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ABSTRACT

R. Jin showed that whenever A and B are sets of integers having positive

upper Banach density, the sumset A+B := {a+b : a ∈ A, b ∈ B} is piece-

wise syndetic. This result was strengthened by Bergelson, Furstenberg,

and Weiss to conclude that A+B must be piecewise Bohr. We generalize

the latter result to cases where A has Banach density 0, giving a new proof

of the previous results in the process.
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1. Introduction

1.1. Large sets of integers and sumsets. The well-known Steinhaus

lemma says that whenever A and B are subsets of a locally compact group

G both having positive Haar measure, the set {ab : a ∈ A, b ∈ B} contains a
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nonempty open subset of G. R. Jin found an interesting analogue of the Stein-

haus lemma for subsets of Z. To state his result, we need the notions of upper

Banach density and piecewise syndeticity.

Notation: If A and B are subsets of an abelian group G, and c ∈ G, we write

A+ c for {a+ c : a ∈ A}, and A+B for {a+ b : a ∈ A, b ∈ B}.
Definition 1.1: Let A ⊂ Z. The upper Banach density of A is the number

d∗(A) := lim
M→∞

sup
N∈Z

|A ∩ [N,M ]|
N −M + 1

,

and the upper density of A is the number

d̄(A) := lim sup
N→∞

|A ∩ [1, N ]|
N

,

where |S| denotes the cardinality of the set S.

We also use the following standard terminology; see [2] for elaboration.

• A set S ⊂ Z is syndetic if there is a finite set F ⊂ Z such that

Z = S + F. Equivalently, S is syndetic if there exists L such that

S ∩ [M,N ] is nonempty whenever N −M > L.

• A set S ⊂ Z is thick if for every L, S contains an interval of length L.

• A set S ⊂ Z is piecewise syndetic if it is the intersection of a syndetic

set with a thick set.

Note that piecewise syndetic sets are always nonempty.

Theorem 1.2 ([20], Corollary 3): If A,B ⊂ Z with d∗(A) > 0, d∗(B) > 0, then

A+B is piecewise syndetic.

Jin deduced this result, and the Steinhaus lemma (for R), from a theorem in

nonstandard analysis.

Theorem 1.2 was strengthened in [2], where the conclusion that A + B is

piecewise syndetic was replaced by the conclusion that A+B is piecewise Bohr.

We will discuss Bohr and piecewise Bohr sets in Section 2.5. Briefly, a set S ⊂ Z

is Bohr if there is a trigonometric polynomial P (n) =
∑k

j=1 cje
iλjn, λj ∈ R,

such that S ⊃ {n : ReP (n) > 0} �= ∅, while a set is piecewise Bohr if it is the

intersection of a thick set and a Bohr set.

Theorem 1.3 ([2], Theorem I): If A,B ⊂ Z with d∗(A) > 0, d∗(B) > 0, then

A+B is piecewise Bohr.
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Our main theorem generalizes Theorem 1.3 by weakening the hypothesis that

d∗(A) > 0, replacing upper Banach density by a more general notion of density

satisfying an equidistribution condition. Given a sequence (νj)j∈N of probability

measures on Z, one can consider the upper density dν with respect to (νj)j∈N:

for A ⊂ Z define

dν(A) := lim sup
j→∞

νj(A).

We say that a sequence (νj)j∈N of probability measures on Z is an equidis-

tributed averaging sequence if for all θ ∈ (0, 2π), we have

lim
j→∞

∫
einθ dνj(n) = 0.

With this definition we can state our main theorem.

Theorem 1.4: Let (νj)j∈N be an equidistributed averaging sequence, and let

A,B ⊂ Z with d∗(B) > 0. Then the following implications hold.

1. If dν(A) > 0, then A+B is piecewise Bohr.

2. If dν(A) = 1, then A+B is thick.

Remark: The hypothesis that (νj)j∈N is equidistributed is analogous to the

hypothesis of α-uniformity, or pseudorandomness, exploited in [16], [17], [19],

[29], and other work on additive combinatorics. Lemma 4.13 of [29] relates

pseudorandomness to sumsets A1 + A2 + · · · + Ak where k ≥ 3, and is similar

in spirit to Theorem 1.4.

Equidistributed averaging sequences are heavily studied in ergodic theory;

see Section 2.2.

The measures νj we have in mind are of the form νj = normalized counting

measure on Aj , where Aj ⊂ Z is a finite set, so the averages
∫
einθ dνj(n) can

be written as 1
|Aj|

∑
n∈Aj

einθ. We use the notation of measures and integrals,

rather than sets and averages, because our proofs seem more motivated with

this notation.

For certain choices of νj , Theorem 1.4 produces interesting corollaries. For

instance, νj = normalized counting measure on an interval Ij , with |Ij | → ∞,

defines an equidistributed averaging sequence, and so we recover Theorems 1.2

and 1.3. As we shall see in Section 2, a family of equidistributed averaging se-

quences is given by νj = normalized counting measure on {�1α�, �2α�, . . . , �jα�},
where α > 0 is not an integer, so we obtain the following corollary.
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Corollary 1.5: If α > 0 is not an integer and d∗(B) > 0, then

{�nα�+ b : n ∈ N, b ∈ B}
is thick. Furthermore, if C ⊂ N with d̄(C) > 0, and d∗(B) > 0, then

{�cα�+ b : c ∈ C, b ∈ B}
is piecewise Bohr.

For other examples of equidistributed averaging sequences, and hence more

results like the above corollary, one may consult [6] and its bibliography.

1.2. Examples. In contrast with Corollary 1.5, we will derive the following

examples from Proposition 4.2.

• If k ∈ N and k ≥ 2, then for all ε > 0, there exists B ⊂ Z with

d∗(B) > 1 − ε such that {nk + b : n ∈ N, b ∈ B} is not piecewise

syndetic.

• For all ε > 0, there exists B ⊂ Z with d∗(B) > 1− ε such that

{p+ b : p is prime, b ∈ B} is not piecewise syndetic.

1.3. Arithmetic progressions. With little extra effort, the proof of Theo-

rem 1.4 establishes the following fact about the density of arithmetic progres-

sions in sumsets.

Theorem 1.6: Let (νj)j∈N be an equidistributed averaging sequence, letA,B ⊂
Z with dν(A) > 0, d∗(B) > 0. Then for all k ∈ N and all ε > 0, there exists

d ∈ N such that

d∗
( k⋂

l=0

(
(A+B)− ld

))
> max{dν(A), d∗(B)} − ε.(1)

In fact, there is a Bohr set of d satisfying (1).

