Assumption (A)

holds if we know that the weak ψ-lift from π̃ to τ is compatible with the local

Langlands functorial lift at all local places, which is the case when π̃ is generic.

The proof follows by the same argument used in the end of the proof of Theorem

2.5, showing there that Eτ is irreducible.

Theorem 4.4: Suppose that Assumption (A) holds. Then, for π ∈ N ′
Sp4n

(τ, ψ),

Φ(Ψ′(π)) = π.

Thus, with Assumption (A), Φ defines a bijection

(4.6) Φ : N
˜Sp2n

(τ, ψ) → N ′
Sp4n

(τ, ψ).

These theorems can be summarized together as our main theorem.

Theorem 4.5: Suppose that Assumption (A) holds. For each π ∈ N ′
Sp4n

(τ, ψ),

Ψ′(π) is irreducible, and for each π̃ ∈ N
˜Sp2n

(τ, ψ), Φ(π̃) is irreducible. Moreover,
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the mappings

Ψ′ : N ′
Sp4n

(τ, ψ) → N
˜Sp2n

(τ, ψ)

and

Φ : N
˜Sp2n

(τ, ψ) → N ′
Sp4n

(τ, ψ)

are bijective, and satisfy

Ψ′ ◦ Φ = IdN
˜Sp2n

(τ,ψ), Φ ◦Ψ′ = IdN ′
Sp4n

(τ,ψ).

We conjecture that Theorem 4.5 holds withNSp4n
(τ, ψ) instead ofN ′

Sp4n
(τ, ψ),

and without adding Assumption (A).

We obtain the following interesting application.

Theorem 4.6: Let a ∈ F ∗ be such that LS(12 , τ ⊗ χa) 	= 0. Then the set

N
˜Sp2n

(τ, ψ) contains a unique representation which is ψ−a- (globally) generic,
namely the representation (4.5) π̃ψa(τ ⊗χa). This representation is the unique,

irreducible, genuine, ψ−a-generic, cuspidal automorphic representation, which

lifts weakly to τ with respect to ψ. In particular, π̃ψa(τ ⊗ χa) occurs with

multiplicity one in the subspace of ψ−a-generic cusp forms on S̃p2n(A).

Proof. Assume first that a = 1. Since LS(12 , τ) 	= 0, we know from Theorem 2.3

that π̃ψ(τ) is ψ
−1-generic. Recall that Assumption (A) holds when π̃ is generic

and so Theorem 4.4 holds for such representations, and, in particular, Φ(π̃) is

irreducible, for (globally) generic π̃. Assume now that π̃ ∈ N
˜Sp2n

(τ, ψ) is ψ−1-

generic. By the proof of Theorem 2.5, we know that Eτ is a subrepresentation of

Φ(π̃), realized in space of square-integrable automorphic functions on Sp4n(A).

By Theorem 4.5, Φ(π̃) is irreducible, and hence we must have Φ(π̃) = Eτ . This
implies that

π̃ = Ψ(Φ(π̃)) = Ψ(Eτ ) = π̃ψ(τ).

Consider now the general case. Assume that π̃ ∈ N
˜Sp2n

(τ, ψ) is ψ−a-generic.
Then by (3.2), π̃ ∈ N

˜Sp2n
(τ ⊗ χa, ψ

a). By the previous case (replacing ψ

by ψa) we conclude that π̃ = π̃ψa(τ ⊗ χa) and the multiplicity one property

follows.

We remark that a ∈ F ∗ is such that LS(12 , τ ⊗ χa) 	= 0, if and only if

N
˜Sp2n

(τ, ψ) contains a representation which is ψ−a-generic. This follows from

Theorems 2.3 and 2.4.

We regard Theorem 4.6 as an automorphic version of Shahidi’s conjecture

[Sh88]. The uniqueness of π̃ψ(τ) up to isomorphism follows from [JS03] and



990 D. GINZBURG, D. JIANG AND D. SOUDRY Isr. J. Math.

[JS04]. Theorem 4.6 says that π̃ψ(τ) is unique (multiplicity one) within the set

of all ψ−1-generic, irreducible, cuspidal automorphic representations of S̃p2n(A).

See also Theorem 1.6 in the introduction and the discussion preceding this

theorem.

5. Two basic identities and the proof of Theorem 4.2

We keep the notation in previous sections. The goal of this section is to es-

tablish two identities which interpret the composition of descent constructions

as indicated in Diagram (1.6) in terms of certain Fourier coefficients. These

identities are new and important to the proofs of Theorems 4.1 and 4.2.

The first identity gives a precise formula for the composition of the two de-

scent maps
FJψφ1,n

◦ FJψ−1

φ2,2n
,

applied to Ẽτ,π̃. The identity is a refined version of the proof of Theorem 2.1, in

case a = −1, in the sense that at each step in the proof of Theorem 2.1, where

we claimed the equivalence of the nonvanishing property of two integrals, we will

now write the precise identity relating these two integrals (e.g., the equality of

the right-hand side of (2.32) and (2.36), the equality of (2.38) and (2.41) etc.).

Of course, we also incorporate Lemma 2.2. As in the proof of Theorem 2.1, the

proof of the following identity is very similar to the proof of identity [GRS99b,

(5.27)], which gives a formula for the ψ−1-Whittaker coefficient of the descent

Ψ(Eτ ) to S̃p2n(A).

