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ABSTRACT

The following result is proved. Let w be a multilinear commutator and

n a positive integer. Suppose that G is a residually finite group in which

every product of at most 896 w-values has order dividing n. Then the

verbal subgroup w(G) is locally finite.

1. Introduction

According to the solution of the Restricted Burnside Problem — the celebrated

result of Zelmanov [25], [26] — every residually finite group of finite exponent

is locally finite. The Lie-theoretic methods used in the solution happened to be

very effective in the treatment of other problems in group theory. In [18] we

used the methods to prove the following theorem.

Theorem 1.1: Let n be a prime-power and G a residually finite group satis-

fying the identity [x, y]n ≡ 1. Then G′ is locally finite.

Note that in general a periodic residually finite group need not be locally

finite. The corresponding examples have been constructed in [2, 7, 9, 10,

24]. Moreover, if the assumption that G is residually finite is dropped from

the hypothesis of Theorem 1.1, the derived group need not even be periodic.
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Deryabina and Kozhevnikov showed that for sufficiently big odd integers n there

exist groups G in which all commutators have order dividing n such that G′ has
elements of infinite order [4]. Independently, this was also proved by Adian [1].

In view of Theorem 1.1 we raised in [19] the next problem.

Problem 1.2: Let n be a positive integer and w a word. Assume that G is a

residually finite group such that any w-value in G has order dividing n. Does

it follow that the verbal subgroup w(G) is locally finite?

If w is a word in variables x1, . . . , xt we think of it primarily as a function of

t variables defined on any given group G. The corresponding verbal subgroup

w(G) is the subgroup of G generated by the values of w. The word w is a

commutator if the sum of the exponents of any variable involved in w is zero.

According to the solution of the Restricted Burnside Problem the answer to

the above question is positive if w(x) = x. In fact it is easy to see that the

answer is positive whenever w is any non-commutator word. Indeed, suppose

w(x1, . . . , xt) is such a word and that the sum of the exponents of xi is r �= 0.

Now, given a residually finite group G, substitute the unit for all the variables

except xi and an arbitrary element g ∈ G for xi. We see that gr is a w-value

for all g ∈ G. Hence G satisfies the identity xnr = 1 and therefore is locally

finite by the result of Zelmanov.

Hence, Problem 1.2 is essentially about commutator words. In [19] the prob-

lem was solved positively in the case where n is a prime-power and w a multi-

linear commutator (outer commutator word). A word w is a multilinear com-

mutator if it can be written as a multilinear Lie monomial. Particular examples

of multilinear commutators are the derived words, defined by the equations

δ0(x) = x,

δk(x1, . . . , x2k) = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1 . . . , x2k)],

and the lower central words

γ1(x) = x,

γk+1(x1, . . . , xk+1) = [γk(x1, . . . , xk), xk+1].

In the case that n is not a prime-power Problem 1.2 seems to be very hard.

We mention a theorem obtained in [21].
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Theorem 1.3: Let n be a positive integer that is not divisible by p2q2 for any

distinct primes p and q. Let G be a residually finite group satisfying the identity

([x1, x2][x3, x4])
n ≡ 1. Then G′ is locally finite.

Some further progress has been made in [22] where the following theorem was

proved.

Theorem 1.4: For any positive integer n there exists t depending only on n

such that if w is a multilinear commutator and G is a residually finite group in

which every product of t values of w has order dividing n, then w(G) is locally

finite.

More recently, it was shown that in the case that w = [x, y] the number t in the

above theorem can be taken to be 68 independently of n [23]. The purpose of the

present article is to prove a similar result for arbitrary multilinear commutators.

Thus, we improve Theorem 1.4 as follows.

Theorem 1.5: Let n be a positive integer and w a multilinear commutator.

Let G be a residually finite group in which every product of 896 w-values has

order dividing n. Then w(G) is locally finite.

The constant 896 in the theorem comes from the famous results of Nikolov

and Segal on commutator width of finite groups. In the course of proving

Theorem 1.5 we need to consider subgroups of a finite soluble group that can

be generated by 4 w-values. In the paper of Segal [17] it was shown that every

element in the derived group of a finite soluble d-generated group is a product

of at most 72d2+46d commutators. A better bound can be obtained working

through the proofs given in [15]. It follows that every element of the derived

group of a finite soluble d-generated group is a product of at most

min{d(6d2 + 3d+ 4), 8d(3d+ 2)}

commutators. In the case that d = 4 this is 448. We apply this result in the

situation where each commutator is a product of 2 w-values. So the constant

896 comes about.