The conclusion says that there are many d such that the set of c with

{c, c+d, c+2d, . . . , c+kd} ⊂ A+B has density at least max{dν(A), d∗(B)}−ε.
This exhibits a sharp distinction between sumsets of the kind we consider and

arbitrary sets of positive upper Banach density: [3] features a construction of

sets B with d∗(B) > 0 having much less than the expected density (d∗(B)5) of

5-term arithmetic progressions {c, c+ d, c+2d, c+3d, c+4d} for every nonzero
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d. We will elaborate on this topic in Section 2.5; for now we remark that in the

case d∗(A), d∗(B) > 0, Theorem 1.6 is implicit in the proof of [2], Theorem I.

Remark: In [1], Theorems 1.2 and 1.3 are generalized to the setting where Z

is replaced by an arbitrary countable amenable group, answering a question in

[21]. Also, [1] shows that the conclusion of Theorem 1.3 cannot be qualitatively

strengthened, as every piecewise Bohr set contains a set of the form A + B,

where d∗(A), d∗(B) > 0.

In his Ph.D. thesis ([18]), the author proved a version of Theorem 1.4 in the

setting where Z is replaced by a countable amenable group. This article confines

itself to Z, because the methods of [18] are very similar to those here, while the

notation there is more cumbersome. Furthermore, the examples and questions

we formulate are most easily understood in the integer setting.

Remark: All of the aforementioned results are instances of the general phenom-

enon that whenever A and B are subsets of some (perhaps nonabelian) group,

the sumset A+B (product set A ·B) tends to be more structured than A and

B. Quantitative examples of this phenomenon are discussed in [7], [10], [15],

[19], and [28], which deal with finding long arithmetic progressions in sumsets,

while [8] considers sumsets A + A where A is a set of primes. The book [29]

considers this and many related issues, and has an extensive bibliography.

1.4. Outline of the article. Theorems 1.4 and 1.6 will be deduced from

Theorem 3.1, which is a slight refinement of Theorem 1.4. Theorem 3.1 will be

deduced from Proposition 3.2, the latter being an ergodic theoretic analogue of

Theorem 3.1. We invoke the Steinhaus lemma at a crucial step in the proof of

Proposition 3.2; this seems to strengthen the analogy between sumsets in Z and

sumsets in general locally compact groups.

We will see that the problem of describing sumsets A + B, where d∗(B) >

0, corresponds loosely to the problem of identifying limits of averages of the

form 1
|Aj|

∑
a∈Aj

f ◦ T−a, where (X,X, μ, T ) is a measure preserving system,

f : X → [0, 1], and the Aj are finite subsets of A. Under the hypothesis that

(νj)j∈N is an equidistributed averaging sequence and dν(A) > 0, we obtain a

fairly precise description of such limits in the proof of Proposition 3.2.

In the next section we summarize the definitions and tools we need from

ergodic theory, pausing in Subsection 2.5 to delineate some differences between

piecewise Bohr sets and arbitrary sets of positive density. In Section 3 we prove
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Theorem 1.4, and in Section 4 we provide the examples promised in Section

1.2. In Section 5 we ask some natural questions raised by Theorem 1.4 and the

examples in Section 4.

1.5. Acknowledgements. The author is indebted to Vitaly Bergelson for

encouragement and advice, and to Alexander Leibman for helpful comments

on an early version of this article.

The author must also thank Michael Björklund and Alexander Fish, whose

discussions inspired the present work.

2. Preliminaries from ergodic theory

2.1. Measure preserving systems. We make use of the theory of measure

preserving systems, as presented in [14] and [30].

For our purposes, a measure preserving system (X,X, μ, T ) is a proba-

bility space (X,X, μ), where X is a set, X is a σ-algebra of subsets of X, and μ

is a probability measure on X, together with a transformation T : X → X such

that T−1A ∈ X whenever A ∈ X, and μ(T−1A) = μ(A) for all A ∈ X. We will

always assume that T is invertible.

If X = (X,X, μ, T ) and Y = (Y,Y, ν, S) are measure preserving systems, we

say that Y is a factor of X if there exists a function π : X → Y satisfying

π−1(Y) ⊂ X, μ(π−1(D)) = ν(D) for all D ∈ Y, and π(Tx) = Sπ(x) for μ-

almost every x ∈ X. The map π is called a factor map. If π is one-to-one on

a set of full measure, then we say that X and Y are isomorphic, and π is an

isomorphism.

Given a measure preserving system (X,X, μ, T ) with a factor (Y,Y, ν, S)

and factor map π, it is useful to consider the orthogonal projection

PY : L2(μ) → L2(μ) onto the space spanned by functions of the form f ◦ π,
where f ∈ L2(ν). This map can be identified with the conditional expectation

f �→ E(f |π−1(Y)), so PY maps nonnegative functions to nonnegative functions.

See [13], Chapter 5, for details and proofs.

A measure preserving system (X,X, μ, T ) is called ergodic if for all A ∈ X,

μ(A�T−1A) = 0 implies that μ(A) = 0 or μ(A) = 1. Equivalently, the system

is ergodic if for all f ∈ L2(μ), f ◦ T = f implies that f is μ-almost everywhere

equal to some constant.
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2.2. The ergodic theorem. We will need the mean ergodic theorem and

some of its consequences — see [14] or [25] for proofs.

In this section, given a measure preserving system, (X,X, μ, T ), we let

PI : L2(μ) → L2(μ) denote the orthogonal projection onto the closed space

of T -invariant functions.

Theorem 2.1: Let X = (X,X, μ, T ) be a measure preserving system, and

let I ⊂ L2(μ) be the closed subspace of T -invariant functions. Then for all

f ∈ L2(μ),

lim
N−M→∞

1

N −M

N−1∑
n=M

f ◦ T n = PIf(2)

in the norm topology of L2(μ).

Note that if X is ergodic, then PIf =
∫
f dμ.

2.2.1. Averaging sequences. We will need to consider averages more general

than those in (2). The following is shown in [5], and in [6], with slightly different

terminology.

Theorem 2.2: Let (νj)j∈N be a sequence of probability measures on Z. The

following conditions are equivalent.

(i) For all θ ∈ (0, 2π), limj→∞
∫
exp(inθ) dνj(n) = 0.

