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ABSTRACT

Essential dimension is an invariant of algebraic groups G over a field F

that measures the complexity of G-torsors over field extensions of F . We

use theorems of N. Karpenko about the incompressibility of Severi–Brauer

varieties and quadratic Weil transfers of Severi–Brauer varieties to com-

pute the essential dimension of some closed subgroups of RK/F (GL1(A)),

where A is a central division K-algebra of prime power degree and K/F is

a separable field extension of degree ≤ 2. In particular, we determine the

essential dimension of the group Sim(A, σ) of similitudes of (A, σ), where

σ is an F -involution on A, and the essential dimension of the normalizer

NGL1(A)(GL1(B)), where B is a separable subalgebra of A.
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1. Introduction

Essential dimension is a numerical invariant of algebraic objects measuring their

complexity. Roughly, it is defined as the minimal number of independent pa-

rameters needed to define algebraic objects of a given type, e.g. degree n central

simple algebras, n-dimensional quadratic forms, torsors of an algebraic group

etc.

Essential dimension was introduced by J. Buhler and Z. Reichstein around

1995 when studying Tschirnhaus transformations of polynomials in one vari-

able [BR97]. They defined the essential dimension of a finite group G (rel-

ative to a base field F ) in invariant theoretic terms and showed that the

essential dimension of the symmetric group G = Sn can be understood as

the minimal number of algebraically independent parameters in a polynomial

p(x) = xn + a1x
n−1 + · · · + an obtained by means of Tschirnhaus transforma-

tions from the generic degree n polynomial (where a1, . . . , an are algebraically

independent over F ). Later Reichstein extended this notion to algebraic groups

G and showed that this concept can be used to measure the complexity of al-

gebraic objects like quadratic forms (when G = On), central simple algebras

(when G = PGLn), octonion algebras (when G = G2) etc. [Re00].

The most general definition of essential dimension, due to A. Merkurjev,

assigns to each (covariant) functor F : Fields/F → Sets a non-negative integer,

called essential dimension of F . We refer to [BF03] and [Me09] for its definition.

Briefly, the essential dimension edF of the functor F is less than or equal to

n ∈ N0 if and only if every element a ∈ F(L) (where L ∈ Fields/F ) can be

defined over a subfield L0 ∈ Fields/F of transcendence degree at most n.

To each functor F : Fields/F → Sets we can associate its detection functor

DF : Fields/F → Sets, defined by

DF (L) =

⎧⎨
⎩
∅ if F(L) = ∅,
{L} otherwise.

The essential dimension of DF is called canonical dimension of F , denoted

cdimF . The concept of canonical dimension was introduced by G. Berhuy and

Z. Reichstein [BR05]. We will mainly use [Me09] as a reference. It is easy to see

that cdimF ≤ edF . The fields L ∈ Fields/F with F(L) �= ∅ are called splitting

fields of F . The functor F has canonical dimension ≤ n if and only if every
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splitting field L of F contains a subfield L0 ∈ Fields/F of transcendence degree

≤ n that splits F as well.

There is a variant of essential (and canonical) dimension relative to a prime

number p, called essential p-dimension (resp. canonical p-dimension). Essen-

tial p-dimension measures the complexity of algebraic objects up to prime to p

extensions. We refer to [Me09] for its definition.

If G is a group scheme (always assumed of finite type) over F , the essential

dimension (resp. p-dimension) of G is defined as

edG = edH1(−, G), resp. edp G = edp H
1(−, G),

where H1(−, G) is the flat cohomology functor, which takes a field extension

L/F to the set of isomorphism classes of G-torsors over L (in the finitely pre-

sented faithfully flat topology).

A variety X over F can be viewed as the functor of points

X : Fields/F → Sets, L �→ X(L) = Mor(SpecL,X).

The essential dimension and p-dimension of X are easy to compute: They are

equal to the dimension of X ; see [BF03, Proposition 1.17], [Me09, Proposition

1.2]. On the other hand, the canonical dimension (or p-dimension) of X is

an interesting invariant of X in case that X does not have F -rational points.

Interesting examples include quadrics, Severi–Brauer varieties and torsors of an

algebraic group G.

A variety X is said to be p-incompressible if cdimp X = dimX . In this paper

we make use of the following incompressibility results due to N. Karpenko:

Theorem 1.1 ([Ka00, Ka09]): Let D be a central division K-algebra of degree

pr for some r ≥ 0 and a prime p. Then SB(D) is p-incompressible. Moreover,

if K/F is a quadratic separable field extension, p = 2, and the norm algebra

NK/F (D) is split, then RK/F (SB(D)) is 2-incompressible.

For most applications we will only use the (older) incompressibility result

on SB(D). The (newer) incompressibility result on the Weil restriction

RK/F (SB(D)) will be needed for the computation of the essential dimension

of group schemes associated with unitary involutions. The reader who is only

interested in group schemes associated to subalgebras and non-unitary involu-

tions may always restrict his or her attention to the simpler case where no Weil

restrictions are needed.
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We will adopt and freely use the notations and conventions of [KMRT98] with

just a few exceptions, that will be made explicit. Most significantly H1(−, G)

(and, when G is abelian, H2(−, G)) will denote flat cohomology rather than Ga-

lois cohomology. We refer to [Wa79, §17, 18] for basics on flat cohomology. The

difference only shows up for non-smooth group schemes G. For example, the flat

cohomology set H1(F,GO(Mn(F ), τ)) (where τ is transposition of matrices)

stands in bijection with the set of (all) conjugacy classes of orthogonal involu-

tions σ on Mn(F ), whereas the Galois cohomology set H1
Gal(F,GO(Mn(F ), τ))

consists only of those classes for which σ and τ become conjugate over Fsep. If

Fsep is not quadratically closed, this is a non-trivial restriction.

