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ABSTRACT

We consider simple closed curves in a Minkowski space. We give bounds

of the total Minkowski curvature of the curve in terms of the total Eu-

clidean curvature and of normal curvatures on the indicatrix (supposed to

be a central symmetric hypersurface) of the Minkowski norm. Corollar-

ies of this result provide analogues to Fenchel and Fary–Milnor theorems.

We also give an upper bound of the Minkowski length of a simple closed

curve contained in a Minkowski ball of radius R, in terms of the total

Minkowski curvature and of normal curvatures on the indicatrix. When-

ever the Minkowski space is Euclidean our results reduce to the classical

ones.
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1. Introduction

In this paper we prove some properties for closed curves in a Minkowski space

by considering the definition of the Minkowski curvature of a curve given by

Rund [13]. We consider a Minkowski space Mn+1, i.e., a pair (V, F ), where

V n+1 is an (n+ 1)-dimensional vector space and F is a Minkowski metric. We

assume that the indicatrix of F is a central symmetric hypersurface.

We first relate (see Theorem 1) the Minkowski total curvature of a simple

closed L in Mn+1 with its total Euclidean curvature, considering L as a curve in

V with the Euclidean metric. As an immediate consequence, we get a Fenchel’s

type theorem, giving a lower bound for the total Minkowski curvature (see

Corollary).

The Fary–Milnor Theorem, proved independently by Fáry [9] and Milnor [11],

states that the total curvature of a knot in the Euclidean space E3 is grater

than 4π. A different proof was given by Brickell–Hsiung [5], that also works

in the hyperbolic space H3. More recently, Alexander–Bishop [1] and Schmitz

[14] extended the Fary–Milnor Theorem to curves in a Riemannian 3-manifold

of nonpositive sectional curvature.

In this paper, as a consequence of Theorem 1, we obtain an analogue to the

Fary–Milnor Theorem for a simple closed curve in a 3-dimensional Minkowski

space (Corollary 2). We also get an upper bound for the Minkowski length of a

simple closed curve contained in a (Minkowski) ball, in terms of its Minkowski

total curvature (Theorem 2).

We observe that, whenever the Minkowski space is Euclidean, our results

reduce to the classical ones.

2. On the total curvature of a curve in a Minkowski space

Let γ(s) be a curve in a Finsler space Mn+1, where s is the arc length parameter

in the Finsler space. One defines the covariant derivative ∇ [15] of vector fields

along a curve and γ(s) is said to be a geodesic when ∇γ̇ γ̇ = 0. We define the

Minkowski curvature of a curve L in Mn+1 as

(2.1) kM = ‖∇ẊẊ‖,
where X = X(s) is a parametrization of the curve and ‖ · ‖ is a Finsler norm.

For a Finsler space and a Minkowski space there are other definitions of cur-

vature given by Finsler [10] and Busemann [6]. The definition of the curvature
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for curves given by Finsler coincides with Cartan’s definition [7]. In this article,

our definition of curvature coincides with the one given by Rund [12] (see also

[13]),

k2M = gij

(
x,

d2X

ds2

)
d2xi

ds2
d2xj

ds2
.

Busemann’s definition of curvature for curves in Minkowski space [6] is differ-

ent from the definitions above. In [8], there is still another definition for curves

in a Minkowski plane.

A Minkowski space Mn+1 is a pair (V, F ), where V n+1 is an (n+ 1)-dimen-

sional vector space and F is a nonnegative function F : V → [0,∞) which has

the following properties:

(1) F is C∞ on V n+1 \ {0}.
(2) F (λy) = λF (y), for all λ > 0 and y ∈ V n+1.

(3) The symmetric bilinear form gαβ = 1
2∂

2F 2/∂yα∂yβ is an inner prod-

uct on V , where on the vector space V we are considering coordinates

y1, . . . , yn+1 which are orthogonal in the standard Euclidean metric.

