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ABSTRACT

Let F be a totally real field, G a connected reductive group over F , and

S a finite set of finite places of F . Assume that G(F ⊗Q R) has a discrete

series representation. Building upon work of Sauvageot, Serre, Conrey–

Duke–Farmer and others, we prove that the S-components of cuspidal

automorphic representations of G(AF ) are equidistributed with respect to

the Plancherel measure on the unitary dual of G(FS) in an appropriate

sense. A few applications are given, such as the limit multiplicity for-

mula for local representations in the global cuspidal spectrum and a quite

flexible existence theorem for cuspidal automorphic representations with

prescribed local properties. When F is not a totally real field or G(F⊗QR)

has no discrete series, we present a weaker version of the above results.

1. Introduction

Serre ([Ser97]), and independently Conrey–Duke–Farmer ([CDF97]), proved

that for a fixed prime p, the Tp-eigenvalues in the space of cuspforms Sk(Γ0(N)),

where (p,N) = 1, are equidistributed with respect to the Plancherel measure

(on the set of unitary unramified representations of PGL2(Qp)) as k+N grows

to infinity. Around the same time, Sauvageot ([Sau97]) obtained a similar re-

sult in the representation-theoretic setting, which says roughly that if G is an

anisotropic group over Q (equivalently if the quotient G(Q)\G(A) is compact)

then the p-components of automorphic representations are equidistributed with

respect to the Plancherel measure as the level gets deeper and deeper (to be
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made more precise in the next paragraph). Sauvageot’s work is built upon that

of Corwin, De George, Wallach and Delorme. Sauvageot and Serre also proved

variants of what we just mentioned; in particular, the same conclusion is shown

to hold if one considers finitely many places simultaneously instead of a sin-

gle prime p. Unfortunately the generalization has not been worked out to our

knowledge,1 by either Sauvageot or others, even though he apparently had a

plan to carry it out in the case of noncompact quotients more than ten years

ago ([Sau97, p. 153]). The modest goal of our paper is to extend the intrinsi-

cally beautiful results of Sauvageot and Serre to a reasonably general setting

and to exhibit a few useful applications. Let us mention at the outset that

the representation-theoretic formulation of the problem in our paper is strongly

influenced by Sauvageot’s work.

In order to describe our results more precisely, we introduce some notation.

Let G be a connected reductive group over Q and S a finite nonempty set of

finite primes. (Our discussion will remain valid when Q is replaced with any

totally real field; see below.) Let AG,∞ denote the connected real group coming

from a maximalQ-split torus in the center ofG (§2.1). For a technical reason (cf.

Remark 4.1), we assume that the Q-rank of the latter torus is the same as the

R-rank of the maximal R-split torus in the center of G×QR. Denote by Ĝ(QS)

the unitary dual of G(QS) =
∏

v∈S G(Qv) equipped with Fell topology. The

Plancherel measure μ̂pl
S is defined on Ĝ(QS), depending (up to a scalar) on the

choice of a Haar measure on G(QS). Let d(G∞) denote the cardinality of (any)

real discrete L-packet of G(F∞) (§2.4). Fix an irreducible (finite dimensional)

algebraic representation ξ of G over C. Given an open compact subgroups

U ⊂ G(AS,∞), define

μ̂U,ξ :=
1

vol(G(Q)AG,∞\G(A)) · dim ξ

∑
π0
S

mcusp(π
0
S ;U, ξ) · δπ0

S
,

where δπ0
S

is the dirac delta measure supported on π0
S , and mcusp(π

0
S ;U, ξ)

counts (up to scaling by the volume of U) the multiplicity of π0
S in the space

of ξ-cohomological cuspidal automorphic representations of G(A) with level U

1 While this paper was being written, we learned from Blasius that Margaret Upton and

he were writing up a result in a similar direction for some particular groups or with a

simplifying hypothesis at a finite place. On the other hand, a few people informed us

that Sarnak (e.g., [Sar87]) had considered the problem well before the results of Serre,

Conrey–Duke–Farmer and Sauvageot.
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(outside S∪{∞}). The reader should not worry about the appearance of dim ξ,

which represents the total Plancherel mass of ξ-cohomological representations

at ∞. (See Remark 3.9.)

We are going to evaluate measures at functions in F (Ĝ(QS)) (Definition 2.1),

which is a reasonable space of μ̂pl
S -measurable functions on Ĝ(QS). Thanks to

Sauvageot’s density theorem ([Sau97, Thm. 7.3]), it is known that the trace

map from the Hecke algebra C∞
c (G(QS)) to F (Ĝ(QS)) has dense image (in the

sense of Proposition 2.5). Our main result is

Theorem 1.1 (Theorem 4.4, Theorem 4.11): Suppose that G(R) has a discrete

series representation. Let f̂S ∈ F (Ĝ(QS)).

(i) Fix ξ. If Un → 1 as n→ ∞ in the sense of Definition 3.1, then

lim
n→∞ μ̂Un,ξ(f̂S) = μ̂pl

S (f̂S).

(ii) Fix U . Assume that the center of G is trivial. If ξn → ∞ as n → ∞
in the sense of Definition 3.5, then

lim
n→∞ μ̂U,ξn(f̂S) = μ̂pl

S (f̂S).

(Both sides in the above equalities assume finite values.)

The above theorem is the precise version of the equidistribution property we

alluded to earlier, namely that the S-components of ξ-cohomological discrete

automorphic reprsentations are equidistributed with respect to μ̂pl
S on Ĝ(QS).

The condition on G(R) in the theorem is satisfied, for instance, when G is a

unitary, symplectic or orthogonal group, but not when G = GLn for n > 2.

(See a comment below for what we can do without any assumption on G(R).)

There are three main ingredients in the proof of (i): the trace formula, the

Plancherel formula and Sauvageot’s density theorem. By the density theorem,

the proof is reduced to the case when f̂S comes from the Hecke algebra, or more

precisely when f̂S is equal to φ̂S : πS �→ trπS(φS) for some φS ∈ C∞
c (G(QS)).

The main part of the proof is to show that the geometric side of the trace

formula is dominated by the orbital integral on the identity element. Namely, if

φ = φS ·φS is a test function on G(A), then the geometric side is asymptotically

equal to φ(1) multiplied by the volume of G(Q)AG,∞\G(A). By the Plancherel

formula, φ(1) is nothing other than φS(1) · μ̂pl
S (φ̂S(1)). From this it is not hard
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to deduce that

lim
n→∞ μ̂Un,ξ(φ̂S) = μ̂pl

S (φ̂S).

The strategy outlined above seems to have been well-known. Our minor con-

tribution is to make the asymptotic argument work in the case of noncompact

quotients, when we restrict ourselves to cohomological representations at infi-

nite places. Once a suitable formulation is set up, the proof often proceeds on

its own momentum.

The proof of (ii) is similar to that of (i) but requires additional input, most

notably the character formula for finite dimensional representations of reductive

Lie groups and some facts on stable discrete series characters. To our knowledge,

(ii) was treated in the literature only in the case of elliptic modular forms

([Ser97]), although we believe that experts have known such a result for some

time. Recently, Chenevier and Clozel ([CC09]) studied the effect of sending the

parameter ξ to infinity in the trace formula but did not consider the distribution

problem for local components.

We assume in the theorem that G(R) has a discrete series representation,

since it allows us to use the so-called Euler–Poincaré function associated with

ξ in the trace formula. The Euler–Poincaré function not only singles out ξ-

cohomological representations, but also simplifies the trace formula so that we

need not resort to the simple trace formula of Deligne and Kazhdan. In partic-

ular, for the purpose of Theorem 1.1, we do not restrict ourselves to automor-

phic representations which are square-integrable or supercuspidal at some finite

place. Finally, it is worth noting that the exact analogues of the previous two

theorems are true if the base field Q is replaced with a totally real field.

If the base field is an arbitrary number field or if the existence of discrete

series at ∞ is no longer assumed, we have an analogous result in a weaker form.

Refer to §4.3 for details.

Let us mention a few implications of our theorem for automorphic represen-

tations. The following corollary is deduced from the proof of Theorem 1.1.(ii).

Corollary 1.2 (Theorem 5.8): Suppose that G(R) has a discrete series and

that G has trivial center. Let Û be a μ̂pl
S -regular relatively quasi-compact subset

of Ĝ(QS) such that μ̂pl
S (Û) > 0. Let ξ be as before. Then there exist (infinitely

many isomorphism classes of) cuspidal automorphic representations π of G(A)

such that
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• πS∪{∞} is unramified,

• πS ∈ Û ,

• π∞ is a discrete series representation.

The set Û prescribes a local condition on πS . For instance, πS may be required

to belong to a particular Bernstein component (see [BD84] for this notion). A

qualitative interpretation of the corollary is that a cuspidal automorphic rep-

resentation with prescribed local properties exists whenever the local property

is satisfied by a set of positive Plancherel measure at each place. As a special

case of Corollary 1.2, when G is a split group over Q (without assuming the

center of G to be trivial), there exist infinitely many cuspidal automorphic rep-

resentations of G(A) which are unramified everywhere and discrete series at ∞.

See §§5.2–5.3 for variants of Corollary 1.2. When G is a unitary group, variants

of Corollary 1.2 can be combined with the quadratic base change (e.g., [Lab])

and the construction of Galois representations (e.g., [Shia], [CH]) to produce

(global) Galois representations with prescribed local conditions (such as local

inertia types).

Another application of Theorem 1.1 is a limit multiplicity formula. See §5
for detailed discussion and §6 for an example in the case of Hilbert modular

forms. Note that the limit multiplicity formula for discrete series representa-

tions at finite places (cf. [Clo86, §4]) is a special case of our result when the

local condition (prescribed by Û) consists of only one element which is a dis-

crete series. For a discrete series at an infinite place (in which case the limit

multiplicity formula is due to De George, Wallach, Clozel, Rohlfs–Speh, Savin

and others), our formula is weaker in that we count the limit multiplicity not

for each discrete series but for a discrete L-packet as a whole.

