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ABSTRACT

The representation of integral binary forms as sums of two squares is dis-

cussed and applied to establish the Manin conjecture for certain Châtelet

surfaces over Q.
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1. Introduction

Let X be a proper smooth model of the affine surface

(1.1) y2 − az2 = f(x),

where a ∈ Z is not a square and f ∈ Z[x] is a polynomial of degree 3 or 4 without

repeated roots. This defines a Châtelet surface over Q and we will be interested

here in providing a quantitative description of the density of Q-rational points

on X . The anticanonical linear system | −KX | has no base point and gives a

morphism ψ : X → P4. This paper is motivated by a conjecture of Manin [11]

applied to the counting function

N(B) = #{x ∈ X(Q) : (H4 ◦ ψ)(x) � B},

for a suitably metrized exponential height H4 : P4(Q) → R>0, whose

precise definition we will delay until §5. The conjecture predicts that

N(B) ∼ cXB(logB)rX−1 for some constant cX > 0, where rX is the rank of the

Picard group associated to X . Peyre [17] has given a conjectural interpretation

of the constant cX .

Getting an upper bound for N(B) is considerably easier and the second

author [5] has shown that N(B) � B(logB)rX−1 for any Châtelet surface.

When suitable assumptions are made on a and f in (1.1) one can go somewhat

further. Henceforth we assume that a = −1. In recent joint work of the au-

thors with Peyre [4], the Manin conjecture is confirmed for a family of Châtelet

surfaces that corresponds to f(x) splitting completely into linear factors over

Q in (1.1). Our aim in the present investigation is to better understand the

behaviour of N(B) when the factorisation of f(x) into irreducibles contains an

irreducible polynomial of degree 3. Here, as throughout this paper, we take

irreducibility to mean irreducibility over Q. In this case it follows from work of

Colliot-Thélène, Sansuc and Swinnerton-Dyer [6, 7] that X satisfies the Hasse

principle and weak approximation. Moreover, it is straightforward to calculate

that rX = 2 (see [5, Lemma 1], for example). With this in mind we see that

the following result confirms the Manin prediction.

Theorem 1: We have N(B) ∼ cXB logB, as B → ∞, where cX is the constant

predicted by Peyre.

Our result bears comparison with recent work of Iwaniec and Munshi [15],

where a counting function analogous to N(B) is studied as B → ∞. However,
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using methods based on the Selberg sieve, they are only able to produce a

lower bound for the counting function which is essentially of the correct order

of magnitude, a deficit that is remedied by our result.

Fix a constant c > 0 once and for all. We will work with compact subsets

R ⊂ R2 whose boundary is a piecewise continuously differentiable closed curve

of length

∂(R) � c sup
x=(x1,x2)∈R

max{|x1|, |x2|} = cr∞,

say. For any parameter X > 0 let XR = {Xx : x ∈ R}. Our proof of the

theorem relies upon estimating the sum

S(X) =
∑

x∈Z2∩XR
r
(
L(x)

)
r
(
C(x)

)
,

where r denotes the sum of two squares function, and L,C are suitable binary

forms of degree 1 and 3, respectively, that are defined over Z. Recall that

r(n) = 4
∑
d|n χ(d), where χ is the non-principal character modulo 4. For any

d = (d1, d2) ∈ N2 we let

(1.2) �(d) = �(d;L,C) = #{x ∈ Z2 ∩ [0, d1d2)
2 : d1 | L(x), d2 | C(x)}.

Furthermore, we define E to be the set of m ∈ N such that there exists � ∈ Z�0

for which m ≡ 2� (mod 2�+2). We denote by E (mod 2n) the projection of E
modulo 2n. The following result forms the technical core of this paper.

Theorem 2: Let ε > 0 and let

η = 1− 1 + log log 2

log 2
> 0.086.

Let C ∈ Z[x] be an irreducible cubic form and let L ∈ Z[x] be a non-zero linear

form. Assume that L(x) > 0 and C(x) > 0 for every x ∈ R. Then we have

S(X) = π2 vol(R)X2
∏
p

Kp +O
(
X2(logX)−η+ε

)
,

where

Kp =
(
1− χ(p)

p

)2 ∑
ν1,ν2�0

χ(pν1+ν2)�(pν1 , pν2)

p2ν1+2ν2

if p > 2 and

K2 = 4 lim
n→∞ 2−2n#

{
x ∈ (Z/2nZ)2 :

L(x) ∈ E (mod 2n)

C(x) ∈ E (mod 2n)

}
.

The implied constant in this estimate is allowed to depend on ε, L, C and r∞.
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The sum S(X) is directly linked to the density of integral points on the affine

variety

L(x) = s21 + t21, C(x) = s22 + t22.

Arguing along similar lines to the proof of [2, Theorem 4], one can interpret

the leading constant in our estimate for S(X) as a product of local densities

for this variety. In fact this variety is related to a certain intermediate torsor

that parametrises rational points on the Châtelet surfaces under consideration

in this paper.

The asymptotic formula in Theorem 2 should be taken as part of an ongoing

programme to understand the average order of arithmetic functions running

over the values of binary quartic forms. One of the starting points for this topic

lies in the work of Daniel [8], where the analogue of S(X) is estimated asymp-

totically with r(L)r(C) replaced by r(x41 + x42). A treatment of r(L1) · · · r(L4)

for non-proportional linear forms L1, . . . , L4 has been accomplished by Heath-

Brown [12], which in turn has been improved by the authors [2]. Moreover,

our allied investigation [3] could easily be adapted to handle the analogue of

S(X) featuring r(L1)r(L2)r(Q) when L1, L2 are non-proportional linear forms

and Q is an irreducible binary quadratic form. Dealing with r(Q1)r(Q2), for

non-proportional irreducible quadratic forms Q1, Q2, or even r(F ) for a general

irreducible quartic form F , seems to present a more serious challenge.

Acknowledgements. It is pleasure to thank the referee for carefully reading

the manuscript and making numerous helpful comments, including drawing our

attention to an oversight in the original treatment of Lemma 11. While working

on this paper the first author was supported by Institute de Mathématiques

de Jussiea and the second author was supported by EPSRC grant number

EP/E053262/1. Part of this work was carried out while the second author

was visiting the first author at the Université Paris 7 Denis Diderot, funded by

ANR “Points entiers points rationnels”.

2. Polynomials modulo n

Our analysis will require information about the number of solutions to various

systems of polynomial equations modulo n. For any polynomial f ∈ Z[x] of

degree d � 2, we define the content of f to be the greatest common divisor of

its coefficients. Thus a polynomial has content 1 if and only if it is primitive.
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Let

(2.1) �f (n) = #{x ∈ Z/nZ : f(x) ≡ 0 (modn)}.

Since �f (n) is a multiplicative function of n it will suffice to analyse it for prime

powers. We begin by recording the following upper bounds.

Lemma 1: Assume that disc(f) �= 0 and that p is a prime which does not divide

the content of f , with pμ‖ disc(f). Then for any ν � 1 we have

�f (p
ν) � dmin

{
p

μ
2 , p(1−

1
d )ν , pν−1

}
.

Proof. The inequality �f (p
ν) � dp

μ
2 is due to Huxley [14] and the inequality

�f (p
ν) � dp(1−

1
d )ν is due to Stewart [18, Corollary 2]. The final inequality is

trivial.

One of the ingredients in our work will be the Dedekind zeta function

ζk(s) =
∑
a

1

Nk/Q(a)s
=
∏
p

(
1− 1

Nk/Q(p)s

)−1

,

for e(s) > 1, when k is a number field obtained by adjoining to Q the root

of an irreducible polynomial f ∈ Z[x]. Here a runs over the set of non-zero

integral ideals in k and p runs over prime ideals. By a well-known principle due

to Dedekind [10, p. 212], for a rational prime p � f0 disc(f), where f0 denotes

the leading coefficient of f , we have the ideal factorisation (p) = pe11 pe22 · · · ,
with Nk/Q(pi) = pri , corresponding to the factorisation

f(x) ≡ f1(x)
e1f2(x)

e2 · · · (mod p)

for polynomials fi(x) of degree ri which are irreducible modulo p. When ri = 1

the polynomial fi has a root modulo p. Thus, for p � f0 disc(f), we have

�f (p) = #{p : Nk/Q(p) = p}.

The Eulerian factors of ζk(s) which correspond to prime ideals p for which

Nk/Q(p) = pr for r � 2, or p | f0 disc(f), define a holomorphic and bounded

function in the half-plane e(s) > 1
2 , without any zeros there.

We will need to investigate the Dirichlet series

(2.2) Gf (s) =
∞∑
n=1

�f (n)

ns
, Gf (s, χ) =

∞∑
n=1

χ(n)�f (n)

ns
,
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for e(s) > 1, where χ is the real non-principal character modulo 4. Let

κ ∈ (0, 1d ). It follows from Lemma 1 that for any p | f0 disc(f) we have∑
ν�1

�f (p
ν)

pν(1−κ)
�κ 1.

Hence for all κ ∈ (0, 1d ) there exists an arithmetic function h such that

Gf (s) = ζk(s)

∞∑
n=1

h(n)

ns
= ζk(s)Hf (s),

say, with
∑∞

n=1 |h(n)|n−1+κ �κ 1. In the same manner Gf (s, χ) is related to

the Hecke L-function

L(s, χ) =
∑
a

χ(Nk/Q(a))

Nk/Q(a)s
,

defined for e(s) > 1. Note that when d is odd L(s, χ) will be analytic at s = 1,

since χ is a quadratic character. Thus we have Gf (s, χ) = L(s, χ)Hf (s, χ),

where

Hf (s, χ) =

∞∑
n=1

χ(n)h(n)

ns
.

The following result is well-known and follows on combining the above with the

results contained in the survey of Heilbronn [13].

Lemma 2: Let A > 0 and let f ∈ Z[x] be an irreducible cubic polynomial with

content 1. Then we have∑
n�X

χ(n)�f (n)

n
= ϑ(f ;χ) +OA

(
(logX)−A

)
,

with ϑ(f ;χ) = L(1, χ)Hf (1, χ). Furthermore, we have∑
p�X

χ(p)�f (p)

p
� 1.