Thus, the theorem of Nikolov and Segal plays an important role in the proof

of Theorem 1.5. The proof also relies on the classification of finite simple groups

as well as on the Lie-theoretic techniques that Zelmanov created in his solution

of the Restricted Burnside Problem. We also use a recent result, essentially due
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to Flavell, Guest and Guralnick, that an element a of a finite group G belongs

to Fh(G) if and only if every 4 conjugates of a generate a soluble subgroup of

Fitting height at most h [6]. It is the necessity to use this result that accounts

for the difference between the constants 896 in Theorem 1.5 and 68 in the case

of simple commutators [x, y] [23]. When dealing with simple commutators [x, y]

it is enough to bound the Fitting height of some 2-generated subgroups while,

as was already mentioned, the case of general multilinear commutators requires

considering 4-generated subgroups. It should be said that the case of arbitrary

multilinear commutators differs from the case of simple commutators [x, y] in

several ways. Probably the most significant difference occurs when reducing the

problem to questions about finite soluble groups. In the case of commutators

[x, y] this was performed with a relatively short argument as in [23, Proposition

2.3]. In the present paper the short argument was of no help at all. Instead, we

use a rather intricate Proposition 2.5 in the next section.

2. Some useful results on finite groups

All groups considered in this and the next sections are finite. We use the ex-

pression “{a, b, c, . . .}-bounded” to mean “bounded from above by some func-

tion depending only on a, b, c, . . . ”. Recall that the Fitting subgroup F (G)

of a group G is the product of all normal nilpotent subgroups of G. The

Fitting series of G can be defined by the rules: F0(G) = 1, F1(G) = F (G),

Fi+1(G)/Fi(G) = F (G/Fi(G)) for i = 1, 2, . . . . If G is a finite soluble group,

then the minimal number h = h(G) such that Fh(G) = G is called the Fitting

height of G. We will require the following proposition.

Proposition 2.1: Let G be a group and a ∈ G. Suppose that every subgroup

of G that can be generated by four conjugates of a is soluble with Fitting height

at most h. Then a ∈ Fh(G).

Essentially, the above proposition is due to Flavell, Guest and Guralnick. All

the tools and arguments that are used in the proof of Proposition 2.1 can be

found in [6]. However, since the proposition was not stated in [6] explicitly, we

outline the proof here.

The fact of crucial importance is that if every four conjugates of an element a

in a groupG generate a soluble subgroup, then a belongs to the soluble radical of

G. This was established independently in [6] and also in Gordeev, Grunewald,
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Kunyavskii and Plotkin [8]. The proof uses the classification of finite simple

groups. Therefore, it is sufficient to prove Proposition 2.1 under the additional

hypothesis that G is soluble. The key rôle in the soluble case is played by the

following lemma, due to Flavell, Guest and Guralnick [6].

Lemma 2.2: Let G be a soluble group that possesses an element a such that

G = 〈aG〉. Let k be a field. Let V be a nontrivial irreducible kG-module. Then

dimCV (a) ≤ 3
4 dimV .

The particular case of the above lemma where a has order 3 was established

earlier in Al-Roqi and Flavell [3]. This enabled the authors to prove that if G

is a soluble group containing an element a of order 3 such that G = 〈aG〉, then
there exist four conjugates of a that generate a subgroup with the same Fitting

height as G. Using Lemma 2.2 in place of the particular case of 3-elements

in the Al-Roqi and Flavell arguments, we see that the assumption that a is of

order 3 can be dropped and so we obtain the following lemma.

Lemma 2.3: Let G be a soluble group that possesses an element a such that

G = 〈aG〉. Then there exist four conjugates of a that generate a subgroup with

the same Fitting height as G.

Now the proof of Proposition 2.1 becomes very easy.

Proof. As was mentioned above we can assume thatG is soluble. SetH1 = 〈aG〉,
H2 = 〈aH1〉, H3 = 〈aH2〉, etc. Let H =

⋂
i Hi. Then H is the smallest

subnormal subgroup of G containing a and it is clear that H = 〈aH〉. It follows
that the Fitting height of H is at most h. Since H is subnormal, we conclude

that a ∈ Fh(G).

We call an element a of G a δk-commutator if it is a value of the word δk

in G. A well-known corollary of the Hall–Higman theory [12] says that the

Fitting height of a finite soluble group of exponent n is bounded by a number

depending only on n. We will denote the number by h(n).

