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ABSTRACT

Type spaces in the sense of Harsanyi (1967/68) play an important role in

the theory of games of incomplete information. They can be considered

as the probabilistic analog of Kripke structures. By an infinitary propo-

sitional language with additional operators “individual i assigns probabil-

ity at least α to” and infinitary inference rules, we axiomatize the class

of (Harsanyi) type spaces. We prove that our axiom system is strongly

sound and strongly complete. To the best of our knowledge, this is the very

first strong completeness theorem for a probability logic with σ-additive

probabilities. We show this by constructing a canonical type space whose

states consist of all maximal consistent sets of formulas. Furthermore, we

show that this canonical space is universal (i.e., a terminal object in the

category of type spaces) and beliefs complete.

1. Introduction

1.1. Games of incomplete information and Harsanyi type spaces.

Consider players that are uncertain about a set S, called the space of states

of nature, each element of which can be thought of as a complete list of the

players’ strategy sets and payoff functions, that is, a state of nature consists of
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a complete specification of the “rules” of the game. (Other interpretations are

also possible. For example, if a game of complete information is given, a state

s ∈ S could be the strategy profile that the players are actually going to choose

(see the analysis of epistemic conditions for Nash equilibrium by Aumann and

Brandenburger (1995)).) In such a situation, following a Bayesian approach,

each player will base his choice of a strategy on his subjective beliefs (i.e., a

probability measure) on S. Since a player’s payoff depends also on the choices

of the other players, and these are based on their beliefs as well, each player

must also have beliefs on the other players’ beliefs on S. For the same reason,

he must also have beliefs on the other players’ beliefs on his beliefs on S, beliefs

on the other players’ beliefs on his beliefs on their beliefs on S, and so on. So,

in analyzing such a situation, it seems to be unavoidable to work with infinite

hierarchies of beliefs. Thus, the resulting model is complicated and cumber-

some to handle. In fact, this was the reason that for a long time prevented the

analysis of games of incomplete information.

A major breakthrough took place with three articles of Harsanyi (1967/68),

where he succeeded in finding another, more workable model to describe inter-

active uncertainty. He invented the notions of type and type space: With

each point in a type space, called a state of the world, are associated a state

of nature and, for each player, a probability measure on the type space itself

(that is, that player’s type in this state of the world). Usually it is assumed

that the players “know their own type”, that is, a type of a player in a state

assigns probability one to the set of those states where this player is of this type.

This is the formalization of the idea that the players should be introspective.

Since each state of the world is associated with a state of nature, each player’s

type in a state of the world induces a probability measure on S. But also, since

with each state of the world there is associated a type for each player (and hence

indirectly a probability measure on S for this player), the type of a player in a

state of the world induces a probability measure on the other players’ probabil-

ity measures on S. Proceeding like this, one obtains in each state of the world

a hierarchy of beliefs for each player, in the sense described above.

The advantages of Harsanyi’s model are obvious: Since we have in each state

of the world just one probability measure for each player, contrary to the hierar-

chical description of beliefs, this model fits in the classical Bayesian framework

of describing beliefs by one probability measure, and provides therefore all its

advantages (for example, it allows for integration with respect to beliefs).
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Type spaces have become the predominant structures to describe incomplete

information in an interactive context in game theory. See Aumann and Heifetz

(2001) for a nice and well-accessible introduction to the subject (see Siniscalchi

(2008) for a more recent overview article).

1.2. Different approaches to define a space of all possible beliefs,

beliefs about beliefs ... However, if the analyst uses some particular type

space to analyze such a situation, he—informally—assumes that the type space

itself is “commonly known” or “mutually agreed on” by the players. Otherwise,

the type space itself would be a new source of mutual uncertainty for the players.

This problem can be avoided if there is a “largest” type space that “contains

all types”. The definition of a type depends on its context, that is, the type

space it belongs to. For this reason it is not clear what “all types” (respectively

“all possible states of the world”) are. In the literature, there are three ways to

formalize what a space of all types should be:

1.2.1. The explicit approach—the canonical model 1. The first manner to define

a space of all types is to describe in minute detail, first, the space of underlying

uncertainty, that is, the space of states of nature, then, for each player, the set

of all possible beliefs about the space of states of nature, then, the set of all

possible beliefs about the product of the space of states of nature and profiles of

beliefs of the other players about the space of states of nature, and so on. After

that, one carries out the reverse of Harsanyi’s project and shows that the space

of all profiles of such hierarchies can naturally be endowed with the structure of

a Harsanyi type space. This was done by Mertens and Zamir (1985) under the

assumption that the underlying space of states of nature is a compact Hausdorff

space and all involved functions are continuous. A construction in this vein had

already been proposed before by Armbruster and Böge (1979). The topological

assumption of Mertens and Zamir (1985) was relaxed by Brandenburger and

Dekel (1993), Heifetz (1993), Mertens, Sorin and Zamir (1994), Battigalli and

Siniscalchi (1999) and Pinter (2005)2 to more general topological assumptions.

However, since probability measures are already quite complicated objects, it

1 The distinction of the explicit versus the implicit description of mutual uncertainty follows

Aumann and Heifetz (2001)
2 Pinter starts with a measurable space of states of nature, but then endows the spaces of

higher-order beliefs with suitably chosen topologies. This allows him to apply a projective

limit construction (or an appropriate version of the Kolmogorov extension theorem) as in
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would be interesting to know whether it is possible to carry out a more nat-

ural construction than the ones mentioned here, where a language would be

devised in which the players convey whether or not the plausibility they attach

to already defined expressions falls short of a given level.

In this article we want—in the spirit of the aforementioned approach—to

describe the states in a type space explicitly, however, in a different, more

basic way. Here, we want to describe an epistemic situation—a state of the

world—with a simpler vocabulary: Using a modal language, where the beliefs

of the individuals are described by modal operators that simply tell whether

the individual attaches probability ≥ α to the event described by some already

defined formula of the language.

It is well-known that Kripke structures (and in particular Knowledge spaces,

see Hintikka (1962) or Aumann (1976)) can be axiomatized in terms of modal

logic (see, for example, Kripke (1963), Aumann (1995), Fagin et al. (1995),

Heifetz (1997), and Aumann (1999a)). In this paper we aim to do the same for

type spaces in the sense of Harsanyi (1967/68), which can be considered as the

probabilistic analog of Kripke structures.

We define an infinitary modal language with operators pαi , “individual i as-

signs probability at least α” for rational α ∈ [0, 1] , and then a system of in-

finitary axioms and inference rules, which we prove to be strongly sound and

strongly complete with respect to the class of (Harsanyi) type spaces (Theorem

1). Strongly complete means that, if a formula ϕ holds whenever a (possibly

infinite) set of formulas Γ holds, then there is a proof of ϕ from Γ. We con-

struct (Proposition 3) a canonical model whose states consist of the maximal

consistent sets of formulas. In a very natural way, the maximal consistent sets

of formulas determine already the structure of this space.

1.2.2. The implicit approach I—the universal type space. The second possibility

to define a space of “all possible types” is to construct a universal type space.3

That is, a type space to which every type space (on the same space of states

of nature and for the same set of players, of course) can be mapped, preferably

always in a unique way, by a map that preserves the structure of the type space,

the aforementioned papers to endow the space of coherent hierarchies with the structure

of a type space.
3 Siniscalchi (2008) calls these type spaces “terminal” and reserves the term “universal”

for the space of all hierarchies mentioned above.
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i.e., the manner in which types and states of nature are associated with states

of the world, a so-called type morphism. The type spaces—on a fixed set of

states of nature and for a fixed player set—as objects and the type morphisms

as morphisms form a category. If we always require the map from a type space

to the universal type space to be unique, then, if it exists, such a universal type

space is a terminal object of this category. A terminal object of a category is

known to be unique up to isomorphism. Hence, we are justified to talk about

the universal type space.

The existence of a universal type space was proved by Mertens and Zamir

(1985), who were preceded by Böge and Eisele (1979). They were followed

by Heifetz (1993), and Mertens, Sorin and Zamir (1994) and Battigalli and

Siniscalchi (1999)4 who all showed that their spaces of hierarchies of beliefs

mentioned under 1. constitute universal type spaces with respect to the classes

of type spaces satisfying the corresponding topological assumptions. Finally,

the general measure theoretic case was solved by Heifetz and Samet (1998b),

who showed that there also exists a universal type space in this case.5 However,

they could not use a hierarchical construction as done in the above-mentioned

topological cases: As Heifetz and Samet have shown in another paper (1999),

there are hierarchies of σ-additive beliefs that do not give rise to a σ-additive

probability measure on the space of all profiles of such hierarchies, but only

to finitely additive probability measures. Hence such hierarchies cannot be

induced by types in Harsanyi type spaces where beliefs are σ-additive probability

measures. Heifetz and Samet proved the existence of a universal type space in

the general measure theoretic case in a very elegant manner collecting all the

profiles of hierarchies of beliefs that are induced by some state of some type

space. However, since their construction uses all type spaces (on the same space

of states on nature, and for the same set of players) to construct the universal

type space, this construction does not give much independent information about

the inner structure of the universal type space (as, for example, in Mertens and

4 The space constructed in Brandenburger and Dekel (1993) is also universal. This follows

from the results in Battigalli and Siniscalchi (1999).
5 Meier (2006) proved the existence of a universal type space if beliefs are described by

finitely additive probability measures, and Meier (2008) shows the existence of a universal

knowledge-belief space, where a knowledge-belief space is a type space with an additional

knowledge operator for each player.
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Zamir (1985), where we know that the universal type space is the space of all

coherent hierarchies).

We show here in our Theorem 2 that the canonical model and the universal

space are one and the same. Hence, we provide here a (up to now missing)

characterization of the universal type space in the general measure theoretic

case, in the sense that we show that the universal type space “is” the space of

all maximal consistent sets of formulas of our logic, endowed in a natural way

with the structure of a type space.

The results of this paper show that the pathological coherent hierarchies in

Heifetz and Samet (1999) that are not induced by types in a type space are

excluded by the infinitary axioms and inference rules put forward here (but

not by the finitary ones in Heifetz and Mongin 2001), since these rules imply

σ-additivity.

Furthermore, everywhere in the literature, except in Fagin and Halpern (1994)

and Heifetz and Mongin (2001), only type spaces are considered where the

players know their own beliefs (we call these spaces, like Heifetz and Mongin

(2001), “Harsanyi type spaces”). We construct our canonical model with and

without this property and establish the first proof of the existence of a universal

type space for the class of type spaces without introspection.

1.2.3. The implicit approach II—(beliefs) complete type spaces. In the literature

“type spaces” usually are what we call here “product type spaces”. Other

authors who considered the more general version (as we do here) are Heifetz

and Mongin (2001), who called it also “type spaces”, and Mertens and Zamir

(1985), who called these spaces “beliefs spaces”. As it turned out in their

topological setting, the universal type space of Mertens and Zamir is a product

type space.

Also, our canonical model is—up to isomorphism of type spaces—a product

type space (Theorem 3).

A product type space is a product of the space of states of nature and, for each

player, a parameter space that “encodes” the types of this player. That is, to

each element of the parameter space corresponds a probability measure on the

product of the space of states of nature and the parameter spaces of the players.

In the introspective case of a Harsanyi type space, one imposes the additional

condition that the marginal of a type of this player on his parameter space is

the delta measure of the element to which this type of the player corresponds
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to. (The alternative possibility in the case of a Harsanyi type space is to define

a type of a player to be only a probability measure on the product of the space

of states of nature and the parameter spaces of the other players.)

If one does not have (or does not want to define) a notion of beliefs-preserving

maps between different type spaces, one can still define a notion of “all possible

types within a product type space”. In this case one would say that all types

that are possible within this space are present, if for every player and every

probability measure on this product space (respectively, for every probability

measure on the product of the space of states of nature and the parameter

spaces of the other players, in the introspective case), there is a type of this

player that coincides with this probability measure (resp. whose marginal on

the product of the space of states of nature and the parameter spaces of the

other players coincides with this probability measure). Such a type space would

be called a (beliefs) complete type space (Brandenburger 2003).

The existence of a beliefs complete type space was proved by Mertens and Za-

mir (1985), Brandenburger and Dekel (1993), Heifetz (1993), and Mertens, Sorin

and Zamir (1994) and Battigalli and Siniscalchi (1999) and Pinter (2005) who all

showed that their spaces of hierarchies of beliefs mentioned under 1. (resp. their

universal type spaces mentioned under 2.) constitute beliefs complete type

spaces.

Heifetz and Samet (1998b) did not explore whether their general measure

theoretic universal type space is beliefs complete, hence this remained an open

issue up to now. We show here in Theorem 4 that this is also still true in

the general measure theoretic setting, in the introspective as well as in the

non-introspective case. Moreover, the parameter space of each player is—as

a measurable space—isomorphic to the space of probability measures on the

whole type space in the non-introspective case, and in the introspective case,

the parameter space of each player is isomorphic to the space of probability

measures on the product of the space of states of nature and the parameter

spaces of the other players.

1.3. Technical difficulties of a strongly complete axiomatization.

Heifetz and Mongin (2001)—and before Fagin, Halpern and Megiddo (1990)

for a much richer syntax also expressing valuations for linear combinations of

formulas—axiomatized the class of type spaces in terms of a purely finitary logic.
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They showed that their axiomatization is sound and complete with respect to

the class of (Harsanyi) type spaces.

A purely finitary axiomatization cannot be used to get strong soundness and

strong completeness for this class of models. This was noted by Aumann (1999b)

and Heifetz and Mongin (2001). Consider the following set of formulas:{
p

1
2− 1

n
i (ϕ) : n ≥ 2, n ∈ N

}
∪
{
¬p 1

2
i (ϕ)

}
,

where pαi (ϕ) means “individual i assigns probability at least α to (the event

defined by) ϕ”. They argue that for this set of formulas each finite subset has

a model (a type space and a state in it, such that each formula in this finite

subset is true in this state), while the whole set itself has no model. Another

reason why one seems to need to allow for infinitary formulas is σ-additivity.

However, type spaces cannot be axiomatized by an infinitary logic in the sense

of Heifetz (1997): An example by Karp (1964) in a purely propositional setting

shows already that, in the presence of ℵγ many formulas whose truth values can

be chosen independently of one another, if one allows for infinite conjunctions

of ℵγ many formulas, then one must also allow for conjunctions of 2ℵγ many

formulas and proofs of length of cardinality ≤ 2ℵγ to get strong completeness.

This fact is reflected by the infinitary version of the distributive de Morgan law

(A6),6 which requires to allow for uncountable conjunctions of formulas.

This conflicts with measurability conditions that must be met: When we want

to define the validity relation “|=” for a type space τ and some state ω in τ, then,

for a formula ϕ in our language, (τ, ω) |= pαi (ϕ) can be defined if [ϕ]τ , the set of

states in τ where ϕ is true, is a measurable set. Since conjunctions of formulas

correspond to intersections of subsets of the structure, uncountable conjunctions

cannot be guaranteed to interpret measurable sets, unless we do assume that

the σ-fields of the type spaces are closed under uncountable intersections (i.e.,

they would be κ-fields for some κ > ℵ1, see Meier (2006)), which, of course,

would strongly restrict the class of type spaces we could consider.

We resolve this problem by defining a language which takes the advantages

and avoids the disadvantages of both the finitary and the infinitary languages.