In fact our initial motivation for this work was to prove Corollary 1.2 or its

variants, stronger than similar results in the literature. It is a fruitful prob-

lem to find a cuspidal (and non-endoscopic, if needed) automorphic representa-

tion whose local component is close to any given local representation (e.g., in

the same Bernstein component) while maintaining enough control at the other

places. The solution of this type of problem seems almost unavoidable when

one wishes to use a global method to prove a local result.2 One can appeal

2 In fact the author encountered this problem in the computation of the cohomology of

local moduli spaces ([Shib]), and gave a solution by a somewhat different use of the trace

formula. See Section 3 of that article.
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to the limit multiplicity formulas cited above when the local representation is

a discrete series, but few results have been available in the general case (for a

large class of reductive groups). To our knowledge [CC09, Thm. 1.3] has been

among the best results so far in the non-discrete series case.

Finally, we ought to apologize to the reader that we have not strived for

maximum generality. Besides our inability, the reason is that the results of this

paper can be kept at a reasonable technical difficulty and still seem to suffice for

various arithmetic applications. One could compute the contribution from an

individual ξ-cohomological discrete series, rather than from all ξ-cohomological

representations as we do here, if one works more diligently with the trace formula

using pseudocoefficients for discrete series in place of Euler–Poincaré functions.3

On the other hand, one could try to prove the full version of Theorem 1.1

without any assumption on G(R).
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2. Preliminaries

We advise that the reader skip to §4 and use §2 and §3 as references. Most

basic notations are introduced in §2.1 and §2.4.
2.1. Notation and convention.

• F is a number field.

• VF (resp. V∞
F ) is the set of all (resp. finite) places of F .

• S is a nonempty finite subset of VF (often S ⊂ V∞
F ).

3 One of the referees made an insightful suggestion that one should be able to do this by

using the technique of Axel Ferrari ([Fer07]) and showing that the endoscopic contribution

is negligible.
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• FS :=
∏

v∈S Fv, F∞ := F ⊗Q R.

• AS
F :=

∏′
v∈VF \S Fv, A

S,∞
F :=

∏′
v∈V∞

F \S Fv.

• G is a connected reductive group over F .

• C∞
c (G(AS,∞

F )) is the space of locally constant compactly supported

C-valued functions on G(AS,∞
F ). Similarly C∞

c (G(FS)) is defined.

• Ĝ(FS) is the unitary dual of G(FS) equipped with Fell topology

([Fel60]).

• μ̂pl
S is the Plancherel measure on Ĝ(FS).

• φS usually denotes a function in C∞
c (G(FS)).

• φ̂S is the function on Ĝ(FS) associated to φS which is given by

πS �→ trπS(φS).

• f̂S denotes a μ̂pl
S -measurable function on Ĝ(FS) (there need not be a

function fS).

• Z(G) is the center of G.

• AG is a maximal Q-split torus in the center of ResF/QG, and set

AG,∞ := AG(R)0.

If M is a Levi subgroup of G over FS , and π is an irreducible smooth repre-

sentation ofM(FS), we write n-ind
G
M (π) for the normalized parabolic induction

(when the choice of the parabolic subgroup does not matter). For a continuous

(quasi-)character χ : AG,∞ → C×, define L2(G(F )\G(AF ), χ) as the space of

C-valued functions on G(AF ) which are square-integrable modulo AG,∞ and

transform under AG,∞ by χ. The space L2(G(F )\G(AF ), χ) is equipped with

an action of G(AF ) via right translation. There are discrete and cuspidal sub-

spaces in L2(G(F )\G(AF ), χ) which are stable under the action of G(AF ).

L2
cusp(G(F )\G(AF ), χ) ⊂ L2

disc(G(F )\G(AF ), χ) ⊂ L2(G(F )\G(AF ), χ).

For an irreducible admissible representation π of G(AF ), we often write π∞ for

the infinite component ⊗v|∞πv. The multiplicity of π in L2
disc(G(F )\G(AF ), χ)

(resp. L2
cusp(G(F )\G(AF ), χ)) is denoted by mdisc(π) (resp. mcusp(π)).

2.2. Choice of Haar measures. By choosing Haar measures μv on G(Fv)

for each v ∈ VF such that μv assigns volume 1 to a hyperspecial subgroup for

almost all v, we form a measure μ :=
∏

v∈VF
μv on G(AF ). By giving the

point-counting measure on G(F ) and the Lebesgue measure on AG,∞, we get

the quotient measure μ on G(F )AG,∞\G(AF ).
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In this article we will often suppose that

(i) F is a totally real field and

(ii) G(F∞) has a discrete series representation.

In that case, we make a particular choice of μ∞. Note that there is the so-

called Euler–Poincaré measure μEP
∞ on G(F∞)/AG,∞, which is a particular Haar

measure. On the other hand, AG,∞ is equipped with the usual multiplicative

Lebesgue measure (as there is a natural identification AG,∞ 	 (R×
>0)

r for some

r ∈ Z>0). Define a unique Haar measure μEP∞ on G(F∞) to be compatible with

the above measures via the exact sequence

1 → AG,∞ → G(F∞) → G(F∞)/AG,∞ → 1.

Then we will always assume (when the above conditions on F and G(F∞) are

in effect) that

μ∞ = μEP
∞ .

Sometimes we assume in addition to (i) and (ii) above that G is unramified

at all finite places. (This will be considered in §6.2 for G = GL2.) In that case,

choose μv for each v ∈ V∞
F such that a hyperspecial subgroup of G(Fv) has

volume 1. Then the product measure (
∏

v�∞ μv)× μEP
∞ will be written as μEP.

Let μEP denote the quotient measure on G(F )AG,∞\G(AF ) (with respect to

the measures on G(F ) and AG,∞ as above).

2.3. Density theorem for functions on unitary dual. We set up some

notation first. As before G is a connected reductive group over F . WhenM is a

Levi subgroup of G over FS , let Ψu(M) denote the set of “unramified” unitary

characters ofM(FS), which naturally has the structure of a real torus. (For the

precise definition, see [Wal03, p. 239] where Ψu(M) is denoted by ImX(M).)

When σ is an admissible representation ofM(FS), write n-ind
G
M (σ) for the nor-

malized parabolic induction. Although the semisimplification of n-indGM (σ) is

well-defined, its isomorphism class depends on the choice of a parabolic sub-

group. We will use this notation only when n-indGM (σ) is irreducible or when

we are only interested in computing traces.

The Plancherel measure μ̂pl
S is a positive Borel measure on Ĝ(FS). Note

that μ̂pl
S depends on a choice of a Haar measure on G(FS). Precisely, if the

latter Haar measure is multiplied by a scalar c ∈ C× then μ̂pl
S is multiplied

by c−1. Denote by Bc(Ĝ(FS)) the space of bounded μ̂pl
S -measurable functions

f̂S on Ĝ(FS) such that the support of f̂S has compact image in the space of
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infinitesimal characters via the map denoted by inf. ch. in [BDK86, 2.1]. In our

paper a measure on Ĝ(FS) will be viewed as a linear functional on the subspace

F (Ĝ(FS)) of Bc(Ĝ(FS)) defined below.

Definition 2.1: Define F (Ĝ(FS)) to be the space of functions f̂S ∈ Bc(Ĝ(FS))

such that for every FS-rational Levi subgroup M of G and every discrete series

σ of M(FS), the function

Ψu(M) → C given by χ �→ f̂S(n-ind
G
M (σ ⊗ χ))

has the property that its discontinuous points are contained in a measure zero

set. By definition, f̂S(n-ind
G
M (σ ⊗ χ)) is the sum of f̂S(σ

′) as σ′ runs over the
irreducible subquotients of n-indG

M (σ ⊗ χ) with multiplicity. (Note that any

subquotient σ′ is unitary.)

Lemma 2.2: For any φS ∈ C∞
c (G(FS)), the function φ̂S (defined in §2.1)

belongs to F (Ĝ(FS)).

Proof. This is an easy fact and essentially the inclusion Ftr ⊂ Fgood in

[BDK86, 1.2].

Example 2.3: There are many functions in F (Ĝ(FS)) which are not of the

form φ̂S for any φS ∈ C∞
c (G(FS)). Any characteristic function on a μ̂pl

S -regular

relatively quasi-compact subset Û of Ĝ(FS) belongs to F (Ĝ(FS)). (Lemma 7.2

of [Sau97] proves this when Û is open, but the same proof works for non-open

sets as well.) An example of such a Û is the set of π ∈ Ĝ(FS) in the same

Bernstein component.

The well-known Plancherel formula by Harish-Chandra says:

Proposition 2.4 (Harish-Chandra): For φS ∈ C∞
c (G(FS)), we have μ̂

pl
S (φ̂S) =

φS(1).

The following fundamental theorem due to Sauvageot tells us roughly that

the image of C∞
c (G(FS)) in F (G(FS)) via φS �→ φ̂S is dense.

Proposition 2.5 ([Sau97, Thm. 7.3]): Let f̂S ∈ F (Ĝ(FS)). For any ε > 0,

there exist φS , ψS ∈ C∞
c (G(FS)) such that

|f̂S(π)− φ̂S(π)| ≤ ψ̂S(π), ∀π ∈ Ĝ(FS) and μ̂pl
S (ψ̂S) ≤ ε.
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Remark 2.6: In fact, Sauvageot also proved the converse that any f̂S ∈
Bc(Ĝ(FS)) with the above property belongs to F (Ĝ(FS)). This will not be

needed as our theorems will be stated only for f̂S ∈ F (Ĝ(FS)).

The analogous density theorem at archimedean places is also proved by

Sauvageot and will be referred to in §4.3. As the result is basically the same,

we chose not to copy it here.

2.4. Euler–Poincaré function at infinity. The purpose of this subsection

is to recall necessary facts concerning Euler–Poincaré functions in the theory

of real Lie groups. We assume (i) and (ii) of §2.2 throughout §2.4. Note that

(ii) holds precisely when the ranks of G∞ and K∞ (given below) are the same.

The following notation will be used.

• G∞ := (ResF/QG)×Q R. So G∞(R) = G(F∞).

• ξ is an irreducible algebraic representation of G∞ over C.

• AG is the maximalQ-split torus in the center of ResF/QG, and similarly

AG,R is the maximal R-split torus in the center of G∞. We assume

AG ×Q R = AG,R and set AG,∞ := AG(R)0.

• χ : AG,∞ → C× is any continuous character.

• χξ : AG,∞ → C× is the character obtained by restricting ξ to AG,∞.

