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ABSTRACT

Consider a form g(x1, . . . , xs) of degree d, having coefficients in the com-

pletion Fq((1/t)) of the field of fractions Fq(t) associated to the finite field

Fq. We establish that whenever s > d2, then the form g takes arbitrar-

ily small values for non-zero arguments x ∈ Fq[ t ]s. We provide related

results for problems involving distribution modulo Fq[ t ], and analogous

conclusions for quasi-algebraically closed fields in general.

1. Introduction

A homogeneous polynomial of odd degree, with real coefficients, assumes arbi-

trarily small values at non-zero integral arguments provided only that it pos-

sesses a number of variables sufficiently large compared to its degree. This
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conclusion of Schmidt [20] was established by means of an argument remark-

able both for its ingenuity and its sophistication. With a similar assumption on

the number of variables, the analogous problem of showing that a form of odd

degree, with integral coefficients, necessarily vanishes, while plainly no harder,

turns out to be considerably more straightforward (see Birch [4]). Motivated by

familiar correspondence philosophies, one anticipates that similar conclusions

should be accessible in which the role of the integers Z is replaced by the poly-

nomial ring Fq[t ], and that of the real numbers R is replaced by the Laurent

series Fq((1/t)). In this paper we show not only that such may be achieved, but

that in addition much sharper conclusions may be attained with considerable

ease. It is our hope that the quantitative results recorded herein may shed light

on what is to be expected in the above classical situation.

We begin by introducing some notation. Let k be a field. We say that a

zero of a polynomial in several variables is non-trivial when it has a non-zero

coordinate. We refer to a polynomial having zero constant term as a Chevalley

polynomial, and call a homogeneous polynomial a form. Associated to k is the

polynomial ring k[t ] and the field of fractions K = k(t). Write K∞ = k((1/t)) for

the completion of k(t) at ∞. Each element α in K∞ may be written in the shape

α =
∑

j�n ajt
j for some n ∈ Z and coefficients aj = aj(α) in k (j � n). We

define ord α by taking −ord α to be the largest integer j for which aj(α) �= 0.

Fixing a real number γ with γ > 1, we then write 〈α〉 for γ−ord α, and refer to

〈α〉 as the norm or magnitude of α. In this context we adopt the convention

that ord 0 = +∞ and 〈0〉 = 0. Finally, when β = (β1, . . . , βn) ∈ K
n
∞, we define

〈β〉 = max1�i�n〈βn〉.
In this section we concentrate on the situation in which k is a finite field Fq,

deferring to later sections a more general discussion of quasi-algebraically closed

fields. Our first result is a consequence of Theorem 3.1 below.

Theorem 1.1: Let k = Fq, and let d and s be natural numbers with s > d2.

Suppose that F (x) ∈ K∞[x1, . . . , xs] is a Chevalley polynomial of degree d,

whose coefficients have magnitude not exceeding the positive number H . Then,

whenever 0 < ε � γ−dH , the inequality 〈F (x)〉 < ε admits a solution x ∈ Fq[t ]
s

with 0 < 〈x〉 � (H/ε)d/(s−d2).

The conclusion of Theorem 1.1 may be compared with work of the first au-

thor [21], where a variant of the Davenport–Heilbronn method is applied to

investigate the solubility of diagonal diophantine inequalities in the function
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field setting. Let F (x) ∈ K∞[x1, . . . , xs] be a diagonal form of degree d whose

coefficients are not all in Fq(t)-rational ratio, which is to say that for no λ ∈ K×∞
does one have λF (x) ∈ K[x1, . . . , xs]. Suppose also that the characteristic of

Fq does not divide d, and that the corresponding equation F (x) = 0 has a non-

trivial solution over Ks
∞ (a local solubility condition). Then as a consequence of

Theorem 1.1 of [21], when d is large and s � (4/3 + o(1))d log d, it follows that

for each ε > 0, the inequality 〈F (x)〉 < ε possesses infinitely many primitive

solutions x ∈ Fq[t ]
s. Our theorem requires a larger number of variables in order

to be applicable, but in compensation it addresses general homogeneous poly-

nomials, and also supplies an upper bound for the smallest non-trivial solution.

We note that Hsu [10], [11] has examined diagonal diophantine inequalities for

polynomial rings in which the variables are restricted to be irreducible elements

of Fq[t]. The conclusions available in this situation resemble those of [21], save

that the number of variables employed is rather larger.