We start with a finitary language L0 à la Aumann (1995) and Heifetz and

Mongin (2001) with the operators pαi , “individual i assigns probability at least

α to”. Then, we define an infinitary propositional language L, the primitive

6 (A6) is defined in the list of Axioms at the beginning of Section 3.
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propositions of which are the formulas in L0. So, L0 is a sublanguage of L
and infinite conjunctions and disjunctions never appear under the scope of a

belief operator. Archimedianity is expressed by a continuity axiom (P3) and

σ-additivity is expressed by an inference rule (Continuity at ∅). In that way,

the measurability problem is avoided.

2. Preliminaries

We fix a nonempty set X of primitive propositions (to be interpreted as state-

ments about nature, i.e., the primary source of uncertainty for the players)7 and

a nonempty set I of players. We assume without loss of generality that 0 /∈ I

and define I0 := I ∪ {0}. For a set M, denote by |M | the cardinality of M .

2.1. Syntax. Let α and β denote rational numbers ∈ [0, 1] , ϕ, χ, ψ formulas,

and ω formulas that are conjunctions of maximal consistent sets of finitary

formulas.

Definition 1: We define

ℵγ := max {|I| , |X | ,ℵ0} .
Definition 2: The set L0 of finitary formulas is the least set such that:

1. each x ∈ X ∪{�} is a finitary formula,

2. if ϕ is a finitary formula, then (¬ϕ) is a finitary formula,

3. if ϕ and ψ are finitary formulas, then (ϕ ∧ ψ) is a finitary formula,

4. if ϕ is a finitary formula, then for every i ∈ I and rational α ∈ [0, 1] :

(pαi (ϕ)) is a finitary formula.

L0 coincides with the language in Heifetz and Mongin (2001) and is a sub-

language of the language in Aumann (1999b).

Remark 1:

|L0| = max{|I| , |X | ,ℵ0} = ℵγ .
Definition 3: The set L of formulas is the least set such that:

1. each ϕ ∈ L0 is a formula,

7 Defined in this way, the space of states of nature in the literature corresponds to Pow (X)

and the σ-field on the space of states of nature corresponds to the σ-field on Pow (X)

generated by the sets {s ⊆ X | x ∈ s} , where x ∈ X.
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2. if ϕ is a formula, then (¬ϕ) is a formula,

3. if Φ is a set of formulas of cardinality ≤ 2ℵγ , then (
∧
ϕ∈Φ ϕ) is a for-

mula.8

Intuitively, L is “like” an infinitary propositional language whose primitive

propositions are the formulas in L0. Note, however, that L is not really a propo-

sitional language, since it contains L0, which is not propositional. The proposi-

tional part L0 of L can be seen as the set of those formulas which are statements

about nature:

Definition 4: The set L0 of 0-formulas is the set of (infinitary) propositional

formulas in L. More formally, it is the least set of formulas (and obviously,

subset of L) such that:

1. each x ∈ X ∪ {�} is a 0-formula,

2. if ϕ is a 0-formula, then ¬ϕ is a 0-formula,

3. if Φ is a set of 0-formulas of cardinality ≤ 2ℵγ , then
∧
ϕ∈Φ ϕ is a 0-

formula.

Definition 5: Let i ∈ I. The set Li of i-formulas is the least set of formulas

(and obviously, subset of L) such that:

1. if ϕ ∈ L0, then for every rational α ∈ [0, 1] : pαi (ϕ) is an i-formula,

2. if ϕ is an i-formula, then ¬ϕ is an i-formula,

3. if Φ is a set of i-formulas of cardinality ≤ 2ℵγ , then
∧
ϕ∈Φ ϕ is an i-

formula.

A formula in Li is a statement about the beliefs of player i.

Convention 1: • As usual, “
∨
”, “∨”, “→” and “↔” are abbreviations,

defined in the usual way:( ∨
ϕ∈Φ

ϕ
)
:=

(
¬
( ∧
ϕ∈Φ

(
¬ϕ

)))
,

(ϕ→ ψ) := ((¬ϕ) ∨ ψ) ,
(ϕ↔ ψ) := ((ϕ→ ψ) ∧ (ψ → ϕ)) .

8 By convention, we set:
∧
ϕ∈∅ ϕ := �, and accordingly:

∨
ϕ∈∅ ϕ := ¬�. Furthermore, if

we write “ϕ ∧ ψ”, where ϕ or ψ ∈ L \L0, we mean implicitly the formula
∧
χ∈{ϕ,ψ} χ.

Accordingly, for ϕ,ψ ∈ L0, we indentify ϕ ∧ ψ with
∧
χ∈{ϕ,ψ} χ.
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• To avoid the use of too many brackets, we apply the usual convention

of decreasing priority: ¬, ∧, ∧, ∨, ∨, →, ↔ . This means, for example,

that “¬ϕ ∧ ψ” is an abbreviation for “((¬ϕ) ∧ ψ)”.
2.2. Semantics.

Definition 6: Let M be a nonempty set and let Σ be a σ-field on M . We

denote by Δ(M,Σ)—or in short: Δ(M)—the set of all σ-additive probability

measures on (M,Σ). Unless stated differently, we consider Δ(M,Σ) as a mea-

surable space with the σ-field ΣΔ generated by all the sets of the form bα(E) :=

{μ ∈ Δ(M,Σ) | μ(E) ≥ α}, where E ∈ Σ and α ∈ [0, 1] ∩Q.

Note that if r ∈ [0, 1] and E ∈ Σ, then br (E) =
⋂
α∈[0,r]∩Q b

α (E) ∈ ΣΔ.

Therefore ΣΔ is also generated by all the sets br (E) , where E ∈ Σ and r ∈ [0, 1].

We define now type spaces, that is, the semantic objects which we will study

in this paper.

Definition 7: A type space on X for player set I is a 4-tuple

M := 〈M,Σ, (Ti)i∈I, v〉,

where

• M is a nonempty set,

• Σ is a σ-field on M ,

• for i ∈ I : Ti is a Σ−ΣΔ-measurable function from M to Δ (M,Σ) , the

space of probability measures on (M,Σ) ,

• v is a function from M × (X ∪ {�}) to {0, 1}, such that v (·, x) is

Σ−Pow ({0, 1})-measurable, for every x ∈ X, and such that v (m,�) =

1, for all m ∈M.

This structure is interpreted as follows: M is the set of states of the world.

Such a state determines completely the objective parameters of the player’s

interaction, that is, the set of primitive propositions x such that v (m,x) = 1,

as well as the player’s beliefs about the true state of the world. In general, in

a state of the world m ∈ M, player i will not know the true state of the world

m; he will just have a probability measure Ti (m) over the set of states of the

world. Ti (m) describes his beliefs in state m, that is, the type of player i

in state m. (Knowing m would mean that Ti (m) = δm, where δ denotes the

Kronecker-delta.)
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Definition 8: For a type space 〈M, Σ, (Ti)i∈I, v〉 on X for player set I define

[Ti (m)] := {m′ ∈M | Ti (m′) = Ti (m)} ,
for m ∈ M and i ∈ I. The type space 〈M,Σ, (Ti)i∈I, v〉 is called a Harsanyi

type space on X for player set I iff for all A ∈ Σ, m ∈ M and i ∈ I :

A ⊇ [Ti (m)] implies Ti (m) (A) = 1.9

We will refer to the property that for all i ∈ I, m ∈M and A ∈ Σ : [Ti (m)] ⊆
A implies Ti (m) (A) = 1 as the introspection property of Harsanyi type

spaces. This expresses the self-consciousness of the players: In a state of the

world m a player does not attribute a positive probability to states where he

has a different belief from the belief he has in the present state m.

The following lemma, which will be needed in the proof of the Completeness

Theorem, is a slightly changed version of Lemma 2.1 of Heifetz and Samet

(1999):

Lemma 1: Let M be a nonempty set, let F be a field on M that generates the

σ-field Σ on M and let FΔ be the σ-field on Δ(M,Σ) generated by the sets of

the form

bp(E) := {μ ∈ Δ(M,Σ) | μ (E) ≥ p} ,
where E ∈ F and p ∈ [0, 1] ∩Q. Then

FΔ = ΣΔ.

Proof. The proof is the same as the proof of Lemma 2.1 of Heifetz and Samet

(1999), if we replace there “such that bp(F ) ∈ FΔ for all 0 ≤ p ≤ 1” by “such

that bp(F ) ∈ FΔ for all p ∈ [0, 1] ∩Q”.

We define now the model relation, that is, how formulas are linked to subsets

of a semantic structure. Intuitively, to each formula we associate the set of

states where the formula is satisfied.

Definition 9: Let M = 〈M, Σ, (Ti)i∈I, v〉 be a type space on X for player set

I. We define:

• (M,m) |= � in any case,

• for every x ∈ X : (M,m) |= x iff v (m,x) = 1,

• for all ϕ, ψ ∈ L: (M,m) |= ϕ ∧ ψ iff (M,m) |= ϕ and (M,m) |= ψ,

9 Note that if [Ti (m)] is measurable, then this condition reduces to: Ti (m) ([Ti (m)]) = 1.
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• for every ϕ ∈ L: (M,m) |= ¬ϕ iff (M,m) �|= ϕ,

• for ϕ ∈ L0, such that [ϕ]
M

:= {m ∈M | (M,m) |= ϕ} ∈ Σ, and for

i ∈ I and rational α ∈ [0, 1] : (M,m) |= pαi (ϕ) iff Ti (m) ([ϕ]
M
) ≥ α.

It is easy to show by induction on the formation of the formulas in L0 that

[ϕ]
M ∈ Σ, for every ϕ ∈ L0 (in particular, since Ti : M → Δ(M) is Σ − ΣΔ-

measurable, it follows that [ϕ]M ∈ Σ implies [pαi (ϕ)]
M ∈ Σ). So, the relation

“(M,m) |= ϕ” is well-defined for every type space M on X for player set I,

every m ∈M , and every ϕ ∈ L0.

• If Φ ⊆ L and |Φ| ≤ 2ℵγ , then:
(M,m) |= ∧

ϕ∈Φ ϕ iff for every ϕ ∈ Φ : (M,m) |= ϕ.

It is now easy to show that the relation “(M,m) |= ϕ” is well-defined, for every

type space M on X for player set I, every m ∈M , and every ϕ ∈ L.
Definition 10: A formula ϕ∈L is valid in the class of type spaces (resp. Harsanyi

type spaces) on X for player set I iff for every type space (resp. Harsanyi type

space) M = 〈M, Σ, (Ti)i∈I, v〉 on X for player set I and every m ∈M :

(M,m) |= ϕ.

Notation 1: 1. Let Γ ⊆ L, let M = 〈M, Σ, (Ti)i∈I, v〉 be a type space

(resp. Harsanyi type space) on X for player set I, and let m ∈M . We

write

(M,m) |= Γ

iff for every ψ ∈ Γ:

(M,m) |= ψ.

2. Let Γ ⊆ L. We say Γ has a model in the class of type spaces

(resp. Harsanyi type spaces) on X for player set I iff there is a type

space (resp. Harsanyi type space)M on X for player set I and am ∈M

such that (M,m) |= Γ. If (M,m) |= Γ (resp. (M,m) |= ϕ) holds, we

say that (M,m) is a model of Γ (resp. ϕ).

3. Let Γ ⊆ L and ϕ ∈ L. We write

Γ |= ϕ

iff for every type space (resp. Harsanyi type space) M on X for player

set I and every m ∈M :

(M,m) |= Γ implies (M,m) |= ϕ.
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If Γ |= ϕ holds, we say that Γ implies ϕ semantically.

3. Strong completeness and construction of the canonical (Harsanyi)

type space

In this section we define our axioms and inference rules, our notion of “proof”

(in the sense of our logic) and prove (in the corresponding appendix) strong

soundness and, by constructing the canonical model, strong completeness. As

already said, α and β denote rational numbers in [0, 1].

The List of Axioms

(A0) �,

(A1) ϕ→ (ψ → ϕ), for ϕ, ψ ∈ L,
(A2) (ϕ→ (ψ → �)) → ((ϕ→ ψ) → (ϕ→ �)), for ϕ, ψ, � ∈ L,
(A3) (¬ϕ→ ¬ψ) → (ψ → ϕ), for ϕ, ψ ∈ L,
(A4)

∧
ϕ∈Φ(ψ → ϕ) → (ψ → ∧

ϕ∈Φ ϕ), for ψ ∈ L and Φ ⊆ L
such that |Φ| ≤ 2ℵγ ,

(A5)
∧
ϕ∈Φ ϕ→ ψ, for ψ ∈ Φ, where Φ ⊆ L such that |Φ| ≤ 2ℵγ ,

(A6)
∧
a∈A(

∨
b∈A ϕa,b) →

∨
g∈AA(

∧
a∈A ϕa,g(a)), whenever |A| ≤ ℵγ ,10

(P1) p0i (ϕ), for ϕ ∈ L0,

(P2) p1i (�),

(P3)
∧
α<β p

α
i (ϕ) → pβi (ϕ), for ϕ ∈ L0,

(P4)
(
pαi (ϕ ∧ ψ) ∧ pβi (ϕ ∧ ¬ψ)

)
→ pα+βi (ϕ), for α, β with α+ β ≤ 1

and ϕ, ψ ∈ L0,

(P5)
(
¬pαi (ϕ ∧ ψ) ∧ ¬pβi (ϕ ∧ ¬ψ)

)
→ ¬pα+βi (ϕ), for α, β with α+ β ≤ 1

and ϕ, ψ ∈ L0,

(P6) pαi (ϕ) → ¬pβi (¬ϕ), for α, β with α+ β > 1 and ϕ ∈ L0,

(P7) pαi (ϕ) → pβi (ϕ), for α, β with β < α and ϕ ∈ L0,

(P8) p1i (ϕ→ ψ) → (pαi (ϕ) → pαi (ψ)), for ϕ, ψ ∈ L0,

(I1) pαi (ϕ) → p1i (p
α
i (ϕ)) , for ϕ ∈ L0,

(I2) ¬ pαi (ϕ) → p1i (¬ pαi (ϕ)), for ϕ ∈ L0.

Except (A0) and (P2), all the above axioms are in fact axiom schemes, i.e., lists

of axioms.

10 AA denotes here the set of all functions from A to A.
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We adopt the following inference rules:

• Modus Ponens: From ϕ and ϕ→ ψ infer ψ.

• Conjunction: From Φ infer
∧
ϕ∈Φ ϕ , if Φ ⊆ L such that | Φ | ≤ 2ℵγ .

• Necessitation: From ϕ infer p1i (ϕ), if ϕ ∈ L0.

• Continuity at ∅ : From
∧
n∈N ϕn → ¬�, where ϕn ∈ L0, for all n ∈ N,

infer
∧
k∈N\{0}

∨
l∈N ¬p 1

k

i (
∧
n≤l ϕn).

• Uncountable Introspection: From ϕ → ∨
n∈N ϕn, where ϕ ∈ Li and

ϕn ∈ L0 for all n ∈ N, infer ϕ→ ∧
k∈N\{0}

∨
l∈N p

1− 1
k

i (
∨
n≤l ϕn).

(A0)–(A6) are the axioms and “Modus Ponens” and “Conjunction” are the

inference rules for infinitary propositional logic, where the language is the propo-

sitional part, L0, of our infinitary language L. Karp, has proved strong sound-

ness and strong completeness (Karp (1964, Theorem 5.5.4)) for this logic. We

will use this result, sometimes without referring to it explicitly.