The rest of this paper is organized as follows: In Section 2 we describe our

strategy of applying Karpenko’s incompressibility results to the computation of

the exact values of the essential dimension (and p-dimension) of certain sub-

groups G of RK/F (GL1(A)), where K/F is a separable field extension of degree

≤ 2 and A is a division K-algebra of p-primary degree.

In Section 3 we apply this strategy to the subgroup G = Sim(A, σ) of simil-

itudes of (A, σ), where σ is an F -involution on A. In that case G-torsors over a

field extension L/F correspond to conjugacy classes of involutions on AL of the

same type (unitary, orthogonal or symplectic) as σ. In Section 4 we consider

the subgroup G = NGL1(A)(GL1(B)), where B is a separable subalgebra of

A. Here G-torsors over a field extension L/F correspond to conjugacy classes

of separable subalgebras of AL which are conjugate to B over Lsep. Our main

results are Theorems 3.2 and 4.10, which give the precise value of the essential

dimension of the groups G under consideration.

Most work on essential dimension has been done for split1 algebraic groups;

see, e.g., [Ba10, BM10, BR97, Du10, GR09, KM08, Le04, Ma10, Me10, MR09,

MR10, Re00, Ru11, RY00]. The essential dimension of non-split algebraic tori

and twisted p-groups were recently studied in [LMMR10]. For these groups the

essential dimension had already previously been known in the split case. For

the groups G = NGL1(A)(GL1(B)) that we consider in this paper, much less is

known in the split case (where A and B are split algebras). In fact the com-

putation of the essential dimension in the split case would reveal (among other

things) the exact value of the (absolute and p-relative) essential dimension of the

1 We call a (not necessarily connected) algebraic group G over F split if the identity

component G0 is a reductive split group in the usual sense (i.e., containing a split maximal

torus over F ) and G/G0 is a constant (finite) group.
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projective linear groups PGLpn and the symmetric groups Spn (for all prime

primes p and n ≥ 1); see Remarks 4.8 and 4.12. At the present time determin-

ing these values for large n seems far out of reach. To my best knowledge the

algebraic groups studied here provide the first examples of groups G, where the

precise value of edG is determined while the problem of determining edGalg

remains largely open.

2. A general strategy

Let E/F be an étale F -algebra and A be an Azumaya E-algebra. We have an

exact sequence

1 → RE/F (Gm) → RE/F (GL1(A))
Int→ AutE(A) → 1

of group schemes over F , where Int takes an element a of (A ⊗F L)× (for a

field extension L/F ) to the E ⊗F L-algebra automorphism of AL := A ⊗F L

sending x to axa−1. Let H be an arbitrary (closed) subgroup of AutE(A) and

set G = Int−1(H). Then we have a commutative diagram

1 �� RE/F (Gm) �� G ��

��

H ��

��

1

1 �� RE/F (Gm) �� RE/F (GL1(A))
Int �� AutE(A) �� 1

of group schemes over F with exact rows, where the vertical arrows are closed

embeddings.

Let L/F be a field extension. The set H1(L,AutE(A)) stands in natural

bijection with the set of isomorphism classes of Azumaya L ⊗F E-algebras A′

which become isomorphic to AL over a seperable closure Lsep. Its distinguished

element is the class of AL. The groupH2(L,RE/F (Gm)) is naturally isomorphic

to the Brauer group of L⊗F E. The connection map

δ1 : H1(L,AutE(A)) → H2(L,RE/F (Gm)) = Br(L⊗F E)

takes the isomorphism class of an Azumaya algebra A′ to the Brauer class of

A′ ⊗L⊗FE Aop
L = A′ ⊗E Aop.

Take an H-torsor T over some field extension L of F . Let A′ be an Azumaya

L⊗F E-algebra representing the image of T in H1(L,AutE(A)). Consider the

L-variety

X = RL⊗FE/L(SB(A
′ ⊗E Aop)).
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The splitting fields of X are precisely those M ∈ Fields/L for which T lifts to

an H-torsor. They coincide with the splitting fields of the quotient stack [T/G]

of T by its natural GL-action. For the definition of the quotient stack [T/G]

and its essential and canonical dimension, see [BRV08].

The following result will be our main tool for computing essential and canon-

ical dimensions of algebraic groups.

Proposition 2.1: Suppose that X is p-incompressible. Then

edp G = edG = dimF A− dimG.

Moreover, if E = F then every subgroup S of G with Int(S) = H which

intersects the center Gm of GL1(A) exactly in μpn for some n ≥ 1 satisfies

edp S = edS = dimF A− dimS.

Proof. First observe thatG and S embed in the group schemeRE/F (GL1(A)) of

dimension dimF A. By Hilbert’s Theorem 90 and Shapiro’s lemma (see

[KMRT98, Theorem 29.2, Lemma 29.6]) the group scheme RE/F (GL1(A)) has

essential dimension 0. Hence application of [Me09, Corollary 4.3] yields the in-

equalities edp G ≤ edG ≤ dimF A−dimG and edp S ≤ edS ≤ dimF A−dimS.

It remains to show edp G ≥ dimF A − dimG and edp S ≥ dimF A − dimS.

By [Me09, Theorem 4.8] (see also [BRV08, Corollary 3.3]) edp G ≥
edp[T/G] − dimH , hence edp G ≥ cdimp[T/G] − dimH . By construction, the

splitting fields of [T/G] coincide with the splitting fields of the variety X ,

which is p-incompressible. Thus cdimp[T/G] = dimX . It follows that edp G ≥
dimX − dimH = dimF A− dimG.

Similarly we have edp S ≥ edp[T/S]− dimH . Since [T/S] is a gerbe banded

by μpn we have edp[T/S] = cdimp[T/S] + 1 by [Me09, Example 3.6] (see also

[BRV08, Theorem 4.1]). The splitting fields of [T/S] also coincide with the

splitting fields of X . Therefore edp[T/S] ≥ dimX + 1 = dimF A− dimS. This

concludes the proof.