• g∞ is the Lie algebra of G(F∞).

• K∞ = K1∞AG,∞ where K1∞ is a maximal compact subgroup of G∞.

• C∞
c (G(F∞), χ) is the space of K∞-bi-finite smooth C-valued functions

which are compactly supported modulo AG,∞ and transform under

AG,∞ by χ.

• d(G∞) := |W (T,G)|/|WR(T,G)| where T is a maximal R-torus con-

tained in K∞ andW (resp. WR) denotes the Weyl group over C (resp.

over R).

• q(G∞) := dim(G(F∞)/K∞).

• Π(G∞, χ) is the set of isomorphism classes of irreducible admissible

representations π∞ of G(F∞) such that the central character of π∞ on

AG,∞ is χ.

• Πu(G∞, χ) is the subset of Π(G∞, χ) consisting of unitary representa-

tions.
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• Πdisc(G∞, ξ∨) is the set of π∞ ∈ Π(G∞, χ−1
ξ ) which has the same

central character and infinitesimal character as ξ∨. It is well known

that |Πdisc(G∞, ξ∨)| = d(G∞).

Let φξ ∈ C∞
c (G(F∞), χξ) denote the Euler–Poincaré function à la Clozel-

Delorme such that for every π∞ ∈ Π(G∞, χ−1
ξ ),

(2.1) tr π∞(φξ) =
∑
i≥0

(−1)i dimHi(g∞,K∞;π∞ ⊗ ξ).

We say that π∞ is ξ-cohomological if the summand in (2.1) is nonzero for some

i ≥ 0. Some standard properties of φξ are recorded below.

Lemma 2.7: (i) For π∞ ∈ Π(G∞, χ−1
ξ ), trπ∞(φξ) = 0 unless π∞ has the

same infinitesimal character as ξ∨.
(ii) Suppose that the highest weight of ξ is regular. Then for π∞ ∈

Π(G∞, χ−1
ξ ),

tr π∞(φξ) =

⎧⎨
⎩(−1)q(G∞), if π∞ ∈ Πdisc(G∞, ξ∨),

0, otherwise.

Proof. The first two properties follow from Clozel–Delorme’s results on the trace

Paley–Wiener theorems on real groups and standard properties of relative Lie

algebra cohomology, as explained on pp. 264–266 of [Art89].

2.5. On stable discrete series characters. In this subsection, we will be

concerned with real groups only and use slightly different notation from the rest

of the article.

Let G be a connected reductive group over R. Let M be an R-rational Levi

subgroup of G, and T an elliptic maximal torus of M . Let ξ be an irreducible

algebraic representation of G. Write Treg(R) for the set of t ∈ T (R) which are

regular in G(R). Denote by WM and WG the Weyl group of T inM and G over

C, respectively.

Let Q = LU be an R-rational parabolic subgroup of G with Levi decomposi-

tion such that the Levi part L contains M . For γ ∈ L(R), define

δQ(γ) :=
∣∣det(Ad(γ)|Lie (U))

∣∣ , DL
M (γ) :=

∣∣det(1−Ad(γ)|Lie (L)/Lie (M))
∣∣ .

Let B be a Borel subgroup of GC such that TC ⊂ B ⊂ QC. Denote by λB ∈
X∗(T ) the B-dominant highest weight of ξ, and by ρB ∈ X∗(T )⊗Z R the half

sum of all B-positive roots of TC in GC.
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For each γ ∈ Treg(R), let us define

ΦG
M (γ, ξ) := (−1)q(G∞)|DG

M (γ)|1/2
∑

π∈Πdisc(ξ)

Θπ(γ)

where Θπ is the character function of π. It is known that the function ΦG
M (γ, ξ)

continuously extends to a WM -invariant function on T (R) ([Art89, Lem. 4.2],

cf. [GKM97, Lem. 4.1]). We will need the following facts later.

Lemma 2.8: (i) If M = G, ΦG
G(γ, ξ) = tr ξ(γ) for all γ ∈ T (R).

(ii) Suppose that M = G and fix γ ∈ T (R). Then for any ξ,

(2.2) |ΦG
M (γ, ξ)| ≤

∑
Q

∑
w

c · |DL
M (γ)|1/2δQ(γ)−1/2

∣∣∣tr (γ−1|V L
w(λB+ρB)−ρB

)
∣∣∣

where Q runs over the set of parabolic subgroups of G containing M

(allowing Q = G), L denotes the Levi subgroup of Q containing M ,

and c is a constant which is independent of γ and ξ (and depends only

on G).

Further explanation is necessary to make sense of (2.2). For each Q,

choose a Borel subgroup B of GC such that TC ⊂ B ⊂ QC. The second

sum is taken over the set of w ∈ WG such that the set of Q-positive

roots in L is carried into the set of B-positive roots in G. We have

defined λB and ρB before the lemma. The summand is independent of

the choice of B.

Proof. Part (i) is an easy consequence of the character formula for discrete series

(cf. [Art89, p. 271]).

Part (ii) follows from Theorem 5.1 of [GKM97]. It is immediate from the last

display of page 504 of that paper that

|ΦG
M (γ, ξ)| ≤

∑
Q

|DL
M (γ)|1/2δQ(γ)−1/2 · Lν

Q(γ)

where ν is taken to be νm of page 509.

For each Q, there is an integer-valued function ϕQ defined in the appendix of

[GKM97]. It is clearly a bounded function, for instance in view of Lemma A.6

in the appendix. Let c be the maximum of the supremum norm of |ϕQ|. The

formula right above Theorem 5.1 of the same paper implies that

|Lν
Q(γ)| ≤ c ·

∑
w

∣∣∣tr (γ−1|V L
w(λB+ρB)−ρB

)
∣∣∣
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where w runs over the same set as in the statement of the lemma. The proof

of (ii) is complete.

3. Key definitions

In this section we provide key definitions that are needed in stating our main

results in §4.

3.1. Tower of functions.

Definition 3.1: Let {Un}n≥1 be a sequence of open compact subgroups of

G(AS,∞
F ). We write that

Un → 1 as n→ ∞
if there exists a decreasing sequence of open compact subgroups {Vm}m≥1 such

that

• V1 ⊃ V2 ⊃ · · · and
⋂∞

m=1 Vm = {1}.
• For each m, there exists im ∈ Z>0 such that Un ⊂ Vm for all n ≥ im.

Example 3.2: Let v ∈ V∞\S and fix an open compact subgroup US,v,∞ ⊂
G(AS,v,∞

F ). Let {Uv,n}n≥1 be a decreasing sequence which forms an open basis

of 1 in G(Fv). Then Un := Uv,nU
S,v,∞ has the property that Un → 1 as n→ ∞.

Remark 3.3: The condition that Un → 1 as n→ ∞ does not imply convergence

of the sequence in the usual topological sense. Namely, given an open compact

subgroup U ⊂ G(AS,∞
F ), there may not exist n0 such that Un ⊂ U for all n ≥ n0,

as we see in Example 3.2.

We slightly modify Sauvageot’s notion of tower of functions ([Sau97, p. 155])

to suit our purpose.

Definition 3.4: Let {φS,∞n }n≥1 be a sequence of functions in C∞
c (G(AS,∞

F )). We

say {φS,∞n }n≥1 is a tower of functions tending to 1 if

• For every n ≥ 1, φS,∞n (1) = 1.

• {supp (φS,∞n )} → 1 as n→ ∞ in the sense of Definition 3.1.

• For some φ ∈ C∞
c (G(AS,∞

F )), we have |φn(x)| ≤ φ(x) for every x ∈
G(AS,∞

F ) and every n ≥ 1.

• For every π ∈ ̂G(AS,∞
F ) and every n ≥ 1, φ̂S,∞n (π) ≥ 0.
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3.2. Sequence of parameters at ∞. Let T∞ be an elliptic maximal torus

in G∞. Let B be a Borel subgroup of G∞ over C containing T∞. Let {ξn}n≥1

be a sequence of irreducible algebraic representations of G∞ over C with highest

weight vectors λξn ∈ X∗(T∞) which are B-dominant. We define the notion of

the parameters ξn tending to infinity.

Definition 3.5: We write

ξn → ∞ as n→ ∞
if for every n ≥ 1 and for every B-positive root α of T∞ in G∞,

(3.1) lim
n→∞〈λξn , α〉 = +∞.

This definition is independent of the choice of B.

Example 3.6: Let G = GL2 and F be totally real so that G∞ =
∏

τ :F↪→RGL2

over R. For each n ≥ 1, let

ξn =
⊗

τ :F↪→R

(Symaτ,n(C2)⊗ detbτ,n(C2))

for aτ,n ∈ Z≥0 and bτ,n ∈ Z. Then ξn → ∞ as n → ∞ if and only if∑
τ aτ,n → +∞. For instance, ξn → ∞ if aτ0,n → +∞ for some τ0 : F ↪→ R

and aτ,n remain fixed for all the other τ = τ0 as n varies.

3.3. Multiplicities and measures. Let φS,∞ ∈ C∞
c (G(AS,∞

F )).

Definition 3.7: The cuspidal (φS,∞, ξ)-multiplicity of π0
S is defined as the

following complex number:

(3.2) mcusp(π
0
S ;φ

S,∞, ξ) :=
∑
π

mcusp(π) · tr πS,∞(φS,∞) · tr π∞(φξ),

where π runs over isomorphism classes of irreducible admissible representations

of G(AF ) such that πS 	 π0
S and π∞ is ξ-cohomological (§2.4). Note that

for each φS,∞, there are only finitely many nonzero terms in the sum. Define

mdisc(π
0
S ;φ

S,∞, ξ) similarly by replacing mcusp with mdisc in (3.2).

Example 3.8: Suppose that U is an open compact subgroup of G(AS,∞
F ). Then

(3.3) mcusp(π
0
S ; charU , ξ) :=

∑
π

mcusp(π) · μS,∞(U) · dim(πS,∞)U · tr π∞(φξ),
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where the sum runs over the same set of π as in Definition 3.7. If moreover ξ

has regular highest weight, then in light of Lemma 2.7,

mcusp(π
0
S ; charU , ξ)

= (−1)q(G∞) · μS,∞(U) ·
∑
π

(
mcusp(π) · dim(πS,∞)U

)
(3.4)

= (−1)q(G∞) · μS,∞(U) ·
∑
π∞

m(π0
S ⊗ π∞|L2

cusp(G(F )\G(AF )/U, χ
−1
ξ ).