Most of the axioms (P1)–(P8), (I1), (I2) above can be found in Aumann

(1995) and Heifetz and Mongin (2001).

Definition 11: 1. The system P consists of the axioms (A0)–(A6), (P3)–

(P6), (P8), and the inference rules “Modus Ponens”, “Conjunction”,

“Necessitation”, and “Continuity at ∅”.
2. The system H is the system P together with the additional axiom (I1),

if ℵγ = ℵ0. If ℵγ > ℵ0, the system H is the system P together with the

inference rule “Uncountable Introspection”.

Definition 12: (1) The set of theorems of the system P is the minimal

set of formulas that contains the axioms (A0)–(A6), (P3)–(P6), (P8),

and that is closed under “Modus Ponens”, “Conjunction”, “Necessita-

tion” and “Continuity at ∅”.
(2) The set of theorems of the system H is the minimal set of formulas

that contains the axioms (A0)–(A6), (P3)–(P6), (P8), (I1), and that

is closed under “Modus Ponens”, “Conjunction”, “Necessitation” and

“Continuity at ∅”, in the case ℵγ = ℵ0. If ℵγ > ℵ0, the set of theorems

of the system H is the minimal set of formulas that contains the axioms

(A0)–(A6), (P3)–(P6), (P8), and that is closed under “Modus Ponens”,

“Conjunction”, “Necessitation”, “Continuity at ∅” and “Uncountable

Introspection”.
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Note that the above set of axioms is not minimal:

• (P1) follows from (P3), (A0) and Modus Ponens, if we adopt the usual

convention that
∧
ϕ∈∅ ϕ := �.

• (P2) follows from (A0) and Necessitation.

• Heifetz and Mongin (2001) proved that (P7) follows from (A0)–(A6),

(P3)–(P6) and (P8).

• The proof of the Completeness Theorem will also show that (A0)–(A6),

(P3)–(P6), (P8) and (I1) imply (I2). The basic reason behind this is

that ¬pαi (ϕ) holds in a state, iff there is a ε > 0 such that p1+ε−αi (¬ϕ)
holds in this state.

• “Uncountable Introspection” implies (together with (A0)–(A6), (P3)–

(P6) and (P8) and the other inference rules) the axioms (I1) and (I2).

We only show the most crucial steps: pαi (ϕ) is an i-formula. And

pαi (ϕ) →
∨
n∈N p

α
i (ϕ) is an instance of a tautology of propositional cal-

culus, to which we apply the inference rule “Uncountable Introspection”

to get pαi (ϕ) → ∧
k∈N\{0}

∨
l∈N p

1− 1
k

i (
∨
n≤l p

α
i (ϕ)). Applying necessita-

tion to the tautology
∨
n≤l p

α
i (ϕ) → pαi (ϕ), then (P8) followed by 3 of

Lemma 2, one gets pαi (ϕ) → ∧
k∈N\{0}

∨
l∈N p

1− 1
k

i (pαi (ϕ)). Using 3 of

Lemma 2 and first (P7) and then (P3) one gets pαi (ϕ) → p1i ((p
α
i (ϕ)),

that is (I1). (I2) is obtained by replacing pαi (ϕ) with ¬pαi (ϕ).
• The Completeness Theorem implies that, in the case of ℵγ = ℵ0, (I1)

(together with (A0)–(A6), (P3)–(P6), and (P8) and the other inference

rules) implies the inference rule “Uncountable Introspection”. “Un-

countable Introspection” is a valid inference rule in the class of Harsanyi

type spaces on X for player set I, also when |I| , |X | ≤ ℵ0. Therefore,

the completeness theorem implies that “Uncountable Introspection” is

implied by (I1) together with (A0)–(A6), (P3)–(P6), and (P8), when

|I| , |X | ≤ ℵ0.

In fact we have here two articles in one: Given a nonempty set of players

I and a nonempty set of primitive propositions X, if nothing else is said, we

do all what follows for the system P on the syntactic side and for the class of

type spaces on X for player set I on the semantic side. And we also do all what

follows for the system H on the syntactic side and for the class of Harsanyi type

spaces on X for player set I on the semantic side. We only specify the system,
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if there is a difference between the two cases in the proofs or in the statements

of the Definitions, Lemmas, Propositions or Theorems.

Definition 13: Let Γ be a set of formulas in L. A proof of ϕ from Γ in the

system P (resp. in the system H) is a sequence whose length is strictly smaller

than (2ℵγ )+ and whose last formula is ϕ, such that each formula in the proof is

in Γ, a theorem of the system P (resp. of the system H), or inferred from the

previous formulas by “Modus Ponens” or “Conjunction”.11

If there is a proof of ϕ from Γ, we write Γ � ϕ and say that Γ implies ϕ

syntactically. In particular, “� ϕ” (which stands for ∅ � ϕ) means that ϕ is a

theorem.

Definition 14: • The system P (resp. H) is strongly sound iff for every

Γ ⊆ L and every ϕ ∈ L :

Γ � ϕ implies Γ |= ϕ.

• The system P (resp. H) is strongly complete iff for every Γ ⊆ L and

every ϕ ∈ L :

Γ |= ϕ implies Γ � ϕ.
Together, strong soundness and strong completeness mean that the notions

of syntactic and semantic implication coincide.

Definition 15: Γ is consistent in the system P (resp. in the system H) iff there

is no formula ϕ ∈ L such that there are proofs of ϕ and ¬ϕ from Γ in the system

P (resp. in the system H).

Lemma 2: Let ϕ, ψ, ψ̃ ∈ L. Then:
1. If Φ ⊆ L and |Φ| ≤ 2ℵγ , then Φ � ϕ iff {∧χ∈Φ χ} � ϕ.
2. {ψ} � ϕ iff � ψ → ϕ.

3. If Γ � ϕ→ ψ and Γ � ψ → ψ̃, then Γ � ϕ→ ψ̃.

4. � ϕ→ ¬ (¬ϕ) .
5. If ψ ∈ Φ, Φ ⊆ L, and |Φ| ≤ 2ℵγ , then � ¬ψ → ¬∧

χ∈Φ χ.

11 Of course, whether ϕ is a theorem of the system, resp., whether there is a proof of ϕ

from Γ, depends on the system under consideration. That is, for some ϕ there might be

a proof of ϕ from Γ in the system H, but not in the system P. It follows also that the

notion of consistency depends on the system.
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Proposition 1: • The system P is strongly sound with respect to the

class of type spaces on X for player set I.

• The system H is strongly sound with respect to the class of Harsanyi

type spaces on X for player set I.

3.1. Strong completeness. The idea of the proof of strong completeness is

as follows: We build a (Harsanyi) type space Ω whose underlying set of states

of the world Ω “is” the set of all maximal consistent sets of formulas, such

that Ω has the following additional property: For a maximal consistent set of

formulas ω ∈ Ω and a formula ϕ ∈ L we have (Ω, ω) |= ϕ iff ϕ ∈ ω. This implies

then that any consistent set Φ of formulas has a model: First one shows using

Zorn’s Lemma that Φ can be extended to a maximal consistent set of formulas

ω ⊇ Φ. The above-mentioned property implies then that (Ω, ω) |= Φ. That any

consistent set of formulas has a model implies (in fact, is equivalent to) strong

completeness.

The first step of the construction of our canonical model is to define a set

of states of the world, whose states “are” maximal consistent sets of formulas

(though, formally, they are themselves formulas (of a very special form)).

Definition 16: • Ω :=⎧⎨⎩ ∧
ϕ∈Φ0

ϕ ∧
∧

ψ∈L0\Φ0

¬ψ | Φ0 ⊆ L0, s.t. Φ0 ∪ {¬ψ | ψ ∈ L0\Φ0} is consistent

⎫⎬⎭ ,

• for ψ ∈ L, define

[ψ] := {ω ∈ Ω |� ω → ψ} ,

• for Γ ⊆ L, define
[Γ] :=

⋂
ψ∈Γ

[ψ] ,

• for ω ∈ Ω, such that ω =
∧
ϕ∈Φ0

ϕ ∧∧
ψ∈L0\Φ0

¬ψ, define

Ψω := Φ0 ∪ {¬ψ | ψ ∈ L0\Φ0} .
Note that although we write “Ω”, we define in fact two Ω’s, one corresponding

to the system P , and one corresponding to the system H . By the definitions

of the system P and of the system H , it follows that a set of L-formulas that

is consistent in the system H is also consistent in the system P . Hence the Ω
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corresponding to the system H is a subset of the Ω corresponding to the system

P .

Now, we show that Ω is nonempty.

Remark 2: 1. The class of Harsanyi type spaces on X for player set I is

nonempty. And hence, the class of type spaces on X for player set I is

nonempty.

2. The set Ω is nonempty.

The next proposition constitutes, together with Lemmata 3 and 4, the tech-

nical heart of the construction of the canonical model. 1. shows that
∨
ω∈Ω

ω is

a theorem and 2. that each ω implies a maximal consistent set of formulas.

Proposition 2: 1. �
∨
ω∈Ω

ω.

2. For every formula ψ ∈ L and for every ω ∈ Ω :

Either � ω → ψ or � ω → ¬ψ,
but not both.

3. For every formula ψ ∈ L :

� ψ ↔
∨
ω∈[ψ]

ω.

4. If Φ ⊆ L such that |Φ| ≤ 2ℵγ , then

�
∧
ϕ∈Φ

ϕ↔
∨
ω∈[Φ]

ω.

5. For every formula ψ ∈ L :

� ¬ψ ↔
∨

ω∈Ω\[ψ]
ω.

6. For every formula ψ ∈ L :

[¬ψ] = Ω \ [ψ] .
7. If Φ ⊆ L such that |Φ| ≤ 2ℵγ , then

[Φ] =

[ ∧
ϕ∈Φ

ϕ

]
.

The next step of the construction of the canonical type space is to define a

measurable space:
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Definition 17: Let Σ be the σ-field on Ω generated by the set

{[ψ] | ψ ∈ L0} .
By (A0) and 2 of Lemma 2, it follows that Ω = [�], and by 2 of Proposition

2, it follows that Ω\ [ψ] = [¬ψ] , for ψ ∈ L0. By Conjunction, (A4) and Modus

Ponens, and by (A5) and 3 of Lemma 2, it follows that [ϕ] ∩ [ψ] = [ϕ ∧ ψ] , for
ϕ, ψ ∈ L0. Hence:

Remark 3: The set

F := {[ψ] | ψ ∈ L0}
is a field on Ω.

For each state ω ∈ Ω and each player i ∈ I, we need to define eventually a

probability measure. To do this, we define now a real-valued function T ′
i (ω) on

F , for each state ω and each player i.

Also, we need to define a valuation function that tells us in which states which

primitive propositions are satisfied.

Definition 18: • For ω ∈ Ω and ψ ∈ L0, define

T ′
i (ω) ([ψ]) := sup {α ∈ [0, 1] ∩Q |� ω → pαi (ψ)} .

• For ω ∈ Ω and x ∈ X ∪ {�}, define

v (ω, x) :=

⎧⎨⎩1, if ω ∈ [x] ,

0, if ω /∈ [x] .

Obviously, we have:

Remark 4: v (·, x) is F − Pow ({0, 1})-measurable, for every x ∈ X.

The following two lemmas are necessary steps to show that T ′
i (ω) is a count-

ably additive measure on F . By Carathéodory’s theorem, this ensures the exis-

tence of a unique countably additive extension Ti (ω) of T
′
i (ω) to Σ, the σ-field

on Ω generated by F .
Lemma 3: Let ψ ∈ L0, ω ∈ Ω, and α ∈ [0, 1] ∩ Q such that � ω → ¬pαi (ψ).
Then,

T ′
i (ω) ([ψ]) < α.
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Lemma 4: For every i ∈ I and ω ∈ Ω:

T ′
i (ω) (·)

is well-defined, non-negative, and a countably additive measure on F . Further-

more, for every i ∈ I and ω ∈ Ω:

T ′
i (ω) (Ω) = 1.

The following proposition says that the set of maximal consistent sets of

formulas induces the structure of a type space in the P -system case, resp. the

structure of a Harsanyi type space in the H-system case. Furthermore, this

type space together with a state ω is a model of a formula ϕ iff “ϕ ∈ ω” (that

is � ω → ϕ).

Proposition 3: 1. For every i ∈ I and ω ∈ Ω, there is a unique extension

of T ′
i (ω) to a σ-additive probability measure Ti (ω) on (Ω,Σ) .

2. For every i ∈ I, Ti is a Σ−ΣΔ-measurable function from Ω to Δ(Ω,Σ) ,

the space of probability measures on (Ω,Σ) , which is endowed with the

σ-field ΣΔ generated by the sets {μ ∈ Δ(Ω,Σ) | μ (E) ≥ α}, where
E ∈ Σ and α ∈ [0, 1] ∩Q.

3.

Ω :=
〈
Ω,Σ, (Ti)i∈I, v

〉
is a type space on X for player set I.

4. For every ψ ∈ L and ω ∈ Ω :(〈
Ω,Σ, (Ti)i∈I, v

〉
, ω

)
|= ψ iff ω ∈ [ψ] .

5. If the Axiom (I1) is added in the case of ℵγ = ℵ0, and if the inference

rule Uncountable Introspection is added in the case of ℵγ > ℵ0 (i.e., in

the H-system case), then〈
Ω,Σ, (Ti)i∈I, v

〉
is a Harsanyi type space on X for player set I.

Theorem 1 is a corollary of Proposition 3.

Theorem 1: 1. The system P is strongly sound and strongly complete

with respect to the class of type spaces on X for player set I.

2. The system H is strongly sound and strongly complete with respect to

the class of Harsanyi type spaces on X for player set I.



22 M. MEIER Isr. J. Math.

Corollary 1: Let Γ ⊆ L.
• The set of formulas Γ is consistent in the system P (resp. in the system

H) iff Γ has a model in the class of type spaces (resp. Harsanyi type

spaces) on X for player set I.

• Furthermore, if Γ is consistent in the system P (resp. in the system H),

then there is a ω ∈ Ω, where Ω is the Ω corresponding to the system P

(resp. to the system H), such that (Ω, ω) |= Γ.

4. Universality of the canonical (Harsanyi) type space

In this section we prove that the canonical (Harsanyi) type space on X for

player set I is (up to type isomorphism) the universal (Harsanyi) type space

on X for player set I. This gives a characterization of the universal (Harsanyi)

type space on X for player set I and shows that our language is rich enough

to describe the states in the universal (Harsanyi) type space on X for player

set I. (So, in some sense, the language is rich enough to capture “all relevant

information”.)

We define now the beliefs preserving maps between type spaces.

Definition 19: Let M = 〈M, Σ, (Ti)i∈I, v〉 and N = 〈N, ΣN , (TNi )
i∈I, v

N 〉 be
type spaces on X for player set I. A function f :M → N is a type morphism

iff it satisfies the following conditions:

1. f is Σ− ΣN -measurable,

2. for all m ∈M and x ∈ X :

v (m,x) = v (f (m) , x) ,

3. for all m ∈M , E ∈ ΣN , and i ∈ I:

TNi (f (m)) (E) = Ti (m)
(
f−1 (E)

)
.