(ii) For every measure preserving system (X,X, μ, T ) and all f ∈ L2(μ),

lim
j→∞

∫
f ◦ T ndνj(n) = PIf,

in the norm topology of L2(μ).

As a consequence, given a function f ∈ L2(μ) and a sequence (νj)j∈N satisfy-

ing (i) or (ii) above, one may pass to a subsequence (ν′j)j∈N to obtain pointwise

μ-almost everywhere convergence of the averages
∫
f ◦ T n dν′j(n).

We call a sequence (νj)j∈N satisfying (i) or (ii) above an equidistributed

averaging sequence.

The mean ergodic theorem says that the sequence of measures defined by

νj := 1
j

∑j
n=1 δn is an equidistributed averaging sequence. Many examples of

sparsely supported equidistributed averaging sequences are given by Theorems

3.2 and 3.3 of [6]; here are two special cases. We use �x� to denote the greatest

integer less than or equal to x.
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• νj = normalized counting measure on {�nα� : 1 ≤ n ≤ j}, for

0 < α /∈ Z.

• νj = normalized counting measure on {�√2n4 − πn2� : 1 ≤ n ≤ j}.
As we shall see in Section 4, the set {n2 : n ∈ N} does not support an

equidistributed averaging sequence, nor does the set of primes.

2.3. Kronecker systems and the Kronecker factor. For our purposes,

a group rotation is a measure preserving system Z = (Z,Z,mZ , Rα), where Z

is a compact abelian group, Z is the Borel σ-algebra of Z,mZ is Haar measure,

α ∈ Z, and Rα is defined by Rα(z) = z + α for z ∈ Z. We do not assume that

Z is metric.

If {nα : n ∈ Z} is dense in Z then Z is ergodic, and we say that Z is

a Kronecker system. It is well known that such systems are minimal (as

topological systems), and hence that for all nonempty open U ⊂ Z and z ∈ Z,

the set of entry times {n : z + nα ∈ U} is syndetic.

IfX is an ergodic measure preserving system, there is a factorY = (Y,Y, ν, S)

with factor map π, having the property that the eigenfunctions of T (that is,

those f ∈ L2(μ) satisfying f ◦ T = λf μ-almost everywhere, for some λ ∈ C)

are measurable with respect to π−1(Y), and Y is the smallest such factor in

the sense that π−1(Y) is generated by the eigenfunctions of T. This factor is

unique up to isomorphism, and is called the Kronecker factor of X. Since

Y is ergodic and L2(ν) is spanned by the eigenfunctions of S, the Halmos–von

Neumann theorem (see [9] or [14]) says that Y is isomorphic to a compact group

rotation (Z,Z,m,Rα). Given a systemX, we will denote its Kronecker factor by

Z, and we will assume that Z is actually a compact group rotation, not merely

that it is isomorphic to such a system. Also, we will abuse notation and write

E(f |Z) for E(f |π−1(Z)).

The following classical result describes the set of T × T -invariant functions,

given an ergodic system (X,X, μ, T ). See [14], Chapter 9, for a more general

result and proof.

Lemma 2.3: If (X,X, μ, T ) is an ergodic system and (Z,Z,m,Rα) is its Kro-

necker factor, with factor map π, then the space of T × T -invariant functions

in L2(μ× μ) is contained in the closed space spanned by functions of the form

(x, y) �→ f(π(x))g(π(y)), with f, g ∈ L2(m).
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2.3.1. Ergodic averages for Kronecker systems and limits of measures. Ergodic

averages on Kronecker systems are particularly well behaved.

Lemma 2.4: Let (Z,Z,m,Rα) be a Kronecker system, let f : Z → C be con-

tinuous, and let (νj)j∈N be an equidistributed averaging sequence. Then the

averages
∫
f(z + nα)dνj(n) converge uniformly to

∫
f dm as j → ∞.

Proof. It suffices to show that the conclusion holds when f is a character of Z,

since the characters of Z span a uniformly dense subspace of C(Z). This special

case follows from the definition of equidistributed averaging sequence, since for

a character χ : Z → C, we have∫
χ(z + nα) dνj(n) = χ(z)

∫
χ(α)n dνj(n)

for all z ∈ Z. We know that the limit is
∫
χdm, since the limit in L2(μ) is∫

χdm.

We will also consider averages∫
f ◦Rn

α dηj(n)(3)

where f ∈ L∞(Z) and ηj ≤ νj in the sense that ηj({n}) ≤ νj({n}) for each

n ∈ Z. The averages (3) are simply linear combinations of the functions f ◦Rn
α,

although we may interpret them as convolutions of measures.

The next lemma describes the weak limits of the averages in (3). If Z is a

compact metric abelian group with Haar measure m and f, g ∈ L∞(m), we

consider the convolution f ∗ g defined by f ∗ g(t) := ∫
f(z)g(t− z) dm(z).

Lemma 2.5: Let (Z,Z,m,Rα) be a Kronecker system (with Z metrizable), and

let (νj)j∈N be an equidistributed averaging sequence. Suppose that ηj({n}) ≤
νj({n}) for all n ∈ Z, while limj→∞ ηj(Z) = c > 0. If f ∈ L∞(m) and ϕ ∈ L2(m)

is a weak limit of
∫
f ◦R−n

α dηj(n) in the sense that

lim
j→∞

∫ ∫
f ◦R−n

α dηj(n) · h dm =

∫
ϕ · h dm

for all h ∈ L2(m), then ϕ = f ∗ ψ for some measurable ψ : Z → [0, 1] with∫
ψ dm = c.

Proof. For j ∈ N, let η∗j be the measure on Z given by
∫
h dη∗j =

∫
h(nα)dηj(n)

for continuous h : Z → R. Passing to a subsequence, we may assume that the

weak∗ limit of the η∗j exists; call the limit η∗. We claim that η∗ is absolutely
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continuous with respect to Haar measure and its Radon-Nikodym derivative ψ

is bounded above by 1. This follows from the fact that
∫
h dη∗j ≤ ∫

h dν∗j for

every continuous positive function h ∈ C(Z), while limj→∞
∫
h dν∗j =

∫
h dm,

by Lemma 2.4; hence η∗(K) ≤ m(K) for every compact K ⊂ Z. For this

ψ : Z → [0, 1] and every h ∈ C(Z), we now have

lim
j→∞

∫
h dη∗j =

∫
h dη∗ =

∫
h · ψ dm.(4)

Furthermore,
∫
ψ dm = c, since limj→∞ ηj(Z) = c.