Lemma 2.4: Let k, n ≥ 1 and G be a soluble group in which every product of

896 δk-commutators has order dividing n. Then h(G) ≤ h(n) + k + 1.

Proof. Let a = a1 ∈ G be a δk-commutator and a2, a3, a4 some conjugates of a.

Put H = 〈a1, a2, a3, a4〉 and h = h(n). We know from [15] that every element

of H ′ is a product of 448 commutators of the form [x, ai] for suitable x ∈ G.
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Each commutator of the form [x, ai] is a product of 2 δk-commutators so every

element of H ′ is a product of 896 δk-commutators. Hence, H ′ is of exponent

n and so the Fitting height of H ′ is at most h. It follows that the Fitting

height of H is at most h+ 1. We now deduce from Proposition 2.1 that every

δk-commutator of G is contained in Fh+1(G). Therefore G(k) ≤ Fh+1(G) and

the lemma follows.

In what follows Xk(G) denotes the set of all δk-commutators obtained us-

ing elements of the group G. Note that if P is a subgroup of G, in general

Xk(G) ∩ P �= Xk(P ).

Let G be a finite group and k a positive integer. We will associate with G a

triple of numerical parameters nk(G) = (λ, μ, ν) where the parameters λ, μ, ν

are defined as follows.

If G is of odd order, we set λ = μ = ν = 0. Suppose that G is of even order

and choose a Sylow 2-subgroup P in G. If the derived length dl(P ) of P is at

most k + 1, we define λ = dl(P )− 1. Put μ = 2 if Xλ(P ) contains elements of

order greater than two and μ = 1 otherwise. We let ν = μ if Xλ(P ) �⊆ Z(P )

and ν = 0 if Xλ(P ) ⊆ Z(P ).

If the derived length of P is at least k+2, we define λ = k. Then μ will denote

the number with the property that 2μ is the maximum of orders of elements

in Xk(P ). Finally, we let 2ν be the maximum of orders of commutators [a, b],

where b ∈ P and a is an involution in a cyclic subgroup generated by some

element from Xk(P ).

The set of all possible triples nk(G) is naturally endowed with the lexico-

graphical order. Following the terminology used by Hall and Higman [12] we

call a group G monolithic if it has a unique minimal normal subgroup which is

non-abelian simple. In the modern literature such groups are very often called

“almost simple”.

Proposition 2.5: Let k ≥ 1 and G be a group of even order such that G has

no nontrivial normal soluble subgroups. Then G possesses a normal subgroup

L such that L is residually monolithic and nk(G/L) < nk(G).

Proof. Let M be a minimal normal subgroup of G. We know that M ∼=
S1 × S2 × · · · × Sr, where S1, S2, . . . , Sr are isomorphic simple groups. The

group G acts on M by permuting the simple factors so we obtain a representa-

tion of G by permutations of the set {S1, S2, . . . , Sr}. Let LM be the kernel of
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the representation. We want to show that nk(G/LM ) < nk(G). Suppose this

is not true and nk(G/LM ) = nk(G). Let P be a Sylow 2-subgroup of G and

assume first that the derived length of P is at least k+2. Suppose further that

ν(G) �= 0. Let q = 2ν . Since ν(G/LM ) = ν(G), there exist an involution a in

a cyclic subgroup generated by an element from Xk(P ) and b in P such that

[a, b] is of order q modulo LM . Then [a, b] permutes regularly some q factors

in {S1, S2, . . . , Sr}. Without loss of generality we will assume that S1 is one of

those factors and S1, . . . , Sq is the corresponding orbit under [a, b].

Suppose that a takes S1 outside the orbit S1, . . . , Sq.

Let Pi = P ∩ Si. Choose a nontrivial element x ∈ P1 and set y = [a, x], c =

[a, b]x. Then yc = [a, bx] is a commutator of the required form and therefore

(yc)q = 1. Write

1 = (yc)q = yyc
−1

yc
−2 · · · yc.

The element yyc
−1

yc
−2 · · · yc is a product of elements of the form xcj , each lying

in a different Sj ∈ {S1, . . . , Sq} and elements of the form x−acj lying in other

simple factors. Looking at it we conclude that yyc
−1

yc
−2 · · · yc �= 1. But that

means that the order of yc is divisible by 2q, a contradiction.