Theorem 5.1: Let π̃ belong to the setN
˜Sp2n

(τ, ψ). Let φ1∈S(An),φ2∈S(A2n),

and ξ̃τ,π̃ ∈ Ẽτ,π̃. Assume that φ2 = φ21 ⊗ φ22 with φ21, φ22 ∈ S(An). Then the

following identity holds as functions in h ∈ S̃p2n(A):

(FJψφ1,n
◦ FJψ−1

φ2,2n
)(ξ̃τ,π̃)(h)

=

∫
An

∫
Y (A)

∫
A2n

∫
L(A)

Cψ
′
U2n,−1

N6n
2n

(ξ̃τ,π̃)(hy
′ν′ l̂2b̂yωl̂1)φ(l2, l1)dy′dl2dydl1.

Here, φ ∈ S(A3n) can be written explicitly in terms of φ1, φ21, φ22; the defini-

tions of l̂1, l̂2 are given in the proof; and the remaining notation is as in the proof

of Theorem 2.1 and will be specifically indicated in the course of the proof.

Proof. By definition of Fourier–Jacobi coefficients ((2.58) and (2.59)), the com-

position of the Fourier–Jacobi coefficients FJψφ1,n
and FJψ

−1

φ2,2n
is given by
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(5.1) (FJψφ1,n
◦ FJψ−1

φ2,2n
)(ξ̃τ,π̃)(h)

=

∫
U4n
n (F )\U4n

n (A)

∫
U6n
n (F )\U6n

n (A)

ξ̃τ,π̃(uvh)θ̃
ψ−1

φ2,2n
(�2n(u)vh)ψU6n

n
(u)du

× θ̃ψφ1,n
(�n(v)h)ψU4n

n
(v)dv,

where h ∈ S̃p2n(A).

We first unfold the theta series θ̃ψ
−1

φ2,2n
(�2n(u)vh). Write

�2n(u) = (l1, l2, l3; z),

where l1, l3 ∈ An, l2 ∈ A2n and z ∈ A. Then

θ̃ψ
−1

φ2,2n
(�2n(u)vh) =

∑
ξ1,ξ2∈Fn

ω2n
ψ−1((ξ1, 0, 0; 0)(l1, l2, l3, z)vh)φ2(0, ξ2),

where ω2n
ψ−1 is the Weil representation of S̃p4n(A) attached to the character ψ−1.

Plug this into integral (5.1). Next, we collapse summation with integration in

the variables l1 and ξ1, and conjugate it to the right. Thus, integral (5.1) is

equal to

(5.2)∫
U4n
n (F )\U4n

n (A)

∫
U6n
n,1(F )\U6n

n,1(A)

∫
An

∑
ξ2∈Fn

ω2n
ψ−1(�2n(u)vh(l1, 0, 0, 0))φ2(0, ξ2)

× θ̃ψφ1,n
(�n(v)h)ξ̃τ,π̃(uvhl̂1)ψU6n

n
(u)duψU4n

n
(v)dl1dv.

Here, U6n
n,1 is the subgroup of U6n

n consisting of all u = (ui,j) ∈ U6n
n , such that

un,j = 0, for all n+ 1 ≤ j ≤ 2n. Also, for l1 = (r1, ..., rn) ∈ An,

l̂1 = I6n + r1e
′
n,n+1 + · · ·+ rne

′
n,2n,

where e′i,j is the matrix of size 6n defined by e′i,j = ei,j − e6n−j+1,6n−i+1.

Henceforth, we shall write l1 for (l1, 0, 0, 0).

Note that, following the above notation, we have, for u ∈ U6n
n,1,

�2n(u) = (0, l2, l3; z).
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It follows from the well-known action of the Weil representation that∑
ξ2∈Fn

ω2n
ψ−1((0, l2, l3; z)vhl1)φ2(0, ξ2) =

∑
ξ2∈Fn

ω2n
ψ−1((0, l2, 0; z)hl1)φ2(0, ξ2)

=
∑
ξ2∈Fn

ω2n
ψ−1((0, l2, 0; z)h)φ2(l1, ξ2).

Since φ2 = φ21 ⊗ φ22, we have∑
ξ2∈Fn

ω2n
ψ−1((0, l2, 0; z)h)φ2(l1, ξ2) = θ̃ψ

−1

φ22,n
((l2; z)h)φ21(l1).

Denote �n(u) = (l2; z). Then integral (5.2) is equal to

(5.3)

∫
U4n
n (F )\U4n

n (A)

∫
U6n
n,1(F )\U6n

n,1(A)

∫
An

θ̃ψ
−1

φ22,n
(�n(u)h)θ̃

ψ
φ1,n

(�n(v)h)

× ξ̃τ,π̃(uvhl̂1)φ21(l1)dl1ψU6n
n
(u)duψU4n

n
(v)dv.

Note that this integral is equal to

(5.4)

∫
U4n
n (F )\U4n

n (A)

∫
U6n
n,1(F )\U6n

n,1(A)

θ̃ψ
−1

φ22,n
(�n(u)h)θ̃

ψ
φ1,n

(�n(v)h)

× ξ̃′τ,π̃(uvh)ψU6n
n
(u)duψU4n

n
(v)dv,

where ξ̃′τ,π̃ is the convolution of ξ̃′τ,π̃ against φ21, along An (in the variable l1).

To proceed, we now switch the order of integration (easily justified) in (5.3),

and rewrite it as

(5.5)

∫
An

∫
U4n
n (F )\U4n

n (A)

∫
U6n
n,1(F )\U6n

n,1(A)

θ̃ψ
−1

φ22,n
(�n(u)h)θ̃

ψ
φ1,n

(�n(v)h)

× ξ̃τ,π̃(uvhl̂1)ψU6n
n
(u)duψU4n

n
(v)dvφ21(l1)dl1.