In the present investigation we will be concerned with the case f(x) = C(x, 1),

an irreducible polynomial of degree d = 3 defined over Z. We will need to relate

the series

(2.3) D(s) =
∞∑
n=1

χ(n)�(1, n)

n1+s
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to GC(x,1)(s, χ), where �(d1, d2) is given by (1.2). To this end it will be necessary

to have some further information about the size of �(d1, d2) at prime powers.

We will suppose once and for all that

(2.4) L(x) = ax1 + bx2, C(x) = c0x
3
1 + c1x

2
1x2 + c2x1x

2
2 + c3x

3
2,

for a, b, ci ∈ Z, with non-zero integers

(2.5) Δ = |Res(L,C)|, Δ′ = | disc(C)|.

Our investigation is summarised in the following result.

Lemma 3: Let C ∈ Z[x] be an irreducible cubic form and let L ∈ Z[x] be a

non-zero linear form. Assume that L,C are primitive and let Δ, Δ′ be as in

(2.5). Then we have the following expressions.

(1) When p � c0Δ
′ and ν ∈ N then we have

�(1, pν) =

⎧⎪⎪⎨⎪⎪⎩
pν−1(p[

ν
3 ] − 1)�C(x,1)(p) + pν+[ ν3 ] if ν ≡ 0 (mod 3),

pν−1(p[
ν
3 ]+1 − 1)�C(x,1)(p) + pν+[ ν3 ]−1 if ν ≡ 1 (mod 3),

pν−1(p[
ν
3 ]+1 − 1)�C(x,1)(p) + pν+[ ν3 ] if ν ≡ 2 (mod 3).

In particular, when p � c0Δ
′ we have

�(1, p) = (p− 1)�C(x,1)(p) + 1.

For any prime p and ν ∈ N, we have

�(1, pν) � min{p2ν−1, p
4ν
3 }.

(2) When ν2 � 3ν1 and p � Δ, we have

�(pν1 , pν2) � pν1+2ν2−� ν2
3 �.

When 0 � 3ν1 < ν2 and p � c0ΔΔ′, we have

�(pν1 , pν2) �
(
3 +

1

p

)
p2ν1+ν2+[

ν2
3 ].

(3) For any prime p and ν1, ν2 ∈ Z�0 we have

�(pν1 , pν2) � min{pν1+2ν2 , p2ν1+2ν2−1, p2ν1+
4ν2
3 }.

Proof. These expressions are founded on a preliminary study of the related

quantity

(2.6) �∗(pν1 , pν2) = #{x ∈ Z2 ∩ [0, pν1+ν2)2 : pν1 | L(x), pν2 | C(x), p � x}.
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We will follow the convention that �∗(1, 1) = 1. We can relate this quantity to

�(pν1 , pν2) via the easily checked identity

(2.7) �(pν1 , pν2) =
∑

0�k�max{ν1,� ν2
3 �}

�∗
(
pmax{ν1−k,0}, pmax{ν2−3k,0})pmk ,

with mk = 2(min{ν1, k}+min{ν2, 3k} − k). This follows on partitioning the x

to be counted according to the common p-adic order of x1, x2 and pmax{ν1,� ν2
3 �}.

Proceeding with our analysis of �∗(pν1 , pν2), we begin by noting that

(2.8) �∗(1, pν) = ϕ(pν)�C(x,1)(p
ν)

if p � c0, since the solutions x to be counted satisfy p � x2 for p � c0. Hence

Lemma 1 yields �∗(1, pν) � 3ϕ(pν) if p � c0Δ
′. Suppose now that p | c0Δ′. If x

is counted by �∗(1, pν) then ξ � vp(c0) if pξ‖x2. We conclude from Lemma 1

that

(2.9) �∗(1, pν) �
∑

0�ξ�vp(c0)
ϕ(pν−ξ) · pξ�p−ξC(x,pξ)(p

ν−ξ) � pν ,

where we recall our convention that the implied constants are allowed to depend

on the coefficients of L,C. This latter estimate holds for any prime p. Next we

note that

�∗(pν1 , pν2) � min{p2ν2�∗(pν1 , 1), p2ν1�∗(1, pν2)}.

Since �∗(pν1 , pν2) = 0 when min{ν1, ν2} > vp(Δ), and �∗(pν1 , 1) = ϕ(pν1), it

therefore follows from (2.9) that

(2.10) �∗(pν1 , pν2) � pν1+ν2 .

We are now ready to deduce the statement of Lemma 3. When p � Δ′ and
ν � 1 it follows from Hensel’s lemma that �C(x,1)(p

ν) = �C(x,1)(p). The first

pair of displayed relations in part (1) now follow directly from (2.7) and (2.8).

The final part is again based on (2.7), but now combined with (2.9).

Turning to the proof of part (2), for which we call upon (2.7), we see that

when ν2 � 3ν1 and p � Δ we have

�(pν1 , pν2) =
∑

� ν2
3 ��k�ν1

p2ν2�∗(pν1−k, 1)

= p2ν2
∑

� ν2
3 ��k�ν1

ϕ(pν1−k) � pν1+2ν2−� ν2
3 �.
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When 3ν1 < ν2 and p � c0ΔΔ′ we have

�(pν1 , pν2) =
∑

ν1�k�[
ν2
3 ]

p2ν1+4k�∗(1, pν2−3k) +
(⌈ν2

3

⌉
−
[ν2
3

])
p2ν1+2ν2−2� ν2

3 �

� 3p2ν1+ν2+[
ν2
3 ] +

(⌈ν2
3

⌉
−
[ν2
3

])
p2ν1+2ν2−2� ν2

3 �

�
(
3 +

1

p

)
p2ν1+ν2+[

ν2
3 ].

Finally, part (3) is a consequence of the inequalities

�(pν1 , pν2) � p2ν2�(pν1 , 1) = pν1+2ν2 , �(pν1 , pν2) � p2ν1�(1, pν2),

together with part (1) of the lemma.

In general, the forms L,C need not be primitive. We let �1, �2 ∈ N and L∗, C∗

be primitive forms such that

L = �1L
∗, C = �2C

∗.

One can easily restrict attention to primitive forms in Lemma 3 via the trivial

observation that

(2.11)
�(d;L,C)

(d1d2)2
=
�(d′;L∗, C∗)

(d′1d
′
2)

2
,

for any d ∈ N2, where d′i = gcd(di, �i)
−1di.

Returning to the Dirichlet series D(s) defined in (2.3), we write

(2.12) D(s) = GC(x,1)(s, χ)A(s),

where GC(x,1)(s, χ) is given by (2.2) and A(s) is the Dirichlet series associated

to an appropriate arithmetic function a. We will need the following result.

Lemma 4: For any ε > 0 and σ � 5
6 + ε we have

∑∞
n=1 |a(n)|n−σ � 1.

Proof. Since the two functions involved are multiplicative it suffices to analyse

the Euler products

D(s) =
∏
p

Dp(s), GC(x,1)(s, χ) =
∏
p

Gp,C(x,1)(s, χ).
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Assume e(s) = σ > 2
3 . When p � c0Δ

′, Lemma 1 and part (1) of Lemma 3

yield

Dp(s) = 1 +
χ(p)�C(x,1)(p)

ps
+O

(
p−2σ+ 2

3 + p−1−σ)
= Gp,C(x,1)(s, χ)

(
1 +O

(
p−2σ+ 2

3 + p−1−σ + p−2σ
))
.

When p | c0Δ′, we have

Dp(s) = 1 +O
(
p

2
3−σ

)
, Gp,C(x,1)(s, χ) = 1 +O

(
p

2
3−σ

)
.

From this we deduce that (2.12) holds with the Dirichlet series A associated

to a function a satisfying the bound recorded in the lemma.

We close this section with a simple result concerning the estimation of sum-

matory functions that involve the convolution of arithmetic functions.

Lemma 5: Let A > 0. Let g, h be arithmetic functions and C,C′, C′′ constants
such that

∞∑
d=1

|h(d)|(log 2d)A
d

� C′′,
∑
d�x

g(d)

d
= C +O

( C′

(log 2x)A

)
.

Then we have

∑
n�x

(g ∗ h)(n)
n

= C

∞∑
d=1

h(d)

d
+O

(C′′(C + C′)
(log 2x)A

)
.

Proof. We clearly have

∑
n�x

(g ∗ h)(n)
n

=
∑
d�x

h(d)

d

∑
m� x

d

g(m)

m
.

We approximate the inner sum over m by C if d � √
x. On noting that

∑
d>

√
x

|h(d)|
d

�
∞∑
d=1

|h(d)|
d

(log 2d)A

(log 2
√
x)A

� C′′

(log 2x)A
,

we are easily led to the conclusion of the lemma.
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3. Preliminary steps

In this section we shall begin the proof of Theorem 2. Recall the notation

(2.4) and (2.5) concerning L,C. We will find it convenient to estimate the

corresponding sum S0(X), say, in which we insist that the greatest common

divisor of x1, x2 is odd. Note that r(2n) = r(n) for any positive integer n. We

may therefore write

S(X) =
∑
k0�0

∑
x∈Z2∩XR

2k0‖x

r(L(x))r(C(x)) =
∑
k0�0

S0(2
−k0X).

We will also need to extract 2-adic factors from L(x) and C(x). Thus we have

S(X) =
∑
k0�0

∑
k=(k1,k2)∈Z2

�0

Sk(2
−k0X),

where Sk(X) is the restriction of S(X) to x for which 2−k1L(x) ≡ 1 (mod4) and

2−k2C(x) ≡ 1 (mod4), with 2 � x. In particular, it is clear that k1, k2 � logX

and min{k1, k2} � v2(Δ) in order for Sk(2
−k0X) to be non-zero. We will need

to show that the available range for k1, k2 can be reduced with an acceptable

error. A straightforward application of [1, Corollary 1] yields

Sk(X) � 2ε(k1+k2)(2−max{k1,k2}X2 +X1+ε),

for any ε > 0. It follows that

(3.1) S(X) =
∑
k0�0

∑
0�k1,k2�log logX

Sk(2
−k0X) +O

(
X2(logX)−(1−ε) log 2

)
.