Definition 20: A type morphism f is a type isomorphism iff it is one-to-one,

onto, and the inverse of f is also a type morphism.

Lemma 5: Type morphisms preserve the validity of formulas, i.e., if f is a type

morphism from M to N, m ∈M, and ϕ ∈ L, then
(M,m) |= ϕ iff (N, f (m)) |= ϕ.

An easy check shows:
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Remark 5: • The type spaces on X for player set I—as objects—together

with the type morphisms—as morphisms—form a category.

• The Harsanyi type spaces on X for player set I—as objects—together

with the type morphisms—as morphisms—form a category.

Definition 21: A type space (resp. Harsanyi type space) M on X for player set

I is universal iff for every type space (resp. Harsanyi type space) N on X for

player set I there is exactly one type morphism from N to M.

It is obvious that a type morphism f : M → N is a type isomorphism iff

there is a type morphism g : N → M such that g ◦ f = idM and f ◦ g = idN .

Hence, type isomorphisms coincide with the isomorphisms of the category of

type spaces on X for player set I. In category theoretic terms, a universal

(Harsanyi) type space on X for player set I is a terminal object of the category

of (Harsanyi) type spaces on X for player set I. Terminal objects, if they exist,

are known to be unique up to isomorphism, hence (but it is also easily seen

directly):

Remark 6: If there exists a universal type space (resp. Harsanyi type space) on

X for player set I, then it is unique up to type isomorphism.

The following theorem says that the canonical model is the universal

(Harsanyi) type space. That is, the explicit (or syntactic) and implicit (or

semantic) notion of all states of the world coincide.

Theorem 2: The (Harsanyi) type space

Ω =
〈
Ω,Σ, (Ti)i∈I, v

〉
on X for player set I is universal.

For a (Harsanyi) type space M , the unique type morphism f : M → Ω is

defined by mapping m ∈M to the set of formulas (resp. the conjunction of the

finitary formulas) for which (M,m) is a model.

For other models of interactive uncertainty, it is not always the case that

there exists a universal space. For example, for knowledge spaces Heifetz and

Samet (1998a) have shown that, without further restrictions on the structure,

there is no universal knowledge space (for at least two players and at least

two states of nature). This result was extended by Meier (2005) to the more

general context of Kripke structures. The results of Meier (2008) imply that if
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one endows the knowledge spaces with a measurable structure, then a universal

knowledge space does exist.

5. Product type spaces

The aim of this section is to show that the canonical (Harsanyi) type space

on X for player set I is (up to isomorphism) a product (Harsanyi) type space.

Since this space is then a universal (Harsanyi) type space in the category of

product (Harsanyi) type spaces on X for player set I, this implies that—in the

case of Harsanyi type spaces (i.e., the H-system case)—our canonical model is,

up to isomorphism, the universal Harsanyi type space on X for player set I

constructed by Heifetz and Samet (1998b).

In the literature often only type spaces are considered that have the form of

a product space:

Definition 22: A product type space on X for player set I is a 4-tuple

M := 〈M,Σ, (Ti)i∈I , v〉
such that there are measurable spaces (Mj ,Σj) , for j ∈ I0, so that (up to type

isomorphism):

• M0 = Pow(X) ,

• Σ0 is the σ-field on Pow (X) generated by the sets

{m0 ⊆ X | x ∈ m0}, where x ∈ X,

• M = Pow (X)×Πi∈IMi, where all the Mi are nonempty,

• Σ is the product σ-field on M which is generated by the σ-fields Σj ,

j ∈ I0,

• for i ∈ I: Ti is a Σi − ΣΔ-measurable function from Mi to Δ(M,Σ),

the space of probability measures on (M,Σ),

• for x ∈ X : v(m0, x) =

⎧⎨⎩1, if x ∈ m0,

0, if x /∈ m0,

and v(m0,�) = 1 in any case.

Obviously, Ti, for i ∈ I, can be viewed as a Σ−ΣΔ-measurable function fromM

to Δ(M,Σ), and v(·, x) can be viewed as a Σ−Pow({0, 1})-measurable function

from M to {0, 1}, for every x ∈ X ∪ {�}. So every product type space on X

for player set I is a type space on X for player set I.
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We define now the finitary i-formulas.

Definition 23: For i ∈ I0 define Li0 := L0 ∩ Li.
We build now, step by step, a product type space. In the rest of this section

we show then that this type space is isomorphic to the canonical type space.

Definition 24: • For j ∈ I0, define Ωj to be the following set of formulas:⎧⎨⎩ ∧
ϕ∈Φj0

ϕ ∧
∧

ψ∈Lj0\Φj0

¬ψ
∣∣∣∣∣Φj0 ⊆ Lj0, s.t. Φj0 ∪

{
¬ψ | ψ ∈ Lj0\Φj0

}
is consistent

⎫⎬⎭ .

• For j ∈ I0 and ψj ∈ Lj0, define
[ψj ]

j := {ωj ∈ Ωj |� ωj → ψj} .
• For j ∈ I0, denote by Σj the σ-field on Ωj generated by all the sets

[ψj ]
j
, where ψj ∈ Lj0.

• Define

Ω∗ := Πj∈I0Ωj .

• Denote by Σ∗ the product σ-field of the σ-fields Σj , j ∈ I0, on Ω∗.
• For i ∈ I, define

Ω−i := Πj∈I0\{i}Ωj .

• For i ∈ I, denote by Σ−i the product σ-field of the σ-fields Σj , j ∈
I0 \ {i}, on Ω−i.

Remark 7: Let j ∈ I0. By 4 of Proposition 3 and Corollary 1, for every ωj ∈ Ωj ,

there is a ω ∈ Ω such that � ω → ωj .

For ω ∈ Ω, we have

� ω →
∧

ϕj∈Lj0∩Ψω

ϕj .

By the definitions and the consistency of ω, it follows that (
∧
ϕj∈Lj0∩Ψω

ϕj) ∈ Ωj .

By definition of the ωj ∈ Ωj , two such formulas contradict each other, i.e., for

ωj �= ω′
j ∈ Ωj there is a ϕ ∈ Lj0 such that � ωj → ϕ and � ω′

j → ¬ϕ. Hence,

since ω is consistent, for every ω ∈ Ω, there is exactly one ωj ∈ Ωj such that

� ω → ωj . We denote this ωj by ω(j).

Since Ω is nonempty and since ω(j) ∈ Ωj , for ω ∈ Ω and j ∈ I0, we have that

each Ωj , for j ∈ I0, is nonempty.
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Lemma 6: Let j ∈ I0, ωj ∈ Ωj and ψj ∈ Lj . Then,
either � ωj → ψj or � ωj → ¬ψj ,

but not both.

Definition 25: For i ∈ I0 and Ei ∈ Σi define

E∗
i := Πj∈I0Uj ,

where Uj = Ωj , for j �= i and Ui = Ei.

We have E∗
i ∈ Σ∗. Observe that Li0 ∩ Lj0 = ∅, for i �= j ∈ I0. Hence, for

ϕi ∈ Li0, the following is well-defined:

[ϕi]
∗ := ([ϕi]

i)∗.

By the definition and the consistency of the ωi ∈ Ωi, we have

Ω∗ \ [ϕi]∗ = [¬ϕi]∗ and [ϕi]
∗ ∩ [ψi]

∗ = [ϕi ∧ ψi]∗,
for ϕi, ψi ∈ Li0.
Starting with the i-formulas, for i ∈ I0, we define now recursively:

[¬ϕ]∗ := Ω∗ \ [ϕ]∗ and [ϕ ∧ ψ]∗ := [ϕ]∗ ∩ [ψ]∗,

for ϕ, ψ ∈ L0.

This is still well-defined for the finitary i-formulas, for i ∈ I0, and it is well-

defined for the other finitary formulas by the unique readability of finitary

formulas as finite Boolean combinations of finitary formulas ϕ ∈ ⋃
i∈I0 Li0, which

can be proved in the usual way (what we don’t know at this moment is that

logically equivalent finitary formulas define the same sets in Ω∗).
It is obvious that these sets form a field F∗ on Ω∗ which generates Σ∗.

Remark 8: • Σ0 is generated by the sets [x]0, where x ∈ X .

• For every m0 ⊆ X, there is exactly one ω0 ∈ Ω0 such that for every

x ∈ X :

� ω0 → x iff x ∈ m0.

Lemma 7: Let (ωj)j∈I0 ∈ Ω∗ and let {ωj | j ∈ I0} be consistent. Then there is

exactly one ω ∈ Ω such that

� ω ↔
∧
j∈I0

ωj ,
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and furthermore ωj = ω(j), for all j ∈ I0. Conversely, for every ω ∈ Ω :

� ω ↔
∧
j∈I0

ω(j).

The above lemma shows that h : Ω → Ω∗, defined by h(ω) := (ω(j))j∈I0 , is
one-to-one. We are now justified to identify, with some abuse of notation, h(Ω)

with Ω.

Lemma 8: Let ϕ ∈ L0. Then:

•
[ϕ]∗ ∩ h(Ω) = h([ϕ]),

•
h−1

(
[ϕ]

∗)
= [ϕ] .

Definition 26: • For i ∈ I, ωi ∈ Ωi, and ψ ∈ L0, define

T ∗
i (ωi)([ψ]

∗) := sup {α ∈ [0, 1] ∩Q |� ωi → pαi (ψ)} .
• For ω0 ∈ Ω0 and x ∈ X, define

v∗ (ω0, x) :=

⎧⎨⎩1, if ω0 ∈ [x]
0
,

0, if ω0 /∈ [x]
0
,

and

v∗ (ω0,�) := 1 in any case.

Obviously, for every x ∈ X, v∗ (·, x) is Σ0 − Pow ({0, 1})-measurable, hence

viewed as a function from Ω∗ to {0, 1}, it is Σ∗ − Pow ({0, 1})-measurable.

Lemma 9: For every i ∈ I and ωi ∈ Ωi:

T ∗
i (ωi) (·)

is well-defined and a countably additive measure on F∗.
Furthermore, for every i ∈ I and ωi ∈ Ωi :

T ∗
i (ωi) (Ω

∗) = 1.

Proposition 4: 1. For every i ∈ I and ωi ∈ Ωi, there is a unique exten-

sion of T ∗
i (ωi) to a σ-additive probability measure on (Ω∗,Σ∗), which

we denote also by T ∗
i (ωi) .
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2. For every i ∈ I, this extension T ∗
i is a Σi − Σ∗

Δ-measurable function

from Ωi to Δ(Ω∗,Σ∗) , the space of probability measures on (Ω∗,Σ∗) ,
which is endowed with the σ-field Σ∗

Δ generated by the sets

{μ ∈ Δ(Ω∗,Σ∗) | μ (E) ≥ α}, where E ∈ Σ∗ and α ∈ [0, 1] ∩Q.

3.

Ω∗ := 〈Ω∗,Σ∗, (T ∗
i )i∈I , v

∗〉
is a product type space on X for player set I.

4. For every ψ ∈ L0 and (ωj)j∈I0 ∈ Ω∗ :

(〈Ω∗,Σ∗, (T ∗
i )i∈I , v

∗〉 , (ωj)j∈I0 ) |= ψ iff (ωj)j∈I0 ∈ [ψ]∗.

5. In the H-system case, i.e., if the axiom (I1) is added in the case of

ℵγ = ℵ0, and if the inference rule Uncountable Introspection is added

in the case of ℵγ > ℵ0, then

〈Ω∗,Σ∗, (T ∗
i )i∈I , v

∗〉

is a Harsanyi product type space on X for player set I.

Theorem 3: The function

h : Ω → Ω∗

defined by

h(ω) := (ω(j))j∈I0 , for ω ∈ Ω,

is a type isomorphism from Ω to Ω∗.

That the canonical space is a product space implies the following: Given

states ui ∈ Ω, for i ∈ I0, there is one state u ∈ Ω such that: v (u0, x) = v (u, x) ,

for all x ∈ X, and Ti (ui) = Ti (u) , for i ∈ I. This fact is reflected by the axioms

in the following way: There is no axiom and also no inference rule that relates

the beliefs of one player to the beliefs of other players or to nature. So, whatever

a player in a state of the world believes about other players or nature might

be wrong (as long as this is nothing tautological, of course). This is not the

case for the canonical knowledge space and the corresponding S5 axiom system,

where there is an axiom “kiϕ → ϕ”. So, if, for example, ϕ = kjx and if kiϕ is

true in a state, then the fact that i knows that j knows x implies that j knows

x in this state, and this implies that x is true in this state.
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6. Beliefs completeness of the canonical (Harsanyi) type space

The aim of this section is to prove the following—somewhat surprising—theorem

of appealing measure-theoretic taste, which, in some topological cases, was

proved by Mertens and Zamir (1985), Brandenburger and Dekel (1993), Heifetz

(1993) and Mertens, Sorin and Zamir (1994). The general measure-theoretic

case proved here is original. The theorem says that, in the P -system case, the

component space of each player is—up to isomorphism of measurable spaces—

the space of probability measures on the space of states of the world, and in

the H-system case, for each player i ∈ I, the component space of i is—up to

isomorphism of measurable spaces—the space of probability measures on Ω−i.

Theorem 4: • In the P -system case, let μ ∈ Δ(Ω∗,Σ∗). For every i ∈ I,

there is exactly one ωi ∈ Ωi such that T ∗
i (ωi) = μ. Furthermore, for

every i ∈ I,

T ∗
i : Ωi → Δ(Ω∗,Σ∗)

is an isomorphism of the measurable spaces (Ωi,Σi) and (Δ(Ω∗,Σ∗),Σ∗
Δ).

• In the H-system case, let i ∈ I and μi ∈ Δ(Ω−i,Σ−i). Then there

is exactly one ωi ∈ Ωi such that the marginal of T ∗
i (ωi) on Ω−i is μi.

Furthermore, for every i ∈ I,

margΩ−i ◦ T ∗
i : Ωi → Δ(Ω−i,Σ−i)

is an isomorphism of the measurable spaces

(Ωi,Σi) and (Δ(Ω−i,Σ−i), (Σ−i)Δ) .

Brandenburger (2003) defines possibility structures, which can be viewed as

the product-space version of Kripke structures. He shows by a straightforward

cardinality argument that, without any further (e.g., topological) restrictions,

there is no beliefs complete possibility structure (for at least two players and at

least two states of nature). Brandenburger and Keisler (2006) obtain a similar,

but much more involved impossibility theorem, where a possible belief of a

player is a first-order definable subset of the product of the space of states

of nature and the parameter space of the other player. Mariotti, Meier and

Piccione (2005) prove the existence of a beliefs complete possibility structure

if suitable topological restrictions are imposed. Salonen (2006) shows that a

beliefs complete structure in his framework exists, where a type of a player
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corresponds to a measurable knowledge operator on the product of the space of

states of nature and the space of (names of) types of the other players.
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A. Proofs of Section 3

Proof of Lemma 2. 1. “If” follows by applying the inference rule “Con-

junction” to Φ. “Only if” follows by replacing in the proof of ϕ from Φ

every occurrence of a χ ∈ Φ by the sequence
∧
χ′∈Φ χ

′,
∧
χ′∈Φ χ

′ → χ,

χ. This yields then a proof of ϕ from {∧χ∈Φ χ}.
2. “If” follows immediately by Modus Ponens. “Only if” follows by induc-

tion on the length of the proof of ϕ from {ψ} . There are four cases:

(a) ϕ = ψ : By (A5) applied to {ψ} , it follows that � ψ → ψ.