The first sum is taken over π such that πS 	 π0
S , (π

S,∞)U = (0) and π∞ ∈
Πdisc(G∞, ξ∨). The second sum is taken over Πdisc(G∞, ξ∨).

Define a positive Borel measure μ̂cusp
φS,∞,ξ on Ĝ(FS) by

(3.5) μ̂cusp
φS,∞,ξ

:=
1

μ(G(F )AG,∞\G(AF )) · dim ξ

∑
π0
S

mcusp(π
0
S ;φ

S,∞, ξ) · δπ0
S
.

Note that this is a countable sum as there are countably many cuspidal auto-

morphic representations in L2
cusp(G(F )\G(A), χ−1

ξ ). The analogue μ̂disc
φS,∞,ξ is

defined in an obvious manner.

Remark 3.9: The value dim ξ should be viewed as the total Plancherel mass of

the real L-packet Πdisc(G∞, ξ∨). Note that the Plancherel measure μ̂pl∞ is chosen

compatibly with μEP∞ . Then each discrete series in Πdisc(G∞, ξ∨) has Plancherel
mass dim ξ/d(G∞) in the unitary dual Πu(G∞, χ−1

ξ ). Since |Πdisc(G∞, ξ∨)| =
d(G∞), the total mass is dim ξ.

Lemma 3.10: If the highest weight of ξ is regular, then mcusp(π
0
S ;φ

S,∞, ξ) =

mdisc(π
0
S ;φ

S,∞, ξ) and μ̂cusp
φS,∞,ξ

= μ̂disc
φS,∞,ξ.

Proof. Let π be an automorphic representation of G(AF ). Under the assump-

tion, trπ∞(φξ) = 0 implies that π∞ is a discrete series. Then mcusp(π) =

mdisc(π) by [Wal84, Thm. 4.3]. The lemma follows immediately.

4. Main results

We aim to prove that the averaged “counting measure” of (3.5) tends to the

Plancherel measure in two different settings: (1) along a tower of functions while

weight is fixed; (2) as the weight parameter tends to infinity while the level is

fixed. With the exception of §4.3, we assume the following.
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• F is totally real,

• G(F∞) has a discrete series, and

• AG ×Q R = AG,R. (See the notation of §2.4.)
Remark 4.1: The last condition is trivially satisfied if G is a semisimple group,

and imposed in order to make use of Euler–Poincaré functions at infinity. If G

satisfies only the first two conditions, one should still be able to obtain results

by using the trace formula with fixed central character.

4.1. Use of the trace formula.

Proposition 4.2: For any φS,∞ ∈ C∞
c (G(AS,∞

F )) and φS ∈ C∞
c (G(FS)),

μ̂disc
φS,∞,ξ(φ̂S) =

Ispec(φ
S,∞φSφξ)

μ(G(F )AG,∞\G(AF )) · dim ξ
.

Proof. We will use results of [Art89] which simplifies the trace formula when

the test function at infinity is φξ. Note that our function φξ coincides with his

fξ. The argument of pp. 267–268 of that paper shows that

Ispec(φ
S,∞φSφξ) =

∑
π

mdisc(π) · tr π(φS,∞φSφξ),

where π runs over automorphic representations of G(AF ) (up to isomorphism)

such that π∞ is ξ-cohomological. The right-hand side is none other than

μ̂disc
φS,∞,ξ(φ̂S) in view of (3.2), (3.5) and the identity δπ0

S
(φ̂S) = φ̂S(π

0
S) =

tr π0
S(φS).

4.2. When weight is fixed and level varies. Let {φS,∞n }n≥1 be a tower

of functions (Definition 3.4). The following lemma will be used in the proof of

Theorem 4.4 below.

Lemma 4.3: Let {US,∞
n }n≥1 be a sequence in G(AS,∞

F ) such that US,∞
n → 1

as n → ∞. Let US be an open compact subgroup of G(FS). Then there exists

n0 such that for every n ≥ n0, the following holds: if x−1γx ∈ US,∞
n USK∞ for

x ∈ G(AF ) and γ ∈ G(F ) then γ is unipotent.

Proof. This is proved by the same argument as in [Clo86, Lem. 5].

Theorem 4.4: For every f̂S ∈ F (Ĝ(FS)) (cf. Definition 2.1),

(4.1) lim
n→∞ μ̂cusp

φS,∞
n ,ξ

(f̂S) = lim
n→∞ μ̂disc

φS,∞
n ,ξ

(f̂S) = μ̂pl
S (f̂S).



Vol. 192, 2012 AUTOMORPHIC PLANCHEREL DENSITY THEOREM 99

Proof. It suffices to show (4.1) for f̂S = φ̂S for φS ∈ C∞
c (G(FS)). Then the

general case follows easily from this case and Proposition 2.5, by exactly the

same argument as in the proof of [Sau97, Prop. 1.3].

To justify the first equality, we must show that μ̂res
φS,∞
n ,ξ

(φ̂S) tends to zero

as n → ∞, where μ̂res
φS,∞
n ,ξ

is defined as in (3.5) with the residual multiplicity

mdisc−mcusp in place of mdisc. By the definition of a tower of functions, we can

find a sequence {Un} and a constant α > 0 such that |φS,∞n | ≤ α · charUn for

every n ≥ 1. Thus the proof is easily reduced to the case where φS,∞n = charUn

for all n ≥ 1 and Un → 1 as n→ ∞. Now the desired equality

lim
n→∞ μ̂res

charUn ,ξ(φ̂S) = 0

follows from Lemma 2.3 and Corollary 3.6 of [RS87] (interpreted in the adelic

setting).

The rest of the proof is devoted to justifying the second equality. By [Art89,

(3.5), Thm. 6.1], we know that Ispec(φ
S,∞
n φSφξ) equals the following geometric

expansion, where we borrow his notation.

Igeom(φ
S,∞
n φSφξ) =

∑
M∈L

(−1)q(G∞)+dim(AM/AG) |WM |
|WG|(4.2)

×
∑

γ∈M(F )/∼
χ(Mγ)|ιM (γ)|−1ΦM (γ, ξ) · φ∞n,M (γ).

The formula should be explained. The set L is the set of F -rational cuspidal

Levi subgroups of G containing a fixed minimal Levi subgroup, allowingG ∈ L .

The second sum runs over a set of representatives for semisimple conjugacy

classes in M(F ). (The fact that only cuspidal Levi subgroups contribute in

Arthur’s formula is noted in [GKM97, p. 539]. For our purpose, we need not

recall the definition of cuspidal Levi subgroups.) Recall the formula for φ∞n,M
(we apologize for the abuse of subscript here), which denotes the orbital integral

of the constant term of φ∞n , from (6.2) of Arthur’s paper:

(4.3) φ∞n,M (γ)

= δP (γ)
1/2

∫
K∞

∫
NP (A∞)

∫
Mγ(A∞

F )\M(A∞
F )

φ∞n (k−1m−1γmnk) · dmdn dk.

With the analogous definition of φS,M (γ) and φS,∞n,M (γ) (by integrating at S and

outside S), we have φ∞M (γ) = φS,∞n,M (γ) · φS,M (γ). We denote by Mγ the neutral

component of the centralizer of γ inM , and by |ιM (γ)| the number of connected
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components inMγ containing an F -point. As in (6.3) of [Art89], χ(Mγ) is given

by

(4.4)

χ(Mγ) = (−1)q(Mγ)vol(Mγ(F )AMγ ,∞\Mγ(AF ))vol(AMγ ,∞\Mγ(F∞))−1·d(Mγ)

where Mγ is an inner form ofMγ over F∞ which is compact modulo center. To

compute the volume, Mγ(F∞) and Mγ(F∞) are given compatible measures in

the sense of [Kot88, p. 631], and the measure on Mγ(A∞
F ) is chosen compatibly

with the measure onM(A∞
F ) and dm in (4.3) (in the usual sense). The quotient

measures are taken with respect to the measures on Mγ(F )AMγ ,∞ and AMγ ,∞
as in §2.2.
We claim that there exists n0 ∈ Z>0 such that for every n ≥ n0 and every

M ∈ L , the summand in the second summation of (4.2) vanishes unless γ = 1.

Let us prove the claim. Note that the summand vanishes if γ is not elliptic

in M(F∞) (in particular, this is the case if M(F ) has no elements which are

elliptic in M(F∞)). Now choose n0 as in Lemma 4.3 for US,∞
n = supp (φS,∞)

and US = supp (φS). Suppose n ≥ n0. If the second summand of (4.2) is

nonzero, then k−1m−1γmnk belongs to supp (φS,∞)×supp (φS) and γ is elliptic

in M(F∞) (so it is also elliptic in G(F∞), thus γ ∈ K∞). By the very choice

of n0, we must have that m−1γmn is unipotent. Hence γ = 1 and the claim is

justified.

Only φ∞n,M (γ) varies in the summand of (4.2) as n tends to ∞. When γ = 1,

φS,∞n,M (1) =

∫
KS,∞

∫
NP (AS,∞

F )

φS,∞n (k−1nk) · dndk.

Let Vm and im (m ≥ 1) be as in (3.1) by taking Un := supp (φS,∞n ). Of course

we can choose Vm to be normal subgroups of KS,∞. For each m ≥ 1, whenever

n ≥ im the function φS,∞n is supported on Vm in variable n ∈ NP (A
S,∞
F ). Thus

|φS,∞n,M (1)| ≤ C · μS,∞(KS,∞) · μNP (AS,∞
F )(Vm ∩NP (A

S,∞
F ))

for every n ≥ im. Since {Vm}m≥1 is decreasing to {1}, it follows that
lim
n→∞φS,∞n,M (1) = 0

unless M = G, in which case NP is trivial (and μNP (AS,∞
F )(Vm∩NP (A

S,∞
F )) = 1

as the measure of a point).