As we have already noted, the classical analogue of Theorem 1.1, in which

R replaces K∞ and Z replaces Fq[t ], is far more difficult to analyse. The

results of Schmidt [20] are explicit neither in the number of variables required

to guarantee the existence of a solution, nor in terms of the size of the solutions

delivered. Freeman [9] has shown that for a given system of r cubic diophantine

inequalities in the classical setting, the existence of solutions is assured whenever

s > (10r)(10r)
5

, but apparently no explicit conclusions are available for general

forms of higher degree.

We turn next to consider the extent to which the bounds on solutions pre-

sented in Theorem 1.1 can be considered sharp.

Theorem 1.2: Let k = Fq, and let d and s be natural numbers with s > d2.

Then there exist arbitrarily large numbers H , and forms F (x;H) ∈ K∞[x], of

degree d in s variables, satisfying the following properties:

(a) the coefficients of F each have magnitude not exceeding H , and

(b) the smallest non-zero solution x∈Fq [t ]
s of the inequality 〈F (x;H)〉<1

satisfies the bound 〈x〉 � (γ1−dH)d/(s−d2).

This result, which is a consequence of the more general result recorded in

Theorem 4.2 below, shows that the conclusion of Theorem 1.1 is essentially

best possible in circumstances wherein ε = 1. More general values of ε may

also be addressed via Theorem 1.2 by simply rescaling the coefficients of the

polynomial F . Further remarks on such lower bounds are offered in Section 4.
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We now turn our attention to problems analogous to those in the classical

literature concerned with the distribution of polynomial sequences modulo 1.

Given α ∈ K∞, we define 〈〈α〉〉 = minx∈k[ t ]〈α−x〉. As a special case of Theorem

6.1, we derive the following conclusion.

Theorem 1.3: Let k = Fq, and suppose that f(x) ∈ K∞[x] is a Chevalley

polynomial of degree d. Then for each positive number N , there exists a non-

zero polynomial x ∈ k[t ], with 〈x〉 � N , for which 〈〈f(x)〉〉 < N−1/d.

Define ‖α‖ for α ∈ R by putting ‖α‖ = miny∈Z |α− y|, in which | · | denotes
the ordinary absolute value, so that ‖ · ‖ is the classical analogue of 〈〈 · 〉〉. Also,
let f(t) ∈ R[t ] be a Chevalley polynomial of degree d. Then, beginning with

work of Vinogradov [22] in the special case f(t) = αtd, a host of authors have

established estimates of the type

min
1�n�N

‖f(n)‖ �d,ε N
ε−σ(d),

valid for each positive number ε, in which σ(d) is a suitable positive exponent.

The current state of the art is given by the permissible exponents σ(d) = 21−d

(Schmidt [19] for d = 2, and R. C. Baker [1], [3] for d � 3), and σ(d) =

S(d)−1 for a certain exponent S(d) with S(d) ∼ 4d2 log d (see Corollary 1.3 of

Wooley [24]). The conclusion of Theorem 1.3 is therefore rather sharper than

conclusions available in the analogous classical situation whenever d > 2. In

Theorem 6.1 below, we offer more general conclusions. These may be compared

with results in Chapter 10 of [2] that address situations in which the polynomials

Fj are either quadratic or diagonal forms.

Acknowledgment. The authors are grateful to the referee for numerous sug-

gestions concerning the exposition of this paper.

2. Quasi-algebraically closed fields

Our conclusions extend to cover function fields in which the field of constants

is any quasi-algebraically closed field. We recall that a field k is called quasi-

algebraically closed if every non-constant homogeneous polynomial over k,

having a number of variables exceeding its degree, possesses a non-trivial zero.

In this context we recall the language of Lang [13], and introduce some of our

own. We say that k is a strongly Ci-field, or more briefly a C∗
i -field, when
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any Chevalley polynomial of positive degree d lying in k[x], having more than

di variables, necessarily possesses a non-trivial k-rational zero. When such a

conclusion holds only for forms, we say instead that k is a Ci-field. In this

terminology, algebraically closed fields such as C are C∗
0 -fields, and from the

Chevalley–Warning theorem (see [8] and [23]) it follows that the finite field Fq

having q elements is a C∗
1 -field. Work of Lang [13] and Nagata [16], moreover,

shows that algebraic extensions of C∗
i -fields are C∗

i , and that a transcenden-

tal extension, of transcendence degree j, over a C∗
i -field is C∗

i+j . The same

conclusions hold in the absence of asterisk decorations.

In this section we recall elements of Ci-theory relevant to our subsequent

arguments.