Therefore, for every i the a-orbit of Si is contained in S1, . . . , Sq. Suppose

that S1
a = Si1 , S2

a = Si2 , . . . , Sq
a = Siq . Again we look at the expression

1 = (yc)q = yyc
−1

yc
−2 · · · yc. As above, this is the product of elements of the

form xcj , each lying in a different Sj ∈ {S1, . . . , Sq}, and elements of the form

x−acj , each lying in a different Sj ∈ {S1, . . . , Sq} as well. Since both elements

x−a, xci1 lie in Si1 and since 1 = (yc)q, it follows that x−axci1 = 1 for every

x ∈ S1. From this and the fact that c = [a, b]x we deduce that ax−1[b, a]i1

commutes with x. Taking into account that also x−[b,a]i1 commutes with x

(because x−[b,a]i1 belongs to Sq−i1), we conclude that a[b, a]i1 commutes with

x for all x ∈ S1. Thus, a[b, a]i1 commutes with S1. Similarly, we arrive at the

conclusion that a[b, a]i2 commutes with S2, a[b, a]
i3 commutes with S3 and so

on. Recall that S1
[a,b] = S2, S2

[a,b] = S3, . . . , etc. Therefore all the elements

[a, b]a[b, a]i2 [b, a],

[a, b]2a[a, b]i3 [b, a]2,

...

[a, b]q−1a[a, b]iq [b, a]q−1
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commute with S1. Remembering that a is an involution we write

[a, b]a[b, a]i2 [b, a] = [a, b]i2+2a,

[a, b]2a[b, a]i3 [b, a]2 = [a, b]i3+4a,

...

[a, b]q−1a[b, a]iq [b, a]q−1 = [a, b]iq+2(q−1)a.

Therefore the elements [a, b]i1a, [a, b]i2+2a, . . . , [a, b]iq+2(q−1)a commute with S1.

Since [a, b] permutes regularly S1, S2, . . . , Sq, we deduce that

i1 ≡ i2 + 2 ≡ i3 + 4 ≡ · · · ≡ iq + 2(q − 1) (mod q).

It follows now that i1 = i1+q/2 and so S1 = S1+q/2, a contradiction.

Thus, if ν(G) �= 0, then ν(G/LM ) < ν(G). Suppose that ν(G) = 0, that is,

every involution a in a cyclic subgroup generated by an element from Xk(P ) is

central in P . Keeping the above notation we remark that since a centralizes Pi,

it follows that a normalizes Si for every i. Therefore a ∈ LM and we conclude

that μ(G/LM ) < μ(G).

So nk(G/LM ) < nk(G) whenever the derived length of P is at least k + 2.

We will now assume that the derived length of P is at most k + 1 and so

Xλ(P ) is contained in a normal abelian subgroup of P . Choose d ∈ Xλ(P ) and

x ∈ Pi. Since [x, d, d] = 1, it is easy to see that d normalizes SiSi
d. It follows

that d2 ∈ LM . Thus, μ(G/LM ) = 1. If μ(G) = 2, then nk(G/LM ) < nk(G)

so suppose that μ(G) = 1. If ν(G) = 0, it follows that d ∈ Z(P ) and so d

centralizes Pi whence we deduce that d ∈ LM , in which case λ(G/LM ) < λ(G)

and we are done.

It remains to deal with the case where ν(G) = 1 and ν(G/LM ) = 1. In

other words, we have to deal with the case where the elements of Xλ(P ) are

involutions generating a normal abelian subgroup of P . Moreover, there exist

d ∈ Xλ(P ) and b ∈ P such that [d, b] �∈ LM . It is clear that for some i we

have Si
d �= Si

[d,b]. Without loss of generality we assume that S1
d = S2 and

S1
[d,b] = S3. Now choose x ∈ P1 and write

1 = [d, bx]2 = ([d, x][d, b]x)2 = [d, x][d, x][d,b]
x

.

This shows that [d, x] commutes with [d, b]x, which easily leads to a contradic-

tion in view of the assumption that S1
d = S2 and S1

[d,b] = S3.

Thus, we have shown that nk(G/LM ) < nk(G). Let now L be the intersec-

tion of all the subgroups LM , where M ranges through the minimal normal
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subgroups of G. It follows that nk(G/L) < nk(G), so the proof of the propo-

sition will be complete once it is shown that L is residually monolithic. If T

is the product of the minimal normal subgroups of G, it is clear that T is the

product of pairwise commuting simple groups S1, S2, . . . , St and that L is the

intersection of the normalizers of Si. Since G has no nontrivial normal soluble

subgroups, it follows that CG(T ) = 1 and therefore any element of L induces

a nontrivial automorphism of some of the Si. Let ρi be the natural homomor-

phism of L into the group of automorphisms of Si. It is easy to see that the

image of ρi is monolithic and that the intersection of the kernels of all ρi is

trivial. Hence L is residually monolithic.