Note that it suffices to establish the lemma when f is a character of Z, since

the characters span a dense subset of L2(m). With this assumption, we have,

for all z ∈ Z,

lim
j→∞

∫
f ◦R−n

α (z) dηj(n) = lim
j→∞

f(z)

∫
f(−w) dη∗j (w)

= f(z)

∫
f(−w) dη∗(w)

= f(z)

∫
f(−w) · ψ(w) dm(w),

the last equality being an instance of (4). Since f(z)
∫
f(−w) · ψ(w) dm(w) =∫

f(z − w) · ψ(w) dm(w) = f ∗ ψ(z), this completes the proof.

2.4. The Steinhaus lemma. We formulate a convenient version of the Stein-

haus lemma for compact abelian groups.

Lemma 2.6: Let Z be a compact abelian group with Haar measure m, and let

f, g : Z → [0, 1] be measurable functions with
∫
f dm > 0,

∫
g dm > 0. Then

f ∗ g is continuous, and its support has measure at least max{∫ f dm, ∫ g dm}.
Here “the support of h” means {x : h(x) > 0}. In particular, if f = 1C , g = 1D

for measurable sets C,D ⊂ Z, then f∗g is supported on C+D, so C+D contains

an open set with measure at least max{m(C),m(D)}.
To prove Lemma 2.6, expand f and g as Fourier series f =

∑
χ∈Ẑ f̂(χ)χ, g =∑

χ∈Ẑ ĝ(χ)χ, and note that f̂ , ĝ ∈ L2(Ẑ). Then f̂ · ĝ ∈ L1(Ẑ), so f ∗ g =∑
χ∈Ẑ f̂(χ)ĝ(χ)χ is a uniform limit of continuous functions, and so is continu-

ous. To estimate the support of f ∗ g, note that
∫
f ∗ g dm =

∫
f dm

∫
g dm by
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Fubini’s theorem, while supt∈Z f ∗ g(t) ≤ min{∫ f dm, ∫ g dm}, so

m{t : f ∗ g(t) > 0} ·min

{∫
f dm,

∫
g dm

}
≥

∫
f dm

∫
g dm.

The last inequality implies m{t : f ∗ g(t) > 0} ≥ max{∫ f dm, ∫ g dm}.

Remark: While the preceding proof is standard, it exhibits a theme in common

with the work on sumsets in finite groups mentioned in Section 1: in the setting

of Z/NZ, one considers the characteristic functions f, g of two sets A,B ⊂
Z/NZ, and then uses bounds on the L2 norm of f̂ and ĝ to obtain a bound on

the L1 norm of f̂ ∗ g. With much effort, this bound is exploited to reveal the

structure of the support of f ∗ g, and hence the structure of A+B.

We now consider a partial converse to the Steinhaus lemma; we need it to

construct the examples in Section 4.

Lemma 2.7: Let Z be a separable compact abelian group with Haar measure

m, and let E ⊂ Z be compact with m(E) = 0. For all ε > 0, there exists a

compact K ⊂ Z with m(K) > 1− ε such that E +K has empty interior.

Proof. Fix ε > 0. Let {Vn : n ∈ N} be a collection of open sets whose union is

dense in Z such that m(Vn −E) < ε2−n for each n. Let K =
⋂

n Z \ (Vn −E).

Then m(K) ≥ 1−∑
n ε2

−n = 1− ε, and K is compact. Furthermore

(E +K) ∩ Vn = ∅ for all n,

so the complement of E +K is dense, hence E +K has empty interior.

2.5. Bohr sets in Z. The Bohr topology on Z is the topology generated by

the functions n �→ exp(iλn), λ ∈ R. A basis for this topology consists of sets

of the form {n : Re p(n) > 0}, where p is a trigonometric polynomial given by

p(n) =
∑

λ∈F cλ exp(iλn) for some cλ ∈ C and finite F ⊂ R. A set S ⊂ Z is

called a Bohr set if it contains one of these nonempty basis sets.

Equivalently, we call B ⊂ Z a Bohr set if it contains a set of entry times to

an open set in a compact metric Kronecker system. That is, B is a Bohr set if

there exists an ergodic group rotation system (Z,Z,m,Rα) and an open U ⊂ Z

such that B contains {n : nα ∈ U}. The equivalence of the two definitions of

“Bohr set” follows from Pontryiagin duality.

Following [2], we call a set piecewise Bohr if it contains the intersection of a

Bohr set and a thick set. Such a set is piecewise syndetic, and an example given
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in [2] shows that there are syndetic sets that are not piecewise Bohr. Another

such example is the set S := {n : n2
√
2 mod 1 ∈ (0, 1/2)}: Weyl’s theorem on

equidistribution implies that S is syndetic, and the same theorem implies that

for all sets of form R = {n : Re p(n) > 0} where p : Z → C is a trigonometric

polynomial, d∗(S ∩ R) = 1
2 limN−M→∞

|R∩[M,N ]|
N−M+1 . Hence S cannot contain the

intersection of such an R with a thick set, and so cannot be piecewise Bohr.

One may view piecewise Bohr sets as having more structure than arbitrary

sets of positive density. For instance, it is shown in [3] that for every m > 0,

there are sets B ⊂ Z with d∗(B) > 0, while d∗
(⋂4

l=0B − ld
)
< d∗(B)m/2 for

all d �= 0. In other words, B contains much less than the expected density of

5-term arithmetic progressions of a given common difference d, for every d �= 0.

In contrast, a given piecewise Bohr set will have, for many d, more than the

expected density of k-term arithmetic progressions with difference d. To be more

precise, we state the following lemma.

Lemma 2.8: Let (Z,Z,m,Rα) be an ergodic Kronecker system, and let U ⊂ Z

be open. Let B0 = {n : nα ∈ U}, and let B be the intersection of B0 with a

thick set. Then for all k ∈ N and all ε > 0, there exists d ∈ N such that

d∗
( k⋂

l=0

B − ld

)
> m(U)− ε.(5)

In fact, there is a Bohr set of d satisfying (5).

Proof. Fix k ∈ N, and writeWd for
⋂k

l=0 U− ldα. Choose d ∈ Z, with m(Wd) >

m(U) − ε (note that there is a Bohr set of such d). Let f : Z → [0, 1]

be a continuous function supported on Wd with
∫
f dm > m(U) − ε. Let

(Ir)r∈N be a sequence of intervals with |Ir | → ∞ and Ir ∩ B0 ⊂ B for all

r. Then
⋂k

l=0B − ld contains
⋂k

l=0(Ir ∩B0)− ld for each r. We will show that

|Ir ∩
⋂k

l=0(Ir ∩B0)− ld|/|Ir| > m(U)− ε for sufficiently large r.