Interesting subgroups of AutE(A) are actually easy to find: Just endow A

with some additional structure (an involution, a quadratic pair, a separable

subalgebra in our examples) and take the subgroup of AutE(A) consisting of

E-algebra automorphisms preserving that additional structure.

Our goal now is to find interesting examples where

X = RL⊗E/L(SB(A
′ ⊗E Aop))
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is in fact p-incompressible. We will do this in case that E/F is either a separable

quadratic field extension (and p = 2) or E = F (and p is arbitrary). We assume

that degA is a power of p. Note that in these cases, in view of Theorem 1.1

all we need for p-incompressibility of X is that D := A′ ⊗E Aop is a division

algebra and that NL⊗FE/L(D) splits when [E : F ] = 2.

We fix a prime p and use the following notation (which slightly differs from

the notation used in [KMRT98]):

Definition 2.2: Let L be a field.

Case charL �= p and L contains a primitive pth root of unity ζ:

Let a, b ∈ L×. We denote by (a, b)L the cyclic L-algebra generated by

symbols u and v with relations up = a, vp = b and vu = ζuv.

Case charL = p: Let a, b ∈ L with b invertible. We denote by (a, b)L the

cyclic L-algebra generated by symbols u and v with relations up − u =

a, vp = b and vu = uv + u.

Note that the definition of (a, b)L in the first case depends on the choice of ζ.

For us this choice will not matter, hence we do not include it in the notation.

Different choices of ζ for different algebras (a, b)L will be fine for us, too.

The following lemma will help us to produce examples where D = A′ ⊗E Aop

is a division algebra:

Lemma 2.3: Let a1, b1, . . . , ar, br be algebraically independent variables over F

and let L = F ′(a1, b1, . . . , ar, br), where F ′ is F adjoined a primitive pth root

of unity if charF �= p resp. F ′ = F if charF = p. Let

A′
0 = (a1, b1)L ⊗L (a2, b2)L ⊗L · · · ⊗L (ar, br)L.

Let E/F be a (finite) separable field extension which is linearly disjoint from F ′

and let A be a central simple E-algebra of p-power degree. Set M = L⊗F E =

(F ′⊗F E)(a1, b1, . . . , ar, br). Then A′
0⊗F Aop is a central simple M -algebra with

indA′
0 ⊗F Aop = pr indA.

Proof. First of all note that indA ⊗F F ′ = indA since F ′/F has degree prime

to p. Hence we may replace F ′ by F , A by A⊗F F ′ and E by the field E⊗F F ′

and hence assume F ′ = F . Using induction on r ≥ 0 one easily reduces to the

case r = 1. The claim then follows from the index formula given in [Me10, (11)

§4.1] (cf. [JW90, Prop. 1.15(a)] and [Ti78, Prop. 2.4]).
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We summarize this section in a corollary, which will later be invoked for

various choices of group schemes H .

Corollary 2.4: Let either E = F or E/F be a separable quadratic field

extension and let A be a division E-algebra of degree pr. If [E : F ] = 2 assume

that p = 2 and that NE/F (A) splits. Let L/F and A′
0 be as in Lemma 2.3 and

set A′ = A′
0 ⊗F E.

Assume that the class of A′ lies in the image of H1(L,H) → H1(L,AutE(A))

for a subgroup H of AutE(A). Let G be the inverse image of H under the

homomorphism Int : RE/F (GL1(A)) → AutE(A). Then

edG = edp G = dimF A− dimG.

Moreover, if E = F then every subgroup S of G with Int(S) = H which

intersects the center Gm of GL1(A) exactly in μpn for some n ≥ 1 satisfies

edS = edp S = dimF A− dimS.

Proof. Lemma 2.3 implies that A′ ⊗E Aop = A′
0 ⊗F Aop is a division algebra.

In case [E : F ] = 2, note that NL⊗FE/L(A
′ ⊗E Aop) splits since NE/F (A) and

NL⊗FE/L(A
′) split. Theorem 1.1 shows that X = RL⊗FE/L(SB(A

′ ⊗E Aop)) is

p-incompressible. Hence the claim follows from Proposition 2.1.

3. Involutions

Let A be a central simple E-algebra admitting an involution σ. Let F = Eσ ⊆ E

be the field of central elements fixed under σ. We call (A, σ) a central simple F -

algebra with involution. For unitary involutions we include the case E = F ×F

in this definition by allowing A to be a direct product A = A1 × A2 with A1

and A2 central simple F -algebras of the same degree.

Two involutions σ′ and σ on A are said to be conjugate if there exists

a ∈ A such that σ′ = Int(a) ◦ σ ◦ Int(a)−1. Equivalently, (A, σ) and (A, σ′) are
isomorphic as F -algebras with involution.

Conjugate involutions are necessarily of the same type (unitary, orthogonal

or symplectic). When F is algebraically closed there are precisely 3 conjugacy

classes of involutions on A = Mn(E), one for each type.

For the case of characteristic 2 we will also use the notion of quadratic pair

which extends the distinction between quadratic forms and symmetric bilinear

forms to non-split central simple algebras. A quadratic pair on a central simple
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F -algebra A is given by a pair (σ, f), where σ is a symplectic involution (we

assume charF = 2) and f : Sym(A, σ) → F is an F -linear map subject to the

condition f(x+ σ(x)) = TrdA(x) for all x ∈ A.

We want to compute the essential dimension of the group schemes Sim(A, σ)

of similitudes of a central simple F -algebra with involution (A, σ), and of some

subgroup schemes like the group scheme Iso(A, σ) of isometries of (A, σ). The

computation of the essential dimension of Sim(A, σ) is of particular interest,

since its torsors can be seen as conjugacy classes of certain involutions: For

a field extension L/F the set H1(L,Sim(A, σ)) stands in natural one-to-one

correspondence with the set of conjugacy classes of involutions on AL of the

same type as σ; see [KMRT98, §29.D].