(b) ϕ is a theorem: By (A1), � ϕ → (ψ → ϕ) , and by Modus Ponens

it follows that � ψ → ϕ.
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(c) ϕ follows by Modus Ponens: Then there is a χ such that χ and

χ→ ϕ occur in the proof of ϕ. The sequences up to (and including)

χ and χ→ ϕ are proofs of χ and χ→ ϕ from {ψ} of shorter length.
Hence, by the induction hypothesis, � ψ → χ and � ψ → (χ → ϕ).

(ψ → (χ→ ϕ)) → ((ψ → χ) → (ψ → ϕ))

is a theorem (A2), so by applying Modus Ponens two times we get

� ψ → ϕ.

(d) ϕ follows by Conjunction: Then ϕ =
∧
χ∈Φ χ with |Φ| ≤ 2ℵγ .

By the induction hypothesis (since each χ must occur before ϕ in

the proof), we have � ψ → χ, for every χ ∈ Φ. By conjunction,

we get � ∧
χ∈Φ (ψ → χ) and by applying Modus Ponens to (A4),

� ψ → ∧
χ∈Φ χ.

3. We have Γ � ψ → ψ̃. By (A1), (ψ → ψ̃) → (ϕ→ (ψ → ψ̃)) is an axiom.

Modus Ponens yields Γ � ϕ→ (ψ → ψ̃). By (A2),

(ϕ→ (ψ → ψ̃)) → ((ϕ→ ψ) → (ϕ→ ψ̃))

is an axiom. Modus Ponens yields Γ � (ϕ → ψ) → (ϕ → ψ̃). Together

with Γ � ϕ→ ψ, Modus Ponens yields now Γ � ϕ→ ψ̃.

4. and 5. are well-known tautologies of Propositional Calculus, so, ac-

cording to the Completeness Theorem of Karp (1964, Theorem 5.5.4),

theorems of our system.

Proof of Proposition 1.

1. For ϕ ∈ L, we have to show that if � ϕ (i.e., ϕ is a theorem) in the sys-

tem P (resp. in the system H) and if M is a type space (resp. Harsanyi

type space) on X for player set I and m ∈M , then (M,m) |= ϕ.

2. And for ϕ ∈ L and a nonempty set Γ ⊆ L, we have to show that if M is

a type space (resp. Harsanyi type space) on X for player set I, m ∈M ,

(M,m) |= Γ and if Γ � ϕ in the system P (resp. in the system H), then

(M,m) |= ϕ.

To:

1. It suffices to show for ϕ, ψ ∈ L and Φ ⊆ L:
(a) If ϕ is an axiom of the system P (resp. of the system H) and if M

is a type space (resp. Harsanyi type space) on X for player set I
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and m ∈M, then (M,m) |= ϕ. That is, we have to show that the

axioms are valid.

(b) If ϕ is valid and ϕ→ ψ is valid, then ψ is valid.

(c) If ϕ ∈ L0 and ϕ is valid, then p1i (ϕ) is valid.

(d) If |Φ| ≤ 2ℵγ and each ϕ ∈ Φ is valid, then
∧
ϕ∈Φ ϕ is valid.

(e) If ϕn ∈ L0, for n ∈ N, and
∧
ϕn → ¬� is valid, then

∧
k∈N\{0}

∨
l∈N

¬p 1
k

i

( ∧
n≤l

ϕn

)

is valid.

(f) If ϕ ∈ Li and ϕn ∈ L0, for n ∈ N, then the validity of ϕ→ ∨
n∈N ϕn

in the class of Harsanyi type spaces on X for player set I implies

that

ϕ→
∧

k∈N\{0}

∨
l∈N

p
1− 1

k

i

( ∨
n≤l

ϕn

)

is valid in the class of Harsanyi type spaces on X for player set I.

To:

(a) That the axioms are valid is an easy check, (A6) is valid, provided

we include the axiom of choice (like always) in our underlying set

theory. (P1)− (P8) correspond to well-known properties of prob-

ability measures.

(I1): LetM be a Harsanyi type space on X for player set I, ϕ ∈ L0

and m ∈ M. Then, (M,m) |= ¬pαi (ϕ) ∨ p1i (pαi (ϕ)) iff (M,m) |=
¬pαi (ϕ) or (M,m) |= p1i (p

α
i (ϕ)) . Let (M,m) |= pαi (ϕ) . This

means that Ti (m) ([ϕ]
M
) ≥ α. But then [Ti (m)]

M ⊆ [pαi (ϕ)]
M

and hence Ti (m) ([pαi (ϕ)]
M ) = 1 and (I1) is valid. (I2) follows in

the same manner.

(b)–(d) above are clear,

(e) corresponds to the continuity at ∅, a well-known property of

σ-additive probability measures: Let M be a type space (resp.

Harsanyi type space) on X for player set I, m ∈ M and ϕn ∈ L0,
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for n ∈ N. By the definition of “|=”, we have[∧
n∈N

ϕn → ¬�
]M

=

(
M \

⋂
n∈N

[ϕn]
M

)
∪ (M \ [�]

M )

=

(
M \

⋂
n∈N

[ϕn]
M

)
.

If ∧
n∈N

ϕn → ¬�

is valid, then
⋂
n∈N [ϕn]

M = ∅. In this case, we have for

El :=
⋂
n≤l

[ϕn]
M =

[ ∧
n≤l

ϕn

]M
,

that El ↓ ∅. So, for every m ∈ M and k ∈ N \ {0} there is a

l (k,m) ∈ N such that Ti (m)
(
El(k,m)

)
< 1

k . By definition of “|=”,

we have

(M,m) |= ¬p 1
k
i

( ∧
n≤l(k,m)

ϕn

)
.

Again by definition of “|=”, it follows that

(M,m) |=
∧

k∈N\{0}

∨
l∈N

¬p 1
k

i

( ∧
n≤l

ϕn

)
.

Hence ∧
k∈N\{0}

∨
l∈N

¬p 1
k

i

( ∧
n≤l

ϕn

)
is valid.

(f) Let M be a type space (resp. Harsanyi type space) on X for

player set I and m ∈ M. Then, it is easy to see by induction

on the formation of formulas ϕ ∈ Li: Either [Ti(m)]M ⊆ [ϕ]M or

[Ti(m)]M ∩ [ϕ]M = ∅, for ϕ ∈ Li. Let ϕn ∈ L0, for n ∈ N. Then,

(M,m) |=
∧

k∈N\{0}

∨
l∈N

p
1− 1

k

i

( ∨
n≤l

ϕn

)
iff liml→∞Ti(m)

([ ∨
n≤l

ϕn

])
= 1,

which is by σ-additivity the case iff

Ti(m)

([ ∨
n∈N

ϕn

])
= 1.



34 M. MEIER Isr. J. Math.

Let ϕ ∈ Li and assume that

ϕ→
∨
n∈N

ϕn

is valid in the class of Harsanyi type spaces on X for player set I.

Assume that (M,m) |= ϕ. By the above, [Ti(m)]M ⊆ [ϕ]M , since

ϕ is an i-formula. This implies that [Ti(m)]M ⊆ [
∨
n∈N ϕn]

M ,

and by the introspection property of the Harsanyi type spaces

Ti(m)([
∨
n∈N ϕn]) = 1. The above observation implies now that

(M,m) |=
∧

k∈N\{0}

∨
l∈N

p
1− 1

k
i

( ∨
n≤l

ϕn

)
,

hence

ϕ→
∧

k∈N\{0}

∨
l∈N

p
1− 1

k
i

( ∨
n≤l

ϕn

)
is valid in the class of Harsanyi type spaces on X for player set I.

2. Given 1., we have to show:

(a) If M is a type space (resp. Harsanyi type space) on X for player

set I, m ∈ M , ϕ, ψ ∈ L, (M,m) |= ϕ and (M,m) |= ϕ → ψ, then

(M,m) |= ψ. But

(M,m) |= ϕ→ ψ iff m ∈ [¬ϕ ∨ ψ]M = (M \ [ϕ]M ) ∪ [ψ]
M
,

so m ∈ [ϕ]
M

and (M,m) |= ϕ→ ψ imply m ∈ [ψ]
M
.

(b) If M is a type space (resp. Harsanyi type space) on X for player

set I, m ∈M and Φ ⊆ L such that |Φ| ≤ 2ℵγ and such that for all

ϕ ∈ Φ : (M,m) |= ϕ, then (M,m) |= ∧
ϕ∈Φ ϕ, but this is clear by

the definition of “|=”.

Proof of Remark 2.

1. Set

M := {m},
Σ := Pow (M) , (i.e., the power set of M),

Ti (m) := δm, for every i ∈ I, (i.e., the delta-measure at m),

v(m,x) := 1, for every x ∈ X ∪ {�}.
Then,

M := 〈M,Σ, (Ti)i∈I , v〉
forms a Harsanyi type space on X for player set I.
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2. Let M be the Harsanyi type space on X for player set I constructed

above. Consider the set

Φ0 := {ϕ ∈ L0 | (M,m) |= ϕ} .

By the definition of “|=”, we have (M,m) |= ¬ψ, for ψ ∈ L0\Φ0, and

hence

Φ0 = Φ0 ∪ {¬ψ ∈ L0 | ψ ∈ L0\Φ0} .
We claim that Φ0 is consistent in the system H (and hence also in the

system P ). Otherwise, Φ0 � χ and Φ0 � ¬χ, for some χ ∈ L. But

then, by Proposition 1, we have (M,m) |= χ and (M,m) |= ¬χ. By the

definition of the relation “�”, this is impossible. Hence,∧
ϕ∈Φ0

ϕ ∧
∧

ψ∈L0\Φ0

¬ψ ∈ Ω �= ∅.

Proof of Proposition 2.

1. By (A5), � ϕ∨¬ϕ, for ϕ ∈ L0. Since |L0| ≤ ℵγ , it follows by Conjunction
that � ∧

ϕ∈L0
(ϕ ∨ ¬ϕ). By (A6) and Modus Ponens, it follows that

�
∨

Φ0⊆L0

( ∧
ϕ∈Φ0

ϕ ∧
∧

ϕ∈L0\Φ0

¬ϕ
)
.

If Φ0 ∪ {¬ϕ|ϕ ∈ L0\Φ0} is inconsistent (i.e., not consistent), then it

follows by 1 and 2 of Lemma 2 that

�
( ∧
ϕ∈Φ0

ϕ ∧
∧

ϕ∈L0\Φ0

¬ϕ
)

→ ψ and �
( ∧
ϕ∈Φ0

ϕ ∧
∧

ϕ∈L0\Φ0

¬ϕ
)

→ ¬ψ,

for a ψ ∈ L. By Conjunction, (A4) and Modus Ponens, we get

�
( ∧
ϕ∈Φ0

ϕ ∧
∧

ϕ∈L0\Φ0

¬ϕ
)

→ (ψ ∧ ¬ψ) .

Since (χ→ ρ) → (¬ρ→ ¬χ) is a tautology of the Propositional Calcu-

lus, we get, by Modus Ponens,

� ¬ (ψ ∧ ¬ψ) → ¬
( ∧
ϕ∈Φ0

ϕ ∧
∧

ϕ∈L0\Φ0

¬ϕ
)
.
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¬ (ψ ∧ ¬ψ) is a tautology of the Propositional Calculus, hence Modus

Ponens yields

� ¬
( ∧
ϕ∈Φ0

ϕ ∧
∧

ϕ∈L0\Φ0

¬ϕ
)
.

Let C0 be the set of all Φ0 ⊆ L0 such that Φ0 ∪ {¬ϕ|ϕ ∈ L0\Φ0} is

inconsistent. By Conjunction,

∧
Φ0∈C0

¬
( ∧
ϕ∈Φ0

ϕ ∧
∧

ϕ∈L0\Φ0

¬ϕ
)

is a theorem. By the definition of “
∨
”, “∨” and “→”,( ∨

Φ0⊆L0

( ∧
ϕ∈Φ0

ϕ∧
∧

ϕ∈L0\Φ0

¬ϕ
))

→
(( ∧

Φ0∈C0

¬
( ∧
ϕ∈Φ0

ϕ∧
∧

ϕ∈L0\Φ0

¬ϕ
))

→
∨
ω∈Ω

ω

)
,

is a tautology of Propositional Calculus, hence a theorem. Applying

Modus Ponens two times yields now

�
∨
ω∈Ω

ω.

2. Follows by induction on the formation of the formulas in L. Let ω ∈ Ω.

If � ω → ϕ and � ω → ¬ϕ for some ϕ ∈ L, then by 1 and 2 of Lemma

2, Ψω is not consistent, a contradiction.

For every ψ ∈ L0 we have ψ ∈ Ψω or ¬ψ ∈ Ψω. Again by 1 and 2 of

Lemma 2 it follows that � ω → ψ or � ω → ¬ψ.
If ϕ ∈ L and ψ = ¬ϕ, then, by the induction hypothesis, either

� ω → ¬ϕ, or � ω → ϕ. In the second case, since ϕ → ¬ (¬ϕ) is a

tautology of the Propositional Calculus, we have � ϕ → ¬ψ and by 3

of Lemma 2 it follows that � ω → ¬ψ.
If Φ ⊆ L such that |Φ| ≤ 2ℵγ and ψ =

∧
ϕ∈Φ ϕ, then, by the in-

duction hypothesis, either � ω → ϕ for all ϕ ∈ Φ, or there is a χ ∈ Φ

such that � ω → ¬χ. In the first case, by Conjunction, it follows that

� ∧
ϕ∈Φ(ω → ϕ) and by (A4) and Modus Ponens,

� ω →
∧
ϕ∈Φ

ϕ.
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In the second case, since ¬χ → ¬∧
ϕ∈Φ ϕ is a tautology of the Propo-

sitional Calculus, hence a theorem, we conclude by 3 of Lemma 2 that

� ω → ¬
∧
ϕ∈Φ

ϕ.

3. Let ω ∈ Ω and ψ ∈ L. If ω /∈ [ψ] , then � ω → ¬ψ. But then, since

(ω → ¬ψ) → (ψ → ¬ω) is a tautology of the Propositional Calculus, we

have � ψ → ¬ω. By Conjunction, (A4) and Modus Ponens, we conclude

� ψ → ∧
ω∈Ω\[ψ] ¬ω. ∧

ω∈Ω\[ψ]
¬ω → ¬

∨
ω∈Ω\[ψ]

ω

is a tautology of the Propositional Calculus, so we conclude that

� ψ → ¬∨
ω∈Ω\[ψ] ω.∨

ω∈Ω

ω →
(
¬

∨
ω∈Ω\[ψ]

ω →
∨
ω∈[ψ]

ω

)
is a tautology of the Propositional Calculus, hence a theorem, so we

infer by 1 and Modus Ponens that � ¬∨
ω∈Ω\[ψ] ω → ∨

ω∈[ψ] ω. By 3 of

Lemma 2, it follows that

� ψ →
∨
ω∈[ψ]

ω.