Finally, consider the term in (4.2) for M = G and γ = 1. It is easy to see

that |ι(G)| = 1 and ΦG(1, ξ) = dim ξ, the latter following from Lemma 2.7(i).
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For Mγ = G, (4.4) can be rewritten as

χ(G) = μ(G(F )AG,∞\G(AF ))

by noting the following two facts: (i) (−1)q(G)d(G∞) times the Euler–Poincaré

measure on G(F∞)/AG,∞ is compatible with μEP
∞ ([Kot88, Thm. 1]) on

G(F∞)/AG,∞ and (ii) the compact group G(F∞)/AG,∞ has volume 1 under

the Euler–Poincaré measure. Since φ∞(1) = φS,∞(1)φS(1) = μ̂pl
S (φ̂S) by the

Plancherel formula (Proposition 2.4), the term for M = G and γ = 1 in (4.2) is

computed as

μ(G(F )AG,∞\G(AF )) · dim ξ · μ̂pl
S (φ̂S).

Hence the right-hand side of (4.2) tends to the above value as n → ∞. We

complete the proof of Theorem 4.4 by invoking Proposition 4.2.

Let Û be a μ̂pl
S -regular relatively quasi-compact subset of Ĝ(FS). As remarked

in Example 2.3, the function char
̂U belongs to F (Ĝ(FS)). By taking f̂S = char

̂U

in Theorem 4.4 we deduce

Corollary 4.5: For any Û as above,

lim
n→∞ μ̂cusp

φS,∞
n ,ξ

(char
̂U ) = lim

n→∞ μ̂disc
φS,∞
n ,ξ

(char
̂U ) = μ̂pl

S (Û).

Remark 4.6: It is indeed necessary to assume that Û is μ̂pl
S -regular. For

instance, let V̂ be an open relatively quasi-compact subset of Ĝ(FS) such that

μ̂pl
S (V̂ ) > 0. Let Û be the subset of V̂ consisting of those πS which do not arise

as the S-components of ξ-cohomological cuspidal automorphic representations

of G(AF ). Then Û is a complement of a countable subset in V̂ , and it might

seem that Corollary 4.5 does not hold for this Û as the left-hand side should

be zero whereas the right-hand side should be positive. In fact, such a Û is not

μ̂pl
S -regular and excluded in the corollary.

4.3. When G(F∞) has no discrete series or F is not totally real.

Suppose that either F is not totally real or G(F∞) has no discrete series. We

can still obtain analogous results by appealing to the simple trace formula if we

impose an extra condition at two auxiliary finite places. Although it would be

possible to remove this unnatural restriction, we have not done so.

Choose auxiliary finite places v1, v2 ∈ V∞
F and a finite subset S ⊂ VF such

that v1, v2 /∈ S and S contains all infinite places of F . (This is a change from

the previous subsection, where S contained no infinite places.) By abuse of
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notation, Ĝ(FS) will mean the unitary dual of G(FS)/AG,∞ (viewed as the

subset of the usual unitary dual of G(FS)). The space of functions F (Ĝ(FS)),

which was defined in §2.3 when S consists of finite places, makes sense in this

context and the analogue of Sauvageot’s density theorem (Proposition 2.5) still

holds. See page 180 and Theorem 7.3 of [Sau97].

Let φv1 be a truncated Kottwitz function in the sense of [Lab99, 3.9] (cf.

[Kot88, §2]). It is known ([Lab99, Prop. 3.9.1]) that the orbital integral of φv1
vanishes on non-elliptic or non-semisimple elements of G(Fv1 ). Let φv2 be any

function such that φ̂v2 is positive on one supercuspidal Bernstein component and

zero outside it. In particular, tr πv2(φv2 ) = 0 whenever πv2 is a subquotient of a

parabolically induced representation ofG(Fv2). (Such a φv2 is easily constructed

by the trace Paley–Wiener theorem of [BDK86].) By scaling, we require that

(4.5) φv1(1) = φv2(1) = 1.

Set φv1,v2 := φv1φv2 . As an analogue of Definition 3.7, we have

Definition 4.7: The cuspidal (φS,v1,v2n , φv1,v2)-multiplicity of π0
S is defined as the

following complex number:

(4.6)

mcusp(π
0
S ;φ

S,v1,v2
n , φv1,v2) :=

∑
π

mcusp(π) · tr πS,v1,v2(φS,v1,v2n ) · tr πv1,v2(φv1,v2),

where π runs over isomorphism classes of irreducible representations of G(AF )

in L2
cusp(G(F )AG,∞\G(AF )) such that πS 	 π0

S . The sum has finitely many

nonzero terms.

Define a positive Borel measure μ̂n = μ̂
φ
S,v1,v2
n ,φv1,v2

on Ĝ(FS) by

(4.7) μ̂n :=
1

μ(G(F )AG,∞\G(AF ))

∑
π0
S

mcusp(π
0
S ;φ

S,v1,v2
n , φv1,v2) · δπ0

S
.

Theorem 4.8: For any f̂S ∈ F (Ĝ(FS)),

lim
n→∞ μ̂n(f̂S) = μ̂pl

S (f̂S).

Proof. Since the outline of the proof is identical to that of Theorem 4.4, we

only sketch the argument.

As before, Sauvageot’s density theorem reduces the proof to the case f̂S = φ̂S

for some φS ∈ C∞
c (G(FS)). In view of the properties of φv1 and φv2 stated

above, Delgine–Kazhdan’s simple trace formula (cf. [Art88, Cor. 7.3, Cor. 7.4])
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is applicable to G and φn := φS,v1,v2n φv1,v2φS . Now that the simple trace formula

replaces a version of Arthur’s trace formula in the proof of Theorem 4.4, the

argument in the current case is only easier. It is straightforward to check that

(4.8) μ̂n(φ̂S) =
Ispec(φn)

μ(G(F )AG,∞\G(AF ))
.

(By our choice of φv2 , only cuspidal automorphic representations contribute to

Ispec(φn).) The geometric side of the simple trace formula is given by

Igeom(φn) =
∑

γ∈G(F )/∼
vol(Gγ(F )AG,∞\Gγ(AF )) · Oγ(φn),

where the sum runs over a set of representatives for elliptic conjugacy classes

in G(F ), and Gγ denotes the centralizer of γ in G. As in the proof of Theorem

4.4, we can prove that only the summand for γ = 1 survives as n → ∞. Using

(4.5) and the Plancherel formula (Proposition 2.4), we obtain

(4.9)
lim
n→∞ Igeom(φn) = μ(G(F )AG,∞\G(AF )) · φn(1)

= μ(G(F )AG,∞\G(AF )) · μ̂pl
S (φ̂S).

Formulas (4.8) and (4.9) complete the proof.

4.4. When weight varies and level is fixed. Only in §4.4 we assume

that the center of G is trivial. (See Remark 4.13 about this assumption.) In

particular, we need not worry about AG,∞, which is also trivial. We retain the

notation from §3.2.
Lemma 4.9: Let M be an R-rational proper Levi subgroup of G∞. Suppose

that ξn → ∞ as n→ ∞. Then:

(i) For any elliptic γ ∈ G∞(R) such that γ /∈ Z(G∞)(R),

lim
n→∞

|tr ξn(γ)|
dim ξn

= 0.

(ii) For any elliptic γ ∈M(R),

lim
n→∞

|ΦG
M (γ, ξn)|
dim ξn

= 0.

Remark 4.10: It will be evident from the proof that the lemma is true without

assuming Z(G) = {1}, which is only needed in the proof of Theorem 4.11.
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Proof. We may assume F∞ = R as the general case can be handled in the same

way. The basic idea of the proof is to study the asymptotic behavior of the

Weyl character formula. Part (i) is proved as Corollary 1.12 in [CC09]. (Even

though that corollary is proved under the assumption that G∞(R) is compact,

the general case is easily deduced via an inner form of G∞(R) which is compact

mod center. This is possible because an elliptic conjugacy class always transfers

to a compact mod center inner form.)

Let us deduce part (ii) essentially from Lemma 2.8. We will freely use the

notation of that lemma in the rest of the proof. Let λnB denote the B-dominant

highest weight for ξn. We divide into two cases depending on γ.

The first case is when γ /∈ Z(G∞)(R). In view of (2.2), it is enough to prove

that ∣∣∣tr (γ−1|V L
w(λn

B+ρB)−ρB
)
∣∣∣ · (dim ξn)

−1 → 0 as n→ ∞.

The left-hand side can be decomposed as

(4.10)

∣∣∣tr (γ−1|V L
w(λn

B+ρB)−ρB
)
∣∣∣

dimV L
w(λn

B+ρB)−ρB

×
dimV L

w(λn
B+ρB)−ρB

dim ξn
.

Recall the Weyl dimension formula

dim ξn =
∏
α

〈α, λnB + ρB〉
〈α, ρB〉 ,

where α runs over the B-positive roots in G. Since a similar formula holds for

dim V L
w(λn

B+ρB)−ρB
, we see from (3.1) that the second term in (4.10) tends to

zero as n → ∞ unless L = G. In case L = G, the same term is equal to 1 for

any n since ξn = V L
w(λn

B+ρB)−ρB
. Now consider the first term in (4.10). If γ is

in the center of L(R), it is clearly a (nonzero) constant. If else, the first term

tends to zero as n → ∞ by part (i). Finally, we deduce that the limit of (3.1)

is zero.

Next consider the case γ ∈ Z(G∞)(R). If L = G, we argue exactly as in the

other case. When L = G, we simply note that the summand in (2.2) vanishes

since DG
M (γ) = 0 if M � G and γ is central in G. The proof is complete.

Theorem 4.11: Let φS,∞ ∈ C∞
c (G(AS,∞

F )) be such that φS,∞(1) = 1. For any

f̂S ∈ F (Ĝ(FS)),

lim
n→∞ μ̂cusp

φS,∞,ξn
(f̂S) = lim

n→∞ μ̂disc
φS,∞,ξn

(f̂S) = μ̂pl
S (f̂S).
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Proof. As in the proof of Theorem 4.4, it is enough to prove the theorem for f̂S

which has the form φ̂S for some φS ∈ C∞
c (G(FS)). Since the first equality of

the theorem is an obvious consequence of Lemma 3.10, it suffices to establish

the second equality. It follows from Proposition 4.2 and (4.2) that

μ(G(F )AG,∞\G(AF )) · μ̂disc
φS,∞,ξn

(φ̂S)

(4.11)

=
∑

M∈L

(−1)dim(AM/AG) |WM |
|WG|

( ∑
γ∈M(F )/∼

χ(Mγ)|ιM (γ)|−1φ∞M (γ)
ΦM (γ, ξn)

dim ξn

)

with the same notation as previously in (4.2). We claim that the second

sum over conjugacy classes in M(F ) can be taken over a finite set YM

which is independent of n. To see this, note that ΦG
M (γ, ξn) is nonzero only

if γ is elliptic in M(F∞), or equivalently M(F∞)-conjugate to an element in

M(F∞)∩K∞. In order that φ∞M (γ) = 0, γ must be M(A∞
F )-conjugate to an el-

ement in suppφ∞M . So the summand for γ is zero unless γ is M(AF )-conjugate

to some element in the compact set (suppφ∞M ) × (M(F∞) ∩ K∞). The last

condition on γ is clearly independent of n and satisfied by only finitely many

semisimple conjugacy classes of M(F ) by [Kot86, Prop. 8.2].