Lemma 2.1: Let k be a C∗
i -field, and suppose that for 1 � j � r, the polynomial

gj(x) ∈ k[x1, . . . , xs] is Chevalley of degree at most d. Suppose also that s > rdi.

Then the system of equations gj(x) = 0 (1 � j � r) possesses a non-trivial

k-rational solution. When k is merely a Ci-field, the same conclusion holds

provided that the polynomials gj are forms.

Proof. This is Theorem 1b of Nagata [16].

Note that when k is a Ci-field, then it is a consequence of Lemma 2.1 that k

is a C∗
i+1-field. For if g(x) ∈ k[x1, . . . , xs] is a Chevalley polynomial of degree

d, then one may write g in the shape g(x) = g1(x) + · · · + gd(x), where each

gj is homogeneous of degree j. In particular, the equation g(x) = 0 has a non-

trivial k-rational solution provided only that the system gj(x) = 0 (1 � j � d)

has such a solution. But the latter is a system of d simultaneous homogeneous

equations of degree at most d, and by Lemma 2.1 this system has a non-trivial

k-rational solution whenever s > di+1, thereby confirming our earlier claim.

We say that a form Ψ(x) ∈ k[x1, . . . , xs] is normic when it satisfies the

property that the equation Ψ(x) = 0 has only the trivial solution x = 0. When

such is the case, and the form Ψ(x) has degree d and contains di variables, then

we say that Ψ is normic of order i. Plainly, when k is a Ci-field, any normic

form Ψ(x) of degree d can have at most di variables. We note also that when

k = Fq, then for each natural number d there exist normic forms of degree d

possessing precisely d variables. In order to exhibit such a form, consider a field

extension L of Fq of degree d, and examine the norm form Ψ(x) defined by
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considering the norm map from L to Fq with respect to a coordinate basis for

the field extension of L over Fq.

When m is a non-negative integer, and F1, . . . , Fr ∈ K∞[x1, . . . , xs], it is

convenient to define Dm(F) = Dm(F1, . . . , Fr) by putting

Dm(F1, . . . , Fr) = (degF1)
m + · · ·+ (degFr)

m.

Lemma 2.2: Let k be a C∗
i -field, and suppose that for 1 � j � r, the poly-

nomial gj(x) ∈ k[x1, . . . , xs] is Chevalley. Suppose also that there are normic

forms over k of order i of each positive degree. Then whenever s > Di(g), the

system of equations gj(x) = 0 (1 � j � r) possesses a non-trivial k-rational

solution. When k is merely a Ci-field, the same conclusion holds provided that

the polynomials gj are forms.

Proof. This is Theorem 4 of Lang [13] when k is a Ci-field, whilst the argu-

ment of the proof of this theorem delivers the desired conclusion also when k is

C∗
i .

3. Solving inequalities via Ci-theory

We now apply the theory of Ci-fields, due to Lang [13] and Nagata [16], so as

to bound the solutions of diophantine inequalities over function fields k(t).

Theorem 3.1: Let k be a C∗
i -field. Suppose that Fj(x) ∈ K∞[x1, . . . , xs]

(1 � j � r) are Chevalley polynomials of degree at most d, whose

coefficients have magnitude not exceeding the positive number H . Put Δ =

degF1+ · · ·+degFr, and suppose that s > Δdi. Then whenever 0 < ε � γ−dH ,

the system of inequalities

(3.1) 〈Fj(x)〉 < ε (1 � j � r)

admits a solution x ∈ k[t ]s satisfying 0 < 〈x〉 � (H/ε)rd
i/(s−Δdi). The same

conclusion holds for Ci-fields k when the polynomials Fj are forms.

Proof. We suppose that k is a C∗
i -field, and that for 1 � j � r, the polynomial

Fj(x) ∈ K∞[x1, . . . , xs] is Chevalley of degree dj � d. Let H be an upper bound

for the magnitude of the non-zero coefficients occurring in Fj(x) (1 � j � r),

and write h for the largest integer for which γh � H . It follows that for

1 � j � r, the coefficients of Fj(x) each have degree at most h. We take
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B to be a non-negative integer to be chosen later, and consider an s-tuple

(x1, . . . , xs) ∈ k[t ]s wherein each coordinate xn has t-degree B. Put

(3.2) xn = yn0 + yn1t+ · · ·+ ynBt
B (1 � n � s),

with yn0, . . . , ynB ∈ k (1 � n � s), and consider the polynomial obtained by

substituting this choice for x into Fj(x) (1 � j � r). Thus, for 1 � j � r, we

obtain

(3.3) Fj(x) =
∑

m�djB+h

Gjm(y)tm,

where each polynomial Gjm(y) ∈ k[y10, . . . , ysB] is Chevalley of degree at most

dj for 1 � j � r. Let M be the least integer for which γM > 1/ε, so that

γM−1 � 1/ε. We seek a non-trivial solution y ∈ ks(B+1) to the system of

equations

(3.4) Gjm(y) = 0 (−M < m � djB + h, 1 � j � r).