The next lemma is given without proof as it is precisely Lemma 3.2 from [20].

The proof is based on Lie-theoretic techniques created by Zelmanov.

Lemma 2.6: LetG be a group in which every δk-commutator is of order dividing

n. Let H be a nilpotent subgroup of G generated by a set of δk-commutators.

Assume that H is in fact m-generated for some m ≥ 1. Then the order of H is

{k,m, n}-bounded.
The lemma that follows partially explains why Proposition 2.5 is important

for the proof of Theorem 1.5.

Lemma 2.7: There exist {k, n}-bounded numbers λ0, μ0, ν0 with the property

that if G is a group in which every δk-commutator is of order dividing n, then

nk(G) ≤ (λ0, μ0, ν0).

Proof. Suppose that G is a group of even order in which every δk-commutator

is of order dividing n and let P be a Sylow 2-subgroup of G. It suffices to show

that there exists a {k, n}-bounded number ν0 such that if b ∈ P and a is the

involution in a cyclic subgroup generated by some element d ∈ Xk(P ), then the

order of [a, b] is at most 2ν0 . It is clear that [a, b] ∈ 〈d, db〉. By Lemma 2.6 the

order of 〈d, db〉 is {k, n}-bounded, so the result follows.

3. Bounding the order of a finite group

The purpose of this section is to find some sufficient conditions for a finite

group to have bounded order. Recall that all groups considered in this section

are finite.
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Lemma 3.1: Let k, m, n be positive integers and G a nilpotent group in which

every δk-commutator is of order dividing n. Assume that G can be generated

by m elements g1, g2, . . . , gm such that each gi and each commutator of the form

[g, x], where g ∈ {g1, g2, . . . , gm} and x ∈ G, have order dividing n. Then the

order of G is bounded by a function depending only on k,m, n.

Proof. Since G is a nilpotent group, it is clear that any prime divisor of |G| is a
divisor of n. Hence, it is sufficient to bound the order of the Sylow p-subgroup

of G for any prime p. We can pass to the quotient G/Op′(G). Thus, G can be

assumed to be a p-group and n a p-power.

Suppose first that G is soluble with derived length j ≤ k. If G is abelian,

it is easy to see that |G| is {k,m, n}-bounded. Arguing by induction on j, we

assume that the index [G : G(j−1)] is {k,m, n}-bounded.
Suppose that G(j−1) is central. In this case the index [G : Z(G)] is {k,m, n}-

bounded and Schur’s Theorem [16, p. 102] guarantees that so is |G′|. Since

G can be generated by m elements of order dividing n, it follows that G has

{k,m, n}-bounded order.

Let us see what happens if G(j−1) is not central. Consider the subgroup

A = 〈[g1, G(j−1)], [g2, G
(j−1)], . . . , [gm, G(j−1)]〉.

Clearly, A is normal in G. Applying the results of the previous paragraph

to the quotient G/A, it follows that A has {k,m, n, }-bounded index in G.

Now Schreier’s Theorem says that A can be generated by a {k,m, n}-bounded
number of elements. Since A is abelian and, by the hypothesis, the order of

each commutator of the form [g, x] divides n, it follows that A has exponent

dividing n. Hence, |A| and therefore |G| is {k,m, n}-bounded.
Now consider the general case, that is, we do not assume anymore that G is

soluble with derived length at most k. Applying the results of the previous para-

graph to the quotient G/G(k), it follows that [G : G(k)] is {k,m, n}-bounded. It
remains to show that |G(k)| is {k,m, n}-bounded. Let r be the minimal number

of generators of G(k). Note that r is {k,m, n}-bounded. A well-known corollary

of the Burnside Basis Theorem [13] says that if a p-group is r-generated, then

any generating set contains a generating set of precisely r elements. Thus, G(k)

can be generated by r δk-commutators. By Lemma 2.6 we conclude that the

order of G(k) is {k, r, n}-bounded, as required.

In what follows, we denote by π(G) the set of prime divisors of |G|.
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Lemma 3.2: Let k, l, m, n be positive integers and G a group in which every

δk-commutator is of order dividing n. Assume that G can be generated by m

elements g1, g2, . . . , gm such that each gi and each commutator of the forms

[g, x] and [g, x, y], where g ∈ {g1, g2, . . . , gm} and x, y ∈ G, have order dividing

n. Assume further that |G/F (G)| = l. Then the order of G is bounded by a

function depending only on k, l,m, n.