The indicatrix (unit sphere) of a Minkowski space is the compact con-

vex hypersurface defined by F0 = {y1, . . . , yn+1, F (y1, . . . , yn+1) = 1}. The

Minkowski ball of radius R is the set of points such that F (y1, . . . , yn+1) ≤ R.

Since the indicatrix F0 is a compact hypersurface of the Euclidean space

En+1, there exists k1 and k2 such that the normal curvatures k of the indicatrix

F0, in the Euclidean space, satisfy

(2.2) 0 < k1 ≤ k ≤ k2.

In this paper we will assume that the indicatrix is a central symmetric hyper-

surface.

Let X(s) be a smooth parametrization of a curve L in Mn+1 such that s is

the Minkowski arc length of the curve. Then the Minkowski curvature of the

curve, defined by (2.1), can be rewritten as

(2.3) kM =

∥∥∥∥d
2X

ds2

∥∥∥∥ ,
where ‖ · ‖ is the Minkowski norm. Let σ be the Euclidean arc length of the

curve L as a curve in the Euclidean space En+1. We denote by kE the curvature

of the curve L, as a curve in En+1.
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We first want to consider the following question: how does the Minkowski

curvature kM of a curve L relate to the curvature kE? For a simple closed

curve L, from now on, we will denote by ωM (L) and ωE(L) the total Minkowski

curvature and the total Euclidean curvature of L, respectively, i.e.,

ωM (L) =

∫
L

kMds, ωE(L) =

∫
L

kEdσ.

We will prove the following result.

Theorem 1: Let Mn+1 be a Minkowski space whose indicatrix is central sym-

metric and has Euclidean normal curvature between k1 and k2, 0 < k1 ≤ k2.

Then the total Minkowski curvature ωM (L) of a simple closed curve L in M

and its total Euclidean curvature ωE(L) satisfy the following inequality:

(2.4)

(
k1
k2

)
ωE(L) ≤ ωM (L) ≤

(
k2
k1

)2

ωE(L).

One recalls that in the Euclidean space Fenchel’s theorem says that the total

curvature ωE of a simple closed curve L in Euclidean space En+1 satisfies the

inequality

(2.5) ωE(L) ≥ 2π.

Therefore, as an immediate consequence of Theorem 1 we obtain

Corollary 1: The total curvature ωM of a simple closed curve L in a Minkow-

ski space satisfies the inequality

ωM (L) ≥ 2π
k1
k2

.

Moreover, the Fary–Milnor Theorem [9], [11] states that if the total curvature

ωE of a closed curve L in E3 satisfies

(2.6) ωE(L) ≤ 4π,

then the curve is unknotted (i.e., l is the boundary of an embedded disk). An

analogue to the Fary–Milnor Theorem holds for closed curves in a Minkowski

space. More precisely,

Corollary 2: If the total curvature of a simple closed curve L in a 3-dimen-

sional Minkowski space satisfies the inequality

ωM (L) ≤ 4π

(
k1
k2

)
,
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then the curve is unknotted.

In fact, as a consequence of (2.4), we have ωE(L) ≤ 4π and then we apply

the Fary–Milnor Theorem.

The Euclidean length �E(L) of a simple closed curve L, contained in a Eu-

clidean ball of radius R of En+1, and its total curvature satisfy the inequality

�E(L) ≤ RωE(L).

The corresponding result for the Minkowski length �M (L) of a closed curve

in Minkowski space Mn+1 and its total Minkowski curvtaure is given in the

following theorem.

Theorem 2: If a simple closed curve L in a Minkowski space is contained in a

(Minkowski) ball of radius R, then its Minkowski length satisfies the inequality

(2.7) �M (L) ≤
(
k2
k1

)4

RωM (L).

We observe that if the Minkowski space is Euclidean, then k1 = k2 and hence

Theorem 1 is an identity, while Corollaries 1 and 2 and Theorem 2 reduce to

the classical results.

Before we prove Theorems 1 and 2 in Section 4, we will mention some prop-

erties of the Minkowski space and a lemma for compact convex hypersurfaces

in Euclidean space that will be useful in the proofs.