Example 3.1: Let Q = (a, b)F be a quaternion algebra and denote by γ the

canonical involution on Q. Let L/F be a field extension. The only symplectic

involution on QL is γL. Hence edSim(Q, γ) = 0.

Every orthogonal involution σ on QL is of the form σ = Int(s) ◦ γL for some

s ∈ Skew(QL, γL) \ L. The conjugacy class of σ is determined uniquely by

the discriminant of σ [KMRT98, Example 7.4], given by disc σ = s2 · (L×)2 ∈
L×/(L×)2. When Q is split every element of L× is the square of some s ∈
Skew(QL, γL) \ L, hence H1(−,Sim(Q, σ)) is isomorphic to the functor

H1(−, μ2) : L �→ L×/(L×)2. This implies that ed2 Sim(Q, σ) = edSim(Q, σ) =

1 for a split quaternion algebra Q. We will see that if Q is non-split then

ed2 Sim(Q, σ) = edSim(Q, σ) = 2.

Theorem 3.2: Let n = 2r for some r ≥ 1. Let (A, σ) be a central simple

F -algebra with involution, where A is a division algebra and degA = n. Then

edSim(A, σ) = ed2 Sim(A, σ) = dimF A− dimSim(A, σ)

=

⎧⎪⎪⎨
⎪⎪⎩

n2 − 1 if σ is unitary,
n(n+1)

2 − 1 if σ is orthogonal,
n(n−1)

2 − 1 if σ is symplectic.

ed Iso(A, σ) = ed2 Iso(A, σ) = dimF A− dim Iso(A, σ)

=

⎧⎨
⎩

n(n+1)
2 if σ is orthogonal,

n(n−1)
2 if σ is symplectic.
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For a quadratic pair (σ, f) on A (where charF = 2) we have

edGO(A, σ, f) = ed2 GO(A, σ, f) = dimF A− dimGO(A, σ, f)

=
n(n+ 1)

2
− 1,

edO(A, σ, f) = ed2 O(A, σ, f) = dimF A− dimO(A, σ, f)

=
n(n+ 1)

2
.

Moreover, in case, r ≥ 2:

edGO+(A, σ, f) = ed2 GO+(A, σ, f) = dimF A− dimGO+(A, σ, f)

=
n(n+ 1)

2
− 1,

edO+(A, σ, f) = ed2 O
+(A, σ, f) = dimF A− dimO+(A, σ, f)

=
n(n+ 1)

2
.

Remark 3.3: The assumption r ≥ 2 in the statements aboutGO+(A, σ, f) and

O+(A, σ, f) is needed. When r = 1 the algebra A is a quaternion division alge-

bra, A = (a, b)F , σ its canonical involution, and I claim that edGO+(A, σ, f) =

0 < 2 and edO+(A, σ, f) = 1 < 3. In fact GO+(A, σ, f) = RF (u)/F (Gm)

and O+(A, σ, f) = R
(1)
F (u)/F (Gm) are tori. Their essential dimension and 2-

dimension were computed in [LMMR10] (cf. [BF03, Theorem 2.5]).

Proof of Theorem 3.2. It is routine to compute the dimension of the algebraic

groups G under consideration. Thus it remains to show that for all these groups

the equalities edG = ed2 G = dimF A− dimG hold true, for which we have to

verify the assumptions of Corollary 2.4. LetK be the center of A, which is either

F (when σ is symplectic or orthogonal) or a separable quadratic extension of F

(when σ is unitary). First note that in the case [K : F ] = 2 the norm algebra

NK/F (A) is split, since A has a unitary involution σ.

The groups Sim(A, σ), GO(A, σ, f) and GO+(A, σ, f) are the inverse images

of the groups AutK(A, σ), AutK(A, σ, f) and PGO+(A, σ, f), respectively,

under Int: RK/F (GL1(A)) → AutK(A). Moreover, they have the same image

under Int as their subgroups Iso(A, σ), O(A, σ, f) andO+(A, σ, f), respectively.

The intersection of Iso(A, σ), O(A, σ, f) and O+(A, σ, f) with the center Gm

of GL1(A) is μ2 in every case (note that σ is orthogonal or symplectic here).
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All that remains is to show that the isomorphism class of the algebra A′ =
(a1, b1)L ⊗L · · · ⊗L (ar, br)L ⊗F K from Corollary 2.4 lies in the image of the

maps H1(L,H) → H1(L,AutK(A)), whereH is one of the groupsAutK(A, σ),

AutK(A, σ, f) and PGO+(A, σ, f).

The image of H1(L,AutK(A, σ)) → H1(L,AutK(A)) consists of those iso-

morphism classes of Azumaya L⊗F K-algebras which admit an L-involution of

the same type as σ. Since A′ ⊗F A′ splits when K = F and NK/F (A
′) splits

when [K : F ] = 2, and since r ≥ 1, the algebra A′ does admit an L-involution

of the respective type. Similarly, the image of the map

H1(L,AutF (A, σ, f)) → H1(L,AutF (A))

consists of those isomorphism classes of central simple L-algebras that admit a

quadratic pair, hence it contains the isomorphism class of A′.
The mapH1(L,PGO+(A, σ, f)) → H1(L,AutF (A)) consists of the classes of

central simple L-algebras A′ of degree degA′ = degA which admit a quadratic

pair (σ′, f ′) such that disc(σL, fL) = disc(σ′, f ′). By [Be05, Theorem 2] (note

that charL = 2) every central simple L-algebra A′ which is not a quaternion

division algebra, and which has a symplectic involution, admits quadratic pairs

of arbitrary discriminant. In particular, since r ≥ 2, the algebra A′ admits

quadratic pairs of arbitrary discriminant. This concludes the proof.