Let ω be the Weyl element (2.15) of Sp6n. As in (2.16), the integral (5.5) is

equal to

(5.6)

∫
An

∫
B(F )\B(A)

θ̃ψ
−1

φ22,n
(�′′(v)h)θ̃ψφ1,n

(�′(v)h)ξ̃τ,π̃(vhωl̂1)ψ1(v)φ21(l1)dvdl1.

Here, B = ω(U6n
n,1U

4n
n )ω−1. This is the group of elements v = v(T,C, Z) as in

(2.17), where the only difference is that now we do not require that the last two

rows of C are zero, and then

�′(v) = (C2n−1;Z2n−1,2), �′′(v) = (C2n;Z2n,1)
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(Ci is the i-th row of C; Zi,j is the (i, j)-th entry of Z); ψ1(v) is given by

ψ(tr([T ]1,2 + · · ·+ [T ]n−1,n))

with notation of (2.17) and (2.18).

Next, we apply the exact same steps which led to (2.19), that is, the steps

(2.20)–(2.28). These steps are to preform a series of Fourier expansions along the

variables in T , below its diagonal, and “exchanging” them with root coordinates

above the diagonal. The analogue of (2.19) is that the integral (5.6) is equal to

(5.7)∫
An

∫
Y (A)

∫
E(F )\E(A)̃

θψ
−1

φ22,n
(�′′n(v)h)θ̃

ψ
φ1,n

(�′n(v)h)ξ̃τ,π̃(vhyωl̂1)ψ1(v)φ21(l1)dvdydl1.

Here, E is the unipotent radical of the standard parabolic subgroup of Sp6n,

whose Levi part is isomorphic to GLn2 × Sp2n. We use this notation in order

to stress the resemblance to (2.19). Note that when we apply the same steps,

which led to (2.30), to the integral (5.4), we get that for a given ξ̃′τ,π̃ there is

ξ̃′′τ,π̃ such that (5.4) is equal to

(5.8)

∫
E(F )\E(A)

θ̃ψ
−1

φ22,n
(�′′n(v)h)θ̃

ψ
φ1,n

(�′n(v)h)ξ̃
′′
τ,π̃(vh)ψ1(v)dv.

Write an element in E in the form v = v(A,C,Z), as in (2.33) and (2.34). Then

�′n(v) and �
′′
n(v) are given by the same formulae for �′(v) and �′′(v) above, and

ψ1(v) is given by

ψ(tr(A1,2 + · · ·+An−1,n))

with notation of (2.34). Finally, the unipotent group Y is the one in (2.19).

By using the properties of theta functions (it takes a “direct sum” embedding

of symplectic/Heisenberg groups to a product of theta series), we have the

identity

(5.9)

θ̃ψ
−1

φ22,n
((x1, y1, ; z1)h)θ̃

ψ
φ1,n

((x2, y2, ; z2)h) = θ̃ψφ3,2n
((x1, x2,−y2, y1; z2 − z1)h̃).

Here, φ3 = φ22 ⊗ φ1, x1, x2, y1, y2 ∈ An,

h̃ =

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝
A −B

A B

C D

−C D

⎞⎟⎟⎟⎠ , 1

⎞⎟⎟⎟⎠ and h =

((
A B

C D

)
, ε

)
.
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Let

γ =

⎛⎜⎜⎜⎝
In 0 − 1

2In 0

In 0 1
2In 0

0 −In 0 1
2In

0 In 0 1
2In

⎞⎟⎟⎟⎠ .

Then γ ∈ Sp4n(F ) and has the property that

(x1, x2,−y2, y1)γ =

(
x1 + x2, y1 + y2,−1

2
(x1 − x2),

1

2
(y1 − y2)

)
,

ĥ :=γ−1h̃ =

((
h

h∗

)
, 1

)
.

We conclude that

(5.10) θ̃ψφ3,2n
((x1, x2,−y2, y1; z1 − z2)h̃)

= θ̃ψφ′
3,2n

((
x1 + x2, y1 + y2,−1

2
(x1 − x2),

1

2
(y1 − y2)

)
ĥ

)
,

where φ′3 = ωψ−1,2n(γ
−1)φ3. Let b̂ ∈ Sp6n(F ) be the matrix (2.31). Then as in

(2.32), after a change of variables (due to conjugation by b̂) and using (5.10),

the integral (5.7) becomes

(5.11)

∫
An

∫
Y (A)

∫
E(F )\E(A)

θ̃ψφ′
3,2n

(�(v)ĥ)ξ̃τ,π̃(vhb̂yωl̂1)ψ1(v)φ21(l1)dvdydl1.

Here, for v = v(A,C,Z), written as before, let us write, for i = 2n − 1, 2n,

Ci = (xi, yi), where xi, yi ∈ An. Then

�(v) = (x2n, y2n,
1

2
x2n−1,−1

2
y2n−1; z2n−1,1).

We unfold the theta series θ̃ψφ′
3,2n

(�(v)ĥ), as we did in the beginning of the proof.

Note that now ĥ acts linearly in the Weil representation. We get that integral

(5.11) is equal to

(5.12)

∫
An

∫
Y (A)

∫
A2n

∫
E′(F )\E′(A)

ξ̃τ,π̃(vhl̂2byωl̂1)ψE′,−1(v)φ(l2, l1)dvdl2dydl1.

Here E′ and ψE′,−1 are as in (2.36) and φ = φ′3 ⊗ φ21. The embedding of

l2 = (m1, ...,m2n) ∈ A2n inside Sp6n(A) is denoted by l̂2 and is given by

l̂2 = I6n +
2n∑
i=1

mie
′
2n,2n+i.
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Applying the steps (5.9)–(5.12) to (5.8), and using the same argument which

yielded (5.4), we get that for a given ξ̃′′τ,π̃, there is ξ̃′′′τ,π̃ such that the integral

(5.8) is equal to

(5.13)

∫
E′(F )\E′(A)

ξ̃′′′τ,π̃(vh)ψE′,−1(v)dv.