If ω ∈ [ψ] , then � ω → ψ. Since (ω → ψ) → (¬ψ → ¬ω) is a tautology

of the Propositional Calculus, hence a theorem, it follows by Modus

Ponens that � ¬ψ → ¬ω. By Conjunction, (A4) and Modus Ponens, we

get � ¬ψ → ∧
ω∈[ψ] ¬ω. Then, since(
¬ψ →

∧
ω∈[ψ]

¬ω
)

→
( ∨
ω∈[ψ]

ω → ψ

)
is a tautology of the Propositional Calculus, hence a theorem, it follows

by Modus Ponens that

�
∨
ω∈[ψ]

ω → ψ,

so, by Conjunction, we conclude

� ψ ↔
∨
ω∈[ψ]

ω.
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4. Let ω ∈ Ω and Φ ⊆ L such that |Φ| ≤ 2ℵγ . By 3 it suffices to show

that ω ∈ [
∧
ϕ∈Φ ϕ] iff ω ∈ [Φ] . If ω ∈ [Φ] , then, for every ϕ ∈ Φ, we

have � ω → ϕ. By Conjunction, (A4) and Modus Ponens it follows that

� ω → ∧
ϕ∈Φ ϕ, so ω ∈ [

∧
ϕ∈Φ ϕ].

If ω ∈ [
∧
ϕ∈Φ ϕ], then � ω → ∧

ϕ∈Φ ϕ. For every ψ ∈ Φ we have, by

(A5), � ∧
ϕ∈Φ ϕ → ψ, so, by 3 of Lemma 2, it follows that � ω → ψ,

and hence ω ∈ [Φ] .

5. By 2. we have Ω\ [ψ] = [¬ψ]; 5. follows now from 3.

6. See the Proof of 5.

7. See the Proof of 4.

Proof of Lemma 3. Assume that T ′
i (ω) ([ψ]) ≥ α. Then, for every β′ < α, there

is a β > β′ with � ω → pβi (ψ). By (P7), � pβi (ψ) → pβ
′
i (ψ). Hence, by 3 of

Lemma 2, � ω → pβ
′
i (ψ). By Conjunction, (A4) and Modus Ponens, we have

� ω → ∧
β<α p

β
i (ψ). By 3 of Lemma 2 and (P3), it follows that � ω → pαi (ψ), a

contradiction to 2 of Proposition 2.

Proof of Lemma 4. Let ϕ ∈ L0. By (P1), p0i (ϕ) is an axiom and, by (A1),

p0i (ϕ) →
(
ω → p0i (ϕ)

)
is an axiom. By Modus Ponens, it follows that �ω→ p0i (ϕ). Hence T

′
i (ω)([ϕ])≥

0.

Let ϕ, ψ ∈ L0 with [ϕ] = [ψ] . (Of course, we have by (A5) and Modus

Ponens that � ϕ↔ ϕ′ implies � ϕ→ ϕ′ and � ϕ′ → ϕ, and by Conjunction the

opposite direction follows.) Then, � ψ ↔ ∨
ω∈[ψ]

ω and � (
∨
ω∈[ψ]

ω) ↔ ϕ, so by

Lemma 2, � ϕ↔ ψ. By Necessitation, (P8) and Modus Ponens, it follows that

� pαi (ϕ) → pαi (ψ) and � pαi (ψ) → pαi (ϕ), so

sup {α |� ω → pαi (ϕ)} = sup {α |� ω → pαi (ψ)} ,
and T ′

i (ω) is well-defined.

Let ω ∈ Ω. To show that T ′
i (ω) is countably additive it is enough to show

that it is finitely additive and continuous at ∅ (see Dudley (1989), Theorem

3.1.1). Let ϕ, ψ ∈ L0 with [ϕ] ∩ [ψ] = ∅. Then, [ϕ] ⊆ Ω \ [ψ] . It follows that
[ϕ] = ([ϕ] ∪ [ψ]) ∩ (Ω \ [ψ]) and [ψ] = ([ϕ] ∪ [ψ]) ∩ [ψ] .

By 6 and 7 of Proposition 2, it follows that

([ϕ] ∪ [ψ]) ∩ (Ω \ [ψ]) = [(ϕ ∨ ψ) ∧ ¬ψ] and ([ϕ] ∪ [ψ]) ∩ [ψ] = [(ϕ ∨ ψ) ∧ ψ] .
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Now, let

T ′
i (ω) ([ϕ]) = r and T ′

i (ω) ([ψ]) = r′.

Assume that r+r′ > 1. Then there are rationals α, β ∈ [0, 1] such that α ≤ r,

β ≤ r′ and α+ β > 1. But then,

� ω → pαi ((ϕ ∨ ψ) ∧ ¬ψ) and � ω → pβi ((ϕ ∨ ψ) ∧ ψ) .
We have

� (ϕ ∨ ψ) ∧ ψ → ¬ ((ϕ ∨ ψ) ∧ ¬ψ) ,
because this is a tautology of the Propositional Calculus. Necessitation, (P8)

and Modus Ponens yield now

� pβi ((ϕ ∨ ψ) ∧ ψ) → pβi (¬ ((ϕ ∨ ψ) ∧ ¬ψ)).
By Lemma 2, we conclude that

� ω → pβi (¬ ((ϕ ∨ ψ) ∧ ¬ψ)).
But since α+ β > 1, we have that

pαi ((ϕ ∨ ψ) ∧ ¬ψ) → ¬pβi (¬ ((ϕ ∨ ψ) ∧ ¬ψ))
is an axiom (P6), hence

� ω → ¬pβi (¬ ((ϕ ∨ ψ) ∧ ¬ψ)),
which is by 2 of Proposition 2 a contradiction. So, it follows that r + r′ ≤ 1.

For every ε > 0, there are rational α, β ∈ [0, 1] with α ≤ r and β ≤ r′ such
that α ≥ r − ε

2 and β ≥ r′ − ε
2 . For such α and β we have

� ω → pαi ((ϕ ∨ ψ) ∧ ¬ψ) and � ω → pβi ((ϕ ∨ ψ) ∧ ψ) ,
so, by Conjunction, (A4) and Modus Ponens,

� ω → pαi ((ϕ ∨ ψ) ∧ ¬ψ) ∧ pβi ((ϕ ∨ ψ) ∧ ψ) .
Together with (P4) and Lemma 2, we conclude that � ω → pα+βi (ϕ ∨ ψ) . This
implies that

T ′
i (ω) ([ϕ] ∪ [ψ]) = T ′

i (ω) ([ϕ ∨ ψ]) ≥ r + r′.

If r + r′ = 1, then we have T ′
i (ω)([ϕ ∨ ψ]) = 1, since by definition

T ′
i (ω)([ϕ ∨ ψ]) ≤ 1. If r + r′ < 1, then for all ε > 0 such that ε + r + r′ ≤ 1,

there are rationals α, β ∈ [0, 1] such that α > r, β > r′ and α+ β ≤ ε+ r + r′.
For such α, β we have

� ω → ¬pαi ((ϕ ∨ ψ) ∧ ¬ψ) and � ω → ¬pβi ((ϕ ∨ ψ) ∧ ψ) .
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This implies (like above, but with the use of (P5)) that � ω → ¬pα+βi (ϕ ∨ ψ) .
So, by Lemma 3, we have

T ′
i (ω) ([ϕ] ∪ [ψ]) = T ′

i (ω) ([ϕ ∨ ψ]) ≤ r + r′.

Altogether, this shows that T ′
i (ω) is finitely additive.

Since � is an axiom, we have for every ω ∈ Ω that {ω} � �. Therefore, by
Lemma 2, � ω → �, and hence [�] = Ω. Since � is a theorem, Necessitation

yields � p1i (�) , so, as above, we have for every ω ∈ Ω that � ω → p1i (�) . This

implies that T ′
i (ω) (Ω) = 1, for every ω ∈ Ω.

Note that we have [¬�] = ∅, and since, for ω ∈ Ω and i ∈ I, T ′
i (ω) is finitely

additive, we have

T ′
i (ω) (∅) = T ′

i (ω) (∅ ∪ ∅) = T ′
i (ω) (∅) + T ′

i (ω) (∅) ,

and hence T ′
i (ω) (∅) = 0.

For ω ∈ Ω, it remains to show that T ′
i (ω) is continuous at ∅ : For n ∈ N, let

En = [ϕn] with ϕn ∈ L0 and let En ↓ ∅, that is, for all n ∈ N : En+1 ⊆ En and⋂
n∈NEn = ∅. Then, by 7 of Proposition 2, we have

[ϕn] =

[ ∧
m≤n

ϕm

]
and

[ ∧
n∈N

ϕn

]
=

⋂
n∈N

[ϕn] = ∅.

It follows that

Ω =

((
Ω \

[ ∧
n∈N

ϕn

]
∪ [¬�]

)
=

[ ∧
n∈N

ϕn → ¬�
]
,

by 6 and 7 of Proposition 2. By 3 and 1 of Proposition 2 and by Modus Ponens,

it follows that

�
∧
n∈N

ϕn → ¬�.

So, by the inference rule “Continuity at ∅”, we have

�
∧

k∈N\{0}

∨
l∈N

¬p 1
k

i

( ∧
n≤l

ϕn

)
.

Hence,

{ω} �
∧

k∈N\{0}

∨
l∈N

¬p 1
k

i

( ∧
n≤l

ϕn

)
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and, by 2 of Lemma 2,

� ω →
∧

k∈N\{0}

∨
l∈N

¬p 1
k

i

( ∧
n≤l

ϕn

)
.

For ε > 0 fix k ∈ N\{0} with 1
k ≤ ε. By (A5) and 3 of Lemma 2, it follows that

� ω →
∨
l∈N

¬p 1
k

i

( ∧
n≤l

ϕn

)
.

But then there is a l ∈ N such that

� ω → ¬p 1
k
i

( ∧
n≤l

ϕn

)
,

for if not, it follows by 2 of Proposition 2, Conjunction, (A4) and Modus Ponens

that

� ω →
∧
l∈N

p
1
k

i

( ∧
n≤l

ϕn

)
,

a contradiction. (Note that
∨
l∈N ¬ψl → ¬∧

l∈N ψl is a tautology of the Propo-

sitional Calculus.) By Lemma 3, it follows that

T ′
i (ω)

([ ∧
n≤l

ϕn

])
<

1

k
≤ ε.

The additivity (and the fact that T ′
i (ω) takes only non-negative values) implies

then that

T ′
i (ω)

([ ∧
n≤m

ϕn

])
<

1

k
≤ ε,

for m ≥ l. So, we have

limn→∞T ′
i (ω) (En) = 0.

Proof of Proposition 3.

1. Follows directly from Lemma 4 and Carathéodory’s extension Theorem.

2. Follows from Lemma 1. Since F is a field that generates Σ, by that

Lemma, the σ-field on Δ (Ω,Σ) generated by the sets

{μ ∈ Δ(Ω,Σ) | μ (F ) ≥ α},
with F ∈ F and rational α ∈ [0, 1], is equal to the σ-field on Δ (Ω,Σ)

generated by the sets

{μ ∈ Δ(Ω,Σ) | μ (E) ≥ α},
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with E ∈ Σ and rational α ∈ [0, 1] . Inverse images commute with

arbitrary intersections and unions, and with complements. So, it suffices

to show that {ω | Ti (ω) ([ψ]) ≥ α} ∈ Σ, for all ψ ∈ L0, i ∈ I and rational

α ∈ [0, 1] . By Lemma 3, 2 of Proposition 2 and the definition of Ti (ω) ,

it follows that

Ti (ω) ([ψ]) ≥ α iff � ω → pαi (ψ) .

But we have that

� ω → pαi (ψ) iff ω ∈ [pαi (ψ)] ,

and [pαi (ψ)] ∈ F ⊆ Σ.

3. Follows from Remark 4, 2 of Remark 2, and 1. and 2. of this proposition.

4. We proceed by induction on the formation of the formulas in L: Let

ω ∈ Ω. Then:

(a) For x ∈ X ∪ {�} :

(Ω, ω) |= x iff v (ω, x) = 1

iff ω ∈ [x] .

(b) For ϕ ∈ L :

(Ω, ω) |= ¬ϕ iff (Ω, ω) �|= ϕ

iff ω /∈ [ϕ]

iff ω ∈ [¬ϕ] ,
where the last equivalence follows from 2 of Proposition 2.

(c) For Φ ⊆ L such that |Φ| ≤ 2ℵγ :

(Ω, ω) |= ∧
ϕ∈Φ ϕ iff (Ω, ω) |= ϕ, for all ϕ ∈ Φ,

iff ω ∈ ⋂
ϕ∈Φ [ϕ]

iff ω ∈
[∧

ϕ∈Φ ϕ
]
,

where the last equivalence follows from 7 of Proposition 2.

(d) For i ∈ I, α ∈ [0, 1] ∩Q, and ϕ ∈ L0 :

(Ω, ω) |= pαi (ϕ) iff {ω′ ∈ Ω | (Ω, ω′) |= ϕ} ∈ Σ and

Ti (ω) ({ω′ ∈ Ω | (Ω, ω′) |= ϕ}) ≥ α.

But, by the induction hypothesis,

{ω′ ∈ Ω | (Ω, ω′) |= ϕ} = [ϕ] ∈ Σ.
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So,

(Ω, ω) |= pαi (ϕ) iff sup
{
β ∈ [0, 1] ∩Q |� ω → pβi (ϕ)

}
≥ α

iff � ω → pαi (ϕ),

where the last equivalence follows by Lemma 3 and Proposition 2.

5.

(a) Case ℵγ = ℵ0: We show that, for all ω ∈ Ω and i ∈ I: [Ti (ω)]

is measurable and Ti (ω) ([Ti (ω)]) = 1. Since L0 is countable and

since

{ω′ ∈ Ω | Ti (ω′) ([ϕ]) ≥ α} = [pαi (ϕ)] ,

for ϕ ∈ L0 (by 4. of this proposition), the set

[Ti (ω)]0 :=
⋂

α∈[0,1]∩Q, ϕ∈L0, s.t. Ti(ω)([ϕ])≥α
{ω′ ∈ Ω | Ti (ω′) ([ϕ]) ≥ α}

is measurable. Since F is closed under complements, every ω′ ∈
[Ti (ω)]0 satisfies, for all A ∈ F :

Ti (ω) (A) = Ti (ω
′) (A) .

Since F is a field which generates Σ, by Carathéodory’s extension

Theorem, it follows that Ti (ω) = Ti (ω
′) . Hence,

[Ti (ω)] = [Ti (ω)]0 ∈ Σ.

By (I1), pαi (ϕ) → p1i (p
α
i (ϕ)) is an axiom. So, by 3. of Lemma 2,

� ω → pαi (ϕ) implies � ω → p1i (p
α
i (ϕ)). Hence, by the definition

of Ti (ω) , it follows that Ti (ω) ([ϕ]) ≥ α implies Ti (ω) ([p
α
i (ϕ)]) =

1. Since Ti (ω) is a σ-additive probability measure, it follows that

Ti (ω) ([Ti (ω)]) = 1.

(b) Case ℵγ > ℵ0: We have to show that, for all ω ∈ Ω, i ∈ I and

A ∈ Σ: [Ti (ω)] ⊆ A implies Ti (ω) (A) = 1.