The condition 2−k1L(x) ≡ 1 (mod 4) is easy to analyse. Without loss of

generality we may assume that a is odd. Let 0 � c < 2k1+2 be such that

ac ≡ −b (mod2k1+2) and c′ ∈ {−1, 1} such that c′ ≡ a (mod 4). Then we see

that 2−k1L(x) ≡ 1 (mod 4) is equivalent to the existence of x′1 ≡ 1 (mod 4) such

that

x1 = cx2 + c′2k1x′1.

If k1 � 1, the condition that 2 � x reduces to the condition that x2 should be

odd. If k1 = 0, the condition 2 � x holds automatically.

Next we note that the condition 2−k2C(x) ≡ 1 (mod 4) can be written

C(cx2 + c′2k1x′1, x2) ≡ 2k2x′1
3
(mod 2k2+2).
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If the form C(cY + c′2k1X,Y ) has all coefficients divisible by 2k2+1 then this

congruence has no solutions. Otherwise define k′1 � k2 so that 2k
′
1 is the largest

power of 2 dividing all the coefficients, and set

C(cY + c′2k1X,Y ) = 2k
′
1C0(X,Y ).

Writing k′2 = k2−k′1 � 0 then we see that the above congruence is equivalent to

C0(x
′
1, x2) ≡ 2k

′
2x′1

3
(mod 2k

′
2+2). Since x′1 is odd we have x2 ≡ αx′1 (mod 2k

′
2+2),

for α ∈ [0, 2k
′
2+2) being one of the roots of

(3.2) C0(1, α) ≡ 2k
′
2 (mod 2k

′
2+2).

The condition that x2 be odd, which should be added when k1 � 1, is therefore

equivalent to the condition that α be odd. Finally, we make the change of

variables x2 = αx′1 + 2k
′
2+2x′2 and note that x′1, x

′
2 � X whenever x ∈ XR.

We denote by n(k1, k2) the number of available α and recall from above that

min{k1, k2} � v2(Δ). Since a is odd we clearly have

n(k1, k2) � #{x (mod 2k1+k2) : x ≡ −ba−1 (mod 2k1), C(x, 1) ≡ 0 (mod 2k2)}.

If k2 � k1 then the right-hand side is at most 2k2 � 1. If k2 > k1 then the

right-hand side is at most 2k1�C(x,1)(2
k2) � 1 by Lemma 1. Hence we have

(3.3) n(k1, k2) � 1.

In summary we have shown that the conditions v2(L(x)) = k1, v2(C(x)) = k2

and 2 � x, with 2−k1L(x) ≡ 1 (mod4) and 2−k2C(x) ≡ 1 (mod 4), can be written

x = Mx′ with x′1 ≡ 1 (mod4) and

M = Mα =
( c′2k1 c

0 1

)( 1 0

α 2k
′
2+2

)
=
( c′2k1 + cα c2k

′
2+2

α 2k
′
2+2

)
,

where α is a zero of (3.2) that should be odd when k1 � 1. We note that

(3.4) | detM| = 2k1+k
′
2+2.

Furthermore, a little thought reveals that

(3.5) K2 =
∑
k0�0

1

22k0

∑
k1,k2�0

n(k1, k2)

2k1+k
′
2+2

=
1

3

∑
k1,k2�0

n(k1, k2)

2k1+k
′
2

,

in the notation of Theorem 2.

We are now ready to start our analysis of S(X) in earnest, for which we follow

the line of attack in [2] and [12]. In the present investigation we will not seek



Vol. 191, 2012 BINARY FORMS AND CHÂTELET SURFACES 985

complete uniformity in L,C and R, unlike in [2], which will greatly stream-

line our exposition. Let us set Y = X
1
2 (logX)−C with C a large unspecified

constant. When 0 < n� X3 and n′ = 2−v2(n)n ≡ 1 (mod4), we write

r(n) = r(n′) = 4
∑
d2|n′

d2�X
3
2

χ(d2) + 4
∑
e2|n′

e2>X
3
2

χ(e2)

= 4
∑
d2|n

d2�X
3
2

χ(d2) + 4
∑
d2|n

n′>d2X
3
2

χ(d2)

= 4A+(n) + 4A−(n).

We will apply this with n = C(x). In the same manner, when 0 < m � X we

can write

r(m) = 4B+(m) + 4B0(m) + 4B−(m),

under the hypothesis that m′ = 2−v2(m)m ≡ 1 (mod 4), with

B+(m) =
∑
d1|m
d1�Y

χ(d1), B0(m) =
∑
d1|m

Y<d1�X
Y

χ(d1), B−(m) =
∑
d1|m

m′>d1 X
Y

χ(d1).

Making the transformation x = Mx′, it follows that

Sk(X) =
∑
α

Sk,α(X),

where

Sk,α(X) =
∑

x′∈Z2∩XRM

x′
1≡1 (mod4)

r(LM(x′))r(CM(x′)),

with

RM = {x′ ∈ R2 : Mx′ ∈ R}, LM(x′) = L(Mx′), CM(x′) = C(Mx′).

The region RM has volume 2−k1−k
′
2−2 vol(R) and is contained in a box with

side length � | detM|−12k1+k
′
2 � 1. Collecting together the above we may

conclude that

(3.6) Sk(X) = 16
∑
α

∑
±,±

S±,±(X ;k, α) + 4T (X ;k, α),
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with

(3.7) S±,±(X ;k, α) =
∑

x′∈Z2∩XRM

x′
1≡1 (mod4)

A±(CM(x′))B±(LM(x′))

and

T (X ;k, α) =
∑

x′∈Z2∩XRM

x′
1≡1 (mod 4)

r(CM(x′))B0(LM(x′)).

The sums S±,±(2−k0X ;k, α) will make up the main term in our final asymp-

totic formula and we save their analysis for the following section. We dedicate

the remainder of this section to showing that T (2−k0X ;k, α) makes a satisfac-

tory overall contribution∑
k0�0

∑
0�k1,k2�log logX

∑
α

T (2−k0X ;k, α) = T (X),

say, to the error term. By (3.3) we have

T (X) � (log logX)2
∑
k0�0

∑
m∈B

Tm(2−k0X)|B0(m)|,

where B is defined to be the intersection

{m ∈ Z : ∃d | m s.t. Y < d � XY −1} ∩ {m ∈ Z : ∃x ∈ XR s.t. L(x) = m}

and

Tm(X) =
∑

x∈Z2∩XR
L(x)=m

r(C(x)).

But then [2, Lemma 6] yields

T (X) � X
(log logX)

17
4

(logX)η

∑
k0�0

max
m∈N

|Tm(2−k0X)|,

where

η = 1− 1 + log log 2

log 2
.

Once combined with the following result this is therefore enough to conclude

the proof that T (X) � X2(logX)−η+ε, which suffices for Theorem 2.

Lemma 6: Let ε > 0 and let m � X . Then we have

Tm(X) � X(logX)ε.
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Proof. We consider here the case a �= 0, the case b �= 0 being dealt with similarly.

The relation L(x) = m allows us to write x1 = a−1(m− bx2) and

C(x) =
1

a3
C(m− bx2, ax2) =

1

a3
(c′3x

3
2 + c′2mx

2
2 + c′1m

2x2 + c′0m
3),

with

c′3 = C(−b, a), c′2 = 3b2c0 − 2abc1 + a2c2, c′1 = −3bc0 + c1a, c′0 = c0.

Let δm = gcd0�i�3(c
′
im

3−i), so that Cm(x2) = a3δ−1
m C(x) is primitive as a

polynomial in x2. It follows that

Tm(X) �
∑

x∈Z2∩XR
L(x)=m

r(a4C(x)) �
∑
x2X

r(aδmCm(x2)).

The rest of the proof has much in common with the proof of [2, Lemma 5] and

so we shall attempt to be brief.

Write r0(n) =
1
4r(n) and r1 for the multiplicative function defined via

r1(p
ν) =

⎧⎨⎩ν + 1, if p | 3aδm,
r0(p

ν), otherwise.

We obtain

Tm(X) � 4τ(aδm)
∑
x2X

r1(Cm(x2)).

Clearly δm | c′3 �= 0, whence τ(aδm) � 1. The polynomial Cm ∈ Z[x2] has

degree 3 and is both primitive and irreducible over Q. Therefore, the only

possible fixed prime divisors are 2 and 3. An application of [1, Lemma 5] allows

one to deduce that there exists α | 36, m2,m3 � 4 and γ = 2m23m3 such that

the polynomial

gα,β(x2) =
Cm(αx2 + β)

γ

is without any fixed prime divisor for each β modulo α. We obtain∑
x2X

r1(Cm(x2)) �
∑
α

∑
β (modα)

∑
x2X

r1(gα,β(x2)).

Since ‖gα,β‖ � ‖Cm‖ � m3, it now follows from [1, Theorem 2] that∑
x2X

r1(Cm(x2)) � X
∑
α

∑
β (modα)

∏
pX

{(
1−

�gα,β
(p)

p

)∑
ν�0

�gα,β
(pν)r1(p

ν)

pν

}
,
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because X � mε, where �gα,β
(p) is given by (2.1). A straightforward consider-

ation of discriminants (see [1, Lemma 1], for example) yields disc(gα,β) � m6.

To go further it is clear that we will need good upper bounds for the function

�gα,β
(pν) for prime powers pν . Such estimates are furnished by Lemma 1. Thus

for any prime p we deduce that∑
ν�1

�gα,β
(pν)r1(p

ν)

pν
� 1

p
.

By including a factor

�
∏

p|disc(gα,β)

(
1 +

1

p

)O(1)

� (log logm)O(1) � (logX)ε,

we take care of the primes p | disc(gα,β). Next, for any p � disc(gα,β), we have∑
ν�2

�gα,β
(pν)r1(p

ν)

pν
� 1

p2
,

which allows us to ignore the exponents ν � 2.

For any prime p � 5, we have �gα,β
(p) = �Cm(p), which for p � ac′3 is equal

to �C(m−bx2,ax2)(p). If p � ma then the map Z/pZ \ {mb−1} → Z/pZ, given by

x2 �→ ax2(m − bx2)
−1, is injective. It follows that �gα,β

(p) = �C(1,x)(p), for

p � 5 and p � mac′3. Observing that r0(p) = 1 + χ(p), our investigation so far

has therefore shown that∑
x2X

r1
(
gα,β(x2)

)
� X(logX)ε

∏
pX

p�disc(gα,β)

(
1 +

�C(1,x)(p)(r0(p)− 1)

p

)

� X(logX)ε
∏
pX

(
1 +

χ(p)�C(1,x)(p)

p

)
� X(logX)ε,

by Lemma 2. This therefore completes the proof of the lemma.