In the notation of (2.36), the integral (5.12) can we rewritten as

(5.14)

∫
An

∫
Y (A)

∫
A2n

FψE′,−1(hl̂2byωl̂1 � ξ̃τ,π̃)φ(l2, l1)dl2dydl1,

where the star denotes the action by right translation. By (2.41), the integral

(5.14) is equal to

(5.15)

∫
An

∫
Y (A)

∫
A2n

∫
L(A)

Fψ′
V 6n
2n ,−1(hy′ν′ l̂2byωl̂1 � ξ̃τ,π̃)φ(l2, l1)dy′dl2dydl1.

Here, Fψ′
V 6n
2n ,−1 denotes the operation of taking a Fourier coefficient along V 6n

2n ,

with respect to the character ψ′
V 6n
2n ,−1

given by (2.42), with a = −1. Similarly,

when we apply (2.51) to (5.13), we get that for a given ξ̃′′′τ,π̃, there is ε̃τ,π̃ (in

Ẽτ,π̃) such that, for all h ∈ S̃p2n(A),

(5.16)

∫
E′(F )\E′(A)

ξ̃′′′τ,π̃(vh)ψE′,−1(v)dv = Fψ′
V 6n
2n

,−1(ε̃τ,π̃)(h).

Now, (2.55) shows that the integral (5.15) is equal to∫
An

∫
Y (A)

∫
A2n

∫
L(A)

∫
U2n(F )\U2n(A)

CN6n
2n
(hy′ν′ l̂2byωl̂1 � ξ̃τ,π̃)(u)(5.17)

ψ′
U2n,−1(u)duφ(l2, l1)dudy

′dl2dy′dl1dy.

We used the notation of (2.55). This proves our identity, when we denote

Cψ
′
U2n,−1

N6n
2n

(ξ̃τ,π̃) =

∫
U2n(F )\U2n(A)

CN6n
2n
(ξ̃τ,π̃)(u)ψ

′
U2n,−1(u)du.

Similarly, we get that in (5.16),

(5.18)

∫
E′(F )\E′(A)

ξ̃′′′τ,π̃(vh)ψE′,−1(v)dv = Cψ
′
U2n,−1

N6n
2n

(ε̃τ,π̃)(h).

As a first consequence, we have the following precise results for the com-

position of the two consecutive descents of the residual representation Ẽτ,π̃ of

S̃p6n(A).
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Proposition 5.2: The space of automorphic forms on S̃p2n(A) generated by

all elements

(FJψφ1,n
◦ FJψ−1

φ2,2n
)(ξ̃τ,π̃)(h),

as in (5.1), is equal to the space of the automorphic representation π̃. In other

words, the space of the double descent

D̃4n
2n,ψ ◦ D6n

4n,ψ−1(Ẽτ,π̃)

of the residual representation Ẽτ,π̃ and the space of π̃ are equal.

Proof. Denote the right-hand side of the identity in Theorem 5.1 by I(ξ̃τ,π̃ , φ).

By (5.4), (5.8), (5.13), (5.16), (5.18), it follows that the space generated

by the functions I(ξ̃τ,π̃ , φ) is contained in the space generated by the func-

tions Cψ
′
U2n,−1

N6n
2n

(ε̃τ,π̃). As we explained in the end of the proof of Theorem 2.1,

the functions of h ∈ S̃p2n(A), C
ψ′
U2n,−1

N6n
2n

(ε̃τ,π̃)(h), lie in the space of π̃. Since π̃

is irreducible, and since D̃4n
2n,ψ ◦ D6n

4n,ψ−1(Ẽτ,π̃) is nontrivial, we get that

D̃4n
2n,ψ ◦ D6n

4n,ψ−1(Ẽτ,π̃) = π̃.

Now Theorem 4.2 follows from Theorem 5.1 and Proposition 5.2. Namely,

for any representation π̃ ∈ N
˜Sp2n

(τ, ψ), we have

Ψ(Φ(π̃)) = π̃.

The second identity relates two expressions of elements in representations

π in NSp4n
(τ, ψ), which are obtained in two different ways. One is to use

the composition of two consecutive descents and the other is to use certain

Fourier coefficients. In more details, given such a π in NSp4n
(τ, ψ), we form the

Eisenstein series E(g, φτ,π;s) associated to a holomorphic section φτ,π;s in

(5.19) Ind
Sp8n(A)

P 8n
2n (A)

(τ | det |s ⊗ π).

Recall that P 8n
2n is the standard parabolic subgroup of Sp8n, whose Levi part

is isomorphic to GL2n × Sp4n. Because π is of type (GL2n, τ,
1
2 ), the partial

tensor product L-function LS(s, τ × π) has a pole at s = 3
2 . This implies

that the Eisenstein series E(g, φτ,π;s) has a simple pole at s = 3
2 . To explain

this, consider the constant term CN8n
2n
(E(·, φτ,π;s)) along P 8n

2n . Then, due to the

cuspidality of τ , we have, for Re(s) large, and g ∈ GL2n(A)×Sp4n(A) (identified
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with the Levi part of P 8n
2n (A)),

(5.20)
CN8n

2n
(E(·, φτ,π;s))(g) =φτ,π;s(g)

+
∑

γ∈P 4n
2n (F )\Sp4n(F )

∫
Z2n(A)

∫
N4n

2n (F )\N4n
2n (A)

φτ,π;s(v
′w1zγ

′g)dvdz

+M(w0)(φτ,π;s)(g),

where the notation is as follows: M(w0) is the intertwining operator with respect

to the corresponding long Weyl element

w0 =

⎛⎜⎝ I2n

I4n

−I2n

⎞⎟⎠ ;

w1 is the Weyl element diag(ω1, ω
∗
1), where

ω1 =

(
I2n

I2n

)
;

for γ ∈ Sp4n, γ
′ = diag(I2n, γ, I2n); Z2n is the subgroup of elements diag(u, u∗),

where u is of the form

u =

(
I2n �

I2n

)
.