By the definition of Ti(ω) in the proof of Carathéodory’s Theorem,

it is enough to show that for (ϕn)n∈N, where ϕn ∈ L0, for n ∈ N:⋃
n∈N

[ϕn] ⊇ A implies
∑
n∈N

T ′
i (ω)([ϕn]) ≥ 1.
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We can assume without loss of generality that the [ϕn] are pairwise

disjoint. (That

inf

{∑
n∈N

T ′
i (ω)([ϕn])| ϕn ∈ L0, n ∈ N such that

⋃
n∈ N

[ϕn] ⊇ A

}
≤ 1

is clear, because A ⊆ Ω and T ′
i (ω)(Ω) = 1.)

For i ∈ I and ω ∈ Ω define

ϕi (ω) := ∧
α∈[0,1]∩Q, χ∈L0, s.t. ω→pαi (χ)

pαi (χ) ∧
∧

β∈[0,1]∩Q, ψ∈L0, s.t. ω→¬pβi (ψ)
¬pβi (ψ) .

By the definition of Ti(ω), we have [Ti(ω)] = [ϕi (ω)] , where ϕi (ω)

is an i-formula. From

[Ti(ω)] ⊆
⋃
n∈N

[ϕn] =

[ ∨
n∈N

ϕn

]
it follows (by 6 and 7 of Proposition 2) that

Ω =

[
ϕi (ω) →

∨
n∈N

ϕn

]
.

By 1 and 3 of Proposition 2 and Modus Ponens, it follows that

ϕi (ω) →
∨
n∈N ϕn is a theorem. By the inference rule “Uncount-

able Introspection”, we can conclude that

ϕi (ω) →
∧

k∈N\{0}

∨
l∈N

p
1− 1

k
i

( ∨
n≤l

ϕn

)

is a theorem. By Conjunction, (A4) and Modus Ponens, it follows

that � ω → ϕi (ω). This implies that

� ω →
∧

k∈N\{0}

∨
l∈N

p
1− 1

k
i

( ∨
n≤l

ϕn

)
,

which implies that

1 = liml→∞T ′
i (ω)

([ ∨
n≤l

ϕn

])
≤

∑
n∈N

T ′
i (ω)([ϕn]).
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Proof of Theorem 1. “Strongly sound” follows from Proposition 1.

According to Proposition 3, Ω = 〈Ω,Σ, (Ti)i∈I , v〉 is a type space (resp.

Harsanyi type space) on X for player set I.

Let Γ |= ϕ in the class of type spaces (resp. Harsanyi type spaces) on X for

player set I. Then, for all ω ∈ Ω:

(Ω, ω) |= Γ implies (Ω, ω) |= ϕ.

So, by 4 of Proposition 3, [Γ] ⊆ [ϕ] , which implies, by 3 of Proposition 2,

� ∨
ω∈[Γ] ω → ϕ, because for sets of formulas A ⊆ B with |B| ≤ 2ℵγ :

∨
χ∈A χ→∨

χ∈B χ is a tautology of the Propositional Calculus. Let ω ∈ Ω and ω /∈ [Γ] .

Then there is ψ ∈ Γ with ω /∈ [ψ] , so � ω → ¬ψ. But then, � ψ → ¬ω (since

(χ→ ¬χ̃) → (χ̃→ ¬χ) is a tautology of the Propositional Calculus). By Modus

Ponens, it follows that Γ � ¬ω. By Conjunction and the fact that |Ω| ≤ 2ℵγ ,
we have Γ � ∧

ω/∈[Γ] ¬ω. Then, since (as in the proof of 3. of Proposition 2)

� ∧
ω/∈[Γ] ¬ω → ∨

ω∈[Γ] ω is a theorem, it follows that Γ � ∨
ω∈[Γ] ω, hence, by

Modus Ponens, we have Γ � ϕ.

Proof of Corollary 1. Assume that (Ω, ω) �|= Γ, for every ω ∈ Ω, where Ω is the

Ω corresponding to the system P (resp. to the system H). Hence, for every ω

there is a ϕω ∈ Γ such that (Ω, ω) |= ¬ϕω . By 4 of Proposition 3, it follows

that ω ∈ [¬ϕω ] , that is � ω → ¬ϕω , hence � ϕω → ¬ω. Since |Ω| ≤ 2ℵγ , we
have � ∧

ω′∈Ω ϕω′ → ¬ω (because � ∧
ω′∈Ω ϕω′ → ϕω is an axiom). It follows

(by Conjunction, (A4) and Modus Ponens) that � ∧
ω′∈Ω ϕω′ → ∧

ω∈Ω ¬ω. By
4 of Proposition 3 and the definition of “|=”, we have [¬ (x ∧ ¬x)] = Ω, for

x ∈ X. So, by Proposition 2, it follows that � ¬ (x ∧ ¬x) → ∨
ω∈Ω ω and hence

� ∧
ω∈Ω ¬ω → x ∧ ¬x, which implies � ∧

ω′∈Ω ϕω′ → x ∧ ¬x, and we conclude

Γ � x ∧ ¬x. By (A5) and Modus Ponens, it follows that Γ � x and Γ � ¬x, so
Γ is inconsistent in the system P (resp. in the system H).

If Γ is not consistent in the system P (resp. in the system H), then there is

a ϕ such that Γ � ϕ and Γ � ¬ϕ in the system P (resp. in the system H). So,

by the strong soundness, for every type space (resp. Harsanyi type space) M

on X for player set I and every m ∈M : If (M,m) |= Γ, then (M,m) |= ϕ and

(M,m) |= ¬ϕ. By the definition of the relation “|=”, there is no (M,m) such

that (M,m) |= ϕ and (M,m) |= ¬ϕ. So Γ has no model in the class of type

spaces (resp. Harsanyi type spaces) on X for player set I.
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B. Proofs of Section 4

Proof of Lemma 5. By induction on the formation of the formulas in L:
1. Let x ∈ X ∪ {�} . Then,
(M,m) |= x iff v (m,x) = 1 iff v (f (m) , x) = 1 iff (N, f (m)) |= x.

2. Let Φ ⊆ L such that |Φ| ≤ 2ℵγ . Then, by the induction hypothesis,

(M,m) |= ∧
ϕ∈Φ ϕ iff (M,m) |= ϕ, for all ϕ ∈ Φ,

iff (N, f (m)) |= ϕ, for all ϕ ∈ Φ,

iff (N, f (m)) |= ∧
ϕ∈Φ ϕ.

3. Let ϕ ∈ L. Then, by the induction hypothesis,

(M,m) |= ¬ϕ iff (M,m) �|= ϕ iff (N, f (m)) �|= ϕ iff (N, f (m)) |= ¬ϕ.
4. Let ψ ∈ L0. As remarked in the definition of the relation “|=”, [ψ]

M

is measurable in M and [ψ]
N

is measurable in N. By the induction

hypothesis, we have f−1([ψ]
N
) = [ψ]

M
, so we have

(M,m) |= pαi (ψ) iff α ≤ Ti (m) ([ψ]
M
)

iff α ≤ TNi (f (m)) ([ψ]
N
)

iff (N, f (m)) |= pαi (ψ) .

Proof of Theorem 2. Let M =
〈
M,ΣM ,

(
TMi

)
, vM

〉
be a type space (resp.

Harsanyi type space) on X for player set I. By Lemma 5, 2 of Proposition

2, and 4 of Proposition 3, it follows that there is at most one type morphism

from M to Ω.

Let

Φm := {ϕ ∈ L0 | (M,m) |= ϕ} ,
for m ∈M , and define

f (m) :=
∧

ϕ∈Φm

ϕ.

By Corollary 1, Φm is consistent and, by the definition of the relation “|=”, it

follows for ψ ∈ L0 that

ψ ∈ Φm iff ¬ψ /∈ Φm.

This implies that f (m) ∈ Ω. It remains to show that f : M → Ω is a type

morphism:
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1. It is enough to show that for every ψ ∈ L0 : f−1 ([ψ]) ∈ ΣM , since the

set {[ϕ] | ϕ ∈ L0} is a field that generates Σ. We have

f (m) ∈ [ψ] iff � f (m) → ψ iff ψ ∈ Φm iff m ∈ [ψ]
M
.

But [ψ]M ∈ ΣM (see the definition of “|=”).

2. Let x ∈ X ∪ {�} . Then,
vM (m,x) = 1 iff x ∈ Φm iff � f (m) → x iff f (m) ∈ [x] iff v (f (m) , x) = 1.

3. Let i ∈ I and m ∈ M. Since f : M → Ω is ΣM − Σ-measurable,

TMi (m)
(
f−1 (·)) is a σ-additive probability measure on (Ω,Σ). Since

F is a field that generates Σ, by Carathéodory’s Extension Theorem,

TMi (m)
(
f−1 ([ϕ])

)
= Ti (f (m)) ([ϕ]) ,

for all ϕ ∈ L0, implies

TMi (m)
(
f−1 (E)

)
= Ti (f (m)) (E) ,

for all E ∈ Σ. As shown in 1, we have f−1 ([ϕ]) = [ϕ]
M
, for ϕ ∈ L0,

and hence

TMi (m)
(
f−1 ([ϕ])

)
=TMi (m) ([ϕ]

M
)

= sup {α | (M,m) |= pαi (ϕ)}
=sup {α | pαi (ϕ) ∈ Φm}
=sup {α |� f(m) → pαi (ϕ)}
=Ti (f (m)) ([ϕ]) .

C. Proofs of Section 5

Proof of Lemma 6. The “either” follows by the consistency of ωj , while the “or”

follows by an easy induction on the formation of the formulas in Lj , which is

done in the same way as in the proof of 2 of Proposition 2.

Proof of Remark 8. For ω0 ∈ Ω0 and ϕ0, ψ0 ∈ L0
0, we have by Conjunction,

(A4) and Modus Ponens that

ω0 ∈ [ϕ0]
0 ∩ [ψ0]

0
implies ω0 ∈ [ϕ0 ∧ ψ0]

0
,

and by (A5) and 3 of Lemma 2

ω0 ∈ [ϕ0 ∧ ψ0]
0

implies ω0 ∈ [ϕ0]
0 ∩ [ψ0]

0
,
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and hence

[ϕ0 ∧ ψ0]
0
= [ϕ0]

0 ∩ [ψ0]
0
.

By Lemma 6, we have

Ω0 \ [ϕ0]
0
= [¬ϕ0]

0
,

for ϕ0 ∈ L0
0. It follows that the generators of Σ0 are finite Boolean combinations

of the sets [x]
0
, where x ∈ X. Hence Σ0 is generated by the sets [x]

0
, where

x ∈ X.

For the second point: Existence: Take a type space M on X for player set I

consisting of one point (i.e., M = {m} , note that M is necessarily a Harsanyi

type space) such that v(m,x) = 1 iff x ∈ m0. By Corollary 1,

ω0 :=
∧

ϕ0∈L0
0:(M,m)|=ϕ0

ϕ0

is consistent in the system H (and hence in the system P ) and, by the definition

of the relation “|=”, ω0 ∈ Ω0. By (A5) and Lemma 6, we have

� ω0 → x iff x ∈ m0.

Hence by Lemma 6 we have

� ω0 → ¬y iff y /∈ m0.

So, we have by Conjunction, (A4) and Modus Ponens,

� ω0 →
∧

x∈X:x∈m0

x ∧
∧

y∈X:y/∈m0

¬y.

Uniqueness: An easy induction on the formation of the formulas in L0
0 shows

that for all ϕ0 ∈ L0
0:

�
∧
x∈m0

x ∧
∧

y∈X\m0

¬y → ϕ0 or �
∧
x∈m0

x ∧
∧

y∈X\m0

¬y → ¬ϕ0.

Hence, by Conjunction, (A4) and Modus Ponens, we have either∧
x∈X:x∈m0

x ∧
∧

y∈X:y/∈m0

¬y → ω0

or ∧
x∈X:x∈m0

x ∧
∧

y∈X:y/∈m0

¬y → ¬ω0.
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By 3 of Lemma 2 and the consistency of ω0, this implies

� ω0 ↔
∧

x∈X:x∈m0

x ∧
∧

y∈X:y/∈m0

¬y.

Notice that since ω0 is consistent, we cannot have � ω0 → ω′
0 for some

ω′
0 ∈ Ω0 with ω0 �= ω′

0, because by the definitions {ω0, ω
′
0} is an inconsistent set

of formulas.

Proof of Lemma 7. An easy induction on the formation of the formulas shows

that for all ϕ ∈ L:

Either �
( ∧
j∈I0

ωj

)
→ ϕ or �

( ∧
j∈I0

ωj

)
→ ¬ϕ,

but not both. By the consistency of
∧
j∈I0 ωj, Corollary 1 and 4 of Proposition

3, the rest is now obvious.

Proof of Lemma 8. The first assertion is true for i-formulas, according to Lem-

mas 6 and 7. The rest of the first assertion follows from the definition of [·]∗
and 6 and 7 of Proposition 2.

To the second assertion: Since

[ϕ] ⊆ h−1
(
[ϕ]

∗)
and Ω \ [ϕ] = [¬ϕ] ⊆ h−1

(
[¬ϕ]∗) ,

and since

h−1
(
[ϕ]∗

) ∩ h−1
(
[¬ϕ]∗) = h−1

(
[ϕ]∗

) ∩ h−1
(
Ω∗ \ [ϕ]∗) = ∅,

we have

[ϕ] = h−1
(
[ϕ]

∗)
.

Proof of Lemma 9. Let i ∈ I. For ωi ∈ Ωi, choose ω ∈ Ω such that ω(i) = ωi.

By the definitions and Lemma 6,

T ∗
i (ωi)([ϕ]

∗) = T ′
i (ω)([ϕ]),

for all ϕ ∈ L0. This implies in particular that T ∗
i (ωi) (·) is non-negative.

If for ϕ, ψ ∈ L0: [ϕ]
∗ = [ψ]∗, then [ϕ] = [ψ], by Lemma 8. It follows that

T ∗
i (ωi)([ϕ]

∗) = T ′
i (ω)([ϕ]) = T ′

i (ω)([ψ]) = T ∗
i (ωi)([ψ]

∗),

hence T ∗
i (ωi) (·) is well-defined.
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If for ϕ, ψ ∈ L0: [ϕ]∗ ∩ [ψ]∗ = ∅, then [ϕ] ∩ [ψ] = ∅, by Lemma 8. By the

definition of [·]∗, it follows that [ϕ]∗ ∪ [ψ]∗ = [ϕ ∨ ψ]∗. Hence,
T ∗
i (ωi)([ϕ]

∗) + T ∗
i (ωi)([ψ]

∗) =T ′
i (ω)([ϕ]) + T ′

i (ω)([ψ])

=T ′
i (ω)([ϕ ∨ ψ])

=T ∗
i (ωi)([ϕ ∨ ψ]∗)

=T ∗
i (ωi)([ϕ]

∗ ∪ [ψ]∗).

Therefore, T ∗
i (ωi) (·) is additive on F∗.

Since � and p1i (�) are theorems, we have Ω0 = [�]0 and, by the definition

of the ωi ∈ Ωi, � ωi → p1i (�). It follows that T ∗
i (ωi) (Ω

∗) = 1.

Let ϕn ∈ L0, for n ∈ N, and let [ϕn]
∗ ↓ ∅. It follows by Lemma 8 that [ϕn] ↓ ∅

and therefore

limn→∞T ∗
i (ωi) ([ϕn]

∗) = limn→∞T ′
i (ω) ([ϕn]) = 0.

Proof of Proposition 4.