3. Preliminaries

We will be using greek letters α, β for indices from 1 to n+ 1 and latin letters

i, j for indices from 1 to n. Moreover, we will use the Einstein summation

convention for repeated indices.

We start by observing that it follows from item (2) of the definition of a

Minkowski norm F that

(3.1) F (y) = Fα(y)y
α,

(3.2) Fαβ(y)y
αyβ = 0,

where y = (y1, . . . , yn+1) and Fα denotes the derivative of F with respect to

yα. In fact, these relations follow from taking the first and second derivatives
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of F (λy) = λF (y) with respect to λ, and then considering λ = 1. Moreover,

taking the derivative of (3.1) with respect to yβ one gets

(3.3) Fαβ(y)y
α = 0, ∀β.

Now assume that a neighborhood U of the indicatrix F0 is a graph of a

function, i.e., U is given by

(3.4) F (y1, . . . , yn, f(y1, . . . , yn)) = 1.

Then it follows from (3.1) that

(3.5) 1 = Fiy
i + Fn+1f.

Taking the derivative of (3.4) with respect to yi and then with respect to yj we

have

(3.6) Fi + Fn+1fi = 0, ∀i,

(3.7) Fij + Fin+1fj + Fn+1jFi + Fn+1n+1fjfi + Fn+1Fij = 0, ∀i, j.
We now consider a curve y(s) = (y1(s), . . . , yn+1(s)) on the indicatrix F0,

i.e., we have F (y(s)) = 1. Then (3.1) reduces to

(3.8) 1 = Fα(y(s))y
α(s),

and its derivative with respect to s gives

(3.9) Fαβ(y(s))
dyβ

ds
yα + Fα

dyα

ds
= 0.

Finally, it follows from (3.3) restricted to the curve and (3.9) that

(3.10) Fα(y(s))
dyα

ds
= 0.

In the proofs of Theorems 1 and 2, we will consider a parametrization of the

indicatrix F0 of the form r(ν)ν, where ν is a unit vector of the sphere Sn in the

Euclidean space, and r(ν) > 0. It follows from (2.2) that ∀ν ∈ Sn, we have

(3.11)
1

k2
≤ r(ν) ≤ 1

k1
.

We will also need the following lemma, which is analogous to the results in

the Riemannian manifolds of negative sectional curvature obtained in [2], [3],

[4].
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Lemma 1: Let Mn be a compact, convex hypersurface in the Euclidean space

En+1. Let O be a point in the interior of the region bounded by M and let h

be the distance from O to M . Suppose the normal curvature k of M satisfies

the inequalities 0 < k1 ≤ k ≤ k2. If α is the angle between the position vector

of M and the exterior normal direction, then

(3.12) cosα ≥ hk1.

If Mn is also symmetric and O is the center of symmetry, then

(3.13) cosα ≥ k1
k2

.

Proof. We will first prove (3.12) when n = 1, i.e., when M1 is a closed convex

curve in the plane E2, and h is the distance from O to the curve. Then we will

prove the result in any dimension n.

If M1 is a circle centered at O, then (3.12) holds trivially. So we may assume

that M1 is not such a circle. We consider u, θ polar coordinates in E2 with

pole O. Let u(s), θ(s), 0 ≤ s ≤ � be a parametrization by arc length of the

curve. For later arguments in this proof, we will need to consider intervals

contained in [0, �], where the distance function from O to the points of the

curve, u(s), is monotone. Since u(s) is not constant, there exists a subdivision

0 ≤ s0 < s1 < · · · < sr ≤ � such that in each interval (si, si+1), we have

u′(s) 
= 0. Since u(s) is stricly monotone in such an interval, there exists the

inverse function s(u) for u ∈ J . Hence we can locally reparametrize the curve

by (x(u), y(u)) = (u cos θ(u), u sin θ(u)), u ∈ J . The curvature and the external

unit normal are respectively given by

k(u) =
−x′′y′ + x′y′′

((x′)2 + (y′)2)3/2
, n(u) =

(y′,−x′)
((x′)2 + (y′)2)1/2

.