As H1(−,Sim(A, σ)) classifies conjugacy classes of involutions, Theorem 3.2

has the following interpretation:

Corollary 3.4: Let (A, σ) and n = degA be as in Theorem 3.2, where σ

is unitary (resp. orthogonal, resp. symplectic). The integer e = n2 − 1 (resp.
n(n−1)

2 +1, resp. n(n−1)
2 − 1) is the smallest integer with the following property:

For every field extension L/F and unitary (resp. orthogonal, resp. symplectic)

involution σ′ on AL there exists a sub-extension L0/F of L/F with tdegF L0 ≤ e

and an involution σ0 on AL0 such that σ′ is conjugate to (σ0)⊗L0 L.

Remark 3.5: For unitary involutions σ on a division algebraA of degree n = 2r

we only know n2 − 1 ≤ ed2 Iso(A, σ) ≤ ed Iso(A, σ) ≤ n2. These bounds fol-

low from Theorem 3.2 and the following lemma, which relates the essential di-

mension of Sim(A, σ) and Iso(A, σ). Suppose the equality ed2 χ = cdim2 χ+ 1

holds for every quadratic separable extension K/F and every gerbe χ banded by

R
(1)
K/F (Gm) (for the notion of gerbes and their essential dimension see [BRV08]).
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Then one can show that ed Iso(A, σ) = ed2 Iso(A, σ) = n2 with similar argu-

ments as above.

Lemma 3.6: Let (A, σ) be a central simple algebra with involution. Then

ed Iso(A, σ) is either equal to edSim(A, σ) or edSim(A, σ)+1. The same holds

for essential p-dimension for every prime p.

Proof. The inequality ed Iso(A, σ) ≤ edSim(A, σ) + 1 follows from [Me09,

Corollary 4.3]. Note that we have an exact sequence

1 → Iso(A, σ) → Sim(A, σ) → Gm → 1

of group schemes over F . By Hilbert’s Theorem 90 we get a surjection of functors

H1(−, Iso(A, σ)) � H1(−,Sim(A, σ)).

Hence edSim(A, σ) ≤ ed Iso(A, σ) by [BF03, Lemma 1.9] and similarly

edp Sim(A, σ) ≤ edp Iso(A, σ).

Remark 3.7: The (unique) split forms Gs and Ss of the (connected reductive)

groups G = Sim(A, σ) and S = Iso(A, σ) from Theorem 3.2 have much lower

essential dimension. Assume charF �= 2 and let n = degA > 1 be a power of 2.

(a) If σ is orthogonal then Ss = On has essential dimension n [Re00, Theo-

rem 10.3]. Therefore by Lemma 3.6, Gs = GOn has either essential di-

mension n−1 or n. Since every non-degenerate n-dimensional symmetric

bilinear form is similar to a diagonal form 〈a1, . . . , an〉 with a1 = 1, the

true value of edGOn is thus n − 1. The lower bound n − 1 was also

proven in [GR09] by different means.

(b) If σ is symplectic then Ss = Spn has essential dimension 0 [Re00, Ex-

ample 8.9b)]. Hence Gs = GSpn has essential dimension 0 as well.

(c) If σ is unitary then Gs � GLn × Gm and Ss � GLn have essential

dimension 0 by Hilbert’s Theorem 90.

For unitary involutions, the case when K/F is a non-trivial quadratic étale

extension is more interesting. Let A be the split central simple K-algebra

A = EndK(V ), where V is a n-dimensional K-vector space. Every unitary

involution on A is adjoint to a hermitian form h on V , i.e. of the form σh. The

group Sim(EndK(V ), σh) is denoted by GU(V, h) and Iso(EndK(V ), σh)) by

U(V, h). The values edGU(V, h) and edU(V, h) seem to be unknown in general.
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Since H1(L,U(V, h)) (for a field extension L/F ) classifies non-degenerate her-

mitian forms of rank n with respect to the quadratic étale extension K ⊗F L/L

and every hermitian form is diagonalizable (with first entry equal to 1 up to

similarity), it is only clear that edU(V, h) ≤ n and edGU(V, h) ≤ n− 1, which

is (for large n) still much smaller than the value edGU(A, σ) = n2 − 1 from

Theorem 3.2.

4. Subalgebras

An algebra B over a field K is called separable, if it is semisimple and remains

semisimple over every field extension of K. A finite-dimensional K-algebra is

separable if and only if it is a direct product of finite-dimensional simple K-

algebras whose centers are finite separable field extensions of K.

Let A be a central simple F -algebra and B a separable subalgebra of A.

We call (A,B) a pair of F -algebras. If (A′, B′) is another pair of F -algebras,

we say that (A,B) and (A′, B′) are isomorphic if there exists an isomorphism

ϕ : A
∼→ A′ of F -algebras which restricts to an isomorphism B

∼→ B′. We call

two subalgebras B and B′ of A conjugate if (A,B) and (A,B′) are isomorphic.

Equivalently, there exists a ∈ A× such that B′ = aBa−1.

In this section we consider the group G = NGL1(A)(GL1(B)), the normal-

izer of GL1(B) in GL1(A). It is the inverse image of H = AutF (A,B) under

Int : GL1(A) → AutF (A). We will compute the essential dimension of G in

some cases. First we introduce the type of B, which allows us to classify sepa-

rable subalgebras of A up to conjugacy after scalar extension to Fsep.

Let e1, . . . , em be the primitive central idempotents of Bsep := BFsep . They

are unique up to permutation. Let Bi = Bsepei for i = 1, . . . ,m. Then Bi is a

matrix algebra over Fsep and the Bi are the simple ideals of Bsep. The algebra

Ai := eiAsepei is central simple and containsBi as a (central) simple subalgebra.

Let Ci be the centralizer of Bi in Ai. For i = 1, . . . ,m define di := degBi and

ri := degCi. The double centralizer theorem implies diri = degAi.

The multiset tE := [(d1, r1), . . . , (dm, rm)] is uniquely determined by B as

subalgebra and is invariant under conjugation and scalar extension. We call it

the type of the subalgebra B.
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Remark 4.1: Separable subalgebras include central simple subalgebras and

étale subalgebras. These are precisely those separable subalgebras whose type

is of the form [(d, r)] and [(1, r1), . . . , (1, rm)], respectively. For étale subalgebras

the notion of type has been introduced in [Kr10] by D. Krashen and is equivalent

to ours.