4. Level of distribution

The focus of this section is upon estimating the sums in (3.7). For any d ∈ N2

let

Λ(d) = Λ(d;L,C) = {x ∈ Z2 : d1 | L(x), d2 | C(x)}
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and let ΛM(d) = Λ(d;LM, CM). Given any region A ⊂ R2, we will write XA4

for the set {x ∈ Z2 ∩XA : x1 ≡ 1 (mod 4)}. We clearly have

S±,±(X ;k, α) =
∑
d1Y

d2X
3
2

χ(d1d2)#(ΛM(d) ∩XR±,±
4 (d,M)),

with, for example,

XR−,−(d,M) = {x′ ∈ XRM : CM(x′) > d2X
3
2 , LM(x′) > d1XY

−1}.

Let ‖M‖ denote the maximum modulus of any entry in the matrix M and

let �M(d) = �(d;LM, CM), in the notation of (1.2). Loosely speaking, the idea

is now to rewrite the inner cardinality as a sum of cardinalities, each one over

lattice points belonging to an appropriate region. We would like to approximate

each such cardinality by its volume. In doing so we need to show that the

associated error term makes a satisfactory overall contribution once summed

over the remaining parameters. This is the essential content of the following

“level of distribution” result.

Lemma 7: Let ε > 0 and let V1, V2, X � 2. Assume that C ∈ Z[x] is an

irreducible cubic form and let L ∈ Z[x] be a non-zero linear form. Then there

exists an absolute constant A > 0 such that

∑
d∈N2

di�Vi

2�d1d2

sup
∂(A)�M

∣∣∣∣∣#(
ΛM(d) ∩XA4

)
− vol(A)X2�M(d)

4(d1d2)2

∣∣∣∣∣
� ‖M‖ε(MX(

√
V1V2 + V1) + V1V2)(logV1V2)

A,

where the supremum is taken over compact subsets A ⊂ R2 whose boundary is

a piecewise continuously differentiable closed curve with length ∂(A) �M and

throughout which L(x) > 0 and C(x) > 0.

We will not prove this result here, following closely as it does the arguments

developed in [3, Lemme 5], [8, Lemma 3.2] and [16, Proposition 1]. Now it

follows from (3.4) that d1d2 is coprime to detM, so that �M(d) = �(d;L,C) =

�(d). We may therefore conclude from Lemma 7 that

S±,±(X ;k, α) =
∑
d1Y

d2X
3
2

χ(d1d2) vol(R±,±(d,M))X2�(d)

4(d1d2)2
+O

(2ε(k1+k2)X2

(logX)
C
2 −A

)
.
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Choosing C = 2A + 8 and replacing X by 2−k0X , we see that the overall

contribution from this error term is

�
∑
k0�0

(2−k0X)2

(logX)4

∑
k1,k2�log logX

2ε(k1+k2)n(k1, k2) �
X2

(logX)2
,

by (3.3). This is satisfactory for Theorem 2.

Our final task is to produce an asymptotic formula for the sum

S(V1, V2) =
∑
d∈N2

di�Vi

χ(d1d2)�(d)

(d1d2)2
.

Recall the definition of Kp from the statement of Theorem 2. We will establish

the following result.

Lemma 8: Let ε > 0 and A > 0. For any V1, V2 � 2 we have

S(V1, V2) =
π2

16
K ′ +O

( logVmin

(logVmax)A
+

1

(logVmin)A

)
where Vmin = min{V1, V2}, Vmax = max{V1, V2} and K ′ =

∏
p>2Kp.

Proof. We begin by establishing the lemma for the case in which L and C are

both primitive. We first consider the case V1 � V2. The sum to be estimated

can be written

S(V1, V2) =
∑
d2�V2

χ(d2)�(1, d2)

d22
S1(V1, d2),

with

S1(V1, d2) =
∑
d1�V1

χ(d1)�(d1, d2)

�(1, d2)d21
.

This summand is a multiplicative arithmetic function in d1 and so the associated

Dirichlet series F1(s) has an Euler product
∏
p F1,p(s). When pν2‖d2, we have

F1,p(s) =
∑
ν1�0

χ(pν1)�(pν1 , pν2)

�(1, pν2)pν1(2+s)
.

In particular, when p � d2 we have

F1,p(s) =
(
1− χ(p)

p1+s

)−1

since �(d1, 1) = d1. We may therefore write F1(s) = L(1 + s, χ)J1(1 + s; d2),

where L(1 + s, χ) is the Dirichlet L-function associated to χ and J1(s; d2) is
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the Dirichlet series associated to an arithmetic function jd2 , with J1 absolutely

convergent in the half-plane e(s) � 0. We observe that

(4.1) J1,p(1; d2) =
(
1− χ(p)

p

)
F1,p(0).

Let us write J∗
1 (s; d2) for the Dirichlet series associated to |jd2 |. For any

A > 0, Lemma 5 yields

S1(V1, d2) = L(1, χ)J1(1; d2) +O
(J∗

1 (
3
4 ; d2)

(logV1)A

)
.

Now it is clear that

J∗
1

(3
4
; d2

)
=

∏
pν2‖d2

J∗
1,p

(3
4
; pν2

)
,

with

�(1, pν2)J∗
1,p

(3
4
; pν2

)
� (1 + p−

3
4 )

∑
ν1�0

�(pν1 , pν2)

p
7ν1
4

.

We apply the inequalities in Lemma 3 to estimate �(pν1 , pν2).

Suppose first that p � c0ΔΔ′. Then �(1, pν2) � 4pν2+[
ν2
3 ],∑

1�ν1<� ν2
3 �

�(pν1 , pν2)

p
7ν1
4

�
(
3+

1

p

) ∑
1�ν1<� ν2

3 �
p

ν1
4 +ν2+[

ν2
3 ] �

(
3+

1

p

)[ν2
3

]
pν2+

5
4 [

ν2
3 ],

and ∑
ν1�� ν2

3 �

�(pν1 , pν2)

p
7ν1
4

�
∑

ν1�� ν2
3 �
p2ν2−� ν2

3 �− 3ν1
4 =

p2ν2−
7
4 �

ν2
3 �

1− p−
3
4

.

Thus

�(1, pν2)(J∗
1,p(

3
4 ; p

ν2)− 1)

pν2
�
(pν2− 7

4 �
ν2
3 �

1− p−
3
4

+
(
3 +

1

p

)[ν2
3

]
p

5
4 [

ν2
3 ]
)
(1 + p−

3
4 )

+ 4p[
ν2
3 ]− 3

4

�(1 + ν2)p
5ν2
12 .

(4.2)

Suppose now that p | gcd(d2, c0ΔΔ′). On the one hand we have∑
ν1�0

�(pν1 , pν2)

p
7ν1
4

� �(1, pν2) +
∑
ν1�1

pν1+2ν2

p
7ν1
4

� p2ν2−
3
4 ,
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which will suffice for small values of ν2. On the other hand we have

∑
ν1�0

�(pν1 , pν2)

p
7ν1
4

�
∑

ν1� 2ν2
3

p2ν1+
4ν2
3

p
7ν1
4

+
∑

ν1>
2ν2
3

pν1+2ν2

p
7ν1
4

� p
3ν2
2 .

Observe that∏
p|c0ΔΔ′

(
1 +O

( ∑
ν2�1

min{p− 3
4 , p−

ν2
2 }

))
�

∏
p|c0ΔΔ′

(
1 +O(p−

3
4 )
)
,

which is O(1). Using Dirichlet convolution these estimates allow us to conclude

that ∑
d2�V2

�(1, d2)J
∗
1 (

3
4 ; d2)

d22
�

∑
d2�V2

�(1, d2)

d22
� logV2,

whence

S(V1, V2) =
π

4

∑
d2�V2

χ(d2)�(1, d2)J1(1; d2)

d22
+O

( logV2
(log V1)A

)
.

The function J1(1; d2) is multiplicative in d2. Let p � c0ΔΔ′. We have

|J1,p(1; pν2)− 1| � J∗
1,p(1; p

ν2)− 1 � J∗
1,p

(3
4
; pν2

)
− 1.

Combining (4.1) with (4.2) allows us to show that for 1 � ν2 � 3 we have

�(1, pν2)J1(1; p
ν2) = �(1, pν2) +O(p2ν2−

7
4 �

ν2
3 �)

and for ν2 � 4 we have

�(1, pν2)J1(1; p
ν2) = �(1, pν2) + O

(
(1 + ν2)p

5ν2
12

)
.

Thus, in terms of Dirichlet convolution, the function χ(d2)�(1, d2)J1(1; d2)d
−1
2

is close to χ(d2)�(1, d2)d
−1
2 and so to χ(d2)�C(x,1)(d2). It now follows from

Lemmas 2, 4 and 5 that

S(V1, V2) =
π

4
ϑ(C(x, 1);χ)K ′

1 +O
( logV2
(logV1)A

+
1

(logV2)A

)
,
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for any A > 0, with

K ′
1 = ϑ(C(x, 1);χ)−1

∑
d2�1

χ(d2)�(1, d2)J1(1; d2)

d22

=
∏
p

(
1− χ(p)p−1

Hp,C(x,1)(1)

∑
ν2�0

χ(pν2)�(1, pν2)J1(1; p
ν2)

p2ν2

)

=
∏
p

(
(1 − χ(p)p−1)2

Hp,C(x,1)(1)

∑
ν2�0

χ(pν2)

p2ν2

∑
ν1�0

χ(pν1)�(pν1 , pν2)

p2ν1

)

=
πK ′

4ϑ(C(x, 1);χ)
.

Here we have used (4.1) for the penultimate equality. This completes the proof

of the lemma in the case V1 � V2.

Next we suppose that V2 � V1. The estimation of S(V1, V2) in this case is

completely analogous to the case we have just dealt with apart from a number

of minor technical complications. We begin with the expressions

S(V1, V2) =
∑
d1�V1

χ(d1)�(d1, 1)

d21
S2(V2, d1), S2(V2, d1) =

∑
d2�V2

χ(d2)�(d1, d2)

�(d1, 1)d22
.