Let α(u) be the angle between the position vector and the normal n(u). Then

(3.14) cosα(u) =
uθ′(u)√

1 + u2(θ′(u))2
, u ∈ J,

where without loss of generality we may assume θ′ > 0. Moreover,

(3.15) k(u) =
2θ′ + u2(θ′)3 + uθ′′

(1 + u2(θ′)2)3/2
.

By computing θ′′ from (3.14), we get

(3.16) k(u) =
cosα

u
− sinα

dα

du
, u ∈ J.
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Now consider a circle of radius 1/k1, centered at the point (1/k1−h, 0), locally

parametrized by (x(u), y(u)) = (u cos θ2(u), u sin θ2(u)), u ∈ J , where without

loss of generality we may assume θ′2 > 0. Then θ2(u) satisfies the equation

(3.17) h2 + u2 − 2h

k1
+ 2

(
h− 1

k1

)
cos θ2 = 0.

Let β(u) be the angle between the position vector of the circle and the exterior

normal. Then, the same arguments as before give

(3.18) cosβ(u) =
uθ′2(u)√

1 + u2(θ′2(u))2
, k1 =

cosβ

u
− sinβ

dβ

du
.

It follows from (3.17) that

θ′2 =
1

sin θ2(hk1 − 1)

(
h

u2
(2− hk1) +

k1
2

)
.

Therefore,

cosβ =
h(2− hk1)

2u
+

uk1
2

.

Since u ∈ J and h ≤ u ≤ 2/k1 − h, we conclude that

(3.19) cosβ ≥ hk1.

Subtracting (3.18) from (3.16) we get, ∀u ∈ J ,

0 ≤ k(u)− k1 =
1

u
(cosα− cosβ)− sinα

dα

du
+ sinβ

dβ

du
.

We consider the function f(u) = cosα(u)− cosβ(u). Then

(3.20)
1

u
f(u) + f ′(u) ≥ 0, ∀u ∈ J.

We now observe that the distance u from O to the points of the curve M1

is monotone for u ∈ J . Moreover, if u0 is a point on the boundary ∂J of J ,

then u0 is a critical point of the distance function and cosα(u0) = 1. Hence,

limu→u0 f(u) ≥ 0.

Claim: If u0 ∈ ∂J then for all ε > 0 there exists u1 ∈ J such that

0 < |u1 − u0| < ε and f(u1) ≥ 0.

In fact, otherwise, there exists ε1 > 0 such that f(u) < 0 for all u ∈ J1 =

J ∩ (u0 − ε1, u0 + ε1). Since the limit of f when u tends to u0 is nonnegative,

we conclude that there exists ε2 > 0 such that f is strictly decreasing for all

u ∈ J2 = J ∩ (u0− ε2, u0+ ε2), i.e., f
′(u) < 0 for u ∈ J2. Let J0 = J1∩J2. Then
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for all u ∈ J0, we have f(u) < 0 and f ′(u) < 0, and hence f(u)/u+ f ′(u) < 0,

∀u ∈ J0, which contradicts (3.20). This proves our claim.

We consider the differential equation g/u + g′ = 0 with initial conditions

g(u1) = f(u1) ≥ 0, where u1 is fixed as in the Claim. The unique solution

to this equation in J is g(u) = f(u1)u1/u ≥ 0. Comparing solutions of this

equation with solutions of (3.20), we conclude that f(u) ≥ g(u) ≥ 0. Therefore,

cosα(u) ≥ cosβ(u), ∀u ∈ J . It follows from (3.19) that cosα(u) ≥ hk1 in J .

Since J corresponds to any interval si, si+1 where u′(s) 
= 0, we conclude that

(3.12) holds for M1.