Lemma 4.2: Let B be a separable subalgebra of a central simple algebra A.

(a) The type tB = [(d1, r1), . . . , (rm, dm)] satisfies the relations:

m∑
i=1

d2i = dimB and

m∑
i=1

diri = degA.

(b) Case A = Mn(F ): For every choice of positive integers d1, r1, . . . , dm, rm

satisfying
∑m

i=1 diri = degA there exists a separable subalgebra B of A

with type tB = [(d1, r1), . . . , (dm, rm)].

(c) Case A is division: The type of every separable subalgebra of A is con-

stant, i.e., of the form [(d, r), . . . , (d, r)] where dr | degA and (d, r)

appears degA
dr times in this multiset. Moreover, if A decomposes as a

tensor product of degree p algebras (where p is a fixed prime) then all

types of this form appear.

(d) Two separable subalgebras of a central simple algebra A have the same

type if and only if they are conjugate over Fsep.

Proof. (a) Since Bsep � B1 × · · · × Bm we have dimB =
∑m

i=1 dimBi =∑m
i=1 d

2
i . The tensor product Asep ⊗Fsep (eiAsepei)

op is canonically iso-

morphic to the algebra of Fsep-linear endomorphisms on Asepei. Com-

paring dimensions yields the equality diri degA = dimAsepei for every

i. Since Asep =
⊕m

i=1 Asepei we get
∑m

i=1 diri = degA.

(b) There exist embeddings ϕi : Mdi(F ) ↪→ Mdiri(F ) of F -algebras. Set

ϕ = ϕ1 × · · · × ϕm : Md1(F )× · · · ×Mdm(F )

↪→ Md1r1(F )× · · · ×Mdmrm(F ) ⊆ Mn(F ).

The subalgebra E = Imϕ of A = Mn(F ) has the desired properties.

(c) Let B be a separable subalgebra of the central division algebra A and

e1, . . . , er the primitive central idempotents of Bsep. The absolute Ga-

lois group Gal(Fsep/F ) permutes the ei transitively, since A does not

contain non-trivial idempotents. It follows that all simple ideals Bsepei
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of Bsep have the same dimension and all algebras eiAsepei have the same

dimension. Hence di is constant and ri is constant as well.

Now assume further A � D1⊗· · ·⊗Dn where D1, . . . , Dn are central

simple (division) algebras of degree p. Write d = pa, r = pb with 0 ≤
a + b ≤ n. Choose p-dimensional étale subalgebras Li of Di+a for i =

1, . . . , n− (a+ b). Set

B = D1 ⊗F · · · ⊗F Da ⊗F L1 ⊗F · · · ⊗F Ln−(a+b) ⊗F F ⊗F · · · ⊗F F.

This is a subalgebra of type [(d, r), . . . , (d, r)] as required.

(d) We may assume that F is separably closed and A = Mn(F ). Clearly,

if two separable subalgebras are conjugate they have the same type. Con-

versely, let B and B′ be separable subalgebras of A of type

[(d1, r1) . . . , (dm, rm)] and let e1, . . . , em and e′1, . . . , e
′
m be the primi-

tive central idempotents of B and B′, respectively, such that dimBei =

d2i = dimB′e′i and dim eiAei = (ridi)
2 = dim e′iAe

′
i. Since the ei (resp.

e′i) can be diagonalized simultaneously and the number of ones on the

diagonal is given by ridi, we may assume that ei = e′i for each i. Then

Bei � Mdi(F ) and B′e′i = B′ei � Mdi(F ) are isomorphic simple sub-

algebras of the central simple algebra eiAei. By the Skolem–Noether

theorem there exists ai ∈ (eiAei)
× such that ai(Bei)a

−1
i = B′e′i. Set

a =
∑m

i=1 ai ∈ A×. Then aBa−1 = B′, hence B and B′ are conju-

gate.

Lemma 4.3: Let A be a central simple algebra, B a separable subalgebra of

A and ϕ an automorphism of B. Then ϕ is the restriction of an inner auto-

morphism of A if and only if degϕ(e)Aϕ(e) = deg eAe for all primitive central

idempotents of B.

Proof. The “only if” part is clear. Let us prove the “if” part. Let I denote the

set of primitive central idempotents of B and assume degϕ(e)Aϕ(e) = deg eAe

for all e ∈ I. Write A = EndD(V ) for a central division algebra D and a

finite-dimensional D-right-module V . For e ∈ I let Ve denote the eigenspace

of e with eigenvalue 1, which is a D-submodule of V . Then V =
⊕

e∈I Ve and

eAe � EndD(Ve) for e ∈ I. The isomorphism ϕ induces a permutation of I and

rdimD Vϕ(e) = degϕ(e)Aϕ(e)/ degD = deg eAe/ degD = rdimD Ve for every

e ∈ I. For each e ∈ I choose a D-basis v
(e)
j , j = 1, . . . , rdimD Ve of Ve. Define

a ∈ A = EndD(V ) by av
(e)
j = v

(ϕ(e))
j for all e ∈ I and all j. The element a is



340 R. LÖTSCHER Isr. J. Math.

invertible and aea−1 = ϕ(e) for all e ∈ I. Then Int(a−1) ◦ ϕ preserves eAe for

every e. Since Be is a simple subalgebra of the central simple subalgebra eAe

we can choose be ∈ (eAe)× such that bexeb
−1
e = a−1ϕ(xe)a for all xe ∈ Be. Set

b =
∑

e∈I be. Then b ∈ A× and ϕ = Int(ab). This proves the claim.

Definition 4.4: Let t be a multiset of the form t = [(d1, r1), . . . , (dr, rm)]. We

say that t is well-behaved if

∀i, j ∈ {1, . . . ,m} (di = dj ⇒ ri = rj).