By Lemma 2.4, we have

lim
r→∞

1

|Ir|
∑
n∈Ir

f(nα) =

∫
f dm,(6)

and the integral is at least m(U) − ε. If f(nα) > 0, then nα ∈ U − ldα for

0 ≤ l ≤ k, meaning n ∈ B0 − ld for each l. Since f is supported on Wd, (6)

implies that lim infr→∞ |Ir ∩
⋂k

l=0 B0 − ld|/|Ir| ≥ m(U)− ε, and the conclusion

follows.
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As observed in [2] and [1], if a Bohr set is “cut into long segments, shifted,

and reassembled,” the resulting set is piecewise Bohr. The next lemma makes

this statement precise.

Lemma 2.9: Let B ⊂ Z be a Bohr set, let (Ij)j∈N be a sequence of intervals

with lengths tending to infinity, and let (rj)j∈N be a sequence of integers. Then⋃
j(Ij ∩B) + rj is piecewise Bohr.

Proof. Let (Z,Z,m,Rα) be a metric Kronecker system, with U ⊂ Z open such

that {n : nα ∈ U} is contained in B. Since Z is compact metric, there is a

subsequence (r′jα)j∈N of (rjα)j∈N that converges to a point z0 ∈ Z. Choosing J

sufficiently large,
⋂

j>J U + r′jα contains an open set V.

Now for sufficiently large j, (B∩I ′j)+ r′j contains {n ∈ I ′j + r
′
j : nα ∈ U + r′j},

so (B∩I ′j)+r′j contains {n ∈ I ′j+r
′
j : nα ∈ V }. Thus⋃j(Ij∩B)+rj contains the

intersection of the thick set
⋃

j>J I
′
j + r′j with the Bohr set {n : nα ∈ V }.

The proof of Lemma 2.9 gives a bit more information; we could choose r′j
above so thatm(

⋂
j U+r′jα) > m(U)−ε. This leads to the following refinement.

Corollary 2.10: Let (Z,Z,m,Rα) be a metric Kronecker system with U ⊂ Z

open. Let B = {n ∈ Z : nα ∈ U}, let (Ij)j∈N be a sequence of intervals

with lengths tending to infinity, and let (rj)j∈N be a sequence of integers.

Then
⋃

j(Ij ∩ B) + rj contains the intersection of a thick set with some B′ :=
{n ∈ Z : nα ∈ V }, where V is open and m(V ) > m(U)− ε.

2.6. The Bohr compactification. Although not strictly necessary for our

proofs and examples, the Bohr compactification of Z provides a useful perspec-

tive for some of the questions asked in Section 5.

To form the Bohr compactification bZ of Z, give R/Z the discrete topology,

and let bZ be the dual of that discrete group. Then bZ is compact, and Z

embeds densely therein by n �→ en, where en(t) = exp(2πint). Under this

embedding, the characters of Z extend continuously to characters of bZ, and

the Bohr topology on Z is the subspace topology on Z induced by the topology

on bZ. See [26] for details.

In the sequel, we will consider Z as a subset of bZ, and we can speak of a

sequence of measures on Z converging in the weak∗ topology of bZ. In particular,

a sequence (νj)j∈N of probability measures on Z converges to Haar measure on

bZ if and only if it is an equidistributed averaging sequence.
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2.7. A weak correspondence principle. We will use a weak version of

Furstenberg’s correspondence principle from [12]. To state our version, we fix

notation for the shift space. Let Ω = {0, 1}Z with the product topology, and

define the shift σ : Ω → Ω by (σx)(n) = x(n+1) for x ∈ Ω. Then Ω is a compact

metric space and σ is a surjective homeomorphism.

Proposition 2.11: Suppose B ⊂ Z with d∗(B) > 0. Let X be the orbit closure

{σn1B : n ∈ Z} of 1B in the shift space ({0, 1}Z, σ) and let O be the open set

{x ∈ X : x(0) = 1}. Then there is a σ-invariant probability measure μ on X

with μ(O) ≥ d∗(B). Furthermore, we can pick μ so that (X,X, μ, σ) is ergodic.

Proof. For B ⊂ Z, let x = 1B, and let Ik be a sequence of intervals with

|Ik| → ∞ and limk→∞
|B∩Ik|
|Ik| = d∗(B). Let μk = 1

|Ik|
∑N

n∈Ik
δσnx, where δσnx is

the unit point mass at σnx. Then every weak∗ limit μ of the sequence (μk)k∈N

is σ-invariant and satisfies μ(O) ≥ d∗(B). We can find an ergodic μ with these

properties by applying the ergodic decomposition theorem (see [14]).

Proposition 2.11 also follows from the proof of Proposition 3.1 of [3].

3. Proof of Theorems 1.4 and 1.6

3.1. Refinement and ergodic theoretic analogue. We will deduce The-

orems 1.4 and 1.6 from the next theorem, which is a refinement of Theorem 1.4.

Theorem 3.1: Let (νj)j∈N be an equidistributed averaging sequence, and let

A,B ⊂ Z with d∗(B) > 0. Then the following implications hold.

1. If dν(A) > 0, then A + B is piecewise Bohr. In fact, there exists a

Kronecker system (Z,Z,m,Rα) such that for all ε > 0, there is an open

set U ⊂ Z with m(U) > max{dν(A), d∗(B)} − ε and a thick set S ⊂ Z

such that A+B contains S ∩ {n ∈ Z : nα ∈ U}.
2. If dν(A) = 1, then A+B is thick.

We will deduce Theorem 3.1 from the following proposition about measure

preserving systems.

Proposition 3.2: Let (X,X, μ, T ) be an ergodic measure preserving system

with Kronecker factor (Z,Z,m,Rα) and factor map π : X → Z. Let D ∈ X with

μ(D) > 0, and let (νj)j∈N be an equidistributed averaging sequence. If A ⊂ Z
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with dν(A) > 0, then
⋃

a∈A T
aD contains, up to μ-measure 0, a set of the form

π−1(U), where U ⊂ Z is open and m(U) ≥ max{dν(A), μ(D)}.
Postponing the proof of Proposition 3.2 to Subsection 3.2, we proceed with

the proof of Theorem 3.1.