Now we prove the n-dimensional case. Let Mn ⊂ En+1 be a compact and

convex hypersurface. We consider O as the origin of En+1. We observe that

the critical points of the distance function from O to M are the points where

the angle between the position vector and the exterior normal is zero. If M

is a ball centered at O, then (3.12) holds trivially. Assuming M is not such a

ball, we consider a point P ∈ M which is not a critical point of the distance

function from O. Let Π be the plane through the origin determined by the

position vector and the exterior normal at P . The intersection of the plane Π

with M is a closed and convex plane curve C. Let h0 be the distance from O to

C and let k0 > 0 be the lower bound of the curvature of C. It follows from the

case n = 1 that cosα(P ) ≥ h0k0. Since k1 ≤ k0 and h ≤ h0, we conclude that

(3.12) for Mn.

If the manifold Mn is also symmetric and O is the center of symmetry, then

h ≥ 1/k2. Hence, as an immediate consequence of (3.12), we obtain (3.13).

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let X(s) be a smooth parametrization of a curve L in a

Minkowski space, where s is the Minkowski arc length of the curve. Let σ be

the Euclidean arc length of the curve L as a curve in the Euclidean space En+1.

Then X(s) = X(σ(s)) and ds = F (Xσ)dσ, i.e.,

(4.1)
dσ

ds
=

1

F (Xσ)
,

where dX/dσ = Xσ.

We consider a parametrization of the indicatrix F0 of the form r(ν)ν, where

ν is a unit vector of the sphere Sn in the Euclidean space and r(ν) > 0. More-

over, we consider the unit sphere Sn ⊂ En+1 to be parametrized by the angles
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ϕ1, . . . , ϕn. Since the derivative of X with respect to s, denoted by Xs, is a

curve on the indicatrix F0, we have Xs = r(Xσ)Xσ and

(4.2)
dσ

ds
= r(Xσ) = r.

From (2.3), we have kM = F
(

d2X
ds2

)
. We need to compute d2X/ds2.

dX

ds
=

dX

dσ

dσ

ds
;

(4.3)
d2X

ds2
=

d2X

dσ2

(
dσ

ds

)2

+
dX

dσ

d2σ

ds2
.

Observe that

(4.4)
d2σ

ds2
=

d

ds
(r(Xσ)) =

d

ds
(r(ϕ1, . . . , ϕn)) =

∂r

∂ϕi

∂ϕi

∂σ

dσ

ds
,

where Xσ(s) = (ϕ1(s), . . . , ϕn(s)) is a curve on the unit sphere Sn. Moreover,

(4.5)
∂r

∂ϕi

∂ϕi

∂σ
= 〈grad r,Xσσ〉Sn ,

where the last expression is the inner product of Xσσ with the gradient of r on

Sn. Now we consider two Euclidean orthonormal vector fields τ and ν along

the curve as follows: τ = Xσ and ν such that Xσσ = kEν (assuming kE 
= 0).

Then it follows from (4.3), (4.4) and (4.5) that

d2X

ds2
= rkE(r ν + |grad r|Sn β τ),

where 0 ≤ β ≤ 1 is the cosine of the angle between ν and grad r. Therefore, we

have
d2X

ds2
= rkE

√
r2 + |grad r|2Sn β2 (cos γν + sin γτ),

where

cos γ =
r√

r2 + |grad r|2Sn β2

, sin γ =
|grad r|Sn β√

r2 + |grad r|2Sn β2

.

Therefore,

(4.6) kM = F

(
d2X

ds2

)
= rkE

√
r2 + |grad r|2Sn β2 F (e),

where

e = cos γν + sin γτ =
d2X
ds2

|d2X
ds2 |E
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is a unit Euclidean vector field.

Since we are assuming that the indicatrix F0 is a central symmetric hyper-

surface, it follows from (2.2) that

(4.7) k2 ≥ F (e) =
1

r(e)
≥ k1.

Moreover, considering the polar coordinates in En+1, with the origin at the

center of F0, it follows, by a straightforward computation, that the Euclidean

angle α between the position vector Xs and the outward normal to F0 is given

by

cosα =
r√

r2 + |grad r|2Sn

.

Hence, from (3.13), we have√
r2 + |grad r|2Sn ≤ k2

k1
r(Xσ).