Proof. Let F = F (G) be the Fitting subgroup of G. Suppose first that F is

central. In this case the index [G : Z(G)] is {k, l,m, n}-bounded and Schur’s

Theorem guarantees that so is |G′|. Since G can be generated by m elements

of order dividing n, it follows that |G| is {k, l,m, n}-bounded.
If F is not central, consider the subgroup

N = 〈[g1, F ], [g2, F ], . . . , [gm, F ]〉.

It is easy to see that N is normal in G. Applying the results of the previous

paragraph to the quotient G/N , it follows that the index [G : N ] is {k, l,m, n}-
bounded. We will show that |N |, and therefore |G|, is {k, l,m, n}-bounded.
We know that N can be generated by a {k, l,m, n}-bounded number of ele-

ments. Let s be the minimal number of generators of N . Since N is nilpotent,

π(N) consists of prime divisors of n. Thus, it is sufficient to bound the order

of the Sylow p-subgroup of N for every prime p ∈ π(N). Let P be the Sylow

p-subgroup of N and write N = P × Op′ (N). If y1, y2, . . . is the list of all

elements of the form [gi, y], where 1 ≤ i ≤ m and y ∈ F , we write b1, b2, . . .

for the corresponding projections of yj in P . Then P = 〈b1, b2, . . .〉. Since P is

an s-generated p-group, the Burnside Basis Theorem shows that P is actually

generated by s elements in the list b1, b2, . . .. By the hypothesis, the order of

each of them divides n. Each commutator of the form [bi, z] also has order

dividing n. By Lemma 3.1 we conclude that P has {k, l,m, n}-bounded order.

The proof is complete.

Proposition 3.3: Let k,m, n be positive integers andG a group in which every

product of 896 δk-commutators is of order dividing n. Assume that G can be

generated by m elements g1, g2, . . . , gm such that each gi and all commutators

of the forms [g, x] and [g, x, y], where g ∈ {g1, g2, . . . , gm}, x, y ∈ G, have orders

dividing n. Then the order of G is bounded by a function depending only on

k,m, n.
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Proof. We use nk(G) to denote the triple of numerical parameters as in the

previous section. According to Lemma 2.7 the number of all triples that can be

realized as nk(G) is {k, n}-bounded. We therefore can use induction on nk(G).

If nk(G) = (0, 0, 0), then G has odd order. By the Feit–Thompson Theorem

[5], G is soluble. By Lemma 2.4, h(G) ≤ h(n) + k + 1. Arguing by induction

on h(G) we can assume that F (G) has {k,m, n}-bounded index in G. Now the

result is immediate from Lemma 3.2. Hence, we assume that nk(G) > (0, 0, 0)

and there exists a {k,m, n}-bounded number N0 with the property that if L is

a normal subgroup such that nk(G/L) < nk(G), then the index of L is at most

N0.

Suppose first that G has no nontrivial normal soluble subgroups. Proposition

2.5 tells us that G possesses a normal subgroup L such that L is residually

monolithic and nk(G/L) < nk(G). It follows that the index of L in G is at

most N0. We deduce that L can be generated by r elements for some {k,m, n}-
bounded number r.

A result of Jones [14] says that any infinite family of finite simple groups

generates the variety of all groups. It follows that up to isomorphism there

exist only finitely many monolithic groups in which every δk-commutator is of

order dividing n. Let N1 = N1(k, n) be the maximum of their orders. Then

L is residually of order at most N1. Since L is r-generated, the number of

distinct normal subgroups of index at most N1 in L is {r,N1}-bounded [11,

Theorem 7.2.9]. Therefore L has {k,m, n}-bounded order. We conclude that

|G| is {k,m, n}-bounded.
Now let us drop the assumption that G has no nontrivial normal soluble

subgroups. Let S be the product of all normal soluble subgroups of G. The

above paragraph shows that G/S has {k,m, n}-bounded order and we know

from Lemma 2.4 that h(S) ≤ h(n) + k + 1. Again we let F = F (G) be the

Fitting subgroup of G. Using induction on the Fitting height of S, we assume

that F has {k,m, n}-bounded index in G, in which case the result is immediate

from Lemma 3.2.

4. Main results

We are now ready to prove Theorem 1.5 in the case where w is a δk-commutator.
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Theorem 4.1: Let n be a positive integer and G a residually finite group in

which every product of 896 δk-commutators has order dividing n. Then G(k) is

locally finite.