Proof of Theorem 3.1. Fix an equidistributed averaging sequence (νj)j∈N, and

sets A,B ⊂ Z with dν(A) > 0 and d∗(B) > 0. Let T be the shift on {0, 1}Z, let
X be the orbit closure of 1B in ({0, 1}Z, T ), and let O = {x ∈ X : x(0) = 1}.
As Proposition 2.11 allows, let μ be a T -invariant probability measure on X so

that (X,X, μ, T ) is ergodic and μ(O) ≥ d∗(B).

Define V :=
⋃

a∈A T
aO.

Lemma 3.3: With A,B,X, and V as above, let x ∈ X. For all finite sets

F ⊂ {n : T nx ∈ V }, A+B contains a translate of F.

Proof. Since x is in the T -orbit closure of 1B, we can write x = 1E, where

E ⊂ Z is an increasing union of the form

∞⋃
k=1

([nk − k, nk + k] ∩B)− nk,

for some sequence of integers nk. This means that A+E is an increasing union⋃∞
k=1A+ ([nk − k, nk + k]∩B)− nk. In particular, for a given finite interval I,

(A+ E) ∩ I = (A+ ([nk − k, nk + k] ∩B)− nk) ∩ I for some k,

hence (A+B − nk) ∩ I contains (A+ E) ∩ I.
It follows from the definitions of E and V that A+E is simply {n : T nx ∈ V },

so the Lemma is proved.

We now complete the proof of Theorem 3.1, Part 1. Let (Z,Z,m,Rα) be the

Kronecker factor of (X,X, μ, T ), and let π : X → Z be the factor map. Fix

ε > 0. By Proposition 3.2, V (=
⋃

a∈A T
aO) contains, up to μ-measure 0, a set

of the form π−1(U), where U ⊂ Z is open and m(U) > max{dν(A), d∗(B)}− ε.

Let x ∈ X such that

(i) The equation π(T nx) = π(x) + nα holds for all n ∈ Z, and

(ii) π(T nx) ∈ U implies that T nx ∈ V.
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Since the sets of x satisfying each of (i) and (ii) separately have full measure,

there is an x satisfying both conditions. To see that the set of x satisfying (ii) has

full measure, note that its complement is contained in
⋃

n∈Z
T−n(π−1(U) \ V ).

By condition (i), the set {n : π(T nx) ∈ U} is a Bohr set, and by condition (ii),

this set is contained in {n : T nx ∈ V }. Since m(U) ≥ max{dν(A), d∗(B)} − ε,

Lemma 3.3 and Corollary 2.10 now imply Part 1 of Theorem 3.1.

Proof of Theorem 3.1, Part 2. Without loss of generality we can assume that

every νj is supported on A. Let f = 1O, and let C ∈ X with μ(C) > 0. Since

(νj)j∈N is an equidistributed averaging sequence, the averages

∫ ∫
f ◦ T−n · 1C dμ dνj(n)

converge to
∫
f dμ

∫
1C dμ. In particular, there exists n ∈ A such that

μ(E ∩ T nO) > 0. Since this is true for every C of positive measure, it fol-

lows that V =
⋃

n∈A T
nO has full measure. Hence, there exists x ∈ X such

that T nx ∈ V for all n ∈ Z. Lemma 3.3 now implies that A+B contains a shift

of every finite subset of Z, and in particular that A + B contains intervals of

every finite length.

Proof of Theorem 1.6. Theorem 1.6 follows directly from Part 1 of Theorem

3.1, together with Lemma 2.8.

Remark: The deduction of Theorem 3.1 from Proposition 3.2 is similar to the

proof of [13], Theorem 3.20, a result of R. Ellis which says that every set B

with d∗(B) > 0 contains translates of every finite subset of some set B′ having
density d∗(B). That is, d(B′) := limN→∞

|B∩[1,N ]|
N = d∗(B), and for every finite

F ⊂ B′, there exists c with F + c ⊂ B.

3.2. Proof of Proposition 3.2. Let us recall Proposition 3.2 and describe

the idea of the proof.

Proposition 3.2: Let (X,X, μ, T ) be an ergodic measure preserving system

with Kronecker factor (Z,Z,m,Rα) and factor map π : X → Z. Let D ∈ X with

μ(D) > 0, and let (νj)j∈N be an equidistributed averaging sequence. If A ⊂ Z

with dν(A) > 0, then
⋃

a∈A T
aD contains, up to μ-measure 0, a set of the form

π−1(U), where U ⊂ Z is open and m(U) ≥ max{dν(A), μ(D)}.
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To prove the proposition, we will bound 1⋃
a∈A TaD from below by aver-

ages gj :=
∫
1D ◦ T−n dηj(n), where ηj(E) := νj(A ∩ E); one easily veri-

fies gj ≤ 1⋃
a∈A TaD. We then pass to a subsequence to obtain a weak limit

g := limj→∞ gj . With the aid of the next lemma, we find that g is equal to

limj→∞
∫
E(1D|Z)◦T−n dηj(n). Thinking of E(1D|Z) as a function f : Z → [0, 1],

we use Lemma 2.5 to describe g.

The next lemma is standard in multiple recurrence arguments; cf. [13], Lemma

4.15.

Lemma 3.4: Suppose that (X,X, μ, T ) is an ergodic measure preserving system

with Kronecker factor (Z,Z,m,Rα). Suppose that f ∈ L2(μ) with E(f |Z) = 0,

and let (νj)j∈N be an equidistributed averaging sequence. Then for all g ∈ L2(μ)

and all ε > 0,

dν

{
n :

∣∣∣∣
∫
f ◦ T−n · g dμ

∣∣∣∣ > ε

}
= 0.

Proof. Write PZf for E(f |Z). The conclusion is equivalent to the assertion that

lim
j→∞

∫ ∣∣∣∣
∫
f ◦ T−n · g dμ

∣∣∣∣
2

dνj(n) = 0.

Writing | ∫ f ◦ T−n · g dμ|2 =
∫
f ⊗ f̄ ◦ (T × T )−n · g ⊗ ḡ dμ × μ, we average

with respect to νj to find

lim
j→∞

∫ ∣∣∣∣
∫
f ◦ T−n · g dμ

∣∣∣∣2 dνj(n) =
∫
PT×T (f ⊗ f̄) · g ⊗ ḡ dμ× μ,(7)

where PT×T (f ⊗ f̄) is the projection of f ⊗ f̄ on the space of T × T -invariant

functions in L2(μ×μ). By Lemma 2.3, the space of T ×T -invariant functions in
L2(μ×μ) is spanned by functions of the form PZ(h1)⊗PZ(h2). Since PZ(f) = 0,

the function f⊗f is orthogonal to the space of T×T -invariant functions. Hence,
the integral on the right-hand side of (7) is 0.