We will write

(4.12) Igeom(φ
S,∞φSφξn) = I1,n + I2,n + I3,n

where I1,n, I2,n and I3,n are partial sums in (4.11) defined as:

• I1,n is the term for M = G and γ = 1,

• I2,n is the sum over M = G and all γ = 1,

• I3,n is the sum over all M � G and all γ.

It is easy to compute that (recall Lemma 2.8.(i) and the assumption

φS,∞(1) = 1)

(4.13) I1,n = μ(G(F )AG,∞\G(AF )) · φS(1).
We have the following expressions for I2,n and I3,n, where a(γ), aM (γ) ∈ C are

constants independent of n:

I2,n =
∑
γ �=1

a(γ) · tr ξn(γ)/ dim ξn,

I3,n =
∑
M

∑
γ

aM (γ) · ΦG
M (γ, ξn)/ dim ξn.
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In the expression for I2,n (resp. I3,n), γ runs over the fixed finite set YG\{1}
(resp. YM ). The assumption in the beginning of §4.4 ensures that no γ ∈
YG\{1} is contained in the center of G. By Lemmas 2.8 and 4.9,

(4.14) lim
n→∞ I2,n = 0, lim

n→∞ I3,n = 0.

Formulas (4.11), (4.12), (4.13) and (4.14) imply that

lim
n→∞ μ̂disc

φS,∞,ξn
(φ̂S) = lim

n→∞μ(G(F )AG,∞\G(AF ))
−1 · I1,n

= φS(1) = μ̂pl
S (φ̂S).

Corollary 4.12: Let Û be a μ̂pl
S -regular relatively quasi-compact subset of

Ĝ(FS). Then

lim
n→∞ μ̂cusp

φS,∞,ξn
(char

̂U ) = lim
n→∞ μ̂disc

φS,∞,ξn
(char

̂U ) = μ̂pl
S (Û).

Proof. Take f̂S = char
̂U in Theorem 4.11.

We conclude this subsection with two remarks.

Remark 4.13: We need to say a word about the condition that Z(G) = {1}. The
triviality of the center was imposed to ensure that the limit of I2,n vanishes in the

course of proving Theorem 4.11 by appealing to Lemma 4.9(i). If Z(G) = {1},
the summands for other central elements may not die as n tends to infinity. (If

Z(G)(Q) is finite and its projection into G(AS,∞) meets suppφS,∞ in {1}, then
this problem does not occur.) In order to avoid this issue in the general case,

it seems best to fix a central character for automorphic representations. Then

we expect that the analogue of Theorem 4.11 is true but have not attempted

to prove it.

Remark 4.14: When G(F∞) has no discrete series, it would be an interesting

problem to prove an analogue of Theorem 4.11. For this, one may formulate

the problem in terms of a sequence {Û∞,n}n≥1 in Ĝ(F∞), as a substitute for

{ξn}≥1, such that (i) μ̂pl∞(Û∞,n) > 0 for every n, (ii) each Û∞,n is bounded and

relatively compact, and (iii) the infinitesimal characters for Û∞,n in X∗(T ) tend
to infinity in a uniform manner.
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5. Limit multiplicities and existence of automorphic representations

This section is devoted to a few applications of our main results in the last

section. In §5.1, we provide a limit multiplicity formula for a reasonable subset

Û of Ĝ(FS) in the ξ-cohomological discrete (or cuspidal) spectrum for G(AF )

in terms of the Plancherel mass of Û . In §§5.2–5.3, an existence theorem for

cuspidal automorphic representations with prescribed local properties will be

presented. An immediate corollary, to be given in §5.4, is a result of Burger–

Li–Sarnak and Clozel–Ullmo that the automorphic points are dense in the local

tempered spectrum.

5.1. Limit multiplicity formula via Plancherel measure. We assume

the three conditions at the start of §4. Let Û be a μ̂pl
S -regular relatively quasi-

compact subset of Ĝ(FS).

Definition 5.1: The (Û , ξ)-limit multiplicity4 in L2
cusp(G(F )\G(AF ), χ

−1
ξ ) is

defined as

mcusp,lim(Û , ξ) := dim ξ · lim
n→∞ μ̂cusp

charUn ,ξ(Û)

= lim
n→∞

(∑
πS∈̂U mcusp(πS ; charUn , ξ)

μ(G(F )AG,∞\G(AF ))

)
(5.1)

for any decreasing sequence {Un}n≥1 in G(AS,∞
F ) such that Un → 1 as n→ ∞

(Definition 3.1), provided that the limit is independent of the choice of {Un}n≥1.

(The independence will be shown below.) Note that the sum has only finitely

many nonzero terms for each n by Harish-Chandra’s finiteness theorem. Simi-

larly define mdisc,lim(Û , ξ).

Remark 5.2: If ξ has regular highest weight, then (5.1) may be rewritten as

follows in light of (3.4):

mcusp,lim(Û , ξ)

= (−1)q(G∞) · lim
n→∞

( ∑
πS∈ ̂U
π∞

m(πS ⊗ π∞|L2
cusp(G(F )\G(AF )/Un, χ

−1
ξ ))

μ(G(F )AG,∞\G(AF )) · μS,∞(Un)−1

)

4 It can be seen from the definition that this number depends on the Haar measure at S,

or µ̂pl
S . In fact the dependence is obvious in Proposition 5.3.
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where π∞ runs over the L-packet Πdisc(G∞, ξ∨). The identity seems to be true

without the regularity condition on highest weight. To justify this, we need

to show that nontempered ξ-cohomological representations of G(F∞) do not

contribute to the limit multiplicity formula. This is proved in [Clo86, Lem. 8]

(based on the method of DeGeorge and Wallach) but under a mild restriction

(2.3 of that paper) on the sequence {Un}n≥1.

Proposition 5.3: mcusp,lim(Û , ξ) = mdisc,lim(Û , ξ) = μ̂pl
S (Û) · dim ξ.

Proof. This is immediate from Corollary 4.5.

Remark 5.4: If the Haar measure μS on G(FS) is multiplied by a scalar

c ∈ C× then mcusp,lim(Û , ξ) is multiplied by c−1. In the last expression of (5.1),

the numerator is unchanged and the denominator is multiplied by c. Since μ̂pl
S

is also multiplied by c−1, we see that the proposition is not affected.

Remark 5.5: Proposition 5.3 may be restated as

∑
π0
S∈̂U

mcusp(π
0
S ; charUn , ξ)

= μ(G(F )AG,∞\G(AF )) · μS,∞(Un)
−1 · μ̂pl

S (Û) · dim ξ + o(1),

where the o(1)-term multiplied by μ(G(F )AG,∞\G(AF )/Un) tends to

0 as n → ∞. The same is true with discrete multiplicity. Note that

μ(G(F )AG,∞\G(AF )) · μS,∞(Un)
−1 computes the volume of the double quo-

tient G(F )AG,∞\G(AF )/Un if Un is sufficiently small.

The constant μ(G(F )AG,∞\G(AF )) can be made explicit ([Gro97, Thm. 9.9])

if the connected center of G is anisotropic. (For an arbitrary reductive group G,

some modification is necessary.) See §6.2 where the case of G = GL2 is studied

in detail.

5.2. Existence theorem (I). As in the previous subsection F is a totally

real field, G(F∞) is assumed to have a discrete series and AG ×Q R = AG,R

throughout §5.2. Let Û be a μ̂pl
S -regular relatively quasi-compact subset of

Ĝ(FS) such that μ̂pl
S (Û) > 0.

Example 5.6: Here are two useful examples of Û . First, we can take Û to be

the characteristic function on the set of tempered representations π ∈ Ĝ(FS)

which belong to a particular Bernstein component (equivalently, a particular



Vol. 192, 2012 AUTOMORPHIC PLANCHEREL DENSITY THEOREM 109

inertia equivalence class). For the next example, let M be a Levi subgroup of

G over FS . Let O be an orbit of discrete series representations of M(FS) under

the twist by characters of Ψu(M) (defined in §2.3). By collecting irreducible

subquotients of n-indG
M (πM ) for all πM ∈ O, we get another example of Û .

Theorem 5.7: Let v be a finite place of F not contained in S. Assume that G

is unramified outside S∪{v,∞}. (In other words, at each w ∈ VF not contained

in S ∪ {v,∞}, G is quasi-split over Fw and split over an unramified extension

of Fw .) Then there exist infinitely many cuspidal automorphic representations

π of G(AF ) such that

• πS,v,∞ is unramified,

• πS ∈ Û , and

• π∞ is ξ-cohomological.

Proof. If the theorem is false, the S-components of π as above form a finite

subset of Û . By shrinking Û , we can assume that no π as above exists while

retaining the condition μ̂pl
S (Û) > 0.

Let US,v,∞ be a hyperspecial maximal compact subgroup of G(AS,v,∞
F ).

Consider a sequence Un = Uv,nU
S,v,∞ as in Example 3.2. It is easy to see

from (3.3) that mcusp(π
0
S ; charUn , ξ) = 0 for every n and every π0

S ∈ Û . This

implies μ̂cusp
charUn ,ξ(Û) = 0, which contradicts Corollary 4.5.

Theorem 5.8: Suppose that G is unramified outside S and∞ and that Z(G) =

{1}. There exist infinitely many cuspidal automorphic representations π of

G(AF ) such that

• πS,∞ is unramified,

• πS ∈ Û , and

• π∞ is a discrete series.