One sees that the sum S2(V2, d1) again involves a multiplicative arithmetic

function with associated Dirichlet series F2(s) =
∏
p F2,p(s). When p � d1, we

have

F2,p(s) =
∑
ν2�0

χ(pν2)�(1, pν2)

pν2(2+s)
= Dp(1 + s) = Gp,C(x,1)(1 + s)Ap(1 + s),

where Dp(s), Gp,C(x,1)(s), Ap(s) are the Eulerian factors of the Dirichlet series

appearing in (2.12). When pν1‖d1 and p � c0ΔΔ′ it follows from part (2) of

Lemma 3 and the identity �(pν , 1) = pν that

|F2,p(s)− 1| �
∑
ν2�1

�(pν1 , pν2)

�(pν1 , 1)pν2(2+σ)
� p−

3
4 ,

for e(s) = σ � − 1
4 . When pν1‖d1 and p | c0ΔΔ′ we deduce from part (3) of

Lemma 3 that

F2,p(s) � p
3ν1
8 ,

for e(s) � − 1
4 . We may therefore write F2(s) = GC(x,1)(1 + s, χ)J2(1 + s; d1)

with GC(x,1)(s, χ) given in (2.2) and J2(s; d1) the Dirichlet series associated to
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an arithmetic function jd1 which is absolutely convergent in the the half-plane

e(s) > 5
6 .

Lemmas 2, 4 and 5 now yield

S(V1, V2)

= ϑ(C(x, 1);χ)
∑
d1�V1

χ(d1)�(d1, 1)J2(1; d1)

d21
+O

(
1

(logV2)A

∑
d1�V1

g(d1)

d1

)
,

with g a multiplicative function satisfying

g(pν) =

⎧⎨⎩1 +O(p−
3
4 ), if p � c0ΔΔ′,

O(p
3ν
8 ), otherwise.

This implies that

S(V1, V2) = ϑ(C(x, 1);χ)
∑
d1�V1

χ(d1)J2(1; d1)

d1
+O

( logV1
(log V2)A

)
.

An application of Lemma 5 yields

S(V1, V2) = ϑ(C(x, 1);χ)
π

4
K ′

2 +O
( logV1
(logV2)A

+
1

(logV1)A

)
,

with

K ′
2 =

4

π

∑
d1∈N

χ(d1)J2(1; d1)

d1

=
∏
p

(
1− χ(p)

p

) ∑
ν1�0

χ(pν1)�(pν1 , 1)J2(1; p
ν1)

p2ν1

=
∏
p

( 1− χ(p)p−1

Gp,C(x,1)(1, χ)

) ∑
ν1�0

χ(pν1)

p2ν1

∑
ν2�0

χ(pν2)�(pν1 , pν2)

p2ν2

=
πK ′

4ϑ(C(x, 1);χ)
.

This completes the proof of the lemma in the remaining case V2 � V1.

It remains to say a few words about the case in which L,C are not primitive.

Suppose that L = �1L
∗ and C = �2C

∗ for primitive forms L∗ and C∗. Then it

follows from (2.11) that

S(V1, V2) =
∑
hi|�i

χ(h1h2)S �1
h1
,
�2
h2

(V1
h1
,
V2
h2

)
,
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where the inner sum now involves L∗, C∗ and for any a ∈ N2 we denote by

Sa(V1, V2) the corresponding sum in which gcd(di, ai) = 1 in the summation

over d. In our case �1 and �2 may be viewed as absolute constants. Tracing

through the argument above we are easily led to an estimate for Sa(V1, V2) that

generalises the case a1 = a2 = 1 that we have already handled. Once inserted

into the above this therefore suffices to handle the case in which L or C is not

primitive.

Combining Lemma 8 with partial summation gives

S±,±(X ;k, α) = X2 vol(R)
π2K ′

28+k1+k
′
2

+O
( X2

(logX)4

)
.

Bringing everything together in (3.1) and (3.6) we may now conclude that

S(X) = π2K vol(R)X2 +O
(
X2(logX)−η+ε

)
,

with

K = K ′ ∑
(k0,k1,k2)∈Z3

�0

n(k1, k2)

22k0+k1+k
′
2+2

= K ′K2,

by (3.5). This completes the proof of Theorem 2.

5. Passage to the intermediate torsors

We are now ready to commence our proof of Theorem 1. Recall the assumption

in (1.1) that a = −1 and f has degree 3 or 4, with an irreducible cubic factor

without repeated roots. Thus x42f(
x1

x2
) = L(x)C(x) with L of degree 1 and C of

degree 3. We suppose that L,C take the shape (2.4), for appropriate a, b, ci ∈ Z.

Let δ =
√
5max{|a|, |b|, |ci|}. Then we will work with the norm

‖x‖ = max{|x0|, |x1|, |x2|, δ−1|x3|, δ−1|x4|},

in the definition of the exponential height function H4 on P4(Q).

In what follows it will be convenient to use the notation Zm for the set of

primitive vectors in Zm. Our starting point is [5, Lemma 2], which reveals that

N(B) =
1

4
#
{
(y, z, t;u, v) ∈ Z3 × Z2 :

‖(v2t, uvt, u2t, y, z)‖ � B,

y2 + z2 = t2L(u, v)C(u, v)

}
.

We denote by T ⊂ A5 = SpecQ[y, z, t, u, v] the subvariety defined by the equa-

tion

(5.1) y2 + z2 = t2L(u, v)C(u, v),
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together with (y, z, t) �= 0 and (u, v) �= 0. Then T is a G2
m-torsor over X . We

have ‖(v2t, uvt, u2t, y, z)‖ = max{u2, v2}|t|, by our choice of norm function, for

any (y, z, t;u, v) under consideration. Since there is no solution with t = 0 we

have

(5.2) N(B) =
1

2
#
{
(y, z, t;u, v) ∈ (Z3 × Z2) ∩ T : 0 < max{u2, v2}t � B

}
.

The overall contribution that arises from (y, z, t;u, v) for which L(u, v)C(u, v)

is zero is clearly O(1), which is satisfactory.

Let

(5.3) D = {d ∈ N : p | d⇒ p ≡ 1 (mod4)}

and note that d0 ∈ D for any d0 | d with d ∈ D. For m,n ∈ N we let

r(n;m) = #{a, b ∈ Z : n = a2 + b2, gcd(m, a, b) = 1}.

Then r(n; 1) = r(n) is the usual r-function and r(y2n; y) = 0 unless y ∈ D.

Using the Möbius function to detect the coprimality condition we obtain

r(y2n; y) =
∑
k|y
k∈D

μ(k)r
(y2n
k2

)
,

for any y ∈ D. Given any ε1, ε2 ∈ {±1} and T � 1 we define the region

Rε1,ε2(T ) =
{
(u, v) ∈ R2 :

|u|, |v| �
√
T ,

ε1L(u, v) > 0, ε2C(u, v) > 0

}
.

Applying the above it now follows that

N(B) =
1

2

∑
k∈D

μ(k)
∑
t�B

k
t∈D

∑
ε1,ε2∈{±1}
ε1ε2=1

∑
(u,v)∈Z2∩Rε1,ε2 ( B

kt )

r(t2L+C+),

where we have written L+ = ε1L and C+ = ε2C.

In what follows it will be convenient to write

ω(a1, . . . , ak) = ω(gcd(a1, . . . , ak)),

where ω(n) =
∑
p|n 1. We would now like to break the summand into a part

involving t2, a part involving L+ and a part involving C+. For this we call upon

the following result, which is established along precisely the same lines as [3,

Lemme 10], where the analogous formula for the divisor function is established.



Vol. 191, 2012 BINARY FORMS AND CHÂTELET SURFACES 997

Lemma 9: Let n1, n2, n3 ∈ N. Then we have

r(n1n2n3) =
∑

didj |nk

χ(d1d2d3)μ(d1)μ(d2d3)

2ω(d2d3,n2,n3)+4
r
( n1

d2d3

)
r
( n2

d1d3

)
r
( n3

d1d2

)
,

where the indices {i, j, k} run over permutations of the set {1, 2, 3}.

Applying Lemma 9, we conclude that

r(t2L+C+) =
∑

d1d2|t2

∑
d1d3|L
d2d3|C

χ(d1d2d3)μ(d3)μ(d1d2)

2ω(d1d2,L,C)+4
r
( t2

d1d2

)
r
( L+

d1d3

)
r
( C+

d2d3

)
.

Write d = d1d2 and note that d | t for any value of d producing a non-zero

summand. In particular we will only be interested in values of d ∈ D, so that

χ(d) = 1. Writing t = ds, we deduce that

N(B) =
1

25

∑
dk�B
d,k∈D

μ(d)μ(k)
∑
s� B

dk
s∈D

r(ds2)
∑
d∈N3

d=d1d2

χ(d3)μ(d3)Sd

( B

dsk

)
,

where

Sd(T ) =
∑

ε1,ε2∈{±1}
ε1ε2=1

∑
(u,v)∈Z2∩Rε1,ε2 (T )
d1d3|L, d2d3|C

r( L
+

d1d3
)r( C

+

d2d3
)

2ω(d,L,C)
,

for any T � 1. Now the inner sum vanishes unless d3 | gcd(L(u, v), C(u, v)),
with (u, v) a primitive integer vector. In particular it follows that d3 | Δ, the

resultant of L and C, whence d3 = O(1).

For given d ∈ N we let

(5.4) fd(n) =
∑
n=ab

μ(a)r(db2).

We may now write

N(B) =
1

25

∑
dn�B
d,n∈D

μ(d)fd(n)
∑
d∈N3

d=d1d2
d3|Δ

χ(d3)μ(d3)Sd

( B
dn

)
.
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Recycling the observation that any common divisor of L(u, v) and C(u, v) must

divide Δ, we obtain

Sd(T ) =
∑

ε1,ε2∈{±1}
ε1ε2=1

∑
k|gcd(Δ,d)

1

2ω(k)

∑
(u,v)∈Z2∩Rε1,ε2 (T )
d1d3|L, d2d3|C
k=gcd(d,L,C)

r
( L+

d1d3

)
r
( C+

d2d3

)

=
∑

ε1,ε2∈{±1}
ε1ε2=1

∑
kk′|gcd(Δ,d)

μ(k′)
2ω(k)

∑
(u,v)∈Z2∩Rε1,ε2 (T )

[d1d3,kk
′ ]|L

[d2d3,kk
′ ]|C

r
( L+

d1d3

)
r
( C+

d2d3

)
.