Proof of Proposition 3.2. Let (X,X, μ, T ), (Z,Z,m,Rα) and π : X → Z be as

in the hypotheses of the proposition. Passing to a subsequence of (νj)j∈N, we

suppose that limj→∞ νj(A) exists and equals dν(A). Consider the measures ηj

on Z given by ηj(E) = νj(A ∩ E.) Then for all j, gj :=
∫
1D ◦ T−n dηj(n) is

supported on
⋃

a∈A T
aD, as is any weak limit of the gj . Again passing to a

subsequence, we may assume that g := limj→∞ gj exists weakly, in the sense

that limj→∞
∫
gj · h dμ exists for all h ∈ L2(μ). Thus Proposition 3.2 is a

consequence of the following claim.
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Claim: The support of g := limj→∞ gj contains a set of the form π−1(U),

where U ⊂ Z is open and m(U) ≥ max{dν(A), μ(D)}.
Note: we use “support of g” to mean {x : g(x) > 0}.
To prove the claim write 1D = f1 + f0, where f1 = E(1D|Z),E(f0|Z) = 0.

Then gj decomposes as gj,1 + gj,0, where

gj,1 =

∫
f1 ◦ T−ndηj(n), gj,0 =

∫
f0 ◦ T−n dηj(n).

By Lemma 3.4, we have for all h ∈ L2(μ) and all ε > 0,

dν

{
n :

∣∣∣∣
∫
f0 ◦ T−n · h dμ

∣∣∣∣ > ε

}
= 0.

From this and the fact that dν(A) > 0 we conclude that

dη

{
n :

∣∣∣∣
∫
f0 ◦ T−n · h dμ

∣∣∣∣ > ε

}
= 0.

Hence for all h ∈ L2(μ),

lim
j→∞

∫
gj,0 · h dμ = lim

j→∞

∫ ∫
f0 ◦ T−n · h dμ dηj(n) = 0.

Thus limj→∞ gj = limj→∞ gj,1. Since f1 is Z-measurable, write f1 = f̃1 ◦ π,
where f̃1 ∈ L∞(Z,m), and similarly write gj,1 = g̃j,1 ◦ π. Then

f̃1(π(x) − nα) = f(T−nx), for all n and μ-almost every x, and limj→∞ g̃j,1 =

limj→∞
∫
f̃1 ◦ R−n

α dηj(n). By Lemma 2.5, the last limit is the convolution

f̃1 ∗ ψ, where ψ : Z → [0, 1] is a function satisfying
∫
ψ dm = dν(A). Since

f̃1 : Z → [0, 1] and
∫
f̃1 dm = μ(D), Lemma 2.6 now implies that g̃ :=

limj→∞ g̃j,1 is continuous and the support U of g̃ has measure at least

max{μ(D), dν(A)}. Then the support of g := limj→∞ gj contains π−1(U), so

we are done.

4. Examples

Here we find examples of sets A,B ⊂ Z with d∗(B) > 0 where A + B is not

piecewise syndetic. We will construct these examples from Kronecker systems,

via the next lemma and proposition.

Lemma 4.1: Let (Z,Z,m,Rα) be a Kronecker system, and let K ⊂ Z be com-

pact. The following conditions are equivalent.
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(i) K has nonempty interior.

(ii) {n : nα ∈ K} is a Bohr set.

(iii) {n : nα ∈ K} is piecewise syndetic.

Proof. (i) =⇒ (ii) follows from the definition of “Bohr set,” and (ii) =⇒ (iii)

follows from the fact that Bohr sets are syndetic.

To see that (iii) =⇒ (i), let K ⊂ Z be compact with R := {n : nα ∈ K}
piecewise syndetic. Then there exists a finite set F such that R′ :=

⋃
a∈F a+R

is thick. But R′ is the set of return times to a union of translates of K: R′ =
{n : nα ∈ ⋃

a∈F K + aα}. We claim that the thickness of R′ implies that

K ′ :=
⋃

a∈F K+aα is equal to Z. Since K ′ is compact, it has open complement.

If Z \K ′ is nonempty, then {n : nα ∈ Z \K ′} is syndetic, which contradicts the

fact that R′ is thick, so K ′ = Z. It follows that one of the K+aα has nonempty

interior. Hence K has nonempty interior.

Proposition 4.2: Suppose that A ⊂ Z, Z = (Z,Z,m,Rα) is a Kronecker

system, and {nα : n ∈ A} has Haar measure 0 in Z. Then for all ε > 0, there

exists B ⊂ Z with d∗(B) > 1− ε, such that A+B is not piecewise syndetic.

Furthermore, if (ν
(i)
j )j∈N is an equidistributed averaging sequence for each

i ∈ N, there exists B ⊂ Z such that dν(i)(B) > 1− ε for all i, and A+B is not

piecewise syndetic.

Proof. Write E for the closure {nα : n ∈ A}, and by Lemma 2.7 let K ⊂ Z

be compact with m(K) > 1 − ε such that E +K has empty interior. By the

pointwise ergodic theorem, there exists z ∈ Z such that

m(K) = lim
N→∞

1

N

N∑
n=1

1K(z + nα).

Let B := {n : z + nα ∈ K}, so that d∗(B) ≥ m(K) > 1 − ε. Then A + B ⊂
{n : z + nα ∈ E +K}, which is not piecewise syndetic, by Lemma 4.1.

To prove the second claim, we can, for each (ν
(i)
j )j∈N, pass to a subsequence

(ρ
(i)
j )j∈N, having the property that the averages limj→∞

∫
1K(z + nα) dρ

(i)
j (n)

converge tom(K) as j → ∞, for almost every z. Thus, there is a z that witnesses

this convergence for each i simultaneously, and we can proceed as in the previous

paragraph, taking B to be {n : z + nα ∈ K}.
To construct examples via Proposition 4.2, for Z we can use the Kronecker

system (bZ, bZ,m,R1), where bZ is the Bohr compactification of Z, bZ is its
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Borel σ-algebra, and R1(z) = z + 1. For S ⊂ Z, let S̃ be the closure of S in bZ,

and note that S̃ is {Rn
10 : n ∈ S}.