Note that the inner dv-integration in the second term of (5.20) provides the

constant term on π along P 4n
2n . This is of course zero, unless π = Eτ , in which

case we must have LS(12 , τ) 	= 0. Here, we use the fact that π is of type

(GL2n, τ,
1
2 ). The normalizing factor of M(w0)(φτ,π;s) (outside S) is

LS(π × τ, s)LS(τ,∧2, 2s)

LS(π × τ, s+ 1)LS(τ,∧2, 2s+ 1)
.

Since π is of type (GL2n, τ,
1
2 ), this is equal to

LS(τ × τ, s+ 1
2 )L

S(τ × τ, s− 1
2 )L

S(τ, s)LS(τ,∧2, 2s)

LS(τ × τ, s+ 3
2 )L

S(τ × τ, s+ 1
2 )L

S(τ, s+ 1)LS(τ,∧2, 2s+ 1)
,

and now we see that s = 3
2 is a pole of LS(τ × τ, s − 1

2 ), and clearly, at this

point all the remaining factors are holomorphic and nonzero. This shows that

M(w0)(φτ,π;s) has a pole at s = 3
2 . In the case π = Eτ , it is easy to see that

the second term in (5.20) does not have a pole at s = 3
2 . Thus, the Eisenstein
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series above has a (simple) pole at s = 3
2 . Denote the corresponding residual

representation by Eτ,π. Note that what we just explained also proves

Proposition 5.3: Let π ∈ NSp4n
(τ, ψ). Then we have the following equality

of the spaces of automorphic representations of GL2n(A)× Sp4n(A),

CN8n
2n
(Eτ,π) = δ

1
2

P 8n
2n
| det |− 3

2 τ ⊗ π.

The analogue of Theorem 2.1 works with almost the same proof, except for

obvious modifications, for the representation Eτ,π. We formulate the analogous

theorem and list the main steps of the proof, which follow the main steps in the

proof of Theorem 2.1, each of which carries the same proof, as in Theorem 2.1.

Theorem 5.4: For all integers l, such that n < l ≤ 4n, the residual repre-

sentation Eτ,π has no nonzero Fourier coefficient attached to the symplectic

partition

[(2l)12(4n−l)].

Also, Eτ,π has a nonzero Fourier coefficient associated with any choice of rep-

resentative of the unipotent orbit [(2n)16n], i.e., for all a ∈ F ∗, the Fourier

coefficient FψV 8n
n ,a , defined in (2.4), is nontrivial on Eτ,π.

Proof. The fact that Eτ,π has no nonzero Fourier coefficient corresponding to

any unipotent orbit attached to [(2l)12(4n−l)], for n < i ≤ 4n, follows from

[GRS05, Lemma 3.1(1) and Lemma 3.3] (for k = 2). Thus, it remains to prove

the statement about the orbit [(2n)16n]. We need to prove that for all a ∈ F ∗,
the integral

(5.21) FψV 8n
n ,a(ξτ,π) =

∫
V 8n
n (F )\V 8n

n (A)

ξτ,π(v)ψV 8n
n ,a(v)dv

is not identically zero, as ξτ,π varies in Eτ,π. This is equivalent, by [GRS03,

Lemma 1.1], to the nonvanishing of the following Fourier coefficient on Eτ,π,

(5.22) Fψ(V ′)8nn ,a(ξτ,π) =

∫
(V ′)8nn (F )\(V ′)8nn (A)

ξτ,π(v)ψ(V ′)8nn ,a(v)dv,

where (V ′)8nn is the group of the following elements in Sp8n,

v(u, x, z) =

⎛⎜⎝u x z

I6n x′

u∗

⎞⎟⎠ ,
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where u ∈ Un, x ∈ Matn×6n is such that xn,1 = · · · = xn,3n = 0, and

ψ(V ′)8nn ,a(v(u, x, z)) = ψ(u1,2 + · · ·+ un−1,n + azn,1).

Thus, the nonvanishing, for some choice of data, of the Fourier coefficient (5.21)

is equivalent to that of the following coefficient,

(5.23) Fψ
˜V 8n
n ,a(ξτ,π) =

∫
˜V 8n
n (F )\˜V 8n

n (A)

ξτ,π(v)ψ˜V 8n
n ,a(v)dv,

where Ṽ 8n
n is the subgroup of v(u, x, z) ∈ (V ′)8nn , such that xn,3n+1 = · · · =

xn,5n = 0, and ψ
˜V 8n
n ,a is defined by restriction of ψ(V ′)8nn ,a to Ṽ 8n

n (A). The

nontriviality of the coefficient (5.23) will follow from the nontriviality of the

following Fourier coefficient on our residual representation,

(5.24)

∫
V 6n
n (F )\V 6n

n (A)

∫
˜V 8n
n (F )\˜V 8n

n (A)

ξτ,π(vv1)ψ˜V 8n
n ,a(v)ψV 6n

n ,−a(v1)dvdv1.

As in the proof of (2.14), the proof of (5.24) is very similar to [GRS99b, Sec. 5].