Finally, we wish to remove the coprimality condition on (u, v) using the Möbius

function. Let us define

(5.5) L� = �L+ = �ε1L, C� = �3C+ = �3ε2C

for any � ∈ N. It follows that the inner sum over (u, v) is equal to∑
��

√
T
μ(�)U(�−2T ), where if k = (k, k′) then

(5.6) U(T ) = Uε1,ε2d,k,� (T ) =
∑

(x,y)∈Z2∩Rε1,ε2 (T )
[d1d3,kk

′ ]|L�

[d2d3,kk
′ ]|C�

r
(L�(x, y)

d1d3

)
r
(C�(x, y)

d2d3

)
.

We may summarise our investigation as follows.

Lemma 10: There exists an absolute constant c > 0 such that

N(B) =
1

25

∞∑
�=1

μ(�)
∑
d∈D

μ(d)
∑
n�N
n∈D

fd(n)
∑

ε1,ε2∈{±1}
ε1ε2=1

∑
kk′|gcd(Δ,d)

μ(k′)
2ω(k)

×
∑
d∈N3

d=d1d2
d3|Δ

χ(d3)μ(d3)U
( B

d�2n

)
,

where N = cB

d
5
4 �

and U(T ) = Uε1,ε2d,k,� (T ) is given by (5.6).

Proof. In view of our preceding manipulations, the statement of the lemma

is obviously true with N = B/d�2 in the summation over n. To see that we

may take N = cB/d
5
4 � for some absolute constant c > 0, we observe that

U(T ) = 0 unless d1 � �3T
3
2 and d2 � �T

1
2 . Taking T = B/d�2n, it follows that
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d = d1d2 � B2/d2n2, whence d
3
2n � B. But we also have d�2n � B, whence

in fact d
5
4 �n� B, as required.

The groundwork is now laid for an investigation of U(T ) for appropriate

values of the parameters. In effect, the thrust of this section has been concerned

with passing from solutions of a single equation y2 + z2 = t2L(u, v)C(u, v), to

solutions of

�L(u, v) = δ1(y
2
1 + z21), �3C(u, v) = δ2(y

2
2 + z22),

for varying δ1, δ2 ∈ Z. This corresponds to a simple descent process and the

pair of equations defines an intermediate torsor above the Châtelet surface X .

6. Analysis of U(T )

In this section we will study U(T ) = Uε1,ε2d,k,� (T ), as given by (5.6). We will work

with the sets

Λ(D) = Λ(D;L,C) = {x ∈ Z2 : D1 | L(x), D2 | C(x)},
Λ∗(D) = Λ∗(D;L,C) = {x ∈ Λ(D;L,C) : gcd(D1D2,x) = 1},

for any D ∈ N2. Let us write

(6.1) e1 = d1d3, e2 = d2d3, E1 = [d1d3, kk
′], E2 = [d2d3, kk

′].

Clearly ei, Ei are all odd and ei | Ei. Let R = Rε1,ε2(1), so that
√
TR =

Rε1,ε2(T ). We may therefore write

U(T ) =
∑

x∈Λ(E;L�,C�)∩
√
TR

r
(L�(x)

e1

)
r
(C�(x)

e2

)
,

where L�, C� are given by (5.5). Ultimately we wish to apply Theorem 2 to

estimate this sum. However, the latter result involves a sum over points of Z2

rather than points of Λ(E;L�, C�). We will circumvent this difficulty with a

change of variables.

The first task is to restrict attention to the case in which each E1 (resp. E2)

is coprime to the coefficients of L� (resp. C�). We let �1, �2 ∈ N and L∗, C∗ be

primitive forms such that L� = �1L
∗ and C� = �2C

∗. In particular � | �1, �3 | �2
and �−1�1, �

−3�2 � 1. Then Λ(E;L�, C�) = Λ(E′;L∗, C∗), with

(6.2) E′
1 =

E1

gcd(E1, �1)
, E′

2 =
E2

gcd(E2, �2)
.
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Define the function ψ : N2 → N multiplicatively via

ψ(pα1 , pα2) = pmax{α1,�α2
3 �}.

Breaking the set according to the value of gcd(ψ(E′),x) one deduces that

Λ(E′;L∗, C∗) =
⊔

h|ψ(E′)

hΛ∗(E′′;L∗, C∗) =
⊔

h|ψ(E′)

hΛ∗(E′′),

where

(6.3) E′′
1 =

E′
1

gcd(E′
1, h)

, E′′
2 =

E′
2

gcd(E′
2, h

3)
.

Here one notes that h−1ψ(E′) = ψ(E′′) and furthermore gcd(ψ(E′′),x) = 1 if

and only if gcd(E′′
1E

′′
2 ,x) = 1. Replacing x by hx we note that

r
(h�1L∗(x)

e1

)
r
(h3�2C∗(x)

e2

)
= r

( �′1L∗(x)
e′1

)
r
( �′2C∗(x)

e′2

)
,

where

�′1 =
�1h

gcd(e1, h)
, �′2 =

�2h
3

gcd(e2, h3)
,

and

e′1 =
e1

gcd(e1, h)
, e′2 =

e2
gcd(e2, h3)

.

It now follows that

U(T ) =
∑

h|ψ(E′)

∑
x∈Λ∗(E′′)∩h−1

√
TR

r
( �′1L∗(x)

e′1

)
r
( �′2C∗(x)

e′2

)
.

We let e′ = e′1e
′
2, E

′ = E′
1E

′
2 and E′′ = E′′

1E
′′
2 .

In Λ∗(E′′) we define an equivalence relation x ∼ y if and only if there exists

λ ∈ Z such that

x ≡ λy (modE′′).

Note that any such λmust be coprime to E′′. This relation allows us to partition

Λ∗(E′′) into disjoint equivalence classes. We denote by U(E′′) the set of these

equivalence classes. We claim that

(6.4) #U(D) � (D1D2D3)
ε

for any D ∈ N2. To see this we note that

#U(D) =
�∗(D)

ϕ(D1D2)
=

∏
pνi‖Di

�∗(pν1 , pν2)
ϕ(pν1+ν2)

,
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where �∗(D) = �∗(D;L∗, C∗) is given multiplicatively as in (2.6). Applying

(2.10) we easily deduce (6.4).

When y ∈ A for A ∈ U(E′′), we have

A = {x ∈ Z2 : x ≡ λy (modE′′) with λ ∈ Z and gcd(λ,E′′) = 1}.

When A ∈ U(E′′) and y0 ∈ A, we set

G(A) = {x ∈ Z2 : ∃λ ∈ Z such that x ≡ λy0 (modE′′)}.

This defines a sublattice of Z2 of rank 2 and determinant E′′. Moreover, the

definition is independent of y0. We conclude that

(6.5) U(T ) =
∑

h|ψ(E′)

∑
A∈U(E′′)

∑
e|E′′

μ(e)S(T,A, e)

where

S(T,A, e) =
∑

x∈Ge(A)∩h−1
√
TR

r
( �′1L∗(x)

e′1

)
r
( �′2C∗(x)

e′2

)
,

with

Ge(A) = G(A) ∩ {x ∈ Z2 : e | x} = {x ∈ Z2 : ∃a ∈ eZ s.t. x ≡ ay0 (modE′′)}.

We have therefore arrived at summation conditions running over a lattice Ge(A)

of determinant eE′′. We claim that

(6.6) detGe(A) � de

gcd(d, h�)
.

For this we note from (6.1), (6.2) and (6.3) that

E′′ = E′′
1E

′′
2 � [d1d3, kk

′]
gcd([d1d3, kk′], h�1)

· [d2d3, kk
′]

gcd([d2d3, kk′], h3�2)
.

Now we have seen in Lemma 10 that d = d1d2 is square-free and d3, k, k
′ � 1.

Since �1 � � and �2 � �3 it easily follows that

E′′ � d1d2
gcd(d1, h�1) gcd(d2, h3�2)

� d

gcd(d, h�)
,

as required for (6.6).

We are now led to make a change of variables x = Mv for any x ∈ Ge(A),

where M = (m1,m2) is the matrix formed from a minimal basis for the lattice.

In particular, if s1 � s2 are the successive minima of Ge(A) with respect to

the norm | · |, then si = |mi| for i = 1, 2 and s1s2 has order of magnitude

eE′′. Moreover, according to Davenport’s work in the geometry of numbers

[9, Lemma 5], we will have vi � s−1
i |x| whenever x ∈ Ge(A) is written as
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x = v1m1 + v2m2. On defining the region RM = {v ∈ R2 : Mv ∈ h−1R}, we
observe that

(6.7) vol(RM) =
vol(R)

h2| detM| =
vol(R)

h2eE′′ .

We may now write

(6.8) S(T,A, e) =
∑

v∈Z2∩√
TRM

r(M1(v))r(M2(v))

with

M1(v) =
�′1L

∗(Mv)

e′1
, M2(v) =

�′2C
∗(Mv)

e′2
.

Our analysis of S(T,A, e) will now involve two aspects: a uniform upper

bound and an asymptotic formula. In the first instance, therefore, we require

an upper bound for this sum which is uniform in d = d1d2 and �. Our principal

tool will be previous work of the authors [1], which is concerned with the average

order of arithmetic functions ranging over the values taken by binary forms. As

usual we will allow all of our implied constants to depend upon the coefficients

of the forms L and C. In particular we have d3 � 1. We will establish the

following result.

Lemma 11: Let ε > 0 and let d be square-free. Then we have

U(T ) � (d�)ε gcd(d, �)
(T
d
+ T

1
2+ε

)
.

Proof. Let r2(n) be defined multiplicatively via

r2(p
j) =

⎧⎨⎩1 + χ(p), if j = 1 and p � 6dd3ΔΔ′�,

(1 + j)2, otherwise,

where Δ,Δ′ are as in (2.5). It follows from (6.8) that

S(T,A, e) � 24
∑
v∈Z2

v1V1, v2V2

r2
(
M1(v)M2(v)

)
,

where Vi = (hsi)
−1

√
T for i = 1, 2.