Proof. Let US,∞ be a hyperspecial subgroup of G(AS,∞
F ). Let ξn be any

sequence such that ξn → ∞ as n → ∞. Suppose that the theorem is false.

As in the proof of Theorem 5.7, we may even assume that there exist no π

as in the theorem by shrinking Û . Then mcusp(π
0
S ; charUS,∞ , ξn) = 0 for all

n ≥ 1, which implies that μ̂cusp
charUS,∞ ,ξn

(Û) = 0. This contradicts Proposition

4.12.
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Corollary 5.9: Suppose that G is quasi-split over F . Then there exist

infinitely many cuspidal automorphic representations of G(AF ) which are

unramified at all finite places and discrete series at infinity.

Proof. The proof is easily reduced to the case Z(G) = {1}. Fix a finite place v

of F . Take S = {v} and Û to be the set of unramified tempered representations

of G(Fv). It is well-known that μ̂pl
v (Û) > 0. (One can prove this by applying the

Plancherel formula to the characteristic function on a hyperspecial subgroup.)

The corollary follows from Theorem 5.8.

Remark 5.10: Of course, Theorem 5.8 implies more than Corollary 5.9: we can

even arrange that cuspidal automorphic representations in the corollary have

their Satake parameters at finitely many places in a particular region (to be

prescribed by a choice of Û).

Remark 5.11: It would be nice to have an effective lower (resp. upper) bound for

the parameter at infinity which ensures the existence (resp. non-existence) of the

automorphic representations as in the corollary. Our approach does not seem

to offer a clue.

Remark 5.12: It can be asked whether Theorems 5.7 and 5.8 continue to hold

if π is also required to be “stable” in the sense that (loosely speaking) π is not

in the image of the (conjectural) transfer from representations of any elliptic

endoscopic subgroup of G which is not a quasi-split inner form. In fact, one can

even ask whether the theorems in §4 hold if we replace the discrete or cuspidal

automorphic multiplicity with the corresponding multiplicity in the stable part

of the spectrum only.

5.3. Existence theorem (II). Let F be any number field and drop the

assumptions in §5.2. We prove a weaker version of Theorem 5.7.

Theorem 5.13: Let v1, v2 be a finite place of F not contained in S. There exist

infinitely many cuspidal automorphic representations π of G(AF ) such that

• πS,v1,v2 is unramified and

• πS ∈ Û , and

• πv1 is square integrable and πv2 is supercuspidal.

Proof. This is deduced from Theorem 4.8 (with f̂S = char
̂U ) by the same

argument proving Theorem 5.7 from Corollary 4.5.
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5.4. Density of automorphic points in a local tempered spectrum.

We impose no restriction on F and G, exactly as in §5.3. Let Ĝ(FS)temp denote

the subset of Ĝ(FS) consisting of tempered representations.

Corollary 5.14 (Burger–Li–Sarnak, Clozel–Ullmo, cf. [Sar05, (28)]): The

set of the S-components πS of cuspidal automorphic representations π meets

Ĝ(FS)temp in a dense subset.

Proof. For any μ̂pl
S -regular relatively quasi-compact open subset Û of Ĝ(FS)

which intersects Ĝ(FS)temp nontrivially, we have that Û ∩ Ĝ(FS)temp is μ̂pl
S -

regular relatively quasi-compact and that μ̂pl
S (Û ∩ Ĝ(FS)temp) > 0. Theorem

5.13 tells us that Û ∩ Ĝ(FS)temp contains the S-component of some cuspidal

automorphic representation of G(AF ).

6. Example: Hilbert modular case

This section provides an asymptotic formula for the dimension of the spaces of

Hilbert modular forms (Proposition 6.4) with prescribed local conditions.

6.1. Explicit Plancherel measure on GL2 over a p-adic field. In this

subsection we use the following notation.

• K is a finite extension of Qp with ring of integers OK and a uniformizer

�K ,

• q := |OK/�K |,
• G = GL2 over K,

• T = GL1 ×GL1 is the subgroup of diagonal matrices,

• S1 = {z ∈ C : |z| = 1},
• d(π) denotes the formal degree when π is a discrete series of G(K).

We fix a Haar measure μ on G(K) such that μ(GL2(OK)) = 1. The formal

degrees of discrete series of G(K) will be computed with respect to μ.

Let π be an irreducible tempered representation of G(K). There exists a pair

(M,O) where M ∈ {G, T } and O is an Ψu(M)-orbit of (unitary) discrete series

representations of M(K) such that π = n-indGM (σ) for some σ ∈ O. It is well

known that n-indG
M (σ) is irreducible whenever σ is a unitary representation.

This condition determines (M,O) uniquely. To be more concrete, we divide

into four disjoint cases, namely Case (i) through Case (iv) below.
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Let dω denote the canonical measure of Harish-Chandra on O, whose de-

scription on page 31 of [AP05] allows us to compute the volume ω(O) under

this measure. Following [AP05], we give below an explicit description of the

Plancherel measure μ̂pl on O as well as the Plancherel mass of O. This is a

slight abuse of notation: the measure μ̂pl here is identified with our previous

Plancherel measure via the map O → Ĝ(K) given by σ �→ IndGB(σ).

From here on, we freely adopt their notation. The measure μ̂pl on O is given

by the formula

μ̂pl = γ(G|M) · j(σ)−1 · dω,
where σ is any member of O. By [AP05, Thm. 3.1], γ(G|G) = 1 and γ(G|T ) =
(q + 1)/q. An explicit formula for j(σ)−1 of [AP05, Thm. 5.4] leads to formulas

for μ̂pl and the Plancherel mass μ̂pl(O), except in Case (ii) below. In Case (ii),

use Theorem 4.4, the second formula on page 32 and formula (4) on page 33

from the same paper.

We summarize the computation below.

Case (i) π = n-indGM (σ) where σ = χ⊗ χ up to an unramified twist.

O 	 (S1 × S1)/S2, ω(O) = 1/2.

μ̂pl =
∣∣∣ 1− z−1

1 z2

1− z−1
1 z2q−1

∣∣∣2dω =
∣∣∣ 1− z−1

1 z2

1− z−1
1 z2q−1

∣∣∣2 · 1

2(2πi)2
· z1
dz1

z2
dz2

.

μ̂pl(O) = 1.

Case (ii) π = n-indG
M (σ) where σ = χ1 ⊗ χ2; χ1 and χ2 differ by a ramified

character.

O 	 S1 × S1, ω(O) = 1.

μ̂pl = qf(χ
−1
1 χ2) · q+1

q · dω.
μ̂pl(O) = qf(χ

−1
1 χ2) · q+1

q .

Case (iii) π is a Steinberg representation up to a (unitary) character twist of

GL2.

O 	 S1, ω(O) = 2, d(π) = q−1
2 .

μ̂pl = q−1
2 · dω.

μ̂pl(O) = 2d(π) = q − 1.

Case (iv) π is (unitary) supercuspidal.

O 	 S1, ω(O) = 2/r(π).

μ̂pl = d(π) · dω.
μ̂pl(O) = 2d(π)/r(π).
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6.2. Limit multiplicity formula for Hilbert modular forms. Let G =

GL2 and F a totally real field. Then the first two conditions at the start of §4
are satisfied but the last one is true only when F = Q. So, strictly speaking,

our results below will hold only when F = Q. However, we pretend that F

could be a general totally real field. This is justified by the fact that all three

conditions of §4 are fulfilled if GL2 is replaced with either PGL2 or SL2, in

which case the results below indeed make sense with very minor modifications.

(Also see Remark 4.1.)

We use the notation of §5.1 and §6.1. The choice of Haar measures is as in

the last paragraph of §2.2. At each v ∈ S, choose any pair (Mv,Ov) as in §6.1.
In particular, Ov is an orbit of discrete series of Mv(Fv). Put

(6.1) Û :=
∏
v∈S

n-indGL2

Mv
Ov.

Suppose that U1 =
∏

v∈V∞
F \S GL2(OFv ) (for convenience) and that {Un}n≥1

is a decreasing sequence in G(AS,∞
F ) tending to 1 in the sense of Definition 3.1.

Our choice of μ =
∏

v∈VF
μv is such that μS,∞(U1) = 1. Thus μS,∞(Un) =

[U1 : Un]
−1. It is straightforward to check d(G∞) = 1 and q(G∞) = [F : Q] in

the current case. Let πξ denote the unique representation in Πdisc(G∞, ξ∨).
Remark 5.5 tells us that

(6.2)
∑
π0
S∈̂U

mcusp(π
0
S ; charUn , ξ)

= μ(G(F )AG,∞\G(AF )) · μS,∞(Un)
−1 · μ̂pl

S (Û) · dim ξ + o(1).

Formula (3.4) for GL2, which is true even when the highest weight of ξ is

not regular,5 tells us that mcusp(π
0
S ; charUn , ξ) is a rational number with sign

(−1)q(G∞) = (−1)[F :Q] and that the left-hand side of (6.2) is (−1)[F :Q] times

the sum of dim(πS,∞)Un over the set of cuspidal automorphic representation π

of GL2(AF ) such that

• πv ∈ n-indGL2

Mv
Ov for all v ∈ S,

• (πS,∞)Un = (0), and

• π∞ 	 πξ.

5 For this, one can appeal to the fact that cuspidal automorphic representations ofGL2(AF )

always have discrete series at infinity.
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Equivalently, the left-hand side of (6.2) is the dimension of S-new Hilbert modu-

lar forms generated by cuspidal automorphic representations of level Un (outside

S and ∞), weight ξ and prescribed condition Û at S.

Remark 6.1: By the local Langlands correspondence, the first condition on π

is equivalent to prescribing the inertia action and monodromy operator for the

Weil–Deligne representation corresponding to πv.

We can calculate μ(G(F )AG,∞\G(AF )) in formula (6.2).

Lemma 6.2: μ(G(F )AG,∞\G(AF )) = ζF (−1) · hF · 2[F :Q]−1, where ζF is the

Dedekind zeta function for F and hF is the class number of F .

Remark 6.3: It is known that ζF (−1) is a nonzero rational number (cf. [Gro,

Thm. 1.1, Lem. 1.3].