Proof. Let T be any finite subset of G(k). Clearly one can find finitely many δk-

commutators h1, h2, . . . , hm∈G such that T is contained inH=〈h1, h2, . . . , hm〉.
It is sufficient to prove that the subgroup H is finite. The order of each hi di-

vides n. Moreover, if h ∈ {h1, h2, . . . , hm} and x, y ∈ H , then the commutator

[h, x] is a product of two δk-commutators and the commutator [h, x, y] is a prod-

uct of four δk-commutators. So the order of each of the commutators divides n.

If Q is any finite quotient of G, by Proposition 3.3 the order of the image of H

in Q is finite and {k,m, n}-bounded, so it follows that this order actually does

not depend on Q. Since G is residually finite, we conclude that H is finite, as

required.

Theorem 1.5 easily follows from Theorem 4.1. For the reader’s convenience

we will reproduce here a couple of lemmas from [19]. We say that a multilinear

commutator w has weight k if it depends on precisely k independent variables. It

is clear that there are only k-boundedly many distinct multilinear commutators

of weight k.

Lemma 4.2: Let G be a group and w a multilinear commutator of weight k.

Then every δk-commutator in G is a w-value.

Proof. The case k = 1 is quite obvious, so we assume that k ≥ 2 and use induc-

tion on k. Write w = [w1, w2], where w1 and w2 are multilinear commutators

of weight k1 and k2, respectively, k1 + k2 = k, and the variables involved in

one of w1, w2 do not occur in the other. Let k0 be the maximum of k1, k2. By

the induction hypothesis any δk0 -commutator in G is a w1-value as well as a

w2-value. Since w = [w1, w2], it follows that the set of w-values contains the

set of elements of the form [x, y], where x, y range independently through the

set of δk0 -commutators. Hence any δk0+1-commutator represents a w-value. It

remains to remark that k0 + 1 ≤ k, so the lemma follows.

Let w be a multilinear commutator of weight t. In the next lemma we shall

require the concept of a subcommutator of weight s ≤ t of w. This can be

defined by backward induction on s in the following way. The only subcommu-

tator of w of weight t is w itself. If s ≤ t − 1, a multilinear commutator v of
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weight s is a subcommutator of w if and only if there exists a subcommutator u

of weight > s of w and a multilinear commutator v1 such that either u = [v, v1]

or u = [v1, v]. It is quite obvious that if v is a subcommutator of w, then

w(G) ≤ v(G) for any group G.

Lemma 4.3: Let w be a multilinear commutator, G a soluble group in which

all w-values have finite order. Then the verbal subgroup w(G) is locally finite.

Proof. Let G be a counter-example whose derived length is as small as possible,

and let T be the last nontrivial term of the derived series of G. Passing to the

quotient over the subgroup generated by all normal locally finite subgroups of G,

we can assume that G has no nontrivial normal locally finite subgroups. Since

T is abelian, it follows that no w-value lies in T \ {1}. Let s = s(w,G) be the

smallest number such that any subcommutator of weight s of w has no values

in T \ {1}. Obviously, s ≥ 2 since T �= 1. We can choose a subcommutator

v = [v1, v2] of weight ≥ s of w such that both v1 and v2 are subcommutators of

weight < s, at least one of which having nontrivial values in T \ {1}. Let Hi be

the subgroup of T generated by the vi-values contained in T ; i = 1, 2. By the

choice of v at least one of these subgroups is nontrivial. Since v has no values

in T \ {1}, it follows that H1 ≤ CG(v2(G)) and H2 ≤ CG(v1(G)). Taking into

account that w(G) ≤ u(G) for any subcommutator u of w, we conclude that

H1 and H2 centralize the verbal subgroup w(G). Hence both subcommutators

v1 and v2 have no nontrivial value in the image of T in G/CG(w(G)). This

shows that s(w,G/CG(w(G))) ≤ s − 1. The induction on s(w,G) now shows

that w(G)/Z(w(G)), the image of w(G) in G/CG(w(G)), is locally finite. Then,

by Schur’s Theorem, the derived group of w(G) is locally finite. Because w(G)

is generated by elements of finite order, G must be locally finite.

Theorem 1.5 is now immediate.

Proof. Indeed, suppose that G satisfies the hypothesis of Theorem 1.5. By

Lemma 4.2 there exists k ≥ 1 such that any δk-commutator is a w-value. Hence

any product of 896 δk-commutators in G has order dividing n. Theorem 4.1

now tells us that G(k) is locally finite. It is straightforward from Lemma 4.3

that w(G)/G(k) is likewise locally finite, as required.