In view of (3.3), the s-tuple x ∈ k[t ]s, associated to y via (3.2), provides a

non-trivial solution to the system of inequalities

〈Fj(x)〉 � γ−M (1 � j � r),

and hence to the system (3.1).

The system (3.4) consists of djB+h+M equations of degree at most dj , for

1 � j � r, in s(B+1) variables. Since k is presently supposed to be a C∗
i -field,

we find from the first conclusion of Lemma 2.1 that the system (3.4) possesses

a non-trivial solution y ∈ ks(B+1) whenever

(3.5) s(B + 1) > di
r∑

j=1

(djB + h+M).

Write Δ = d1+ · · ·+dr. The hypotheses of the statement of the theorem permit

us to assume that ε � γ−dH , which implies that γ−M < ε � γ−dH < γh+1−d.

We therefore have h + M � d, so that when s > Δdi, the condition (3.5) is

satisfied for the largest non-negative integral value of B satisfying (s−Δdi)B �
rdi(h +M) −Δdi. On recalling that our definitions of H and M ensure that

γh � H and 1/ε < γM � γ/ε, it follows in particular that there exists a

non-trivial solution x ∈ k[t ]s to the system (3.1) with

〈x〉s−Δdi � γ−Δdi

(γh+M )rd
i � γ(r−Δ)di

(H/ε)rd
i

.
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Since the lower bound Δ � r follows from the hypotheses of the statement

of the theorem, the first conclusion of Theorem 3.1 now follows. The second

follows in like manner by making use of the final assertion of Lemma 2.1.

Theorem 1.1 is an immediate consequence of the last theorem, since Fq is a

C∗
1 -field. We remark that when k is a C∗

i -field, and there are normic forms of

order i for each positive degree, then the conclusions of Theorem 3.1 may be

sharpened. If one makes use of Lemma 2.2 in place of Lemma 2.1 in the above

argument, then one may replace the constraint (3.5) by the condition

s(B + 1) >
r∑

j=1

(djB + h+M)dij .

From here one finds that whenever s > Di+1(F), a solution of the system (3.1)

exists for which 〈x〉 � (H/ε)Di(F)/(s−Di+1(F)). The same conclusion holds for

Ci-fields when the polynomials Fj are forms.

We have already remarked on the paucity of explicit results, in the classical

rational case, for general homogeneous forms of higher degree. In the diagonal

situation, on the other hand, much more is known, and one even has available

reasonable bounds for the size of the smallest non-trivial solutions. Put ρ(8) =

15/8 and ρ(9) = 1. Also, let s be either 8 or 9, and consider non-zero real

numbers λ1, . . . , λs. Then it follows from work of Brüdern [6] that for each

positive number ε, and for any exponent ρ exceeding ρ(s), the inequality

|λ1x
3
1 + · · ·+ λsx

3
s| < ε

possesses an integral solution x satisfying

(3.6) 0 < |λ1x
3
1|+ · · ·+ |λsx

3
s| � |λ1 · · ·λs|ρ(1/ε)sρ−1.

Sharper conclusions are available when the coefficients λi are integral. Indeed,

Brüdern [5] shows that in such circumstances the exponent ρ(8) = 15/8 may be

replaced by 5/3. We refer the reader to [17] for earlier work on this topic.

The argument that we employ to establish Theorem 3.1 is easily adapted to

provide bounds of the shape (3.6), and leads to the following conclusion.

Theorem 3.2: Let k be a Ci-field, and let s and d be natural numbers with

s > di+1. Put ρ = 1/(s− di+1). Then whenever λj ∈ K×∞ (1 � j � s), and

(3.7) 0 < ε � γ−d〈λ〉1−s/di+1〈λ1 · · ·λs〉1/di+1

,
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the inequality

(3.8) 〈λ1x
d
1 + · · ·+ λsx

d
s〉 < ε

possesses a solution x ∈ k[t ]s satisfying

0 < max
1�n�s

〈λnx
d
n〉 < γd−1〈λ1 · · ·λs〉ρ(1/ε)sρ−1.