Proof. Let Z := GL1 and Gad := PGL2. By Hilbert 90 it is easy to see that

(6.3) 1 → Z(AF )/AZ,∞ → G(AF )/AG,∞ → Gad(AF ) → 1

is a short exact sequence of topological groups. For each groupH ∈ {Z,G,Gad}
over F , the measure μEP,∞ defined on H(AF )/AH,∞ as in §2.2 will be denoted

by μEP
H , and the Tamagawa measure on H(AF ) will be denoted by μTama

H . The

Tamagawa number τ(H) is the volume ofH(F )AH,∞\H(AF ) under the measure

induced by μTama
H . We have the formula ([Kot88, p. 629])

(6.4) τ(H) = |π0(Z(Ĥ)Gal(F/F ))| · | ker1(F,Z(Ĥ))|−1.

Note the following.

(i) μEP
Z , μEP

G and μEP
Gad

are compatible with respect to (6.3).

(ii) μEP
Z (Z(F )\Z(AF )/AZ,∞) = hF .

(iii) μEP
Gad

(Gad(F )\Gad(AF )) = ζK(−1) · 2[F :Q].

(iv) μTama
Z , μTama

G and μTama
Gad

are compatible with respect to (6.3).

(v) τ(Z) = τ(G) = 1, τ(Gad) = 2.

We check (i) at finite places and infinite places separately from the definition of

μEP. It is elementary to verify (ii). Part (iii) follows from [Gro97, Thm. 9.9].

For (iv), we refer to page 75 of [San81]. The last part is immediate from (6.4).

Now (i), (iv) and (v) imply that μEP
G (G(F )\G(AF )/AG,∞) equals

2−1 · μEP
Z (Z(F )\Z(AF )/AZ,∞) · μEP

Gad
(Gad(F )\Gad(AF )).

Applying (ii) and (iii), we conclude the proof.
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Formula (6.2) and Lemma 6.2 yield:

Proposition 6.4: Let {Un}n≥1 be a decreasing sequence in GL2(A
S,∞
F ) tend-

ing to 1 in the sense of Definition 3.1. Let Û be as at the start of §6.2. Then the

dimension of S-new Hilbert cuspforms of level Un (outside S and ∞), weight ξ

and prescribed condition Û at S (cf. the paragraph preceding Remark 6.1) is

given by

(−1)[F :Q] · ζF (−1) · 21−[F :Q] · hF · [U1 : Un] · μ̂pl
S (Û) · dim ξ + o(1),

where μ̂pl
S (Û) is explicitly given by (6.1) and the list of §6.1.

Remark 6.5: When n = 1, the leading term appears to be the same as the one in

[Wei09, Thm. 1.1]. (It suffices to compare our μ̂pl
S (Û) ·dim ξ with his d(τ). This

comes down to matching our local computation at v ∈ S as in §6.1 with his local

invariants defined in [Wei09, §2.1]. The task is easy in the non-supercuspidal

case. In the supercuspidal case we use the formal degree formula in [Car84,

§5] and [CMS90, §2.2].) As n grows, our formula is different from Weinstein’s

because the dimension we are counting is different from his. Namely, he is

concerned with the number of cuspforms (or corresponding representations π

of GL2(AF )) while we estimate the sum of dim(πS,∞)Un over the same set of

π as n → ∞. If U1 is hyperspecial then the latter dimension equals 1, which

explains why the two results are related.

Appendix A. On Sauvageot’s paper

Our paper relies on Sauvageot’s work ([Sau97]) in an essential way. Although

his paper is correct and beautifully written in our opinion, it seems to contain

a handful of minor errors, which we think would be helpful to list here. We

are fully responsible for any possible misinterpretation of part of his work or

introduction of new errors.

• On p. 158, Lemme 2.1, it should be assumed in addition thatX is Haus-

dorff to validate the lemma, as the proof requires the Stone–Weierstrass

theorem, which is applicable to locally compact Hausdorff spaces. (Re-

mark: Lemme 2.1 is applied in section 7 where X = Θ(G). Since the

latter is Hausdorff, the added assumption does not affect the results of

section 7. Here Θ(G) is the set of infinitesimal characters as defined

on p. 164.)
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• In the first line of the proof of Lemme 2.1, it should have been said

that h0 is a ν-integrable function.

• p. 161, Lemme 2.6, in (3), “Tout point de C” should be strengthened

to “Tout point de
⋃

i∈I Wi”. The proof given there is already enough

to imply the latter.

• On p. 167, line 8, “donc l’induite IP ′,τ ′,λ est irréductible pour λ as-

sez petit.” can be a circulation of logic unless one is careful, but it

is not clear where the author gets this information from. One so-

lution would be to consider τ ′λ as an irreducible quotient of rP ′′GΠ

(rather than rP ′GΠ). Then IP ′′,τ ′,λ is irreducible for small enough

λ by the induction hypothesis, thus one obtains Π = IP ′′,τ ′,λ. The

rest of the argument remains the same. (Concerning this remark, the

referee pointed out the following: “It is possible to refer to [Wal03,

Prop. IV.2.2], where Theorem 3.2 of Sauvageot is treated when σ is

cuspidal.”)

• On p. 173, in the paragraph preceding Lemme 5.1, the reference (Cas-

selman, 1989, Theorem 6.6.1) should be (Casselman, preprint, Theo-

rem 6.6.1). In fact Theorem 6.6.1 does not even exist in the former

reference. The latter is available at

http://www.math.ubc.ca/~cass/research/pdf/p-adic-book.pdf

Casselman deals only with p-adic groups, but Sauvageot needs the

result for archimedean F too, in which case the desired irreducibility

of parabolic induction is found in [KZ82, Cor. 9.2].

• On p. 176, line -4, the displayed inequality is deduced from the stronger

version of Lemme 2.6 as we stated above. (The original Lemme 2.6

shows the weaker inequality in which c′′G1C , not c
′′
G1C1 , is placed on

the right-hand side.)

• On p. 176, line -5, it is worth recalling that not only Wi ⊂ Vθi,ε1

but W i ⊂ Vθi,ε1 can be ensured (by Lemme 2.6). This allows us to

strengthen p. 177, line 4 as “tel que Wi ⊂ W ′
i ⊂ Vθi,ε1 et”.

• On p. 177, line -3, add the condition that “φ̂0 is ≥ 0 on Πu(G)”, which

can be arranged by Lemme 5.3.

• On p. 177, Lemme 5.5, the second inequality is not proved and its

validity is unclear. For the purpose of proving Théorème 5.4, it suffices

to observe that the very last display of p. 177 is positive everywhere on

C1 and > 1 on N ∩ C. This is exactly asserted in the first paragraph
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of p. 178 (in line 4, C1 should be replaced with C). Although the

assertion is supposed to follow from the questionable second inequality

of Lemme 5.5, the assertion can be shown directly without that lemma.

(In the argument we need the last two corrections above as well as the

correction to p. 175, Lemma 5.2 found below.)

• On p. 178, lines 6–9, there is a missing term on the right hand side. To

be more precise, it results from Ψ̂1 = ε3N(ε1)M(ε1)φ̂0+
∑N(ε1)

i=1 fiφ̂θi,ε1
that

μG(|Ψ̂1|) ≤ ε3N(ε1)M(ε1)μ
G(|φ̂0|) + μG

( ∣∣∣∣
N(ε1)∑
i=1

fiφ̂θi,ε1

∣∣∣∣
)
.

The second term on the right0hand side is less than or equal to the

right hand side of p. 178, lines 7–9 thanks to the first inequality of

Lemme 5.5. The correction here does not change the fact (p. 178, lines

10–11) that one can choose ε1, ε2, ε3 such that μG(Ψ̂1) < ε/2.

• About the proof of Theorem 5.4: As a supplement to the last two

corrections, we orient the reader by summarizing how (1), (2) and (3)

of Theorem 5.4 are checked on pp. 178–179.

(1) Ψ̂1 is shown to be positive on C1 on p. 178, line 2. This is used

to show that Ψ̂ ≥ 0 on C1. Outside C1, Ψ̂ ≥ 0 (p. 179, line 3)

thanks to the last inequality of p. 178.

(2) μG(Ψ̂) ≤ ε is proved on p. 179, lines 4–6, whose essential input is

p. 178, lines 6–9.

(3) This follows from the fact that Ψ̂1 ≥ 1 on N ∩ C (p. 178, lines

3–5) and that Ψ̂ ≥ Ψ̂1 on N ∩ C by construction.

• In Section 7, the author refers to Section 2 for some results on Bc,

but Section 2 deals with B rather than its subspace Bc. (The latter

space consists of the functions whose supports have compact images in

Θ(G).) Thus it should be remarked that results in Section 2 are still

valid with Bc in place of B (though this is not difficult to check).

• On p. 181, line 9, “Théorème 6.1” should be “Corollaire 6.1”.

One of the referees kindly sent us further remarks on Sauvageot’s paper,

which we list below without change.

• Section 2, line 1, add “séparé” to localement compact. Same in line 1

of Lemma 2.1.
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• In Lemma 2.1, add that “the elements of A are ν-integrable” and that

“f has bounded support”.

• p. 159, line 5: Instead of “Donc” put “Le début de la preuve du

Théorème 62, p. 557 de Schwartz montre que”.

• p. 160, line 8: add “Ce qui veut dire que A sépare les points de Θ et

que pour tout θ ∈ Θ, il existe f ∈ A avec f(θ) = 0.”

• p. 168, line -3: Replace “et donc...” by “Il existe φi ∈ H, λi ∈ C,

i = 1, ..., n tel que pour toute représentation de longueur finie π:

tr (π(φ)) =
∑
i

λtr(π(φi)π(φi)
∗).

• First line 2 of the proof of Théorème 5.4, put θ ∈ C instead of θ ∈ Θ(G).

• p. 181, lines 4–5: It would the best to rewrite this part as “Par hy-

pothèse, c’est une fonction μ̃G
L,σdχ-Riemann-intégrable. Notons μ∗

L,σ

l’image directe sur Θ(G) de la mesure μ̃G
L,σdχ. D’après le Lemme

2.1, dont les hypothèses sont satisfaites car tout h ∈ A(G) est μ∗
L,σ-

intégrable, étant donné...”.

• p. 175: In Lemma 5.2, one has “f est à valeurs positives ou nulles”.
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