It is obvious that r2 belongs to the class of non-negative arithmetic functions

considered in [1]. An application of [1, Corollary 1] therefore reveals that

S(T,A, e) � (d�)ε(V1V2E + V 1+ε
1 ) � (d�)ε

( T

h2s1s2
E +

T
1
2+ε

hs1

)
,
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for any ε > 0, where

E =
∏
p�V2

(
1 +

�M2(x,1)(p)χ(p)

p

)
.

It follows from Lemma 2 that E � Aω(d�) � (d�)ε for an appropriate constant

A � 1. Recalling that s1s2 � eE′′, we therefore conclude from (6.6) that

S(T,A, e) � (d�)ε
(T gcd(d, h�)

deh2
+
T

1
2+ε

h

)
.

Inserting this into (6.5) now yields

U(T ) � (d�)ε
∑

h|ψ(E′)

gcd(d, h)

h
#U(E′′)

(T gcd(d, �)

d
+ T

1
2+ε

)
� (d�)ε gcd(d, �)

(T
d
+ T

1
2+ε

)
,

by (6.4). This completes the proof of Lemma 11.

We now turn to an asymptotic formula for U(T ) = Uε1,ε2d,k,� (T ), as given by (6.5)

and (6.8). Whereas in the previous lemma we sought uniformity in d = d1d2

and �, we will now allow all of our implied constants to depend in any way upon

d, � and the coefficients of L and C. It is clear that RM and M1,M2 satisfy the

necessary conditions for an application of Theorem 2. Put

Kp(M) =
(
1− χ(p)

p

)2 ∑
ν1,ν2�0

χ(pν1+ν2)�(pν1 , pν2 ;M1,M2)

p2ν1+2ν2

for p > 2 and

K2(M) = 4 lim
n→∞ 2−2n#

{
x ∈ (Z/2nZ)2 :

M1(x) ∈ E (mod 2n)

M2(x) ∈ E (mod 2n)

}
.

Then once combined with (6.5) and (6.7), Theorem 2 leads to the following

result.

Lemma 12: Let ε > 0. Then we have

U(T ) = π2W ε1,ε2(d,k, �) vol(Rε1,ε2(1))T +O
(
T (logT )−η+ε

)
,

where the implied constant depends on d, �, L, C, and

W ε1,ε2(d,k, �) =
∑

h|ψ(E′)

∑
A∈U(E′′)

∑
e|E′′

μ(e)

h2eE′′
∏
p

Kp(M).
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It will be useful to have an expression for W (d, �) as an Euler product. Fol-

lowing the argument in [3, §6] almost verbatim one is led to the conclusion

that

W ε1,ε2(d,k, �) =
∏
p

W ε1,ε2
p (d,k, �),

where for p > 2,

(6.9) W ε1,ε2
p (d,k, �) =

(
1− χ(p)

p

)2 ∑
ν1,ν2�0

χ(pν1+ν2)�(pN1 , pN2;L�, C�)

p2N1+2N2
,

with Ni = max{vp(Ei), νi + vp(ei)} for i = 1, 2, and

(6.10)

W ε1,ε2
2 (d,k, �) = 4 lim

n→∞ 2−2n#

{
x ∈ (Z/2nZ)2 :

�L(x) ∈ ε1d3E (mod 2n)

�3C(x) ∈ ε1d3E (mod 2n)

}
.

We have used here the fact that d1 ≡ d2 ≡ 1 (mod4) and ε1ε2 = 1. In our work

we will also need a good upper bound for the constant W ε1,ε2(d,k, �) which is

uniform in d and �. This is recorded in the following result.

Lemma 13: We have W ε1,ε2(d,k, �) � d−
1
6+ε�ε for any ε > 0.

Proof. Building on the above Euler product representation ofW ε1,ε2(d,k, �), it

is clear that |W ε1,ε2
2 (d,k, �)| � 4. Thus we focus our attention on the factors

corresponding to odd primes. When p > 2, part (3) of Lemma 3 implies that

|W ε1,ε2
p (d,k, �)| �

∑
ν1,ν2�0

min{pN1+2N2 , p2N1+
5N2
3 }

p2N1+2N2
�

∑
ν1,ν2�0

1

p
N1
2 +

N2
6

.

Suppose that vp(d1) = δ1 and vp(d2) = δ2. Since d = d1d2 is square-free we

may assume that δ1 + δ2 = 1 if p | d. Moreover, N1 � δ1 + ν1 and N2 � δ2 + ν2.

We conclude that∏
p|d

|W ε1,ε2
p (d,k, �)| � dε

∏
p|d

p−
δ1+δ2

6

∑
ν1,ν2�0

p−
ν1
2 − ν2

6 � d−
1
6+ε.

Taking Ni � νi it also follows that
∏
p|D |W ε1,ε2

p (d,k, �)| � Dε, for any odd

D ∈ N. Finally, the analysis in the proof of Lemma 8, which is based on

repeated applications of Lemma 3, furnishes the bound∏
p�2d�ΔΔ′c0

|Wp(d,k, �)| � (d�)ε.

Putting everything together therefore concludes the proof of the lemma.
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7. Concluding steps

We are now ready to draw to a close our proof of Theorem 1, for which we begin

with some technical estimates. Recall the definition (5.3) of the set D and the

definition (5.4) of the function fd(n). We will need the following easy result.

Lemma 14: Let d ∈ D be square-free. Then we have

∑
n�x
n∈D

fd(n)

n
=
r(d)ϕ†(d)

π

(
log x+O

(
log3(2 + ω(d))

))
,

where ϕ†(d) =
∏
p|d(1 +

1
p )

−1.

Proof. The proof of Lemma 14 involves a straightforward consideration of the

corresponding Dirichlet series Fd(s) =
∑
n∈D fd(n)n

−s. Let r0(n) = 1
4r(n). It

is easy to see that

Fd(s) = 4
∑
m∈D

μ(m)

ms

∑
n∈D

r0(dn
2)

ns
,

Let δ = δp = vp(d). Then for square-free d ∈ D we have δ ∈ {0, 1} and δ = 1 if

and only if p | d and p ≡ 1 (mod4). We now have

Fd(s) = 4
∏

p≡1 (mod 4)

(
1− 1

ps

) ∏
p≡1 (mod 4)

∑
ν�0

1 + δ + 2ν

pνs

= 4
∏

p≡1 (mod 4)

(1 + p−s

1− p−s
) ∏
p≡1 (mod4)

(1 + δ + (1 − δ)p−s

1 + p−s
)

=
4ζ(s)L(s, χ)

(1 + 2−s)ζ(2s)
Hd(s),

where

Hd(s) =
∏
p|d

( 2

1 + p−s
)
= r0(d)

∏
p|d

(
1 +

1

ps

)−1

.

Noting that H1(s) = 1 we clearly have Fd(s) = F1(s)Hd(s).

The Dirichlet series F1(s) is meromorphic in the region e(s) > 1
2 , with a

simple pole at s = 1. Moreover, there is an arithmetic function hd(n), arising

from the Dirichlet seriesHd(s), such that fd = f1∗hd. On applying a Tauberian

theorem one easily deduces that the statement of Lemma 14 is true when d = 1.
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To see the general case we note that∑
n�x

fd(n)

n
=

∑
m�x

hd(m)

m

∑
n� x

m

f1(n)

n
=

∑
m�x

hd(m)

m

(4 log x
π

+O(log 2m)
)
.

Here
∞∑
m=1

|hd(m)| log 2m
m

� r0(d)ϕ
†(d)−1

(
1 +

∑
p|d

log p

p

)
� r(d)ϕ†(d)ϕ†(d)−2 log(2 + ω(d))

� r(d)ϕ†(d) log3(2 + ω(d)),

since ∑
p|d

log p

p
�

∑
j�ω(d)

log pj
pj

� log(2 + ω(d)).

On inserting this into the previous formula, we therefore complete the proof of

the lemma since Hd(1) = r0(d)ϕ
†(d).

Building on Lemma 14, we may record the inequalities

(7.1)
∑
n�x
n∈D

|fd(n)|
nθ

� x1−θ
∑
n�x
n∈D

|fd(n)|
n

� dεx1−θ log x,

for any ε > 0 and 0 < θ � 1. For the deduction of Theorem 1, we wish to

incorporate the asymptotic formula in Lemma 12 into our expression for N(B)

in Lemma 10. Note that there is no uniformity in any of the parameters d,k, �

that feature in Lemma 12. Let us set

S(B) = Sε1,ε2d,k,�(B) =
∑
n�N
n∈D

fd(n)U
( B

d�2n

)
,

with N = cB/d
5
4 � for some absolute constant c > 0, so that

N(B) =
1

25

∞∑
�=1

μ(�)
∑
d∈D

μ(d)
∑

ε1,ε2∈{±1}
ε1ε2=1

∑
d∈N3

d=d1d2
d3|Δ

χ(d3)μ(d3)
∑

kk′|gcd(Δ,d)

μ(k′)
2ω(k)

S(B).

Let

Eε1,ε2(d,k, �)

=
1

B logB

∣∣∣S(B)− πW ε1,ε2(d,k, �) vol(Rε1,ε2(1))r(d)ϕ†(d)B logB

d�2

∣∣∣.
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Then it follows from Lemmas 12 and 14 that for fixed d,k, � we have

Eε1,ε2(d,k, �) → 0

as B → ∞. On the other hand, we conclude from (7.1) and Lemmas 11 and 13

that

Eε1,ε2(d,k, �) � (d�)ε gcd(d, �)
( 1

d2�2
+

1

d
9
8 �

3
2

+
1

d
7
6 �2

)
� (d�)ε

gcd(d, �)

d
9
8 �

3
2

,

uniformly in d, � and B. Note that∑
�

∑
d

∑
ε1,ε2

∑
d

∑
k

Eε1,ε2(d,k, �) � 1.