In [11] the closures S̃i of the following sets Si in bZ are each shown to have

Haar measure 0.

• S1 = the set of prime powers (including the primes).

• S2 = the set {n2 +m2 : n,m ∈ N} of sums of two squares.

• S3 = the set of square-full numbers, that is, the set of numbers n so

that every exponent in the prime factorization of n is at least two.

• S4 = any set of the form {∑εi
εini : εi ∈ {0, 1}}, where (ni)i∈N is a

sequence of positive integers satisfying ni|ni+1 for all i and ni+1/ni ≥ 3

for all i.

In [23], it was shown that S̃5 has Haar measure 0 whenever S5 = p(Z), where

p is a polynomial with integer coefficients having degree 2 or 3.

By Proposition 4.2, if A is any of the above sets Si (or the union of finitely

many such sets), then there exists a set B ⊂ Z with d∗(B) > 1 − ε such that

A+ B is not piecewise syndetic. Since the set of square-full numbers includes,

for each integer k ≥ 2, the set Nˆk := {nk : n ∈ N}, we may also take A = Nˆk

for k ≥ 2.

Remark: In fact, the arguments in [11] show that closures of the above sets Si,

i ≤ 4, appropriately embedded in
∏

p primeZp, have Haar measure 0, where Zp is

the set of p-adic integers, with the usual topology. We could thereby avoid using

the Bohr compactification of Z, which may be desirable given its complexity.

5. Questions about sumsets, the Bohr topology, and recurrence

Sumsets and the Bohr topology. Recall that bZ is the Bohr compactifi-

cation of Z, and (νj)j∈N is an equidistributed averaging sequence if and only if

limj→∞ νj = mbZ in the weak∗ topology of bZ.

The proof of Theorem 1.4 exploited the properties of equidistributed averag-

ing sequences in two different ways. First, there was Lemma 3.4, which reduced

the problem from the setting of a general measure preserving system to the spe-

cial case of Kronecker systems. Lemma 3.4 can be deduced from the spectral

theorem and the following fact, which is essentially Wiener’s lemma:

(W): If σ is an atomless probability measure on T and (νj)j∈N is an equidis-

tributed averaging sequence, then for all ε > 0, dν{n : | ∫ einθ dσ(θ)| > ε} = 0.
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The second important property of equidistributed averaging sequences is how

they project to compact abelian groups. Lemma 2.5 says that when (νj)j∈N is an

equidistributed averaging sequence and dν(A) > 0, the measures ηj := νj |A are

“large,” in the sense that the weak∗-limits of the ηj are absolutely continuous

with respect to Haar measure on bZ. As a consequence we have:

(L): If (νj)j∈N is as above, A ⊂ Z, and dν(A) > 0, then mbZ(Ã) > 0, where Ã

is the closure of A in bZ.

In Section 4, we showed that when the conclusion of (L) fails for A ⊂ Z,

there exists B ⊂ Z with d∗(B) > 0 and A + B is not piecewise syndetic. We

do not understand the situation where the conclusion of (L) holds but (W)

is unavailable. This situation is not vacuous, for Katznelson ([22]) and Saeki

([27]) have produced atomless probability measures σ on T such that Aε :=

{n : | ∫ einθ dσ(θ)| > 1−ε} is dense in bZ for all ε > 0. In particular, dν(Aε) = 0

whenever ν is an equidistributed averaging sequence, while each {nα : n ∈ Aε}
is dense in Z whenever {nα : n ∈ Z} is dense in the compact abelian group Z.

We cannot even decide if A1/2 + B is piecewise syndetic whenever d∗(B) > 0,

where the A1/2 comes from Katznelson’s exmaple σ. In general, we ask the

following.

Question 5.1: Let A ⊂ Z, and let Ã be the closure of A in bZ. Which, if any, of

the following implications hold?

(1) If mbZ(Ã) > 0 and d∗(B) > 0 then A+B is piecewise syndetic.

(2) If mbZ(Ã) > 0 and d∗(B) > 0 then A+B is piecewise Bohr.

(3) If Ã = bZ and d∗(B) > 0 then A+B is thick.

Sets of recurrence. Call A ⊂ Z a set of recurrence if for every measure

preserving system (X,X, μ, T ) and every D with μ(D) > 0, there exists n ∈ A

with μ(D ∩ T−nD) > 0.

The following question has been asked in various forms, most recently in

Section 9 of [4].

Question 5.2: If A ⊂ Z is dense in bZ, is A necessarily a set of recurrence?

An affirmative answer to Question 5.2 would imply an affirmative answer to

Part 3 of Question 5.1. The implication is obtained as follows: if every shift of

A is a set of recurrence, one can show that whenever (X,X, μ, T ) is an ergodic

measure preserving system, then μ(
⋃

a∈A T
aD) = 1 whenever μ(D) > 0. One
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can then argue as in the proof of Theorem 1.4 to show that A + B is thick

whenever d∗(B) > 0.

The next questions might be resolved more easily than Question 5.1.

Question 5.3: Suppose that A ⊂ Z has the property that A+B is thick whenever

d∗(B) > 0. Must the following be true?

• For all ergodic (X,X, μ, T ) and allD ∈ X with μ(D) > 0, μ
(⋃

a∈A T
aD

)
= 1.

Question 5.4: Suppose that A ⊂ Z has the property that A + B is piecewise

syndetic (alternatively, piecewise Bohr) whenever d∗(B) > 0. What can be said

about A?

Two sparse summands. Our methods and examples say little about A + B

when d∗(A) = d∗(B) = 0. In particular, let P be the set of primes, and define

dP (A) = lim supn→∞
|A∩[1,n]|
|P∩[1,n] for A ⊂ P. We wonder what can be said about

A+B when dP (A), dP (B) > 0. A recent result in [8] shows that d̄(A+A) > 0

whenever dP (A) > 0. Can we conclude that A+A is piecewise syndetic?

Remark: In [24], R. Pavlov constructs a set A ⊂ Z with d∗(A) = 0 and the

property that A + B is thick whenever B is infinite. It may be interesting to

characterize such A in terms of dynamics.
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[9] I. P. Cornfeld, S. Fomin and Ya. G. Sinăı, Ergodic Theory, Translated from the Rus-
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arithmetic progressions, Journal d’Analyse Mathématique 31 (1977), 204–256.
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