We say that t is constant if d1 = d2 = · · · = dm and r1 = r2 = · · · = rm.

Clearly every constant t is well-behaved.

Corollary 4.5: LetB be a separable subalgebra of a central simple F -algebra.

Assume that tB is well-behaved. Then the morphism

NGL1(A)(GL1(B)) → AutF (B)

of group schemes over F , which takes a ∈ G(R) ⊆ (A⊗F R)× to Int(a) |BR for

every commutative F -algebra R, is surjective.

Proof. Since AutF (B) is smooth we may check surjectivity on Falg-rational

points. Hence the claim follows from Lemma 4.3.

The functor H1(−, G) has the following interpretation:

Lemma 4.6: Let A be a central simple F -algebra, B a separable subalgebra of

A, G = NGL1(A)(GL1(B)) and L/F be a field extension.

The set H1(L,G) stands in natural (in L/F ) one-to-one correspondence with

the set of conjugacy classes of separable L-subalgebras B′ of AL such that B′

has the same type as B.

Moroever, if the type of B is well-behaved then we can replace “conjugacy

classes” by “isomorphism classes” in the statement above.

Proof. By [KMRT98, §29.C] the set H1(L,AutF (A,B)) is in natural one-to-

one correspondence with the set of F -isomorphism classes of pairs of L-algebras

(A′, B′) such that (A′, B′)sep � (AL, BL)sep.

We have an exact sequence 1 → Gm → G → AutF (A,B) → 1. The map

H1(L,G) → H1(L,AutF (A,B)) is injective, since H1(L,Gm) is trivial and

Gm lies in the center of G. Hence H1(L,G) is naturally (in L/F ) bijective to

the kernel of the connecting map H1(L,AutF (A,B)) → H2(L,Gm) = Br(L),
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which takes a pair (A′, B′) to the Brauer class of A′ ⊗F Aop. Thus H1(L,G) is

the set of isomorphism classes of pairs of L-algebras (A′, B′) such that A′ � AL

and (A′, B′)sep � (AL, BL)sep. Associate to a L-subalgebra B′ of AL of the

same type as B the pair (AL, B
′). By Lemma 4.2 two such subalgebras B′ and

B′′ have the same type if and only if (AL, B
′)sep � (AL, B

′′)sep. Hence we get a
(well-defined and in L/F natural) bijection between the set of conjugacy classes

of L-subalgebras B′ of AL such that B′ and B have the same type and the set

H1(L,G).

Now assume that the type of B is well-behaved. We must prove that a sep-

arable subalgebra B′ of AL of type tB′ = tB isomorphic to B (as L-algebra)

is already conjugate to B. Let C be the centralizer of B in A, which is an-

other separable subalgebra of A. Then GL1(C) is the centralizer of GL1(B)

in GL1(A), hence the kernel of the surjective morphism G → AutF (B) of

group schemes over F from Corollary 4.5. Therefore, we see that the sequence

1 → GL1(C) → G → AutF (B) → 1 is exact. By Lemma 4.2, B and B′ are con-
jugate over Lsep. The conjugacy class of B′ viewed as element of H1(L,G) lies

in the kernel of the map H1(L,G) → H1(L,AutF (B)), hence in the image of

the map H1(L,GL1(C)) → H1(L,G). Since C is separable, Hilbert’s Theorem

90 (see [KMRT98, Theorem 29.2]) implies that the pointed set H1(L,GL1(C))

is trivial. Hence B and B′ are conjugate. This concludes the proof.

Remark 4.7: Let A be a central simple algebra, B a separable subalgebra of

A and G = NGL1(A)(GL1(B)). Lemma 4.6 shows that the functor H1(−, G)

depends (up to isomorphism) only on the type tB = [(d1, r1), . . . , (dm, rm)] of

B (for fixed base field F ). Moreover, replacing B by its centralizer in A, which

is a separable subalgebra of type [(r1, d1), . . . , (rm, dm)], does neither change G

nor its essential dimension.

Remark 4.8: Let A be a central simple algebra of degree n and let B be a

separable subalgebra of constant type t = [(d, r), . . . , (d, r)] (where dr divides

n). Assume that r is divisible by d ind(A). Then H1(−, G) is the functor that

takes a field L ∈ Fields/F to the set of isomorphism classes of L-forms of B.

In fact every L-form B′ of B embeds in EndL(B
′) � Mnd/r(L) with constant

type, therefore in AL with type t. In particular, this implies:

(a) If B is étale, m = dimB, with n divisible by m indA (this condition is

vacuous if A is split), then H1(−, G) is isomorphic to the functor Étm,
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taking L/F to the set of isomorphism classes of m-dimensional étale

L-algebras.

(b) If B is central simple, d = degB, with n divisible by d2 indA, then

H1(−, G) is isomorphic to the functorCSAd, taking a field L ∈ Fields/F

to the set of isomorphism classes of central simple L-algebras of degree

d.

Lemma 4.9: Let B be a separable subalgebra of a central simple algebra and

let [(d1, r1), . . . , (dm, rm)] be the type of B. Then G = NGL1(A)(GL1(B)) has

dimension equal to
∑m

i=1(r
2
i + d2i − 1).

Proof. Consider the morphism of group schemes G → AutF (Z(B)), which

takes g ∈ G(R) to Int(g) |Z(BR) for every F -algebra R. Its kernel becomes

isomorphic to
∏m

i=1(GLdi ×GLri)/Gm over Fsep. Since AutF (Z(B)) is finite

the claim follows.

For the computation of the essential dimension of G = NGL1(A)(GL1(B))

we must assume that A is a division algebra. As noticed in Lemma 4.2 every

separable subalgebra of A has constant type.

Theorem 4.10: Let p be a prime, a, b, n non-negative integers with a+ b ≤ n,

and let A be a division F -algebra of degree pn. Let B be a separable subalgebra

of A of type [(pa, pb), . . . , (pa, pb)] (the multiset with pn−a−b identical elements)

and let G = NGL1(A)(GL1(B)). Then

edG = edp G = dimF A− dimG = p2n − pn+a−b − pn−a+b + pn−a−b.