Let

(5.25) ω′ =

⎛⎜⎝ω̃ I4n

ω̃∗

⎞⎟⎠ ∈ Sp6n(F ),

where ω̃ is defined in (2.15). Let R1 = Ṽ 8n
n V 6n

n , and consider

B1 = ω′R1(ω
′)−1.

The integral (5.24) is equal to

(5.26)

∫
B1(F )\B1(A)

ξτ,π(vω
′)χψ,a(v)dv.

The group B1 consists of the following elements in Sp8n,

(5.27) v(T,C, Z) =

⎛⎜⎝T C Z

I4n C′

T ∗

⎞⎟⎠ ,

where the last two rows of C are zero and T ∈ GL2n has the form described

right after (2.17), and the character χψ,a is given by (2.18).

Next, the integral (5.26) is equal to

(5.28)

∫
Y1(A)

∫
E1(F )\E1(A)

ξτ,π(vyω
′)ψ′

E1,a(v)dvdy,
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where Y1 is the subgroup of lower unipotent matrices in B1, E1 is the unipotent

group of Sp8n, which corresponds to the symplectic partition [(2n)214n], and

ψ′
E1,a

= ψ[(2n)214n];a,−a, the associated character (2.8). Thus, the dv integra-

tion in (5.28) is the application of the Fourier coefficient Fψ[(2n)214n];a,−a . The

proof is exactly the same as the one for (2.19) (with the same root subgroups

X(i,j), Y (i,j), but the only difference is that their matrices have I4n as a middle

block, instead of I2n). Moreover, the integral (5.26) is not identically zero if and

only if the inner integral of (5.28), which is (up to a right translation by yω′)
Fψ[(2n)212n];a,−a(ξτ,π), is not identically zero on Eτ,π. Exactly as in (2.30), we also

get that, for a given ξτ,π, there is ξ′τ,π (in Eτ,π) such that, for all h ∈ Sp4n(A),

(5.29)∫
Y1(A)

∫
E1(F )\E1(A)

ξτ,π(vyhω
′)ψ′

E1,a(v)dvdy =

∫
E1(F )\E1(A)

ξ′τ,π(vh)ψ
′
E1,a(v)dv.

Let b̂′ be the matrix defined as in (2.31), except that the middle block I2n is

replaced by I4n. Then

(5.30) Fψ[(2n)212n ];a,−a(ξτ,π) =

∫
E1(F )\E1(A)

ξτ,π(vb̂′)ψE1,a(v)dv,

where ψE1,a is the character ψ′
E1,a

, conjugated by b̂′. Note that the elements of

the unipotent subgroup E have the form (2.33), (2.34), with the middle block

I2n replaced by I4n, and then the character ψE1,a is given by (2.35). By [GRS03,

Lemma 1.1], it follows that the integral on the right-hand side of (5.30) is not

identically zero, if and only if the following integral is not identically zero on

Eτ,π:

(5.31) FψE′
1
,a(ξτ,π) =

∫
E′

1(F )\E′
1(A)

ξτ,π(v)ψE′
1,a

(v)dv,

where E′
1 is the unipotent F -group consisting of the elements of the form (2.33),

with the only difference that the middle block I2n is replaced by I4n, and with A

as in (2.34), but on C we require that only its last row is zero and the character

ψE′
1,a

of E′
1(A) is defined by formula (2.35). Let ν′′ be the Weyl element in

Sp8n(F ) obtained by replacing I2n by I4n in ν′, defined in (2.37). Then

(5.32) FψE′
1
,a(ξτ,π) =

∫
B′

1(F )\B′
1(A)

ξτ,π(vν
′)ψB′

1,a
(v)dv,

where B′
1 = ν′′E′

1(ν
′′)−1. The elements in B′

1 have the form (2.39), with I2n

replaced by I4n, and ψB′
1,a

is given by (2.40). Now we get the analogue of
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(2.41). The proof is almost a repetition of that which yields (2.41). Here, we

use the property that, for all n < l ≤ 4n, Eτ,π has no nonzero Fourier coefficient

attached to [(2l)12(4n−l)]. Thus, we get that the right-hand side of (5.32) is

equal to

(5.33)

∫
L1(A)

∫
V 8n
2n (F )\V 8n

2n (A)

ξτ,π(vyν
′′)ψ′

a(v)dvdy,

where L1 is the subgroup consisting of lower unipotent matrices in B′
1, and ψ

′
a

is the character of V 8n
2n (A) given by

(5.34) ψ′
a(v) = ψ(v1,2 + · · ·+ vn−1,n − avn,n+1 − vn+1,n+2 − · · · − v2n−1,2n).

Together with (5.33), we conclude that the integral (5.32) is not identically zero,

if and only if the integral

(5.35)

∫
V 8n
2n (F )\V 8n

2n (A)

ξτ,π(v)ψ
′
a(v)dv

is not identically zero (as ξτ,π varies in Eτ,π). Moreover, as in (2.51), we get

that for a given ξτ,π, there is ξ′τ,π such that, for all h ∈ Sp4n(A),

(5.36)∫
L1(A)

∫
V 8n
2n (F )\V 8n

2n (A)

ξτ,π(vyhν
′′)ψ′

a(v)dvdy =

∫
V 8n
2n (F )\V 8n

2n (A)

(ξ′τ,π(vh)ψ
′
a(v)dv.