Writing r0(n) =
1
4r(n), it therefore follows from the dominated convergence of

this sum that as B → ∞ we have N(B) ∼ c0B logB, with

c0 =
π

23

∞∑
�=1

μ(�)

�2

∑
d∈D

μ(d)r0(d)ϕ
†(d)

d

∑
ε1,ε2∈{±1}
ε1ε2=1

vol(Rε1,ε2(1))

×
∑
d∈N3

d=d1d2
d3|Δ

χ(d3)μ(d3)
∑

kk′|gcd(Δ,d)

μ(k′)
2ω(k)

W ε1,ε2(d,k, �).
(7.2)

Now let cX be the constant predicted by Peyre [17]. In order to complete the

proof of Theorem 1 it remains to show that c0 = cX . Given the general strategy

in our earlier work [4], we will be brief. Relating the value of the constant cX

to the count on the torsor T considered in (5.2), one finds that

cX = ω∞
∏
p

ωp,

where ω∞ and ωp denote the local densities associated to T taken with respect

to the Leray measure. Using symmetry to restrict to the quadrant in which

y > 0 and z > 0, it follows that

ω∞ = 2 lim
B→∞

1

B logB

∫
D

du dv dt dz

2
√
t2LC(u, v)− z2

,

where we have set LC(u, v) = L(u, v)C(u, v) and D is the set of (u, v, t, z) ∈ R4

such that

0 < max{u2, v2}t � B, 0 < z < t
√
LC(u, v), 1 � t � B, LC(u, v) > 0.
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In view of the familiar formula∫ √
S

0

ds√
S − s2

=
π

2
,

it readily follows that

ω∞ =
π

2

∑
ε1,ε2∈{±1}
ε1ε2=1

vol(Rε1,ε2(1)).

Turning to the p-adic densities, we have

ωp = lim
n→∞ p−4n {(y, z, t, u, v) ∈ T (Z/pnZ) : p � (u, v), p � (y, z, t)} .

Recall the definition of E from §1 and the identities [2, eqs. (2.3) and (2.5)]. To

calculate ω2 we observe that t is odd in any solution to be counted. Since there

are 2n−1 odd integers in the interval [1, 2n] it follows that

ω2 = lim
n→∞ 2−3n−1#

{
(u, v, y, z) ∈ (Z/2nZ)4 :

LC(u, v) ≡ y2 + z2 (mod 2n),

2 � (u, v)

}
= lim

n→∞ 2−2n#
{
(u, v) ∈ (Z/2nZ)2 : LC(u, v) ∈ E (mod 2n), 2 � (u, v)

}
.

For any binary form F ∈ Z[u, v] and prime power pe, let

(7.3) �̃F (p
e) = p−2(e+1)#

{
(u, v) ∈ (Z/pe+1Z)2 : pe | F (u, v), p � (u, v)

}
.

Suppose now that p ≡ 3 (mod 4). Then we obtain

ωp = lim
n→∞

1− 1
p

p3n
#

{
(u, v, y, z) ∈ (Z/pnZ)4 :

LC(u, v) ≡ y2 + z2 (mod pn),

p � (u, v)

}

=
(
1− 1

p2

)∑
ν�0

(−1)ν �̃LC(p
ν).

Finally, when p ≡ 1 (mod 4), we break the cardinality according to the value of

vp(t). It follows that

ωp = 1− 1

p2
+
(
1− 1

p

)2 ∑
ν�1

�̃LC(p
ν),

in this case.

We now return to our expression (7.2) for c0. Carrying out the summation

over �, we find that
∞∑
�=1

μ(�)

�2
W ε1,ε2(d,k, �) = W̃ ε1,ε2(d,k) =

∏
p

W̃ ε1,ε2
p (d,k),
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for suitable factors W̃ ε1,ε2
p (d,k). In view of (6.10), one has

W̃ ε1,ε2
2 (d,k) = 4 lim

n→∞ 2−2n#

⎧⎪⎨⎪⎩x ∈ (Z/2nZ)2 :

L(x) ∈ ε1d3E (mod 2n),

C(x) ∈ ε1d3E (mod 2n),

2 � x

⎫⎪⎬⎪⎭ .

It is clear that for any x counted here we have both LC(x) ∈ E (mod 2n)

and LC(−x) ∈ E (mod 2n). Conversely, if x ∈ (Z/2nZ)2 satisfies LC(x) ∈
E (mod 2n), then either L(x) ∈ ε1d3E (mod 2n) or L(x) ∈ −ε1d3E (mod 2n). In

this way we conclude that

W̃ ε1,ε2
2 (d,k) = 2ω2,

in the above notation. Next, when p > 2 we deduce from (6.9) that

W̃ ε1,ε2
p (d,k) =

(
1− χ(p)

p

)2 ∑
ν1,ν2�0

χ(pν1+ν2)�̃(pN1 , pN2),

with

�̃(pN1 , pN2)

= p−2(N1+N2+1)#

{
x ∈ (Z/pN1+N2+1Z)2 :

pN1 | L(x), pN2 | C(x),
p � x

}
.

Thus W̃ ε1,ε2
p (d,k) is independent of ε1, ε2 and so W̃ ε1,ε2

p (d,k) = W̃p(d,k), say.

An easy calculation reveals that

∏
p

1− χ(p)
p

1 + χ(p)
p

=
4

π
· π
2
= 2.

Our work so far has therefore shown that c0 = ω∞ω2τ, with

τ =
∑
d∈D

μ(d)r0(d)ϕ
†(d)

d

∑
d∈N3

d=d1d2
d3|Δ

χ(d3)μ(d3)

×
∑

kk′|gcd(Δ,d)

μ(k′)
2ω(k)

∏
p>2

(1 + χ(p)
p

1− χ(p)
p

)
W̃p(d,k).

We may write τ =
∏
p>2 τp. Our final task in this paper is to show that τp = ωp

for each odd prime p.
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Let α = vp(Δ). We will deal here only with the harder case α � 1, the case

α = 0 being an easy modification. Suppose that p ≡ 3 (mod 4). In this case it

is clear that

τp =
(1− 1

p

1 + 1
p

)(
1 +

1

p

)2 ∑
ν1,ν2�0

∑
0�δ3�1

(−1)ν1+ν2 �̃(pν1+δ3 , pν2+δ3)

=
(
1− 1

p2

) ∑
μ1,μ2�0

∑
0�δ3�1

�(p2μ1+δ3 , p2μ2+δ3),

where

�(pn1 , pn2) = p−2(n1+n2+1)#

⎧⎪⎨⎪⎩(u, v) ∈ (Z/pn1+n2+1Z)2 :

pn1‖L(u, v),
pn2‖C(u, v),
p � (u, v)

⎫⎪⎬⎪⎭ .

Setting �(pn) for the analogous density in which one has pn‖LC(u, v) instead

of the pair of conditions present in �(pn1 , pn2), one finds that

τp =
(
1− 1

p2

)∑
μ�0

�(p2μ) = ωp,

as required.

Suppose now that p ≡ 1 (mod 4). Then we have

τp =
(
1− 1

p2

) ∑
0�δ�1

(−1)δr0(p
δ)ϕ†(pδ)

pδ

∑
δ1,δ2,δ3∈{0,1}
δ1+δ2=δ

(−1)δ3fp(δ1, δ2, δ3)

with

fp(δ1, δ2, δ3) =
∑

ν1,ν2�0

∑
κ,κ′�0
κ+κ′�δ

(−1)κ
′

2κ
�̃(pN1 , pN2)

and Ni = max{κ+ κ′, νi + δi + δ3} for i = 1, 2. We claim that

(7.4) fp(δ1, δ2, δ3) =
∑

ν1,ν2�0

(ν1 + 1)(ν2 + 1)

2min{δ,N ′
1,N

′
2}

�(pN
′
1 , pN

′
2),

with N ′
i = νi + δi + δ3 for i = 1, 2. We begin by noting that

fp(δ1, δ2, δ3) =
∑

ν1,ν2�0

∑
κ,κ′�0

κ+κ′�min{δ,N ′
1,N

′
2}

(−1)κ
′

2κ
(ν1 + 1)(ν2 + 1)�(pN

′
1 , pN

′
2).
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But it is clear that ∑
κ,κ′�0

κ+κ′�min{δ,N ′
1,N

′
2}

(−1)κ
′

2κ
=

1

2min{δ,N ′
1,N

′
2}
,

from which the claim follows.

Given (7.4) we are now led to consider the quantity

fp(δ) =
∑

δ1,δ2,δ3∈{0,1}
δ1+δ2=δ

(−1)δ3
∑

ν1,ν2�0

(ν1 + 1)(ν2 + 1)

2min{δ,N ′
1,N

′
2}

�(pN
′
1 , pN

′
2),

for each δ ∈ {0, 1}. Let N ′′
i = νi + δi for i = 1, 2. We may write

fp(δ) =
∑

δ1,δ2�0
δ1+δ2=δ

∑
ν1,ν2�0

(
(ν1 + 1)(ν2 + 1)− ν1ν2

) �(pN ′′
1 , pN

′′
2 )

2min{δ,N ′′
1 ,N

′′
2 }

=
∑

δ1,δ2�0
δ1+δ2=δ

∑
ν1,ν2�0

(ν1 + ν2 + 1)
�(pN

′′
1 , pN

′′
2 )

2min{δ,N ′′
1 ,N

′′
2 } .

When δ = 1 and

min{1, vp(L(x)), vp(C(x))} = min{1, N ′′
1 , N

′′
2 } � 1,

with pν+δ‖LC(x), there are two choices of (δ1, δ2) such that δ1 + δ2 = δ,

pν1+δ1‖L(x), pν2+δ2‖C(x) and ν = ν1 + ν2. Thus

fp(δ) =
∑
ν�0

(ν + 1)�(ν + δ) =
∑
ν�0

�̃LC(p
ν+δ),

in this case. The same is true when δ = 0. Recalling that p−1ϕ†(p) = (p+1)−1,

we deduce that

τp =
(
1− 1

p2

) ∑
0�δ�1

(−1)δr0(p
δ)ϕ†(pδ)

pδ
fp(δ)

=
(
1− 1

p2

){
1 +

∑
ν�1

�̃LC(p
ν)
(
1− 2

p+ 1

)}
= ωp.

This completes the proof that the value of the leading constant in Theorem 1

agrees with the prediction of Peyre.



1012 R. DE LA BRETÈCHE AND T. D. BROWNING Isr. J. Math.

References
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