Proof. We adopt an approach similar to that employed in our proof of Theorem

3.1. Let k be a Ci-field. For 1 � j � s, put hj = −ordλj , and let h =

max{h1, . . . , hs}. We take B to be a non-negative integer to be chosen in

due course, and on this occasion we consider an s-tuple (x1, . . . , xs) ∈ k[t ]s

with the property that for 1 � j � s, the polynomial xj has t-degree Bj =

B+[(h−hj)/d]. Here, as usual, we write [θ] for the largest integer not exceeding

θ. Taking

(3.9) xn = yn0 + yn1t+ · · ·+ ynBnt
Bn (1 � n � s),

with yn0, yn1, . . . , ynBn ∈ k (1 � n � s), we obtain the expression

(3.10) λ1x
d
1 + · · ·+ λsx

d
s =

∑

m�dB+h

Gm(y)tm,

where each polynomial Gm(y) ∈ k[y10, . . . , ysBs ] is homogeneous of degree d.

Notice here that our definition of Bj ensures that the summation over m on the

right-hand side of (3.10) need not extend beyond dB + h, for when 1 � j � s,

one has

−ord(λjx
d
j ) = dBj + hj = dB + d[(h− hj)/d] + hj � dB + h.

Let M be the least integer for which γM > 1/ε, so that γM−1 � 1/ε, and put

D = B1 + · · ·+Bs. We seek a non-trivial solution y ∈ kD+s to the system

(3.11) Gm(y) = 0 (−M < d � dB + h).

In view of (3.10) and our choice for M , the s-tuple x ∈ k[t ]s, associated to y

via the relations (3.9), then provides a non-zero solution of the inequality (3.8).

The system (3.11) consists of dB + h+M homogeneous equations of degree

d in D + s variables. Since k is a Ci-field, we find from the second conclusion

of Lemma 2.1 that the system (3.11) possesses a non-trivial solution y ∈ kD+s

whenever D+s > (dB+h+M)di. This condition is equivalent to the constraint

s(B + 1) +

s∑

j=1

[(h− hj)/d] > di+1B + di(h+M),
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which is to say

(3.12) (s− di+1)B > di(h+M)− s−
s∑

j=1

[(h− hj)/d].

Since ε > γ−M , the hypothesis (3.7) permits us to assume that

h+M > d+

s∑

j=1

(h− hj)/d
i+1.

It follows that the condition (3.12) is satisfied for a non-negative integral value

of B with

(s− di+1)B � di(h+M)− di+1 −
s∑

j=1

[(h− hj)/d].

The last condition is satisfied with a value of B satisfying the condition

(s− di+1)(dB + h) � di+1M − di+2 + sh−
s∑

j=1

(h− hj) + s(d− 1)

� di+1(M − 1) +

s∑

j=1

hj + (s− di+1)(d− 1).

In particular, when s > di+1, there exists a solution x ∈ k[t ]s to the inequality

(3.8) with

0 < max
1�n�s

〈λnx
d
n〉s−di+1 � 〈λ1 · · ·λs〉(γd−1)s−di+1

(γM−1)d
i+1

,

and the conclusion of the theorem is now immediate.

4. Lower bounds

By adapting an argument employed by Cassels [7] in his work on solutions of

rational quadratic forms, we are able to derive lower bounds for the magnitude

of non-trivial solutions of certain diophantine equations over Fq[t]. Such lower

bounds apply also, of course, to the solutions of corresponding diophantine

inequalities. We begin with a simple lemma.

Lemma 4.1: Let k be a field with the property that there exists a normic form

Ψ(x) ∈ k[x1, . . . , xD] of degree d. When r � 1, put Δ = rdD, and define the



Vol. 191, 2012 DIOPHANTINE INEQUALITIES 731

polynomials Φm(x) ∈ K[x1, . . . , xΔ] by putting

(4.1) Φm(x) =

d−1∑

j=0

tjΨ(xmdD+jD+1, . . . , xmdD+jD+D) (0 � m < r).

Then, whenever x ∈ k[t ]Δ, one has Φm(x) = 0 (0 � m < r) if and only if

x = 0.

Proof. Observe first that since the variables occurring in the respective polyno-

mials of the system (4.1) are disjoint, it suffices to prove the conclusion of the

lemma when r = 1. Consider then the polynomial

Φ(x) =
d−1∑

j=0

tjΨ(xjD+1, . . . , xjD+D).