Therefore, since 0 ≤ β ≤ 1, we have

(4.8)

√
r2 + |grad r|2Sn β2 ≤

√
r2 + |grad r|2Sn ≤ k2

k1
r.

Combining (4.6), (4.7) and (4.8) we get

(4.9) kEr

(
k1
k2

)
≤ kM ≤ kEr

(
k2
k1

)
F (e)r(Xσ) ≤ kEr

(
k2
k1

)2

.

Using (4.2) and (4.9) we get (2.4), and this concludes the proof of Theorem

1.

Proof of Theorem 2. Let L be a closed curve in a Minkowski space. We consider

an orthogonal system of coordinates x1, . . . , xn+1 in the auxiliary Euclidean

space En+1 and the curve L parametrized by Minkowski arc length X(s) =

(x1(s), . . . , xn+1(s)). Then F (Xs) = 1 and y(s) = Xs is a closed curve on the

indicatrix F0. It follows from (3.8) and integration by parts that its length is

given by

(4.10) �M (L) =

∫
L

ds =

∫
L

Fα(Xs)
dxα

ds
ds = −

∫
L

Fαβ
∂2xβ

d2s
xαds.

From item (3) of the definition of the Minkowski norm we have Fαβa
αaβ ≥ 0,

for any vector a = (a1, . . . , an+1). Hence, it follows from the Cauchy inequality
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that

(4.11) −
∫

Fαβ
d2xβ

ds2
xαds ≤

∫ √
Fαβxαxβ

√
Fαβ

d2xα

ds2
dxβ

∂s2
ds.

In what follows, we will compute the two terms on the right-hand side of (4.11)

separately.

Now we fix a point of the indicatrix p = Xs0 and choose a special system of

orthogonal coordinates in the auxiliary Euclidean space in the following way.

We consider the center O of the indicatrix F0 to be the origin of the system of

coordinates, the coordinates x1, . . . , xn in a hyperplane parallel to the tangent

space of the indicatrix F0 at the point p and the coordinate axis xn+1 to be

parallel to the Euclidean normal to F0 at p. In the neighborhood of the point

p, the indicatrix F0 can be described by

xn+1 = f(x1, . . . , xn).

It follows from the choice of the axis xn+1, from (3.6) and (3.5), that

(4.12) fi(p) = 0, Fi(p) = 0, ∀i = 1, . . . , n, Fn+1(p)
dxn+1

ds
(s0) = 1.

From (4.12), we get Fn+1(p) 
= 0 and (3.10) reduces to

(4.13)
d2xn+1

ds2
(s0) = 0.

Therefore,

(4.14) Fαβ
d2xα

ds2
d2xβ

ds2
(s0) = Fij

d2xi

ds2
d2xj

ds2
(s0).

Moreover, at the point p, equation (3.7) reduces to

(4.15) Fij(p) + Fn+1(p)fij(p) = 0.

Hence

Fij
d2xi

ds2
d2xj

ds2
(s0) =− Fn+1(p)fij(p)

d2xi

ds2
d2xj

ds2
(s0)

≤k2

∣∣∣∣d
2X

ds2
(s0)

∣∣∣∣
2

E

Fn+1(p)

=k2

∥∥∥∥d
2X

ds2
(s0)

∥∥∥∥
2

M

r2(τ1)Fn+1(p)

=k2k
2
M (s0)r

2(τ1)Fn+1(p),
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where τ1 = e(s0). Since the point p was arbitrary, we finally obtain

(4.16)

√
Fαβ

d2xα

ds2
d2xβ

ds2
≤

√
k2 kM r(e)

√
Fn+1.

We will now estimate
√
Fαβxαxβ . We consider another orthogonal system

of coordinates for the auxiliary Euclidean space En+1 as follows. We take the

origin to be the center of the indicatrix F0 and we assume the indicatrix is not

a sphere. We fix a generic point p = Xs(s0) such that the vector Xs(s0) and

the normal of F0 are not parallel and hence generate a plane Π. We fix the axis

x̃n+1 to be in the direction of Xs(s0) and the axis x̃1 to be orthogonal to Xs(s0)

in the plane Π. Now we choose the axes x̃2, . . . , x̃n in a hyperplane parallel to

the tangent space of F0 at the point and orthogonal to the plane Π.