In [20] we raised the following problem that generalizes the Restricted Burn-

side Problem.
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Problem 4.4: Let n ≥ 1 and w be a group-word. Consider the class of all

groups G satisfying the identity wn ≡ 1 and having the verbal subgroup w(G)

locally finite. Is that a a variety?

Recall that a variety is a class of groups defined by equations. More precisely,

if W is a set of words in x1, x2, . . . , the class of all groups G such that W (G) = 1

is called the variety determined by W . By a well-known theorem of Birkhoff,

varieties are precisely classes of groups closed with respect to taking quotients,

subgroups and cartesian products of their members.

We do not know if Problem 1.2 and Problem 4.4 are equivalent. It is fairly

easy to see that whenever the answer to Problem 4.4 is positive, so is the

answer to Problem 1.2. We will show now that for words that are products of

multilinear commutators on independent variables, the problems are equivalent

indeed.

Proposition 4.5: Let C be a positive integer and w a multilinear commutator

of weight k. The following statements are equivalent.

(1) Every residually finite group G in which all products of C w-values are

of order dividing n has w(G) locally finite.

(2) Let G be a finite group in which all products of C w-values are of order

dividing n. Let a1, . . . , am be w-values. Then the order of 〈a1, . . . , am〉
is {k,m, n}-bounded.

(3) The class of all groups G in which w(G) is locally finite and every

product of C w-values has order dividing n is a variety.

Proof. Suppose first that the first statement is correct but the second is false.

Choose a family of finite groups G1, G2, . . . , Gi, . . . in which all products of C

w-values are of order dividing n with the property that for some m the groups

Gi contain w-values ai1, . . . , aim such that

|〈ai1, . . . , aim〉| < |〈aj1, . . . , ajm〉|
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whenever i < j. Let G be the Cartesian product of the groups Gi. It is clear

that G is residually finite. The elements

b1 =(a11, a21, . . . , ai1, . . . )

b2 =(a12, a22, . . . , ai2, . . . )

. . .

bm =(a1m, a2m, . . . , aim, . . . )

are w-values in G but 〈b1, . . . , bm〉 is infinite. A contradiction. Therefore, the

first statement implies the second.

Let us now show that the second statement implies the third. We assume

that the second statement is correct and let X denote the class of all groups

G in which w(G) is locally finite and every product of C w-values has order

dividing n. It is easy to see that the class X is closed to taking subgroups and

quotients of its members. Hence, we only need to show that if D is a cartesian

product of groups from X then D ∈ X. Obviously, every product of C w-values

in D has order dividing n so it remains only to prove that w(D) is locally finite.

In view of Lemma 4.3 it is sufficient to show that so is some term of the derived

series of D. According to Lemma 4.2 every δk-commutator in G is a w-value.

We wish to show that D(k) is locally finite. Let T be any finite subset of D(k).

Clearly one can find finitely many δk-commutators h1, h2, . . . , hm ∈ D such

that T ≤ 〈h1, h2, . . . , hm〉 = H . It is sufficient to prove that the subgroup H is

finite. Since H is generated by finitely many δk-commutators and since every

commutator of δk-commutators is again a δk-commutator, we deduce that H(k)

has finite index in H and so is generated by finitely many δk-commutators, too.

Since the second statement is correct, it follows that the image of H(k) in any

finite quotient of H is finite and has bounded order. Thus, it is sufficient to

show that H is residually finite. However, this is immediate from the facts that

H is finitely generated and every group G in X has G(k) locally finite.

It remains to show that the third statement implies the first. Let X have the

same meaning as in the above paragraph and assume that X is a variety. Let

G be a residually finite group in which all products of C w-values are of order

dividing n. Then any finite quotient of G belongs to the variety X. However, it

is clear that if a group residually belongs to a certain variety, then it actually

belongs to the variety. Thus, it follows that w(G) is locally finite.

The next corollaries are now immediate.
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Corollary 4.6: Let w be a multilinear commutator and n a positive integer.

The class of all groups G in which w(G) is locally finite and every product of

896 w-values has order dividing n is a variety.

Corollary 4.7: Let w be a multilinear commutator of weight k and n a

positive integer. Let G be a finite group in which every product of 896 w-

values has order dividing n. If a1, . . . , am ∈ G are w-values, then the order of

〈a1, . . . , am〉 is {k,m, n}-bounded.
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