Suppose, if possible, that the equation Φ(x) = 0 possesses a non-trivial solution

x ∈ k[t ]dD. There is no loss of generality in supposing that for some index j

with 1 � j � dD, the polynomial xj is not divisible by t, for the homogeneity

of Ψ ensures that we may divide every coordinate through by any power of t

without impacting solubility. Given such a primitive solution, we first reduce

modulo t to obtain the congruence

(4.2) Φ(x) ≡ Ψ(x1, . . . , xD) ≡ 0 (mod t).

Let xj0 denote the constant term of xj for 1 � j � D. Then the congruence

(4.2) implies that Ψ(x10, . . . , xD0) = 0. Since Ψ is normic, it follows that xj0 = 0

(1 � j � D), and hence that t divides xj for 1 � j � D. Write yj = t−1xj

(1 � j � D), and substitute into the equation Φ(x) = 0. On dividing by t, we

obtain the new equation

d−2∑

j=0

tjΨ(x(j+1)D+1, . . . , x(j+1)D+D) + td−1Ψ(y1, . . . , yD) = 0.

A comparison with our original equation Φ(x) = 0 leads to the conclusion that

t divides xD+j (1 � j � D), and so we may repeat the previous manipulation.

Proceeding inductively, we find that t|xj for 1 � j � dD, contradicting the

assumption that xj is not divisible by t for some index j. We are therefore

forced to conclude that when x ∈ k[t ]dD and Φ(x) = 0, then necessarily x = 0.

In view of our earlier discussion, this completes the proof of the lemma.
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Theorem 4.2: Let k be a Ci-field, and suppose that a normic form of degree

d exists in k[x] with D variables. Suppose also that r is a natural number and

s > rdD. Then there exist arbitrarily large numbers H , and systems of forms

Fj(x;H) ∈ K∞[x1, . . . , xs] (1 � j � r) of degree d, satisfying the following

properties:

(a) the coefficients of F1, . . . , Fr each have magnitude not exceeding H , and

(b) the smallest non-trivial solution x ∈ k[t ]s of the simultaneous in-

equalities 〈Fj(x;H)〉 < 1 (1 � j � r) satisfies the bound 〈x〉 �
(γ1−dH)rD/(s−rdD).

Proof. We seek polynomials Fj(x;H) (1 � j � r) having coefficients lying in

k[t ]. Of course, whenever x ∈ k[t ]s, the polynomials Fj(x;H) (1 � j � r)

all lie in k[t ]. Consequently, given such polynomials, the system of inequalities

〈Fj(x;H)〉 < 1 (1 � j � r) has a non-trivial solution x ∈ k[t ]s if and only if

the system of equations Fj(x;H) = 0 (1 � j � r) has a non-trivial solution

x ∈ k[t ]s. Let Ψ(x1, . . . , xD) be a normic form of degree d, the existence of

which is assured by the hypotheses of the statement of the theorem. For the

sake of convenience, write Δ = rdD. We define the polynomials Φm(x) ∈
K[x1, . . . , xΔ] as in (4.1), and observe that the polynomials Φm(x) (0 � m < r)

have coefficients lying in k[t ]. In view of Lemma 4.1, these polynomials have

the property that, when x ∈ k[t ]Δ, one has Φm(x) = 0 (0 � m < r) if and only

if x = 0.

Now let s be an integer with s > Δ, and let h ∈ N. We claim that there exists

a positive integer δ having the property that there exist at least hΔ(s−Δ+1)

distinct monic irreducible polynomials in k[t ] of degree δ. When k has infinitely

many elements, our claim follows with δ = 1 by considering polynomials of the

shape t + λ, with λ ∈ k. When k is a finite field, on the other hand, then

k is isomorphic to Fq for some prime power q, and so it suffices to consider

polynomials of degree sufficiently large in terms of h, Δ and s. Here we make

use of the analogue of the prime number theorem for the ring Fq[t], so that the

number of monic irreducible polynomials of degree δ in Fq[t] is asymptotic to

qδ/δ, as δ → ∞, a quantity which tends to infinity with δ (see [18, Corollary to

Proposition 2.1]). We may therefore take distinct monic irreducible polynomials

πuwl ∈ k[t ] (1 � u � Δ, 0 � w � s−Δ, 1 � l � h),
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each of degree δ. When 1 � u � Δ and 0 � w � s−Δ, write

�uw =
∏

1�l�h

πuwl,

put

(4.3) auv =
∏

0�w�s−Δ
w �=v

�uw (1 � u � Δ, 0 � v � s−Δ),

and consider the linear forms

(4.4) Lu(x) = au0xs−Δ+u +

s−Δ∑

v=1

auvxv (1 � u � Δ).