The argument similar to the one outlined after (2.52) shows that (5.35) is

equal to

(5.37)

∫
U8n

2n (F )\U8n
2n (A)

ξτ,π(v)ψ
′′
a (v)dv,

where U8n
2n is the unipotent radical of the standard parabolic subgroup, whose

Levi part is isomorphic to GL2n
1 ×Sp4n, and ψ

′′
a is the character of U8n

2n (A) given

by the same formula as (5.34). The integral (5.37) is equal to

(5.38)

∫
U2n(F )\U2n(A)

CN8n
2n
(ξτ,π)(u)ψ

′
U2n,a(u)du,

where the character ψ′
U2n,a

is the Whittaker character of U2n(A) given by

the formula (5.34); N8n
2n is the unipotent radical of P 8n

2n ; and CN8n
2n
(ξτ,π) is

the constant term along P 8n
2n , applied to ξτ,π. By Proposition 5.3, we have

the following equality of the spaces of automorphic representations of

GL2n(A)× Sp4n(A),

CN8n
2n
(Eτ,π) = δ

1
2

P 8n
2n
| det |− 3

2 τ ⊗ π,
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and now it is clear that (5.38) is not identically zero.

Exactly in the same way that Theorem 5.1 follows by a precise book keeping

of the steps of the proof of Theorem 2.1, we can do the same with the proof

of the last theorem and obtain an identity, which is completely analogous to

that of Theorem 5.1. It has the exact same structure. We will omit the proof.

It is very similar to that of Theorem 5.1. One can see that these identities do

generalize, but we prefer not to go into the general case in this paper, as this

will require many more technical details and notations, and we want to keep

this paper in a reasonable size. Here is the identity, analogous to Theorem 5.1.

Theorem 5.5: Let π belong to the set NSp4n
(τ, ψ). Let φ1 ∈ S(A2n),

φ2 ∈ S(A3n) and ξτ,π ∈ Eτ,π. Assume that φ2 = φ21 ⊗ φ22, where

φ21 ∈ S(An), φ22 ∈ S(A2n). Then the following identity holds, as functions

in h ∈ Sp4n(A),

(5.39) (FJψ
−1

φ1,2n
◦ FJψφ2,3n

)(ξτ,π)(h)

=

∫
An

∫
Y1(A)

∫
A4n

∫
L1(A)

CN8n
2n
(ξτ,π̃)

ψ′
U2n,−1(hy′ν′′ l̂2b̂′yω′l̂1)φ(l2, l1)dy′dl2dydl1,

where the notation can be explained as follows. By the definitions in (2.58) and

(2.59),

(FJψ
−1

φ1,2n
◦ FJψφ2,3n

)(ξτ,π)(h)

:=

∫
U6n
n (F )\U6n

n (A)

FJψφ2,3n
(ξτ,π)(vh)θ̃

ψ−1

φ1,2n
(�2n(v)h)ψU6n

n
(v)dv,

with the function φ in S(A5n), which can be written explicitly in terms of

φ1, φ21, φ22. The elements ω′, b̂′, ν′′, the unipotent groups Y1, L1, and the

Whittaker character ψ′
U2n

for GL2n are all defined in the proof of Theorem 5.4.

Finally, for l1 = (x1, ..., xn) ∈ An,

l̂1 = I8n +

n∑
i=1

xie
′
n,n+i,

and for l2 = (y1, ..., y4n) ∈ A4n,

l̂2 = I8n +
4n∑
i=1

yie
′
2n,2n+i,
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where e′i,j = ei,j − e8n−j+1,8n−i+1, and ei,j is the 4n× 4n matrix, which has 1

at the coordinate (i, j), and zero elsewhere.

Exactly as in the proof of Proposition 5.2, we conclude, using Proposition

5.3,

Proposition 5.6: The space of automorphic forms on Sp4n(A) generated by

the elements

(FJψ
−1

φ1,2n
◦ FJψφ2,3n

)(ξτ,π)(h)

in (5.39) is equal to the space of π.

Theorem 5.5 and Proposition 5.6 prove the following analogue of Theorem

4.2:

Theorem 5.7: For any representation π ∈ NSp4n
(τ, ψ), the space of the double

descent is identically equal to the space of π:

D6n
4n,ψ−1(D̃8n

6n,ψ(Eτ,π)) = π.

For elements of N ′
Sp4n

(τ, ψ), we have the following analogue of Theorem 2.5.

As in Theorem 2.5, our working assumption is that no subrepresentation of Ẽτ,π̃
is isomorphic to a cuspidal representation.

Theorem 5.8: Let π ∈ N ′
Sp4n

(τ, ψ). Then the automorphic representation

D̃8n
6n,ψ(Eτ,π) is square-integrable. Moreover, there is an irreducible subrepresen-

tation π̃ of Ψ(π), such that the space of the ψ-descent D̃8n
6n,ψ(Eτ,π) has a non-

trivial intersection with the space of the residual representation Ẽτ,π̃ of S̃p6n(A).

Proof. We follow the proof of Theorem 2.5. We have a formula, as in (2.62),

for the constant term along P 6n
r , 1 ≤ r ≤ 3n, of FJψφ,3n(ξτ,π) (evaluated at the

identity). It reads

(5.40)

r∑
j=0

∑
γ∈P 1

r−j,1j (F )\GLr(F )

∫
L(A)

φ1(i(λ))FJ
ψ
φ2,3n−r(CN8n

r−j
(ξτ,π))(γ̂λβ)dλ.

Here, we assume that φ = φ1 ⊗ φ2 with φ1 ∈ S(Ar) and φ2 ∈ S(A3n−r); the
subgroup P 1

r−j,1j is the one in (2.62); the rest of the notation is similar; for

a ∈ GLk, k ≤ 4n, we denote â = diag(a, I2(4n−k), a∗); the group L is unipotent
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and consists of all matrices

λ =

(
Ir 0

x In

)∧
∈ Sp8n,

and in this notation i(λ) is the last row of x; and finally,

β = βr =

(
Ir

In

)∧
.