Proof. The last equality follows from Lemma 4.9.

The image of H1(L,AutF (A,B)) → H1(L,AutF (A)) consists of those iso-

morphism classes of central simple L-algebras that admit a separable subalgebra

of type tB. In view of Corollary 2.4 it suffices to show that the division F -algebra

A′ = (a1, b1)L ⊗L · · · ⊗L (ar, br)L from Corollary 2.4 admits a separable subal-

gebra of type tB. This follows from Lemma 4.2(c).

In view of Lemma 4.6 the result of Theorem 4.10 has the following interpre-

tation:

Corollary 4.11: Let p, a, b, n and A be as in Theorem 4.10. Assume that

A admits a subalgebra of type t = [(pa, pb), . . . , (pa, pb)]. Then the integer

e = p2n − pn+a−b − pn−a+b + pn−a−b is the smallest integer with the following
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property: For every field extension L/F and every separable subalgebra B′ of
AL with tB′ = t there exists a subextension L0/F of L/F with tdegF L0 ≤ e

and a separable subalgebra B′
0 of AL0 with (B′

0)L conjugate to B.

Note that Theorem 4.10 covers the extreme case when A is a division algebra.

In the final remark below we consider the other extreme, where A is split. As

pointed out in the introduction, the latter case is surprisingly much harder with

respect to computing edG than the former.

Remark 4.12: Let n = pr for some r ≥ 1 and A � Mn(F ) the split algebra. Let

B be a separable subalgebra of A with tB = [(d, r), . . . , (d, r)] constant, where

(d, r) appears m := n/dr times. Note that d, r and m are powers of p. Let

G = NGL1(A)(GL1(B)). If r < d we replace B by its centralizer in A without

changing G. Therefore, we can reduce the computation of edG and edp G to

the case d | r, which we will assume in the sequel. By Remark 4.8, H1(−, G) is

isomorphic to the functor Fields/F → Sets, which takes a field extension L/F

to the set of L-forms of B, i.e., separable L-algebras of dimension dimB and of

constant rank whose center is an m-dimensional étale field extension of L.

(a) Case d = 1: Then H1(−, G) � H1(−, Sm) classifies m-dimensional étale

algebras. The value edG = edSm is unknown form ≥ 8. In that case the

best lower bound on edSm is currently �m+1
2 � in characteristic 0, �m

2 �
in odd characteristic and �m

3 � in characteristic 2 [Du10, BR97, BF03].

The best upper bound on edSm is m− 3 (valid for m ≥ 5, in arbitrary

characteristic) [BF03, BR97].

However, the essential p-dimension of G is known in charF �= p,

namely edp G = edp Sm =
⌊
m
p

⌋
. The second equality was established

by J.-P. Serre; see [MR09, Corollary 4.2]. It is valid for arbitrary m ∈ N.

(b) Case m = 1: Then H1(−, G) � H1(−,PGLd) classifies central simple

algebras of degree d. The value of edG is only known for d = 2 and

d = 3, where edG = 2, and for d = 4 in charF �= 2, where edG = 5.

The essential p-dimension of G is known for d = p, where edp G = 2,

for d = p2 in charF �= p, where edp G = p2 + 1, and for d = 23 in

charF �= 2, where edp G = 17. Write d = pa. The best lower bounds on

edG = edPGLpa in the other cases with charF �= p are due to recent

results of A. Merkurjev [Me11]:

(a− 1)pa + 1 ≤ edp G ≤ edG.
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The best upper bound on edp G = edp PGLd is

edp G ≤ p2a−2 + 1

in charF �= p [Ru11]. For edG, slightly weaker upper bounds have

been established in [LRRS03, Le04, FF08]. For more information on

the essential dimension and essential p-dimension of PGLd we refer the

reader to [ABGV11, §6].
(c) General case: The case where B is neither étale nor central simple has

not been investigated in the literature. We would like to point out that

ed(PGLd × · · · ×PGLd︸ ︷︷ ︸
m copies

) ≤ edG ≤ m · edPGLd for d > 1.

This is proved as follows: We may assume that B is split as well, i.e.,

isomorphic to a direct product ofm copies ofMd(F ) as an F -algebra. Let

T = {(t, t−1) ∈ G2
m} ⊆ G2

m = Z(GLd × GLr). An easy computation

reveals that G = NGL1(A)(GL1(B)) is isomorphic to the semi-direct

product

((GLd ×GLr)/T × · · · × (GLd ×GLr)/T︸ ︷︷ ︸
m copies

)� Sm,

where the symmetric group Sm acts by permuting the m factors. Note

that H1(−, (GLd ×GLr)/T ) and H1(−,PGLd) are isomorphic. Hence

ed(PGLd × · · · ×PGLd) = edG0 ≤ edG.

The inequality edG ≤ m · ed((GLd ×GLr)/T ) = m · edPGLd follows

from Lemma 4.13 below.

Lemma 4.13: Let H be a group scheme with edH > 0. Then

edHm
� Sm ≤ m edH.

Proof. Let V be a generically free H-space. It is known that edH coincides

with the least value of dimX − dimH , where the minimum is taken over

all generically free H-varieties admitting a dominant H-equivariant rational

map ϕ : V ��� X ; see, e.g., [Lö10, Lemma 1.2]. Take such a H-variety X with

edH = dimX−dimH . Let G = Hm
�Sm. Then V ⊕m affords a natural G-space

structure and Xm admits a natural G-variety structure. Since dimX > dimH

both G-actions are generically free. Moreover, ϕm : V ⊕m ��� Xm is dominant



Vol. 192, 2012 ESSENTIAL DIMENSION 345

and G-equivariant. Hence edG ≤ dimXm − dimG = m · (dimX − dimH) =

m · edH .
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