An examination of the definitions (4.3) and (4.4) reveals that whenever x ∈ k[t ]s

and Lu(x) = 0, then necessarily �u0|xs−Δ+u and �uv|xv (1 � v � s−Δ).

We now seek a non-trivial solution x ∈ k[t ]s of the system of equations

(4.5) Φm(L1(x), . . . , LΔ(x)) = 0 (0 � m < r).

From the discussion in the opening paragraph of this proof, we find that the

system (4.5) has a non-trivial solution x ∈ k[t ]s if and only if the same holds

for the system

L1(x) = · · · = LΔ(x) = 0.

This is a system of Δ homogeneous linear equations in the variables x1, . . . , xs.

Since, by hypothesis, we have s > Δ, this system of equations has a non-trivial

solution x ∈ k[t ]s. If one were to have x1 = · · · = xs−Δ = 0, then it would

follow from (4.4) that xs−Δ+u = 0 for 1 � u � Δ. The latter implies that x = 0,

contradicting the non-triviality of x. Consequently, there exists an integer v,

with 1 � v � s − Δ, for which xv �= 0. But the conclusion of the previous

paragraph then implies that �uv|xv (1 � u � Δ). Since the monic irreducibles

πuwl are distinct, it therefore follows that xv is divisible by the polynomial

�1v · · ·�Δv. We thus deduce that any non-trivial solution of the system (4.5)

satisfies

(4.6) 〈x〉 � 〈�1v · · ·�Δv〉 = (γδh)Δ.

The polynomial Ψ(y1, . . . , yD) has coefficients from k, and the magnitude of

each of the non-zero coefficients of the linear forms Lu(x) is precisely (γδh)s−Δ.
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Thus, considered as a polynomial in K[x] with coefficients lying in k[t ], the size

of the coefficient of greatest magnitude within the system of polynomials

Ψ(LmdD+jD+1(x), . . . , LmdD+jD+D(x)) (0 � m < r, 0 � j < d)

is at most (γδh)d(s−Δ). From (4.1), it therefore follows that the size of the

coefficient of greatest magnitude within the polynomials Φm(x) (0 � m < r)

is at most H = γd−1(γδh)d(s−Δ). On applying the latter expression to rewrite

γδh in terms of H in (4.6), and recalling that Δ = rdD, one deduces that any

non-trivial solution of the system (4.5) satisfies

〈x〉 � (γ1−dH)Δ/(d(s−Δ)) = (γ1−dH)rD/(s−rdD).

This completes the proof of the theorem.

In the finite field Fq, there exists a normic form of degree d, in d variables,

for every positive integer d. The conclusion of Theorem 1.2 therefore follows

at once. We note that Cassels [7] has established analogous lower bounds in

the classical situation for rational zeros of a quadratic form. One should ob-

serve, however, that in Cassels’ work, the integer D may be taken arbitrarily

large, owing to the existence of definite forms in any given number of variables.

There is also related work of Masser [15] concerning integral zeros of quadratic

polynomials.

5. Oddly Ci-fields

We refer to a polynomial having no monomials of even degree as an odd

Chevalley polynomial. Motivated by work of Lang concerning the theory

of real places (see §3 of [14]), we say that k is an oddly C∗
i -field when any odd

Chevalley polynomial lying in k[x], having more than di variables, necessarily

possesses a non-trivial k-rational zero. When such holds only for forms of odd

degree, we say instead that k is oddly Ci. A field k is called real if −1 cannot

be expressed as a sum of squares in k. The field k is described as real closed

when it is maximal with respect to this property in its algebraic closure. Thus,

the field of real numbers R is both real closed and oddly C∗
0 . Also, a general-

isation of the Corollary to Theorem 15 of Lang [14]1 shows that the function

field R(t1, . . . , tn) is oddly C∗
n. We briefly sketch below how to establish an odd

version of Theorem 3.1.

1 Here we have noted the transparent typographic error in the statement of this corollary.
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Theorem 5.1: Modify Theorem 3.1 so that when i � 1, the assumption that

k be a C∗
i -field is replaced by the hypothesis that it be oddly C∗

i , and likewise

in the absence of asterisk decorations. In addition, replace the assumption that

k be a C∗
0 -field by the hypothesis that it be real closed. Also, let Fj(x) ∈

K∞[x1, . . . , xs] be odd Chevalley polynomials of degree at most d. Then, under

the remaining hypotheses of Theorem 3.1, one has the same conclusions.