In a neighborhood of the point p, the indicatrix F0 is a graph of a function

x̃n+1 = f̃(x̃1, . . . , x̃n), where

⎧⎪⎪⎨
⎪⎪⎩
x̃1 = cosαx1 ∓ sinαxn+1

x̃n+1 = ± sinαx1 + cosαxn+1,

x̃i = xi, i = 2, . . . , n,

α being the angle between ∂X
∂s (s0) and the unit normal to F0 in the auxiliary

euclidean space En+1.

It follows from the definition of the axis that

(4.17) f̃i(p) = 0, i = 2, . . . , n, f̃1(p) = ± tanα 
= 0.

It follows from (3.6) that

(4.18) F̃i(p) = 0, ∀i = 2, . . . , n, F̃1(p) = −F̃n+1(p) tanα.

From (3.3), along the curve we have Fαβ(Xs)dx
α/ds = 0. But in the coordinates

x̃, at the point p, we have x̃n+1 in the direction of Xs(s0). Hence,

F̃n+1α(p) = 0, ∀α,

and using (3.7) we have

(4.19) F̃ij(p) + f̃ij F̃n+1(p) = 0 ∀i, j = 1, . . . , n.
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Therefore,

(4.20)

F̃αβ x̃
αx̃β(p) =F̃ij x̃

ix̃j(p)

≤− F̃n+1fij x̃
ix̃j(p)

≤F̃n+1(p)
k2 ‖x̃(p)‖2E

cos3 α

=F̃n+1(p)
k2 ‖x(p)‖2M r20

cos3 α
,

where r0 = r(x̃/|x̃|E(p)).
Now we consider the curve L in the Minkowski space in the system of coor-

dinates x̃1, . . . , x̃n+1. Since at the point p = Xs(s0) the coordinate x̃n+1 is in

the direction of Xs, we have

dx̃i

ds
(s0) = 0, ∀i = 1, . . . , n,

dx̃n+1

ds
(s0) = r1 = r(Xσ(s0)).

Therefore, we conclude from (3.8) that

(4.21) F̃n+1(p) =
1

r1
.

Moreover, it follows from the relation of the coordinates x̃ and the coordinates

x that dxn+1

ds (s0) = r1 cosα. Therefore, from (4.12) we get

(4.22) Fn+1(p) =
1

r1 cosα
.

Substituting (4.22) and (4.21) into (4.16) and (4.20), respectively, we get

(4.23)

√
Fαβ

d2xα

ds2
d2xβ

ds2
≤

√
k2

r1 cosα
r0kM ,

(4.24)

√
F̃αβ x̃αx̃β =

√
Fαβxαxβ ≤

√
k2

r1 cos3 α
r0 ‖x‖M ≤

√
k2

r1 cos3 α
r0R,

where we have used the assumption of the theorem ‖x‖M ≤ R. Therefore, from

(4.23) and (4.24), we conclude that at the generic point p we have

(4.25)
√
Fαβxαxβ

√
Fαβ

d2xα

ds2
d2xβ

ds2
=

k2r
2
0

r1 cos2 α
RkM ≤

(
k2
k1

)4

RkM ,

where, in the last inequality, from (3.13) of Lemma 1 we used that

1

cosα
≤ k2

k1
,
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and from (3.11)

r0 ≤ 1

k1
, r1 ≥ 1

k2
.

It follows from (4.10), (4.11) and (4.25) that

�M (L) ≤
(
k2
k1

)4

R

∫
L

kMds =

(
k2
k1

)4

RωM (L),

which concludes the proof.

We finally observe that it is possible to generalize these results to the case of

a nonsymmetric indicatrix of the Minkowski space.
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