The proof of the formula appears in detail in Sec. 7.6 in the book [GRS11].

The residual representation Eτ,π has only one nontrivial constant term, namely

the one along P 8n
2n , in the case that π is cuspidal. In the case that π = Eτ , it

has an additional constant term, which is along P 8n
4n , the standard maximal

parabolic subgroup whose Levi part GL4n. Thus, in (5.40), either r − j = 0,

r − j = 2n, or r − j = 4n.

Since r ≤ 3n, the last case is impossible. If r − j = 0, then the corre-

sponding term in (5.40) is zero. Indeed, in this case, FJψφ2,3n−r(CN8n
r−j

(ξτ,π)) =

FJψφ2,3n−r(ξτ,π), and since the Fourier–Jacobi coefficient FJψφ2,3n−r involves the

Fourier coefficient corresponding to [2(n+ r), 12(3n−r)] (Lemma 2.2), we see, by

the first part of Theorem 5.4, that FJψφ2,3n−r is zero on Eτ,π. Thus, r− j = 2n.

If j ≥ 1, then the corresponding term in (5.40) is zero. For this, we will

show that FJψφ2,3n−r(CN8n
2n
(ξτ,π)) is identically zero on Eτ,π. By Proposition

5.3, the restriction of CN8n
2n
(ξτ,π) to the Levi subgroup of P 8n

2n (A), identified

with GL2n(A) × Sp4n(A), lies in δ
1
2

P 8n
2n
| det |− 3

2 τ ⊗ π. When we further apply

FJψφ2,3n−r, we apply it to the second factor in the tensor product, namely to π.

Note that this Fourier–Jacobi coefficient involves the Fourier coefficient corre-

sponding to [2(2n − t), 12t], where t = 3n − r. Since r = 2n + j > 2n, t < n.

Since π is of type (GL2n, τ,
1
2 ), any such Fourier coefficient is trivial on π, and

hence (Lemma 2.2) FJψφ2,3n−r is trivial on π.

We conclude that (5.40) is zero, unless r = 2n, and then it reduces to just

one term, namely the one corresponding to j = 0. In this case the constant

term CN6n
2n
(FJψφ,3n(ξτ,π)) (evaluated at the identity) is, with notation as above,

equal to

(5.41)

∫
L(A)

φ1(i(λ))FJ
ψ
φ2,n

(CN8n
2n
(ξτ,π))(λβ2n)dλ.
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From (5.41), it is easy to see that, as a representation of GL2n(A)× S̃p2n(A),

(5.42) CN6n
2n
(D̃8n

6n,ψ(Eτ,π)) = γψδ
1
2

P 6n
2n
| det |−1τ ⊗Ψ(π).

Thus, D̃8n
6n,ψ(Eτ,π) has a unique exponent and it is negative. In particular, it

is square-integrable, and if ρ is a non-cuspidal irreducible subrepresentation,

then (5.42) implies that ρ must be an irreducible subrepresentation of Ẽτ,π̃, for
some irreducible subrepresentation π̃ of Ψ(π). This proves that the space of the

descent D̃8n
6n,ψ(Eτ,π) has a nontrivial intersection with the space of the residual

representation Ẽτ,π̃, when π is member in N ′
Sp4n

(τ, ψ).

Remark 5.9: Note that in Theorem 5.8, we do not use Assumption (A). If we use

Assumption (A), then the residual representation Ẽτ,π̃ of S̃p6n(A) is irreducible.

In this case, Theorem 5.8 asserts that the ψ-descent D̃8n
6n,ψ(Eτ,π) contains the

residual representation Ẽτ,π̃ as an irreducible subrepresentation. This is the

technical point where Assumption (A) is needed in the proof of Theorem 4.4 in

§6.2.

6. Proof of the main theorems

In this section, we are going to use the results established in the previous section

and prove Theorems 4.1, 4.3, and 4.4. From these theorems, Theorem 4.5

follows.

6.1. Proof of Theorem 4.1: Irreducibility of Ψ′(π). Let π∈N ′
Sp4n

(τ, ψ).

By Theorem 5.7,

(6.1) π = D6n
4n,ψ−1(D̃8n

6n,ψ(Eτ,π)).
By Theorem 5.8, there is an irreducible subrepresentation π̃ of Ψ(π) such that

the space of D̃8n
6n,ψ(Eτ,π) contains an irreducible subrepresentation σ of Ẽτ,π̃.

From (6.1), since π is irreducible, we get that

(6.2) π = D6n
4n,ψ−1(σ).

By definition, D6n
4n,ψ−1(σ) ⊂ Φ(π̃), and hence

(6.3) π ⊂ Φ(π̃).

Applying Theorem 4.2, we get

Ψ(π) = Ψ′(π) ⊂ Ψ(Φ(π̃)) = π̃.
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Since π̃ is irreducible, we conclude that Ψ(π) = π̃ is irreducible. This proves

Theorem 4.1.

6.2. Proof of Theorems 4.3, 4.4. Let π ∈ N ′
Sp4n

(τ, ψ). By Theorem 4.1,

Ψ(π) = π̃ is irreducible. By (6.3), we get

π ⊂ Φ(π̃) = Φ(Ψ(π)).

This proves Theorem 4.3.

Suppose that Assumption (A) holds. Then in the proof of Theorem 4.1, we

get that σ = Ẽτ,π̃ as in Remark 5.8, and then, by (6.2),

π = D6n
4n,ψ−1(Ẽτ,π̃) = Φ(π̃) = Φ(Ψ(π)).

This proves Theorem 4.4. Theorem 4.5 now follows.

We note that Assumption (A) is used only in the last step of the proof of

Theorem 4.4.
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