In our proof of Theorem 5.1, we can afford to be relatively informal, the hard

work having already been accomplished. The proof of the second conclusion

of Theorem 5.1 follows in precisely the same manner as that of Theorem 3.1,

substituting Theorems 12 and 15 of Lang [14] in place of Lemma 2.1. In order to

avoid hypotheses concerning the existence of normic forms in such an argument,

one should modify the proof of Theorem 12 of [14] along the lines of the proof of

Theorem 1a of Nagata [16]. For the corresponding conclusion on oddly C∗
i -fields

with i � 1, one may proceed in like manner. When k is real closed, it remains to

verify that any system of r odd Chevalley polynomials, in more than r variables,

possesses a non-trivial zero. This we achieve by means of an application of

an algebraic version of the Borsuk–Ulam theorem. Let Fj(x) ∈ k[x1, . . . , xs]

(1 � j � r) be odd Chevalley polynomials, and suppose that s > r. By setting

xj = 0 for r + 1 < j � s, we may suppose without loss that s = r + 1. The

map f : ks → kr, defined by taking f(x) = (F1(x), . . . , Fr(x)), maps the r-

dimensional sphere, defined by the equation x2
1+ · · ·+x2

s = 1, into kr. Then by

the algebraic version of the Borsuk–Ulam theorem (see Knebusch [12]), there

exists a point a ∈ ks with a21+· · ·+a2s = 1 for which Fj(a) = 0 (1 � j � r). This

is achieved, in fact, by finding such a point with Fj(a) = Fj(−a) (1 � j � r).

Not only does this confirm our earlier assertion, but by utilising the discussion

surrounding the Corollary to Theorem 15 of Lang [14], one finds also that a

function field in n variables over a real closed field is oddly C∗
n.

The refinements to Theorem 3.1 described in its sequel apply, mutatis mu-

tandis, to the conclusions of Theorem 5.1.

6. Distribution modulo k[t ]

A simple modification of the argument employed in the proof of Theorem 3.1

delivers a result on the distribution of polynomials modulo k[t ].



736 C. V. SPENCER AND T. D. WOOLEY Isr. J. Math.

Theorem 6.1: Let k be a C∗
i -field, and suppose that for 1 � j � r, the

polynomial Fj(x) ∈ K∞[x1, . . . , xs] is Chevalley of degree at most d. Then for

each positive number N , the simultaneous inequalities

〈〈Fj(x)〉〉 < N−s/(rdi) (1 � j � r)

possess a non-trivial solution x ∈ k[t ]s with 〈x〉 � N . When k is a Ci-field, the

same conclusion holds provided that the polynomials Fj(x) are forms.

Proof. The proof of Theorem 6.1 is swiftly accomplished by means of the argu-

ment of the proof of Theorem 3.1. With the same notation as that employed in

the latter, we seek a non-trivial solution y ∈ ks(B+1) to the system of Chevalley

polynomial equations

(6.1) Gjm(y) = 0 (−M < m < 0, 1 � j � r),

in place of (3.4). In view of (3.3), the element x ∈ k[t ]s, associated to y via the

relations (3.2), provides a non-trivial solution of the system of inequalities

(6.2) 〈〈Fj(x)〉〉 � γ−M (1 � j � r).

The system (6.1) consists ofM−1 equations of degree at most d, for 1 � j � r,

in s(B + 1) variables. Since we may currently suppose k to be a C∗
i -field, we

find from the first conclusion of Lemma 2.1 that the system (6.1) possesses a

non-trivial solution y ∈ ks(B+1) whenever

s(B + 1) > di
r∑

j=1

(M − 1) = (M − 1)rdi.

This condition is satisfied for the least integral value of M satisfying rdiM �
s(B + 1), and hence the system (6.2) has a non-trivial solution x ∈ k[t ]s with

〈x〉 � γB and γ−M � (γB+1)−s/(rdi). The first conclusion of Theorem 6.1

follows on taking B to be the largest non-negative integer satisfying γB � N ,

since then we have (γB+1)−1 < N−1. The second conclusion of the theorem

follows in a similar manner.

Making use, once again, of the fact that Fq is a C∗
1 -field, we derive the con-

sequence of Theorem 6.1 recorded in Theorem 1.3. Finally, we note that a

conclusion analogous to that of Theorem 6.1 follows for oddly C∗
i -fields, and

for oddly Ci-fields, provided that the polynomials Fj(x) are respectively odd

Chevalley polynomials, and forms of odd degree.
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