1. Follows from Carathéodory’s Extension Theorem and Lemma 9.

2. Follows from Lemma 1: It suffices to show that for every ψ ∈ L0,

rational α ∈ [0, 1] and i ∈ I :

{ωi | T ∗
i (ωi)([ψ]

∗) ≥ α} ∈ Σi.

Choose a ω ∈ Ω such that ω (i) = ωi. By Lemma 6, we have

� ω → pαi (ψ) iff � ωi → pαi (ψ) .

By Lemma 3, it follows that

T ∗
i (ωi)([ψ]

∗) ≥ α iff � ωi → pαi (ψ).

Hence,

{ωi | T ∗
i (ωi)([ψ]

∗) ≥ α} = [pαi (ψ)]
i ∈ Σi.

3. Follows from Remark 8, and 1 and 2 of this proposition.

4. We proceed by induction on the formation of the formulas in L0:

• For x ∈ X ∪ {�} and (ωj)j∈I0 ∈ Ω∗ :

(Ω∗, (ωj)j∈I0 ) |= x iff v∗ (ω0, x) = 1

iff ω0 ∈ [x]0

iff (ωj)j∈I0 ∈ [x]∗.
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• The induction steps “¬ϕ”, for ϕ ∈ L0, and “ϕ ∧ ψ”, for ϕ and

ψ ∈ L0, are clear by the definition of “|=” and “[·]∗”.
• So there remains the step “pαi (ϕ)”, for i ∈ I, α ∈ [0, 1] ∩ Q, and

ϕ ∈ L0. By the induction hypothesis, we have

[ϕ]
∗
=

{
(ω′
j)j∈I0 ∈ Ω∗| (

Ω∗, (ω′
j)j∈I0

) |= ϕ
}
.

It follows that, for (ωj)j∈I0 ∈ Ω∗:

(Ω∗, (ωj)j∈I0 ) |= pαi (ϕ) iff T ∗
i (ωj)

(
[ϕ]

∗) ≥ α

iff sup
{
β ∈ [0, 1] ∩Q| � ωi → pβi (ϕ)

}
≥ α

iff � ωi → pαi (ϕ)

iff ωi ∈ [pαi (ϕ)]
i

iff (ωj)j∈I0 ∈ [pαi (ϕ)]
∗,

where the third equivalence follows by the axioms (P7) and (P3).

5. We have to show that, for i ∈ I and ωi ∈ Ωi :

A ∈ Σ∗ and [T ∗
i (ωi)]

∗ := {(ω′
j)j∈I0 | T ∗

i (ω
′
i) = T ∗

i (ωi)} ⊆ A

imply

T ∗
i (ωi)(A) = 1.

By the definition ofF∗,Σ∗, and T ∗
i (ωi), it suffices to show that (ϕn)n∈N∈

L0 and
⋃
n∈N[ϕn]

∗ ⊇ A imply

lim
l→∞

T ∗
i (ωi)

([ ∨
n≤l

ϕn

]∗)
= 1.

Choose ω ∈ Ω with � ω → ωi.

By an easy induction on the formation of the i-formulas ϕi ∈ Li, we
have that for ω′, ω̃ ∈ Ω and i ∈ I : Ti(ω

′) = Ti(ω̃) implies

(Ω, ω′) |= ϕi iff (Ω, ω̃) |= ϕi.

Hence, by 4 of Proposition 3, Ti(ω
′) = Ti(ω̃) implies

� ω′ → ωi iff � ω̃ → ωi.

It follows that h−1([T ∗
i (ωi)]

∗)⊇ [Ti(ω)]. Hence, by Lemma 8,
⋃
n∈N[ϕn]⊇

[Ti(ω)]. This implies

lim
l→∞

T ∗
i (ωi)

([ ∨
n≤l

ϕn

]∗)
= lim
l→∞

Ti (ω)

([ ∨
n≤l

ϕn

])
= 1.
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Proof of Theorem 3. By Lemma 7, h is one-to-one.

Let (ωj)j∈I0 ∈ Ω∗. By 4 of Proposition 4, Lemma 6 and the definition of [·]∗,
we have for i ∈ I0 and ϕi ∈ Li0:

� ωi → ϕi iff (ωj)j∈I0 ∈ [ϕi]
∗ iff 〈Ω∗, (ωj)j∈I0 〉 |= ϕi.

By definition of “|=”, this implies that 〈Ω∗, (ωj)j∈I0〉 |= ωi, for i ∈ I0. Hence,

we have

〈Ω∗, (ωj)j∈I0 〉 |=
∧
j∈I0

ωj .

So
∧
j∈I0 ωj is consistent for every (ωj)j∈I0 ∈ Ω∗, hence, by Lemma 7, h is onto.

For (ωj)j∈I0 ∈ Ω∗ let ω ∈ Ω such that � ω ↔ ∧
j∈I0 ωj . Then it follows that

〈Ω∗, (ωj)j∈I0〉 |= ω.

Hence, h−1 is the type morphism from the proof of Theorem 2.

h is a type morphism: For ϕ ∈ L0, we have by Lemma 8:

h−1([ϕ]∗) = [ϕ] ∈ Σ.

Since F∗ is a field that generates Σ∗, it follows that h is measurable.

Let ω ∈ Ω. For x ∈ X ∪ {�}, we have by Lemma 6, Lemma 7 and the

definitions

v∗(h(ω), x) = v∗((ω(j))j∈I0 , x) = v∗(ω(0), x),

and

v∗(ω(0), x) = 1 iff � ω(0) → x

iff � ω → x

iff v(ω, x) = 1.

By Carathéodory’s Extension Theorem, it is enough to show that for ω ∈ Ω,

i ∈ I and ϕ ∈ L0:

T ∗
i (ω(j)j∈I0 ) ([ϕ]

∗) = Ti (ω) (h
−1([ϕ]∗)).

Since h−1([ϕ]∗) = [ϕ], this is clear by Lemma 6, Lemma 7 and the definitions.

D. Proofs of Section 6

Proof of Theorem 4. We prove the P -system case and sketch the differences for

the proof of the H-system case. For the P -system case:
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Let i ∈ I. For ωi ∈ Ωi define

ϕi (ωi) :=( ∧
χ∈L0, α∈[0,1]∩Q, s.t. ωi→pαi (χ)

pαi (χ)

)
∧
( ∧
ψ∈L0, β∈[0,1]∩Q, s.t. ωi→¬pβi (ψ)

¬pβi (ψ)
)
.

An easy induction on the formation of the i-formulas shows that for every i-

formula χi ∈ Li:
Either � ϕi (ωi) → χi or � ϕi (ωi) → ¬χi.

Since � ωi → ϕi (ωi) , by the consistency of ωi, it follows that � ωi ↔ ϕi (ωi) .

Hence, ω′
i �= ω′′

i ∈ Ωi implies that ϕi (ω
′
i) �= ϕi (ω

′′
i ) . Therefore, by the defi-

nitions of T ∗
i (ω

′
i) and T ∗

i (ω
′′
i ), we have T ∗

i (ω
′
i)([ϕ]

∗) �= T ∗
i (ω

′′
i )([ϕ]

∗), for some

ϕ ∈ L0. We conclude that

T ∗
i : Ωi → Δ(Ω∗,Σ∗)

is one-to-one.

It follows—and in the same manner, also in the H-system case—that for

i ∈ I and ωi ∈ Ωi : [T
∗
i (ωi)]

∗
= {ωi} × Ω−i. Hence, in the H-system case, the

introspection property of the canonical Harsanyi type space on X for player set

I implies that

margΩi ◦ T ∗
i (ωi) = δωi ,

for i ∈ I and ωi ∈ Ωi.

By 2 of Proposition 4, T ∗
i is measurable, for i ∈ I.

Let μ ∈ Δ(Ω∗,Σ∗) and fix i ∈ I. Consider the following set of formulas:

Φμ := {pαi (ϕ) | ϕ ∈ L0, α ∈ [0, 1] ∩Q s.t. μ([ϕ]∗) ≥ α}
∪ {¬pβi (ψ) | ψ ∈ L0, β ∈ [0, 1] ∩Q s.t. μ([ψ]∗) < β}.

If this set of formulas is consistent in the system P, then by Corollary 1, there

is a ω ∈ Ω, where Ω is the Ω belonging to the system P , such that

(Ω, ω) |= Φμ.

But then, from 4 of Proposition 3, the definition of ω(i) , the fact that � ω→ω(i),

and the consistency of ω, it follows that � ω(i) → χ, for all χ ∈ Φμ. The defi-

nition of T ∗
i (ω (i)) implies then that

T ∗
i (ω (i))

(
[ϕ]

∗)
= μ

(
[ϕ]

∗)
,
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for all ϕ ∈ L0. Hence, since T ∗
i (ω (i)) and μ are σ-additive probability measures

on Σ∗ that coincide on the field F∗, and since F∗ generates Σ∗, Carathéodory’s
Extension Theorem implies then that

T ∗
i (ω (i)) = μ.

In the following, we show that Φμ is consistent in the system P . Let u /∈ Ωi.

Define

Ωμi :=Ωi ∪ {u},
Ωμj :=Ωj , for j ∈ I0 \ {i} ,
Σμi :=Σi ∪ {E ∪ {u} | E ∈ Σi},
Σμj :=Σj , for j ∈ I0 \ {i} ,
Ωμ :=Πj∈I0Ω

μ
j ,

Σμ :=the product σ-field of the Σμj , j ∈ I0.

Note that Σμi is a σ-field, Σ∗ ⊆ Σμ, and E ∩ Ω∗ ∈ Σ∗, for E ∈ Σμ. Note

furthermore that, since each Ωj , for j ∈ I0, is nonempty, each Ωμj , for j ∈ I0, is

nonempty.

For j ∈ I0 \ {i} , choose uj ∈ Ωj , set ui := u and define

u := (uj)j∈I0 .

For j ∈ I, ωj ∈ Ωμj and E ∈ Σμ define

T μj (ωj)(E) :=T ∗
j (ωj)(E ∩ Ω∗), if j �= i or if i = j and ωi �= u,

T μi (ωi)(E) :=μ(E ∩ Ω∗), if ωi = u.

By this definition, T μj (ωj) is a σ-additive probability measure on (Ωμ,Σμ), for

j ∈ I and ωj ∈ Ωμj .

For x ∈ X and ω0 ∈ Ωμ0 define:

vμ(ω0, x) :=v
∗(ω0, x),

vμ(ω0,�) :=1, in any case.

By this definition, it is clear that vμ(·, x) is Σ0 − Pow ({0, 1})-measurable, for

x ∈ X ∪ {�}.
Let E ∈ Σμ, j ∈ I \ {i}, α ∈ [0, 1] ∩Q, and

bα(E) := {ν ∈ Δ(Ωμ,Σμ) | ν(E) ≥ α}.
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Then, by the definitions:

(T μj )
−1(bα(E)) = (T ∗

j )
−1(bα(E ∩ Ω∗)) ∈ Σj .

Hence,

T μj : Ωμj → Δ(Ωμ,Σμ)

is Σμj − ΣμΔ-measurable, for j ∈ I \ {i}.
Note that

T μi (u) (E) = μ (E ∩ Ω∗) = T μi (u) (E ∩ Ω∗) ,

for E ∈ Σμ. So, for all j ∈ I, ωj ∈ Ωμj and E ∈ Σμ:

T μj (ωj) (E) = T μj (ωj) (E ∩ Ω∗).

By definition, we have

(T μi )
−1(bα(E)) =

⎧⎨⎩(T ∗
i )

−1(bα(E ∩ Ω∗)) ∈ Σi ⊆ Σμi , if μ (E ∩ Ω∗) < α,

{u} ∪ (T ∗
i )

−1(bα(E ∩ Ω∗)) ∈ Σμi , if μ (E ∩ Ω∗) ≥ α.

Hence,

T μi : Ωμi → Δ(Ωμ,Σμ)

is Σμi − ΣμΔ-measurable.

Now, we have proved that

Ωμ :=
〈
Ωμ,Σμ, (T μj )j∈I , v

μ
〉

is a product type space on X for player set I.

Next, we show by induction on the formation of the formulas ϕ ∈ L0 that,

for ω ∈ Ω∗:

(Ωμ, ω) |= ϕ iff (Ω∗, ω) |= ϕ.

An equivalent statement is:

[ϕ]∗ = [ϕ]μ ∩ Ω∗, where [ϕ]μ := {ω ∈ Ωμ | (Ωμ, ω) |= ϕ}.
(Recall that, by 4 of Proposition 4, [ϕ]Ω

∗
= [ϕ]∗, for ϕ ∈ L0.)

Since

T μi (u)([ϕ]
μ) = μ([ϕ]μ ∩ Ω∗),

it follows then that

(Ωμ, u) |= Φμ.

(And this then implies that Φμ is consistent.)
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Let ω ∈ Ω∗. By definition, we have for x ∈ X ∪ {�}:
(Ωμ, ω) |= x iff vμ (ω (0) , x) = 1

iff v∗ (ω (0) , x) = 1

iff (Ω∗, ω) |= x.

The steps “∧” and “¬” are trivial.

Let j ∈ I. For ϕ ∈ L0, we have by the induction hypothesis [ϕ]
∗
= [ϕ]μ ∩Ω∗,

and hence, for α ∈ [0, 1] ∩Q :

[pαj (ϕ)]
∗ ={ω ∈ Ω∗ | T ∗

j (ω(j))([ϕ]
∗) ≥ α}

={ω ∈ Ω∗ | T ∗
j (ω(j))([ϕ]

μ ∩ Ω∗) ≥ α}
={ω ∈ Ω∗ | T μj (ω(j))([ϕ]μ) ≥ α}
={ω ∈ Ωμ | T μj (ω(j))([ϕ]μ) ≥ α} ∩ Ω∗

=[pαj (ϕ)]
μ ∩ Ω∗.

Now, we have shown that

T ∗
i : Ωi → Δ(Ω∗,Σ∗)

is onto, for i ∈ I.

For i ∈ I, it remains to prove that (T ∗
i )

−1 is measurable: The sets [pαi (ϕ)]
i,

where ϕ ∈ L0 and α ∈ [0, 1] ∩ Q, generate the σ-field Σi. So it is enough to

show that T ∗
i ([p

α
i (ϕ)]

i) is a measurable set in Δ(Ω∗,Σ∗). But we have

T ∗
i ([p

α
i (ϕ)]

i) = {ν ∈ Δ(Ω∗,Σ∗) | ν([ϕ]∗) ≥ α} ∈ Σ∗
Δ.

The H-system case is proved similarly, but for the “onto part” one starts

with μ ∈ Δ(Ω−i,Σ−i) and defines T μ := δu × μ, where “×” denotes here the

product of measures and δu is the delta measure at u ∈ Ωμi .

And for the “one-to-one” part, one uses the following fact, which holds in

general for σ-additive probability measures on product spaces (endowed with

the product σ-field): If ν ∈ Δ(Ω∗,Σ∗) and for some ωi ∈ Ωi: margΩi(ν) = δωi ,

then ν = δωi ×margΩ−i(ν). This fact together with Carathéodory’s Extension

Theorem is then used to show by induction on the formation of the i-formulas

that margΩ−i ◦T ∗
i is one-to-one. The measurability of margΩ−i ◦T ∗

i is straight-

forward, while, using Lemma 1, the measurability of (margΩ−i ◦ T ∗
i )

−1 follows

also by induction on the formation of the i-formulas.
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